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Abstract

Despite being a valuable tool for volume measurement and the analysis of complex
geometry, the need for an external position sensor is holding up the clinical exploitation
of freehand three-dimensional ultrasound. Some sensorless systems have been developed,
using speckle decorrelation for out-of-plane distance estimation, but their accuracy is still
not as good as that of sensor-based systems. Here, we examine the widely held belief that
accuracy can be improved by limiting the distance measurements to patches of ultrasound
data containing fully developed speckle. Without speckle detection, we observe that scan
separation is systematically underestimated by 33.1 % in biological tissue. We describe a
number of speckle detectors and show that they reduce the underestimate to about 25 %.
We conclude that speckle classification can improve the quality of distance estimation,
but not sufficiently to achieve accurate, metric reconstruction of the insonified volume.

1 Speckle-based distance measurement

Freehand three-dimensional (3D) ultrasound (US), in which B-scan slices and probe trajectory
are simultaneously recorded, provides a valuable clinical tool for volume measurement and the
analysis of complex geometry [8, 9, 21, 24]. However, the need for an add-on position sensor
is inconvenient in a clinical environment. The goal is thus to use less intrusive techniques
for probe tracking without compromising the spatial accuracy of the overall system. The
development of accurate, sensorless measurement techniques is key to improving the clinical
utility of freehand 3D US.

Position sensorless freehand 3D US makes use of the fact that the beam of the US scanner
is several millimetres wide in the elevational1 direction, even at the focus. Each pixel in the
scan image is sensitive to back-scattered echoes from a roughly ellipsoidal volume known as the
resolution cell [1]. As illustrated in the left part of Fig. 1, the resolution cells in neighbouring
B-scans overlap and, as a result, there is a statistical link between the corresponding echoes.
To model this link, two alternative theories have been developed, one based on correlation of
the echo intensities [2, 11, 18, 29], the other on linear regression [26]. For scans comprising
fully developed speckle, Prager et al. [26] demonstrated the equivalence of the two theories.

Speckle-based distance measurement exploits the fact that there is a roughly Gaussian
relationship between the correlation (or regression gradient) of the echo envelope intensities

1The following standard nomenclature is used to refer to the principal directions in ultrasound imaging.
The axial direction is in the direction of wave propagation, from the transducer into the skin. The lateral

direction is the other principal direction in the plane of the B-scan. The elevational direction is perpendicular
to the plane of the B-scan.
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Figure 1: Left: Overlapping resolution cells from neighbouring B-scans. Right: Illustration
of the relationship between the uncompressed echo envelope intensity from corresponding
resolution cells in neighbouring B-scans.

of a pair of patches of speckle, and their distance apart [11]. The precise shape of this
relationship depends on the beam profile, but it is usually of the form illustrated in the
right part of Fig. 2. For a Gaussian-shaped resolution cell with a width characterised by the
standard deviation σ, the following two steps can be performed to determine the distance
between two B-scans.

1. Perform linear regression (or correlation) between the back-scattered envelope intensities
in corresponding patches of the two scans.

2. Use the gradients b of the best fit lines (or equivalently Pearson’s correlation coefficient
ρ) and the standard deviation of the US resolution cells to find the distances d between
the B-scans at various points using the relationship

b = exp

(

−
d2

2σ2

)

. (1)

Two prerequisites have to be fulfilled in order to achieve accurate distance measurements.

1. The theory for speckle-based distance measurement is only valid for intensity echoes
resulting from fully developed speckle.

2. The local width of the non-stationary resolution cell must be known.

The goal of this paper is to advance the accuracy of speckle-based out-of plane distance
measurement. To this end, we employ highly localised models of the shape of the resolution
cell, which varies across the B-scan for reasons described in [33]. We also investigate the
ability of various speckle detectors to select appropriate data for regression or correlation.
We are not aware of any published papers that evaluate the short range performance of these
algorithms in the way we report here.

The organisation of this paper is as follows. Section 2 presents the model for the local
shape of the resolution cell and its training from parallel B-scans with known elevational
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Figure 2: Example of a speckle decorrelation curve in the elevational direction. Left: Illus-
tration of the experimental setup indicating the movement of the probe perpendicular to the
B-scans (note the modified proportions for drawing purposes). Right: Measured decorrelation
curve for a patch about the focus with respect to the first patch as fixed reference.

separation. Four speckle detectors are presented in Section 3: all are theoretically motivated,
two of them are novel and two of them have been reported before [10, 25]. In Section 4, we
evaluate the utility of the speckle detectors by estimating the out-of-plane separation of in
vitro RF data acquired from a joint of beef. We present the main conclusions of the paper in
Section 5.

2 Local model of the resolution cell

2.1 Experimental apparatus

For all experiments in this paper, a Diasus US machine2 modified for RF acquisition was
used with a 5–10 MHz linear array probe. The US machine was set up to acquire images
at a 4 cm depth setting with a single focus at 2 cm. After time gain compensation, the RF
data were digitised using a 14 bit Gage CompuScope CS141003 analogue to digital converter.
Whole frames, each comprising 127 RF vectors by 3818 samples, were stored in on-board
Gage memory before transferring to PC memory at 75 MB/s. The system operates in real
time, with acquisition rates exceeding 30 frames per second. Sampling was at 66.67 MHz,
synchronous with the ultrasound machine’s internal clock: this synchronization minimises
phase jitter between vectors. Assuming an average speed of sound of 1540 m/s in soft tissue,
the acquired RF samples have an axial resolution of ∆y = 0.01 mm. The RF vectors were
filtered with a 3–30 MHz broadband filter, yielding an echo signal which we shall refer to as

2Dynamic Imaging Ltd., Cochcrane Square, Brucefield Industrial Park, Livingston EH54 9DR, Scotland,
UK, http://www.dynamicimaging.co.uk/

3Gage Applied, Inc., 32nd Avenue, Lachine, QC, H8T 3H7, USA, http://www.gage-applied.com/
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r(t). The instantaneous amplitude (the so called A-line) is obtained via envelope detection

e(t) = |r(t) + jr̂(t)|, (2)

where r̂(t) denotes the Hilbert transform of r(t). The expression r(t) + jr̂(t) is referred to as
the analytic signal or complex RF echo. The echo intensity is the square of e(t).

Due to the coloured nature of the received RF echo, it is possible to estimate the lo-
cal shape of the resolution cell via the spatial decorrelation of the RF echo intensity. For
scans comprising fully developed speckle, there is a direct relationship between the resolu-
tion cell’s dimensions and the decorrelation functions in the principal scanning directions
[2, 5, 31, 32]. We therefore measured decorrelation functions in the elevational and axial
directions by scanning a speckle phantom with Rayleigh backscatter and uniform attenuation
of 0.4 dB/cm/MHz4 [17, 19]. The probe was mounted on a mechanical assembly such that
it could be translated slowly in the elevational direction by means of a screw thread. Its
displacement was measured using a dial gauge. In an initial experiment, sixty parallel slices
of RF data were recorded at distances ∆z = 0.02 mm apart, as depicted in the left part of
Fig. 2. To illustrate a typical decorrelation curve, consider a rectangular patch comprising
approximately 5000 RF samples about the focal region. The echo intensity was correlated
with 59 corresponding patches with shifted ranges in the elevational and axial directions, as
shown in the left halves of Figs. 2 and 3. The two decorrelation curves are depicted in the
respective right halves of the figures. For the patch chosen in this example, the lengths of the
principal axes of the roughly ellipsoidal resolution cell (measured at -3 dB of the decorrelation
curves) were approximately 0.98mm in the elevational direction and 0.22mm in the axial di-
rection. Both elevational and axial decorrelation play a key role in this study. The elevational
decorrelation is required for out-of-plane distance estimation, while the axial decorrelation is
exploited by some speckle detectors.

2.2 Training of local decorrelation curves

100 frames of RF data were recorded from the speckle phantom, as described in Sec. 2.1, with
the same probe settings but at a pitch of 0.04mm in the elevational direction. Monte Carlo
simulations in our previous work have indicated that meaningful speckle statistics can be
estimated with patch sizes of about 5000 RF samples. We therefore partitioned each frame
of RF data into a grid of 8 × 12 rectangular disjoint patches, each comprising about 5000
RF samples. For each patch of the grid, we trained a model of its axial decorrelation using
Pearson’s linear correlation coefficient ρ:

ρ(X, Y ) =
N

∑

xiyi −
∑

xi
∑

yi
√

[

N
∑

x2

i − (
∑

xi)
2

] [

N
∑

y2

i − (
∑

yi)
2

]

, (3)

where X = {xi} and Y = {yi}, i = 1 . . . N , are two patches of RF intensity values xi and yi

respectively.
A single Gaussian (Eq. 4) with parameter α was chosen to model the decorrelation:

ρm = exp

(

−δ2

α2

)

, (4)

4Dept. of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
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Figure 3: Example of a speckle decorrelation curve in the axial direction. Left: A rectangular
patch about the focal region is correlated with corresponding patches within the same slice
moved successively downwards in unit steps of one RF sample (∆y = 0.01 mm). Right:
Measured decorrelation curve with respect to the first patch.

where ρm is the correlation at distance δ. We trained the axial model only for correlation
values above 0.65, where the measured curves could be approximated satisfactorily with a
single Gaussian. For each patch, 100 decorrelation curves were obtained, one from each frame
in the data set. These were averaged together, and the Gaussian model fitted to the averaged
data. A linear least squares fit of the logarithmic (and thus linearised) model was obtained
by minimising the sum of the squared deviations at n samples of the decorrelation curve:

minimise : R2 =

n
∑

i=1

[

ln ρi +
δ2

i

α2

]2

(5)

The necessary condition for a minimum is
∂(R2)

∂α = 0, from which it is readily shown that

α2 = −

∑n
i=1

δ4

i
∑n

i=1
δ2

i ln ρi
(6)

The averaged axial decorrelation curves for each patch, together with an overlay of the fitted
Gaussian models, are depicted in Fig. 4. Note that the Gaussian models do not fit all decor-
relation curves accurately. At the top of the B-scan, this is due to the phantom’s scanning
window introducing strong specular features, as is evident in the example at the bottom left
of Fig. 6. At the bottom of the B-scan, the problem is noise in the RF data due to increased
attenuation. Hence, only those patches in rows 3 to 8 were used in the in vitro experiment
reported in Sec. 4.

A similar experiment was conducted for the purpose of training models of the local speckle
decorrelation in the elevational direction. For each patch in frame f , an elevational decor-
relation curve was obtained by correlating with the corresponding patch in frame f + i,
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Figure 4: Decorrelation curves in the axial direction together with an overlay of the corre-
sponding fitted Gaussian models for a grid of 8 × 12 rectangular patches. The models were
trained using echo intensities from 100 RF scans. The data set was recorded from a speckle
phantom using the Diasus 5–10 MHz probe at a 4 cm depth setting with a single focus at 2 cm.
The abscissae range from -0.1mm to 0.1mm. The correlation values on the ordinates range
from 0.45 to 1. Only the patches in rows 3 to 8 were selected for the later in vitro experiment.
See the text for further experimental details.
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i = 1 . . . 12. An average decorrelation curve was calculated by averaging the 88 individual
curves for f = 1 . . . 88. The Gaussian model was then fitted to the average curve, one for
each patch. The averaged elevational decorrelation curves, together with an overlay of the
Gaussian models, are depicted in Fig. 5. As with the axial model, only those patches within
the dashed rectangle were chosen for the in vitro experiment reported in Sec. 4.
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Figure 5: Decorrelation curves in the elevational direction together with an overlay of the
corresponding fitted Gaussian models for a grid of 8 × 12 rectangular patches. The models
were trained using echo intensities from 100 parallel RF scans 0.04mm apart. The data set
was recorded from a speckle phantom using the Diasus 5–10 MHz probe at a 4 cm depth setting
with a single focus at 2 cm. The abscissae range from -0.5mm to 0.5mm. The correlation
values on the ordinates range from 0 to 1. Only the patches in rows 3 to 8 were selected for
the later in vitro experiment. See the text for further experimental details.
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3 Approaches to speckle detection

Speckle detection is useful to aid segmentation, support diagnosis via quantitative tissue
characterisation, for adaptive speckle suppression algorithms and, in the context of this report,
as a prerequisite for speckle-based distance measurement. Fully developed speckle results from
many diffuse scatterers per resolution cell. In this case, the underlying linear system theory
describes the interaction of the propagating pulse with the scatterers as a summation of many
random variables. The central limit theorem (CLT) states that data which are influenced by
many small and unrelated random effects are approximately Normally distributed. Since
this is the case for fully developed speckle, the received back-scattered RF echo values are
Normally distributed, their corresponding envelope values (instantaneous amplitudes) are
Rayleigh distributed, and their corresponding brightness values (instantaneous intensities)
have an exponential distribution [30].

The following subsections theoretically motivate the four approaches to speckle detection
as employed in the in vitro experiment in Sec. 4.

3.1 Agreement of regression and correlation

For fully developed speckle, Prager et al. derived the numerical equality of the regression
parameter b (the gradient of the regression line) and Pearson’s correlation coefficient ρ for
uncompressed RF echo envelope intensity samples separated in the elevational direction [26].
To employ this result for speckle detection, we assume that if b and ρ differ, this difference
is likely to result from coherent scattering or noise. We used the symmetric linear regression
technique, as described in [26], to work out b for two patches of echo envelope intensities. The
corresponding linear correlation coefficient ρ was calculated according to Eq. (3) using the
same intensity values.

3.2 Agreement of the observed axial decorrelation with its model

As illustrated in Fig. 4, we trained local models of the axial decorrelation from scans of a
speckle phantom. However, the shape of the decorrelation curves may be altered in scans of
biological tissue due to coherent scattering. If the examined volume contains few scatterers,
the diameter of the scatterers is wider than the interrogating pulse width (resolvable scatter-
ers), or given a periodic arrangement of the scatterers, higher correlation values are observed
than would be expected from fully developed speckle. Therefore, we assume that if there is
a large enough deviation of the observed axial decorrelation curve from the trained model
for that patch, then this difference is caused by coherent scattering or noise. The deviation
is measured as the root mean square (RMS) difference between the observed decorrelation
curve and the corresponding local model.

3.3 Moment-based first order statistics classification

Prager et al. [22, 23, 25] extended the approach of Dutt and Greenleaf for speckle detection
using first order statistics [6, 7]. Tuples of mean over standard deviation (R) and the skewness
statistics (S) calculated from patches of uncompressed echo intensity were used to detect
speckle in (R, S)-space [25]. In this report, we use a generalised version of the elliptic region of
acceptance reported in [22]. To yield a one-dimensional measure ϑ for classification purposes,
we worked out the distance d of the (R, S)-point to the centre of the ellipse. ϑ was then
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calculated as the ratio of d to the radius r of the ellipse in the point’s direction. By this means,
the elliptical nature of the feature space is preserved in the one-dimensional measure ϑ.

3.4 Non-parametric goodness of fit test

For fully developed speckle, the received complex RF echo at any point is a circularly sym-
metric Gaussian random variable (RV) with the real and imaginary parts independent, zero-
mean Gaussian RV’s with the same variance [1, 3, 30, 31]. As mentioned earlier, under these
conditions, the phasor magnitudes (i. e. the echo amplitudes as given by Eq. 2) are Rayleigh
distributed and the squared phasor magnitudes (intensities) are exponentially distributed [30].

This important result can be used to apply a formal statistical test, whether a given sam-
ple of RF echo values may be considered as Normally distributed, and thus fully diffuse, or
not. For this purpose, Georgiou and Cohen propose the Kolmogorov-Smirnov nonparametric
goodness of fit test (K-S test) [10]. The K-S test allows one to examine the diffuse scattering
assumption directly from the empirical cumulative distribution function (ecdf) Pn(w) of the
sampled RF echo r(t), rather than testing parameters derived from the distribution (e. g. the
signal-to-noise ratio or a set of moments) [7, 20]. The K-S test uses the maximum vertical
distance between the ecdf Pn(w) and its corresponding Normal distribution G(w) with pa-
rameters µ̂ and σ̂ estimated from the ecdf. This is a sensitive measure for the discrepancy
between the two distributions. The K-S test statistic Dn is given by

Dn = sup
−∞<w<∞

|Pn(w) − G(w)| . (7)

Given sample sizes n > 40, the widely used 0.95 and 0.99 quantiles for two-sided hypothesis
testing can be approximated for the K-S test statistics Dn by 1.36n−1/2 and 1.63n−1/2 re-
spectively [4]. That is, any Dn, as defined by Eq. (7), which is equal to or greater than the
0.95 quantile for that n will be regarded as significant at the 0.05 level. Further details and
an implementation of the K-S test can be found in [27].

3.5 Verification of speckle detectors

We verified the operation of the moment-based and K-S detectors (Sects. 3.3 and 3.4) using
simulated 2D RF echo data. We were unable to test the other detectors in this manner, since
the regression/correlation test requires 3D data, while the axial model test needs training for
a specific transducer. The Field II package5 was used to simulate RF echo samples from a
virtual cyst phantom [15] for a transducer with 128 array elements, using 105 diffuse scatterers
in a cuboid volume of 60 × 40 × 15 mm3. Besides diffuse scattering in the background, the
resulting B-scan (Fig. 6, top) comprised three columns of (from left to right) five point targets,
five strongly reflecting regions, and five cyst regions with varying diameter. The overlaid grid
indicates the results of the speckle detection. Patches with ϑ < 3 were regarded as comprising
speckle, and 0.05 was used as the significance level for the K-S test. Borders dashed in black
and white indicate patches for which the two detectors agreed on speckle. White crosses
indicate patches for which the two detectors agreed on non-speckle. Note how both detectors
are reliably able to reject patches which clearly do not contain fully developed speckle. Next,
we ran the two speckle detectors, with the same thresholds, on a B-scan from the speckle

5Field II Ultrasound Simulation Program, Technical University of Denmark, Biomedical Engineering Group,
DK-2800 Kgs. Lyngby, Denmark, http://www.es.oersted.dtu.dk/staff/jaj/field/
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Figure 6: Typical B-scans and the results of speckle detection. The dashed frames
indicate patches for which the two speckle detectors in Sects. 3.3 and 3.4 agreed on fully
developed speckle, while the crosses indicate patches for which they agreed on non-speckle.
Top: Speckle detection using the virtual cyst phantom simulated with Field II. Bottom
left: First slice of the in vitro RF data set of the speckle phantom used for the training of
the decorrelation curves. Bottom right: First slice of the in vitro RF data set of a beef joint
used for the main experiment in Sec. 4. As indicated in Figs. 4 and 5, only patches in rows 3
to 8 were examined in the two in vitro data sets. Refer to Sec. 4.1 for experimental details.
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phantom (Fig. 6, bottom left). Note how both detectors agree on fully developed speckle for
the majority of the patches.

4 Accuracy of distance measurement using in vitro RF data

In this section, we seek to address both the achievable accuracy of speckle-based out-of-plane
distance measurement in soft tissue, and ways to improve it using speckle detection. To this
end, we chose to perform an in vitro experiment. In vivo experiments are subject to additional
factors that degrade speckle-based distance measurement, including the movement of the soft
tissue due to breathing, muscular tremor, circulatory motion and the contact pressure of the
probe itself [28].

4.1 Experimental setup and methodology

RF data was recorded from a joint of beef using the same settings as described in Sec. 2. A
total of 100 parallel slices of RF data, ∆z = 0.04 mm apart, was recorded. The first slice of
the beef data is shown at the bottom right of Fig. 6. The speckle detector thresholds were
the same as adopted for the other two B-scans. Note how none of the data is classified as
fully developed speckle at these thresholds.

We measured distances in the beef and training data sets at an elevation separation of
0.20mm (every fifth slice). For the reasons outlined in Sec. 2, we limited the measurements in
each frame to the patches in rows 3 to 8. Frames z ∈ {1, . . . , 95} were chosen successively as
reference frames. Speckle-based distance measurement was carried out by comparing selected
patches with their corresponding patches in frame z+5, using the local model of the elevational
decorrelation trained in Sec. 2.2. For each pair of corresponding patches 0.20mm apart, the
following values were recorded:

• the linear regression gradient b between the RF echo envelope intensity values of the
corresponding patches,

• Pearson’s linear correlation coefficient ρ between the RF echo envelope intensity values
of the corresponding patches,

• the measured elevational distance between the patches using Eq. 4,

• the root mean square (RMS) errors characterising how well each patch fitted its axial
model,

• the tuples of (R, S) moments for each patch (using uncompressed RF echo envelope
intensities),

• the K-S test statistics Dn, calculated from the real RF echo samples r(t), measuring the
deviation of the distribution of the RF samples from a fitted Normal distribution (for
each patch).

For each speckle detector, the threshold τ was varied to observe its effect on elevational
distance measurement.
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• Detector D1 measured the agreement of regression and correlation (see Sec. 3.1). The
speckle hypothesis was accepted if:

|b − ρ| ≤ τ1. (8)

• Detector D2 measured the agreement of the observed axial decorrelation with its trained
model (see Sec. 3.2) for each pair of patches 1 and 2 separated by ∆z = 0.20 mm. The
speckle hypothesis was accepted if:

max (RMS1, RMS2) ≤ τ2. (9)

• Detector D3 used the feature ϑ (see Sec. 3.3) calculated for both patches 1 and 2. The
speckle hypothesis was accepted if:

max(ϑ1, ϑ2) ≤ τ3. (10)

• Detector D4 employed the the K-S test statistics Dn (see Sec. 3.4) for patches 1 and 2.
The speckle hypothesis was accepted if:

max(Dn1, Dn2) ≤ τ4. (11)

For evaluation purposes, the thresholds τ1, . . . , τ4 were extended incrementally from zero until
every patch was accepted as speckle. For each threshold value, the mean relative distance error
and its variance were calculated from those pairs of patches for which the speckle hypothesis
was accepted according to Eqs. (8) – (11).

4.2 Results

Figure 7 shows the frequency of the per-patch distance estimates without speckle detection.
Unsurprisingly, the results for the training data are nearly perfect, with an average measured
distance of δ̄ = 0.204 mm and a standard deviation of σδ = 0.022 mm. The residual 2%
overestimation can be explained by the locally imperfect fit of the Gaussian models with the
averaged decorrelation curves. In marked contrast, note the significant bias of the beef results
towards smaller distances. For all pairs of patches 0.20mm apart, the average measured
distance was δ̄ = 0.134 mm (mean relative distance error ε̄ = −33.1%) with a standard
deviation of σδ = 0.046 mm. The coherent scattering in the beef is decorrelating slower than
the speckle in the phantom, and this is misinterpreted systematically as a smaller separation
between the patches. Occasional overestimates result from noisy patches towards the bottom
of the B-scans.

The impact of the four speckle detectors on the quality of the distance measurements
is shown in Fig. 8. The detector D1 was unable to improve the quality of the distance
measurement. An examination of those pairs of patches with large distance error despite
similar b and ρ values revealed that they had both large values of ϑ and a non-Gaussian
statistic of the RF samples. We conclude that fully developed speckle is a sufficient, but not
a necessary, condition for the equality of b and ρ. For this reason, it is not possible to use D1

for speckle detection.
At first sight, the detector D3 appears to be most useful, improving the quality of the mean

measured distance to 0.180mm (−10.3%) and a standard deviation of ±0.040 mm for values of
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Figure 7: Histograms of the measured elevational distances for left the training data
(mean µ̂ = 0.204 mm, standard deviation σ̂ = 0.022 mm, skewness γ̂1 = 0.376) and right the
beef data (µ̂ = 0.134 mm, σ̂ = 0.046 mm, γ̂1 = 0.799) for all pairs of patches with ρ > 0.65
at a spacing of ∆z = 0.20 mm apart.

ϑ < 3.5. However, this result is irrelevant with respect to sensorless freehand 3D ultrasound,
since, at this threshold, there remain only 17 pairs of patches in the whole data set. At
least three speckled patches per B-scan are required for a 3D reconstruction of the insonified
volume. Therefore, we compared the achievable accuracy at the minimum thresholds such
that, on average, at least three patches per B-scan were accepted as coming close to speckle
according to D2 – D4 (see Tab. 1). At these thresholds, the average relative underestimation
of the elevational distances of -33.1% could be improved to about -25% using any of the
detectors D2 – D4. The detectors D2 and D3 performed slightly better than D4.

Table 1: Descriptive statistics of the distance measurements at thresholds τ where, on aver-
age, and at least, three patches per B-scan were accepted according to the speckle detectors
D2 – D4.

patches per B-scan D2 D3 D4

three on average at τ2 = 0.1076 (n = 285) τ3 = 5.6508 (n = 285) τ4 = 0.0380 (n = 285)
(δ̄ ± σδ) [mm] 0.150±0.045 0.149±0.037 0.148±0.034
(ε̄ ± σε) [%] -25.3±22.7 -25.7±18.4 -26.0±16.8

at least three at τ2 = 0.7484 (n = 667) τ3 = 7.2769 (n = 664) τ4 = 0.0467 (n = 540)
(δ̄ ± σδ) [mm] 0.141±0.047 0.144±0.040 0.1382±0.035
(ε̄ ± σε) [%] -29.3±23.7 -27.9±19.9 -30.9±17.5

5 Conclusions

In patches of 2D ultrasound data of biological tissue, there is little to no scattering that
fits the model of “fully developed speckle”. Almost all observed scattering is to some extent
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(d) results for D4

Figure 8: Incremental thresholding vs. the relative distance error and the number of patches
remaining per B-scan.
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specular, i. e. has varying degrees of coherency. At least three accurate elevational distance
measurements, at three linearly independent points per B-scan, are required for a full metric
3D reconstruction of a sweep of freehand ultrasound data. For this reason, speckle detection
on its own is an insufficient means to obtain metric 3D reconstructions. However, speckle
detection is still useful for improving qualitative 3D reconstructions by rejecting patches with
strong specular scattering or noise.
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