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Silhouette Coherence for Camera Calibration

under Circular Motion

Carlos Herandez, Francis Schmitt and Roberto Cipolla

Abstract

We present a new approach to camera calibration as a part @hplete and practical system to
recover digital copies of sculpture from uncalibrated imagquences taken under turntable motion. In
this paper we introduce the concept of @ithouette coherencef a set of silhouettes generated by a
3D object. We show how the maximization of the silhouetteetehce can be exploited to recover the
camera poses and focal length.

Silhouette coherence can be considered as a generalizdtitre well known epipolar tangency
constraint for calculating motion from silhouettes or ek alone. Further, silhouette coherence exploits
all the information in the silhouette (not just at epipolangency points) and can be used in many
practical situations where point correspondences or apgrolar tangents are unavailable.

We present an algorithm for exploiting silhouette coheeetw efficiently and reliably estimate
camera motion. We use this algorithm to reconstruct very lgjgality 3D models from uncalibrated
circular motion sequences, even when epipolar tangencytpare not available or the silhouettes are
truncated. The algorithm has been integrated into a pedctigstem and has been tested on over 50
uncalibrated sequences to produce high quality photdésteamodels. Three illustrative examples are
included in this paper. The algorithm is also evaluated tjtadively by comparing it to a state-of-the-art

system that exploits only epipolar tangents.

Index Terms

Silhouette coherence, epipolar tangency, image-base@lvill, camera motion and focal length

estimation, circular motion, 3d modeling.

DRAFT



DRAFT 2

. INTRODUCTION

Computer vision techniques are becoming increasingly @opiar the acquisition of high
qguality 3D models from image sequences. This is particulatde for the digital archiving of
cultural heritage, such as museum objects and their 3D hzstian, making them available to
people without physical access.

Recently, a number of promising multi-view stereo recortdtom techniques have been pre-
sented that are now able to produce very dense and textureddgiels from calibrated images.
These are typically optimized to be consistent with stereescin multiple images by using
space carving [1], deformable meshes [2], volumetric ojz@tion [3], or depth maps [4].

The key to making these systems practical is that they shioelldsable by a non-expert in
computer vision such as a museum photographer, who is ogiyrezl to take a sequence of high
quality still photographs. In practice, a particularly genient way to acquire the photographs
is to use a circular motion or turntable setup (see Fig. 1viar ¢éxamples), where the object is
rotated in front of a fixed, but uncalibrated camera. Cameliaresion is thus a major obstacle
in the model acquisition pipeline. For many museum objdottyween 12 and 72 images are
typically acquired and automatic camera calibration ieesal.

Among all the available camera calibration techniquesntpibased methods are the most
popular (see [5] for a review and [6] for a state-of-the-anplementation). These rely on the
presence of feature points on the object surface and caidpreery accurate camera estimation
results. Unfortunately, especially in case of man-madecibjand museum artifacts, feature
points are not always available or reliable (see the exanmpleig. 1b). For such sequences,
there exist alternative algorithms that use the objectirmutbr silhouette as the only reliable
image feature, exploiting the notion of epipolar tangems &ontier points [7]-[9] (see [10] for
a review). In order to give accurate results, these methegisine very good quality silhouettes,
making their integration in a practical system difficultrfoe particular case of turntable motion,
the silhouette segmentation bottleneck is the separatiotheo object from the turntable. A
common solution is to clip the silhouettes (see examplegn Hd). Another instance of truncated
silhouettes occurs when acquiring a small region of a bigdpgect (see Fig. 1a).

We present a new approach to silhouette-based camera namiibfocal length estimation that

exploits the notion of multi-viewsilhouette coherencén brief, we exploit the rigidity property

DRAFT



DRAFT 3

of 3D objects to impose the key geometric constraint on thirouettes, namely that there
must exist a 3D object that could have generated these siftesu For a given set of silhouettes
and camera projection matrices, we are able to quantify ¢gmeement of both the silhouettes
and the projection matrices, i.e, how much of the silhogetteuld have been generated by a
real object given those projection matrices. Camera egtmas then seen as an optimization
step where silhouette coherence is treated as a functioneotamera matrices that has to be
maximized. The proposed technique extends previous silhouettedbasthods and can deal
with partial or truncated silhouettes, where the estinmtmd matching of epipolar tangents
can be very difficult or noisy. It also exploits more informaat than is available just at epipolar
tangency points. It is especially convenient when combinild 3D object modeling techniques
that already fuse silhouettes with additional cues, as jn[8&, [11].
This paper is organized as follows: in Section Il we review titerature. In Section Il we

state our problem formulation. In Section IV we introduce ttoncept of silhouette coherence.
In Section V we describe the actual algorithm for camerabcation. In Section VI we illustrate

the accuracy of the method and show some high quality recansmns.

II. PREVIOUS WORK

Many algorithms for camera motion estimation and autobcation have been reported [5].
They typically rely on correspondences between the samarésadetected in different images.
For the particular case of circular motion, the methods & [And [13] work well when the
images contain enough texture to allow a robust detectiothef features. An alternative is
to exploit silhouettes. Silhouettes have already been fisedamera motion estimation using
the notion ofepipolar tangency point§7], [8], [14], i.e., points on the silhouette contours in
which the tangent to the silhouette is an epipolar line. A rigerature exists on exploiting
epipolar tangents, both for orthographic cameras [7], [3], [16] and perspective cameras
[17]-[20]. In particular, the works of [18] and [19] use orilye two outermost epipolar tangents,
which eliminates the need for matching corresponding daigangents across different images.
Although these methods have given good results, their maawlthck is the limited number
of epipolar tangency points per pair of images, generally owo: one at the top and one at
the bottom of the silhouette. When additional epipolar taegepoints are available, the goal is

to match them across different views and handle their Vigipas proposed in [16] and [20].
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Fig. 1. Reconstructed sculptures after camera motion and focal lesigtta¢ion using silhouette coherence. (a) Chinese bronze

vase (24 input images of 6 Mpixels). (b) Giganti by Camille Claudel (3@itimmages of 6 Mpixels). Left bottom: corresponding
segmented silhouettes. Middle: reconstructed shaded model. Rightetxhadel.

An additional limitation of all these methods is their inggito cope with partial or truncated
silhouettes, as in the examples shown in Fig. 1.

Although the notion of silhouette coherence appears initegature under different names, it
has never been exploited before for camera estimation.r@adind Laurentini study the problem
of silhouette compatibilityn [21] for the case of orthographic projection, and give somles
to determine if a set of silhouettes can correspond to a tgatb They do not provide a way to
quantify the amount ofhcompatibility In his PhD thesis, Cheung [22] used the phresasistent
alignmentfor the idealized registration of two visual hulls. Howeverpractice, his proposal was
not feasible in an optimization algorithm because it wasdomputationally expensive. In this
paper we further develop the concept of silhouette coherand link it to the epipolar geometry,
and specifically to the tangency criterion as used by WongGipdlla [19]. In particular, the
epipolar tangency criterion can be seen as a measure olstteocoherence for the special
case of only two silhouettes. When using more than two siltiesiethe proposed silhouette
coherence extends the epipolar tangency criterion by #@xpgoall the information contained

in the contours of the silhouettes, not just at the epipaagéncy points. This enables us to

DRAFT



DRAFT 5

estimate the motion and the focal length correctly evendfdhare no epipolar tangents available
(see Fig. 1a). The proposed silhouette coherence criterialso related to [23], where silhouette
coherence is used to register a laser model with a set of snddee main difference with this
paper is that we do not require a 3D representation of thecolmeorder to perform camera
calibration. The object ismplicitly reconstructed from the silhouettes by a visual hull method

at the same time as the cameras are calibrated.

I1l. PROBLEM FORMULATION

We consider a perspective projection camera model whereelagon between a 3D point

M and its 2D projectionm is fully represented by thg x 4 camera projection matriR [5]:
m ~ PM ~ K[R|t]M, (1)

where the3 x 3 rotation matrixR and the vectort represent the orientation and translation
defining the pose of the camera. The calibration mairigontains the intrinsic parameters of
the camera. The aspect ratio and the skew factor are assumieel known or ideal for our
CMOS and CCD cameras; the only intrinsic parameters that weidsemare the focal length
f (in pixels) and the principal pointug,vo)". Furthermore, since the effect of the translation
t and the principal pointug,vy)' is very similar under the assumption of circular motion, the
principal point is considered to simply be the center of tinage.

For n views, we parameterize the circular motion with+- 3 parameters(see Fig. 2b): the
spherical coordinates of the rotation axé, ¢.), the translation direction angle;, then — 1
camera angle stepAw; and the focal lengthf. The ;" camera projection matri®,; has the

following decomposition:

Pi = K[R2|tl] = K[Ra(wl)|t} VZ, (2)
whereR,(w;) is the rotation of angles; around axisa and the vectora andt are given as:

a = (sin(ba)cos(¢a),sin(fa)sin(¢ga), cos(fa))’,

= (sin(ay),0,cos(ar)) "

3)

We could also have used the parameterization of [12] instead.
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Fig. 2. Circular motion parameterization. (a) Set of input silhoueftegb) Parameterization of the projection matriégsas
a function of the spherical coordinates of the rotation &#is ¢, ), the translation directiom, the camera angle stegsw;

and the focal lengtty.

Given a set of silhouettes; of a rigid object taken under circular motion (see Fig. 2a),
our goal is to recover the corresponding projection madrieeas the set of, + 3 parameters
V = (0a, ba, i, Aw;, f) (see Fig. 2b).

IV. SILHOUETTE COHERENCE

Given a set of silhouetteS; of the same 3D object, taken from different points of viewd an
a corresponding set of camera projection matriegsve would like to measure the agreement
of both the silhouette segmentation and the camera projectiatrices. We want to exploit
the raw information provided by a silhouette: a binary dfasstion of all the optic rays going
through the optic center of the associated camera. Thegerags are labeled by the silhouette
asintersecting the objectS label) if they belong to a silhouette pixel, aot intersecting the
object (B label) if they belong to a background pixel.

Let us consider an optic ray defined by a silhouette pixel hod tlassified aS. The projection

of the optic ray into any other viewnustintersect the corresponding silhouette. Furthermore,
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(a) (b)

Fig. 3. Two examples of different degrees of silhouette cohererwe.r@constructed visual hull is shown by the gray 3D
object. (a) A perfectly coherent silhouette set. (b) Same set of silhguetth a different pose and low silhouette coherence.
The red area shows non-coherent silhouette pixels. In this paper waizgrthe red area as a criterion for camera calibration

(see video in supplemental material).

the back projection of all these 2D intersection intervaisoathe optic raymustbe coherent,
meaning that their intersection must have non-zero lengik. intersection interval will contain
the exact position where the optic ray touches or intergbetobject.

Due to noisy silhouettes or incorrect camera projectiorriced, the above statement may not
be satisfiedj.e., even if a silhouette has labeled an optic raySasts depth interval might be
empty. In the case of only two views, the corresponding sities will not be coherent if there
exists at leasone optic ray classified a$ by one of the silhouettes whose projection does not
intersect the other silhouette. In the casenofiews, the lack of coherence is defined by the
existence of at least one optic ray where the depth intedefiaed by the: — 1 other silhouettes
have an empty intersection. This lack of coherence can besumed simply by counting how
many optic rays in each silhouette are not coherent with thercsilhouettes. Two examples
of coherent and non-coherent silhouettes are shown in Figh@& silhouette pixels that are not
coherent with the other silhouettes are shown in red in Rig. 3

A simple way of measuring the silhouette coherence usingtimeept of visual hull [24] is

as follows:

« compute the reconstructed visual hull defined by the silties@nd the projection matrices,

« project the reconstructed visual hull back into the cameaad

DRAFT



DRAFT 8

« compare the reconstructed visual hull silhouettes withathginal silhouettes.

In the situation of ideal datd,e. perfect segmentation and exact projection matrices, the
reconstructed visual hull silhouettes and the origindiaikttes will be exactly the same (see
Fig. 3a). With real data, both the silhouettes and the ptioeanatrices will be imperfect. As
a consequence, the original silhouettes and the recorstrwvesual hull silhouettes will not be

the same, the latter silhouettes beedg/ays contained in the original ones (see Fig. 3b).

A. A robust measure of silhouette coherence

Let V be the visual hull defined by the set of silhouettésand the set of projection matrices
P;, and SY its projection into the' image. A choice must be made about how to measure the
similarity C between the silhouetté; and the projection of the reconstructed visual Hijil A

quick answer would be to use the ratio of areas between thassithouettes as in [23]:

Sy JSinsy)
s s

However, this measure has the major disadvantage of a vginyceimputation cost, as mentioned

C(Si,SY) € [0,1]. (4)

by [22]. To address this important issue, we propose a singplacement in (4) of the silhouette

S; by its contour,C;:
J(CinsSY)
[Ci

This new measure is much faster than (4) since, as discuss&gdtion V, we propose to

C(S;,8)) = € [0,1]. (5)

discretize the evaluation of the measure. Hence, the catipnttime of (5) is proportional
to the length term (C; N SY), while the computation time of (4) is proportional to theea
term (S; N SY). However, a possible weakness concerning the use of thewointstead of the
silhouette itself is that these two measures might differdome problematic cases as shown
in Fig. 4b and Fig. 4c. The contour-based measure will peaale Fig. 4b scenario, while
encouraging scenarios such as Fig. 4c. If none of the sittesidas interior holes, the latter
is impossible by virtue of how the visual hull is construct€hse b, however, is much more
common for the problem of silhouette coherence and can higy eaproduced if one of the
silhouettes is dilated due to a segmentation error.

In order to alleviate this limitation of using contours eatl of areas for case b, we propose

a ¢-offset silhouette contour approach (see Fig. 5). For amgivealue we replace in (5) the
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) (b) ) 1

C; Ci
(c C°=04 C =07 Co =

Fig. 4. Limitation of using contours for silhouette compari- Fig. 5. Avoiding the limitation of using contours for silhou-

(a

son. The silhouette of the visual hd}’ is shown in dark gray ~ ette comparison. From left to right, increasifigalues imply

and the difference wittf; is shown in red. The intersection increasing silhouette coherence values and better robustness
C;n SY is drawn with a thick blue stroke. (a) Ideal scenario; for scenario of Fig. 4b. The original silhouet$g corresponds
using contours and areas is equivalent. (b) Problematic casto the outermost contour. The silhouette of the reconstructed
where the coherence using contours is much lower (0 in thisvisual hull SY is shown in dark gray. The terfC; ©6)NSY
example) than when using areas. (c) Problematic case wittin (6) is shown with a thick blue stroke.

a hole in the silhouett&Y. The coherence using contours is

much higher (1 in this example) than when using areas.

contourC; by its eroded version aof pixels C; & §, which gives:
Ciod)Nnsy)
J(Ci©9)

Increasingd makes the new measure more robust against bad segmengtibrobustness is

C°(S;, SY) = J(( c [0,1]. (6)

obtained at the price of accuracy. For a giwervalue, the silhouette coherence will not be
able to distinguish between a silhouettg and its reconstructed visual hull silhouet¢ if
their difference is smaller thaft Typical values ofy range from 0.25 pixels to several pixels,
depending on the quality of the silhouette segmentation.

Equation (6) evaluates theoherencebetween the silhouetts; and all the other silhouettes
S;.; that contributed to the reconstructed visual hull. In fagtceS) is fully determined by the
silhouette contour§’;_, ... ,,, equation (6) can also be noted@$C;, C;_; ... ,), or C°(C;, Cjz;).

To compute the total coherence between all the silhouettessimply compute the average

coherence between each silhouette andrithel others:

1 n
C(Cy,...,C) = EZcé(ci,(,y#) € [0,1]. 7)
=1

B. Relation to epipolar geometry and epipolar tangents

The proposed silhouette coherence criterion can be seem @gension to methods based on

epipolar tangency points. For a given pair of views, as showhig. 6, the epipolar tangency
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Fig. 6. Epipolar tangency and silhouette coherence criteriavfer 2 silnouettes. The silhouettes of the visual hs}f and
SY are shown in dark gray. The ternds N S andC; N S} are drawn with a thick blue stroke. Both criteria are equivalent
for the case of 2 views: they minimize the sectors defined,tlgndH." 14, andi. andH 1, (shown in red).

approach minimizes the square distance between epipaigensés of one viewl{ and [, in

view i, [, and [, in view j) and the transferred epipolar tangents of the other viewthéa
fundamental matrix;; = [e;j]xHo (Hy'l. andH ", in view i, H] I, andHL [, in view j).

That is, it minimizes the sum of geometric distan€egC;, C;) = d?. + d, + d2, + d?,. For the
same pair of silhouettes, the optimization of the coheramiterion corresponds to maximizing
the lengthsC; N SY and C; N S}’. So we can see that, except for degenerate configurations,
both criteria try to minimize the sectors defined by the elasiptangents in one view and their
corresponding epipolar tangents in the other view. Thusieifoptimize our coherence criterion
taking the silhouettes in pairs, we get the same behavior itie methods based on epipolar
tangentsge.g.[19].

When using the proposed silhouette coherence: for2, silhouettes are not just taken in pairs
but all at the same time. This means that the information wsoéxis not just at the epipolar
tangency points but all over the silhouette contour. As altesven if we use silhouettes where
the epipolar tangents are not available, the silhouetteresite criterion is still valid. We present
an example in Fig. 1a where we do not have the top and the battdhe silhouettes (no outer
epipolar tangents available) but for which we are still aolestimate the motion and the focal
length with very good accuracy.

It is worth noting that, as mentioned by [22], maximizinghsiliette coherence isreecessary

condition but not asufficientone in order to recover camera motion. However, since sdtieu
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coherence is an extension of epipolar tangency critereasime limitation applies to previous
methods using epipolar tangency points. If silhouette maiee is optimized, so is the epipolar
tangency criterion. This can be checked easily in Fig. 6 ratiice, maximizing silhouette coher-
ence is sufficient and can be used for camera calibrationg@®uistrated by the reconstruction
of more than 50 sequences (available for download at [25§inéd using the 3D modeling
technique described in [2]. In order to use the modeling ritlym, cameras were calibrated

using the technique described in this paper.

V. OVERVIEW OF THE CAMERA ESTIMATION ALGORITHM

We now present a practical implementation of the silhouedteerence criterio@?, achieved
by discretizing the contou€’; © ¢ into a number of equally spaced sample points. The term
(C;66)NSY is evaluated by testing, for each sample point, if its asgedioptic ray intersects the
reconstructed visual hull using a ray casting techniqué R&implified version of this algorithm
is used, where we do not take into account contours insidsitheuettes. Furthermore, we do
not compute all the depth intervals for a given optic ray. \st jcompute the minimum and
maximum of the interval intersection with each silhouefikis is a conservative approximation
of the real coherenceg., the coherence score that we obtain by storing only the numrand
maximum depths is always equal or greater than the real oowever, in practice, the deviation
from the coherence computed with all the intervals is small.

The algorithm describing the silhouette cohereG€éC;, C;.;) between a given silhouette
contour C; and the remaining silhouette contout$,; is shown in Algorithm 1. IfN is the
number of sample points per silhouette, ands the number of silhouettes, the complexity of
C°(C;, Cisi) is O(nN log(N)). The total silhouette coheren€é(C;, ..., C,,) in (7) is shown in
Algorithm 2 and its complexity i€ (n>N log(N)). As an example, the computation time of one
evaluation of (7) on an Athlon 1.5 GHz processor is 750 ms lier Ritcher example of Fig. 7
(n =18, N = 6000).

In order to exploit silhouette coherence for camera motiot fmcal length estimation under
circular motion, thekey is to use the silhouette coherence as @ost in an optimization
procedure. Equation 7 can be seen ablack box that takes as input a set of silhouettes and
projection matrices, and gives as output a scalar valuellufisette coherence. We use Powell’'s

derivative-free optimization algorithm [27] to maximiz&)( Several hundred cost evaluations
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Algorithm 1 Silhouette coherend® (C;, Cj..:) Algorithm 2 Total silhouette coherend® (Ci—1.... )

Require: Projection matriced; Vi, reference contour Require: Sequence of contour§';—; ... ,, camera parameters

Cj, contour list C;j»;, contour offsetd, number of V = (0a, ¢a, at, Aw;, f)
samples per contouN ComputeP; from v using (2) and (3).
Build point listm®, samplingN points along®; ©4 Return averaget >°7" | C°(Ci, Cjz;) {Algorithm 1}

for all m™* do
Initialize 3D intervalIsp = [0, o]

Initialize counterN’ =0

for all C;; do
Project optic rayl = P,;P; 'm*) Algorithm 3 Motion and focal length estimation
Compute 2D intersection intervdbp =[N C; Require: Sequence of imageg—; ... »
Back project 2D intervalsp = Isp N P; ' Iap Extract contour<C; from I; (e.g.[28]),
end for Initialize v = (0a, ¢a, ar, Aws, f)=(Z, Z,0, 2, fo),
if Isp # 0 then Initialize Powell's derivative-free algorithm [27]
N =N +1 repeat {see [27] for details
end if vi=v
end for v = Powell(v’) {Single Powell iteration with Algorithm P
Return & until ||[v —v'|| < e

are typically required before convergence.

The system is always initialized with the same default dacunotion: the rotation axis
a=(0,1,0)" (6a =3, ¢a=13), the translatiort = (0,0,1)" (o = 0) and the initial guess of
the camera angle® @, Aw; = 27”). The initial guess of the focal lengtfy is directly computed
from typical values of the field of viewe.g, 20 degrees. The principal point is considered
constant and equal to the center of the image. The complgteithim for motion and focal
length estimation is described in Algorithm 3. Because tacmotion is a very constrained
motion, we have found that the initial values for the rotatiaxis, the translation direction
and the focal length do not need to be very close to the actiatien. The only source of
convergence problems is the initial camera angles, but lthaitom has proven to have good

convergence properties for camera angle errors of up to géeds.

VI. EXPERIMENTAL RESULTS

We present an experiment using a Pitcher sequence with d8iocthges of 2008x3040 pixels
acquired with a computer controlled turntable. The imageg&ltbeen segmented by an automatic

procedure [28] (see Fig. 7). For evaluation we also use aesmguof a calibration pattern in
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Fig. 7. Pitcher sequence. Some of the original images superimposedheitxtracted smooth polygon contours (in black).

Camera angle step error

rotation axis |translation focal 0.5
Pitcher (degrees) (degrees) (pixels)
9a ¢a Oy f
initial 90.000090.000Q9 0.0000 | 5000
calibrated | 99.671(90.3431 0.4266 | 6606

recovered99.634590.305Q0 0.4314 | 6576

Cet error 0.0364| 0.0381| 0.0049 30 o
c recovered99.686190.3419 0.4239 | 6635 -0.4} == empola angency rteron
error 0.0152| 0.0011| 0.0026 29 R Erar " gaméeraéni%é;lriz 13 14 15 16 17
TABLE |

CAMERA ESTIMATION FOR THE PITCHER SEQUENCE MEAN CAMERA ANGLE STEP ERROR OF).11DEGREES USING
EPIPOLAR TANGENCY POINTS(Ce:) AND 0.06 DEGREES USING SILHOUETTE COHERENCEC). NOTE THAT THE AXIS ERROR
IS REDUCED BY A FACTOR OF3, THE TRANSLATION ERROR BY A FACTOR OF2, AND THE STEP ERROR BY A FACTOR OR.

order to accurately recover the intrinsic parameters aedciftular motion using [29]. The-
offset used for the silhouette coherence criterio 4s 0.25 pixels due to the sub-pixel accuracy
of the silhouette extraction. The camera angles are iiziéidl with a uniform random noise
in the interval[—15,15] degrees around the true angles. We show in the supplemed&d v
the initialization used in this example and how the différparameters are optimized by the
silhouette coherence.

Table | contains the results for the camera motion (rotafais, translation direction and
camera angles) and focal length estimation problem. A tftll parameters are recovered. We
compare the proposed silhouette coherence with the stdke-@rt method described in [19].
The silhouette coherence clearly outperforms [19] by redythe rotation axis error by a factor
of 3, the translation error by a factor of 2 and the cameraeangtror by a factor of 2. Both
criteria recover the focal length with the same accuraey) 6%).

The same camera estimation algorithm has been repeatesid tsuccessfully on over 50
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uncalibrated sequences. We llustrate in Fig. 1 two of thesguences that are particularly
interesting. For the Chinese bronze vase (Fig. 1a) the twermaist epipolar tangents are not
available, since the tops and bottoms of the silhouettesraneated. For the Giganti sculpture
(Fig. 1b) just the bottom has been truncated. Problems wothectly extracting the bottom

of an object are common under turntable motion. In genetaf easy to extract the top of

an object, but it is much more difficult to separate the botfoom the turntable. We validate

the motion and calibration results by the quality of the firedonstructions, generated using
an implementation of the algorithm described in [2]. Notattthe Giganti sculpture (Fig. 1b)

would be very difficult to calibrate using point-based tadues, its surface being very specular,
while the Chinese vase (Fig. 1a) is impossible for epipolagéat algorithms.

Two additional experiments ara available as supplemengémal in appendix I. In the first
experiment we compare the accuracy of the silhouette coberand the epipolar tangency
criteria as a function of silhouette noise. In the secondearpent we show that silhouette
coherence exploits more information that epipolar tangemaints alone by showing that it can

calibrate the cameras even when no epipolar tangency paiatavailable.

VII. CONCLUSIONS AND FUTURE WORK

A new approach to silhouette-based camera estimation reas developed. It is built on the
concept of silhouette coherence, defined as a similaritwden a set of silhouettes and the
silhouettes of their visual hull. This approach has beercessgfully tested for the problem of
circular motion. The high accuracy of the estimation resisltdue to the use of the full silhouette
contour in the computation, whereas previous silhouedeet) methods just use epipolar tangency
points. The proposed method eliminates the need for epipolgency points and naturally copes
with truncated silhouettes. Previous algorithms are cetep dependant on clean silhouettes
and epipolar tangency points. We have validated the prabapproach both qualitatively and
guantitatively.

A limitation of our current silhouette coherence implenatioin is the discretization of the
silhouette contours. To remove this source of samplinge@solution would compute the exact
visual hull silhouettes as polygons and compare them wihotiiginal silhouettes. To compute
the exact silhouette of the visual hull, we can proceed a80, jusing a ray casting technique.

We are currently extending the proposed approach to rougintyilar motion and general
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motion, but special attention has to be paid to the init&lan process to avoid local minima,

less important for the case of circular motion.

REFERENCES

[1] K. N. Kutulakos and S. M. Seitz, “A theory of shape by spaeeving,” IJCV, vol. 38, no. 3, pp. 199-218, 2000.
[2] C. Herrandez and F. Schmitt, “Silhouette and stereo fusion for 3éatbjpodeling,"CVIU, vol. 96, no. 3, pp. 367-392, 2004.
[38] G. Vogiatzis, P. Torr, and R. Cipolla, “Multi-view stesevia volumetric graph-cuts,” i€ VPR 2005.
[4] P. Gargallo and P. Sturm, “Bayesian 3d modeling from imagasgumultiple depth maps,” iI€VPR vol. 1, 2005, pp. 885-891.
[5] R. . Hartley and A. ZissermarMultiple View Geometry in Computer VisionCambridge University Press, ISBN: 0521623049, 2000.
[6] D. Nistér, “An efficient solution to the five-point relative pose ptem,” IEEE Trans. on PAMIvol. 26, no. 6, pp. 756—770, June 2004.
[7] J. H. Rieger, “Three dimensional motion from fixed pointseofleforming profile curve,Optics Lettersvol. 11, no. 3, pp. 123-125,
1986.
[8] J. Porrill and S. B. Pollard, “Curve matching and steretibcation,” Image and Vision Computingol. 9, no. 1, pp. 45-50, 1991.
[9] P. Giblin, F. Pollick, and J. Rycroft, “Recovery of an urdwn axis of rotation from the profiles of a rotating surfac&Optical Soc.
America vol. 11A, pp. 1976-1984, 1994.
[10] R. Cipolla and P. GiblinVisual Motion of Curves and SurfacesCambridge University Press, 2000.
[11] M. Lhuillier and L. Quan, “Surface reconstruction bytégrating 3d and 2d data of multiple views,” iB6CV, 2003, pp. 1313-1320.
[12] A. W. Fitzgibbon, G. Cross, and A. Zisserman, “Automat2 Biodel construction for turn-table sequences,3D SMILE June 1998,
pp. 155-170.
[13] G. Jiang, H. Tsui, L. Quan, and A. Zisserman, “Single ag@®metry by fitting conics,” iECCV, vol. 1, 2002, pp. 537-550.
[14] R. Cipolla, K. Astrom, and P. Giblin, “Motion from the frontier of curved surfagein ICCV, Cambridge, June 1995, pp. 269—275.
[15] B. Vijayakumar, D. Kriegman, and J. Ponce, “Structure amation of curved 3d objects from monocular silhouettes,CMPR 1996,
pp. 327-334.
[16] Y. Furukawa, A. Sethi, J. Ponce, and D. Kriegman, “Stetand motion from images of smooth textureless objectsEQCYV 2004
vol. 2, Prague, Czech Republic, May 2004, pp. 287-298.
[17] K. Astrom, R. Cipolla, and P. Giblin, “Generalized epipolar coristss’ IJCV, vol. 33, no. 1, pp. 51-72, 1999.
[18] P. R. S. Mendonga, K.-Y. K. Wong, and R. Cipolla, “Epimogeometry from profiles under circular motiodEEE Trans. on PAM|I
vol. 23, no. 6, pp. 604-616, June 2001.
[19] K.-Y. K. Wong and R. Cipolla, “Reconstruction of sculipe¢ from its profiles with unknown camera positionEfEE Trans. on Image
Processingvol. 13, no. 3, pp. 381 — 389, 2004.
[20] S. N. Sinha, M. Pollefeys, and L. McMillan, “Camera netWwaalibration from dynamic silhouettes,” @VPR vol. 1, 2004, pp. 195-202.
[21] A. Bottino and A. Laurentini, “Introducing a new prolote Shape-from-silhouette when the relative positions of teepoints is unknown,”
IEEE Trans. on PAMIvol. 25, no. 11, pp. 1484-1493, 2003.
[22] K. Cheung, “Visual hull construction, alignment and nefinent for human kinematic modeling, motion tracking and rendériPh.D.
dissertation, Carnegie Mellon University, 2003.
[23] H. Lensch, W. Heidrich, and H. P. Seidel, “A silhoueltased algorithm for texture registration and stitchiny,bf Graphical Models
pp. 245-262, 2001.
[24] A. Laurentini, “The visual hull concept for silhouettmsed image understandinggZEE Trans. on PAMIvol. 16, no. 2, 1994.
[25] http://www.tsi.enst.fr/3dmodels/.
[26] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. Miidh, “Image-based visual hulls,” iSIGGRAPH 20002000, pp. 369-374.
[27] M. Powell, “An efficient method for finding the minimum of arfation of several variables without calculating derivasy Computer
Journal, vol. 17, pp. 155162, 1964.
[28] C. Xu and J. L. Prince, “Snakes, shapes, and gradieriovélow,” IEEE Trans. on Image Processingp. 359-369, 1998.
[29] J. M. Lavest, M. Viala, and M. Dhome, “Do we really need amtw@ate calibration pattern to achieve a reliable cameiiarasibn?” in
ECCV, vol. 1, 1998, pp. 158-174.
[30] J.-S. Franco and E. Boyer, “Exact polyhedral visualsjuin BMVC, September 2003, pp. 329-338.

DRAFT



