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Abstract

Freehand 3D ultrasound can be acquired without a position sensor by finding the sep-
arations of pairs of frames using information in the images themselves. Previous work has
not considered how to reconstruct entirely freehand data, which can exhibit irregularly spaced
frames, intersecting frames, non-monotonic out-of-plane probe motion and significant in-plane
motion. This paper presents reconstruction methods that overcome these limitations and are
able to robustly reconstruct unconstrained freehand data. The methods are assessed on free-
hand data sets and compared to reconstructions obtained with a position sensor.

1 Introduction

3D ultrasound [3, 13] is an emerging medical imaging modality with many potential applica-
tions [6]. The data can be acquired using dedicated 3D probes incorporating an oscillating head
which sweeps the scan plane over a fixed volume of interest. The alternative, freehand approach
involves the clinician manually sweeping a conventional probe over the target: by attaching a
position sensor to the probe, each B-scan can be labelled with its position and orientation. The
B-scans thus form a 3D data set which can be visualised and processed in a number of ways to
extract clinically useful information. The freehand approach offers the advantages of arbitrary
acquisition volumes, with translation as well as rotation of the scan head, low cost, and compat-
ibility with the full palette of existing 2D probes. There are also disadvantages, including slow
acquisition (freehand is not suitable for 4D scanning) and image distortion caused by varying
probe contact pressure [16].

The oscillating head approach is the current focus of commercial activity. Perhaps the greatest
barrier to more widespread uptake of freehand scanning is the need for the add-on position sensor.
This requires careful end-user calibration [12] and imposes cumbersome constraints on the scanning
protocol. Typically, the operator must maintain a clear line of sight between the probe and the
position sensor’s fixed base station, and must be careful not to stray outside the sensor’s operating
region. Also, small-scale jitter in the position sensor readings can lead to visible artefacts in images
derived from the reconstructed data. It is therefore not surprising that researchers have been
investigating alternative, freehand acquisition techniques that dispense with the position sensor.

One such approach exploits image-based registration to find the offsets between adjacent frames
using information in the images themselves. The in-plane offsets (i.e. in the axial and lateral
directions) can be found using standard image registration and motion tracking techniques [7, 18].
In the out-of-plane, elevational direction, speckle decorrelation [1, 11, 17] can be used to estimate
the absolute separation between two patches of data, as shown in Figure 1. Since the ultrasound
beam is not perfectly focused, the backscattered signal at any point depends on the scatterers in a
certain volume, the so-called “resolution cell”, around that point. If two points on neighbouring B-
scans have overlapping resolution cells, the two signals will be correlated. The correlation depends
on the amount of overlap and therefore on the separation between the two points. Therefore, by
calculating the correlation between the two patches of data, it is possible to infer their elevational
separation using a precalibrated decorrelation curve. Given at least three non-collinear patch
pairs, the elevational separation, tilt and yaw can be estimated for the frame pair.
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Figure 1: Speckle decorrelation. Consider two patches of data on nearby image frames A and
B. The correlation between the data varies with the resolution cell overlap and therefore with
their separation. The precalibrated decorrelation curve can be used to look up a distance d1, given
the correlation ρ1.

There are several difficulties with this approach that impede its direct application to in vivo
freehand data. First, the theory holds only for fully developed speckle. Real tissue contains re-
gions of coherent scattering which decorrelate at a slower rate than regions of fully developed
speckle. In recent work, we have shown how to allow for this in an adaptive speckle decorrelation
framework [5]. Secondly, there are other causes of speckle decorrelation (noise, in-plane motion,
transducer rotation, tissue compression, physiological motion) which might be confused for eleva-
tional motion. While most of these remain a matter for future research, we have studied the effects
of in-plane motion in detail [10]. We showed how to estimate in-plane motion to sub-sample accu-
racy using novel Gaussian interpolation techniques. We also showed how to correct the elevational
correlation values to allow for the in-plane motion.

Another difficulty is that speckle decorrelation can only provide the absolute value of the
separation between two patches. There is a direction ambiguity: is the patch on B-scan A to the
left or right of the patch on B-scan B? All previous work has ignored this problem and instead
constrained the probe motion to be monotonic with no intersecting frames, in which case all patch
separations can safely be assumed to be in the same direction. In this paper, we present for the
first time sensorless reconstructions of truly unconstrained freehand data. Building on preliminary
work [9] with regularly spaced frames, we present new algorithms to allow for arbitrary hand-held
probe motion, including cases where the probe reverses direction mid-way through the scan, and
axial rotation scans where the frames intersect one another.

The paper is organised as follows. In Section 2, we present the robust reconstruction technique,
which is conveniently broken into three modules: frame selection, deducing intersections and non-
monotonic reconstruction. In Section 3, we describe experiments with a hand-held probe designed
to test the capabilities and limitations of the new algorithms. Finally, in Section 4 we draw some
conclusions and suggest avenues for further work.

2 Robust reconstruction

Here is a broad overview of the sensorless freehand 3D reconstruction technique.

1. Each image frame is divided into an 8 column × 12 row grid of patches. For the radio
frequency (RF) acquisition platform described in Section 3, this gives more than 5000 RF
samples per patch, sufficient to calculate meaningful second order statistics.
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2. For each frame A, we calculate the set of frames Bi within range of A. By “within range”, we
mean that the majority of the patches on Bi are offset by an amount within the search range
of the in-plane alignment [10] and are close enough elevationally to correlate to some extent
with a corresponding patch on A. Frames that are elevationally too distant from A will
be totally decorrelated and not allow any meaningful estimation of elevational or in-plane
separation.

3. For all frame pairs within range of each other, we estimate the spatial separation between
corresponding patches as three degrees of freedom: axial, lateral and elevational translation.
This is performed as accurately as possible, making use of the technique in [5] to compensate
for coherent scattering and the methods in [10] to calculate the lateral shift and subsequent
correlation to sub-sample precision.

4. Using the patch-wise separation estimates calculated in the previous stage, we select several
interleaved sets of coarsely spaced frames, using the method described in Section 2.1. Each
set of frames spans the entire data set, but each will be reconstructed independently. This
allows a robust consensus approach for the final reconstruction, with any outlier sets rejected.

5. For each frame pair for which we have separation estimates, we next check to see whether the
frames intersect one another, using the algorithm described in Section 2.2. If there are any
intersections, the signs of the elevational separation estimates are adjusted appropriately.

6. Each set of frames is reconstructed three-at-a-time, instead of the usual pair-wise approach,
using the algorithm in Section 2.3. This allows any non-monotonic probe motion to be
detected. The independent reconstructions are combined into a final result using a consensus
check, as described in Section 2.3

2.1 Frame selection

There are two requirements to consider when selecting interleaved sets of frames for independent
reconstruction. First, we would like consecutive frames in each set to be quite widely spaced,
though still within range. This is so that we can operate on the steep part of the decorrelation curve
in Figure 1, where small errors in the correlation ρ do not produce large errors in the elevational
separation estimates de [8, 14]. Secondly, we would like the sets to be mutually independent, with
no single frame belonging to more than one set. When these two requirements conflict, we should
accept sub-optimal spacing in order to preserve the independence of the sets.

Consider initially the problem of choosing only one set of frames from the sequence, so that
independence is not an issue. We have a numbered sequence of irregularly spaced frames from
which we need to select a coarsely spaced sequence with approximately even spacing, as shown in
Figure 2. The task is therefore to determine the coarse sequence using the available patch-wise
elevational separation estimates.

In order to detect non-monotonic motion, each frame in the coarse sequence must be within
range of at least the next two frames. The reason for this is explained in detail in Section 2.3.
We therefore calculate two pieces of range information for each frame, as shown in Figure 2.
Firstly, from each frame f , we can move forward through the sequence by a maximum number
of steps rmax while remaining within range. This value has already been determined when the
patch separation estimates were calculated. We also need another value, rhalf, which is less than
rmax and determines another frame, fh, in the sequence between f and fm. fh divides the offset
between frames f and fm into two parts. It is important for tracking non-monotonic motion that
both of these offsets are as large as possible. fh is therefore chosen by maximising the smaller of
the two halves of the offset. Figure 3 shows three examples of the ideal position of fh between
f and fm. For a simple, linear monotonic frame pair, this is at half the distance between them.
The same is true of intersecting frames. For a non-monotonic sequence, however, fm could be
elevationally closer to f than some of the frames between them in the sequence. Half the distance
between f and fm would then not give the largest possible pair of offsets.
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Figure 2: Selecting a coarsely spaced sequence. We select frames from the irregular sequence
to give a coarsely spaced sequence with approximately even spacing.
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Figure 3: Ideal half-range position. The frames are chosen by maximising the smaller of the
two halves of the offset. The dashed lines represent the ideal position for fh in each situation.

Using the rmax and rhalf information, we can build up a coarse sequence of frames, one frame
at a time, as described in Figure 4(a). The main step in the process is to repeatedly determine
the next frame using the range information from the previous two frames in the sequence, b1 and
b2, as shown in Figure 5. The new frame must be within range of both of these frames and also
close enough to b1 for there to be a further frame within range of b1. The ideal choice is therefore
the smaller of b2 + rmax(b2) and b1 + rhalf(b1).

Now consider a situation where more than one coarse set is required. It is possible for sets that
start differently to come to a point where they both use the same frame, and once the sequences
have converged they will be the same until the end. We therefore need a way to avoid using the
same frame in different sets. The multi-set algorithm works in the same way as the single set case,
but with two additions: see Figure 4(b). First, there are multiple coarse sequences built up in
parallel. Set 1 starts at frame 0, with the others seeded at even intervals between 0 and rhalf(0).
Secondly, if at any point the same frame is chosen for more than one of the sets, we adjust the
selections to avoid the repetition. We do this by allowing some flexibility when we choose the next
frame. There is an ideal frame which would be chosen if there was only one coarse set, but we can
also accept earlier frames in the sequence.

Consider the example in Figure 6. Three sets of frames are being constructed together. We
have reached a point where two coarse sets (1 and 3) both have the same ideal next frame, so we
need to try to adjust the selections. Since we wish to change no more than the last frame in each
set, the only slots available are those after frame b1,3, labelled P1 to P3 in the figure. There are
two frames to adjust, so we initially consider just P1 and P2. However, as frame fn,2 is already
in position P2, we find that we actually need to adjust all three frames, using all three available
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(a) single coarse sequence

choose a starting frame f_n;

coarse sequence length, l = 0;

N = number of frames in data set;

for frame, f = 1 to N {

if f = f_n {

add frame f_n to coarse sequence;

l = l + 1;

if l = 1

f_n = f_n + r_half(f_n);

else

b_1 = the last frame added to the sequence;

b_2 = the frame one coarse step back from b_1;

max_limit = b_2 + r_max(b_2);

half_limit = b_1 + r_half(b_1);

f_n = min (max_limit, half_limit);

}

}

(b) multiple coarse sequences

choose M = number of coarse sets;

choose a different starting frame, f_n,s, for each coarse set, s;

for frame, f = 1 to N {

for set, s = 1 to M {

if f = f_n,s

update set s as above;

}

if f has been used by more than one set

adjust coarse sequences to avoid repetition (see text);

}

Figure 4: Pseudo-code for choosing coarse sequences of frames.
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Figure 5: Choosing the next frame in the sequence. The ideal next frame depends on two
maximum limits: it must be within range of both the preceding frames, b1 and b2, and leave
room for another frame within range of b1. We therefore choose the smaller of b2 + rmax(b2) and
b1 + rhalf(b1).

b2,1

b2,2

b2,3

fn,2

b1,1

b1,2

b1,3

fn,1

fn,3

P1P3 P2

Set 1

Set 2

Set 3

available positions

frame sequence positions

Figure 6: Repeated frames. Sets 1 and 3 both expect the same frame as their next frame. We
can avoid repeating this frame by moving both fn,1 and fn,2 back by one position. Note that the
frame positions in this diagram represent their position in the numbered frame sequence and not
necessarily their actual locations in space.

slots. In more extreme cases, there might not be enough slots to play with. We must then accept a
repeated frame as unavoidable, but continue to adjust any further repetitions. Having established
how many frames to adjust, we distribute the frames evenly into the available slots, minimising
the number of times each position is used. We order the frames according to the order of the
preceding frames in the sets. In our example, this means that both frames fn,2 and fn,1 are moved
back one position, while fn,3 is unchanged.

2.2 Intersecting frames

Consider a pair of frames which happen to intersect along a line parallel to the x axis, as shown
in Figure 7. Speckle decorrelation provides an 8× 12 grid of estimates of the absolute elevational
z offsets. If we were to look at one y column of the grid, we would expect to see a y-z distribution
something like the one in Figure 7(a). All previous work on sensorless reconstruction has assumed
no frame intersections: a least squares fit to the z values would then position frame B roughly
parallel to frame A, as shown by the dotted line in Figure 7(a). To allow for intersections, we need
to deduce the signed elevational z offsets. If we assume that the 8×12 grid of offsets should define
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Figure 7: Intersecting frames. In this example, frames A and B intersect along a line parallel
to the x axis. Looking at the absolute elevational z offsets along any column y of the grid, we’d
expect to see a y-z distribution like the one in (a), though various sources of error mean that we
actually see something more like (c). Speckle decorrelation can only give the absolute values of
the elevational offsets. To correctly reconstruct intersecting frames, we need to deduce the signs,
as in (b) and (d).

a flat plane, then we could consider possible intersection points in the y direction and choose the
one which gives the smallest least squares residual for the fitted plane. In the example in Figure 7,
the smallest residual is given by changing the signs of the distance estimates for y > 3, as shown
in Figure 7(b). We would therefore deduce that frames A and B intersect between grid rows 3
and 4, and position them accordingly.

The task is complicated by a significant amount of uncertainty in the elevational separation
estimates. As mentioned in Section 1, there are sources of error which we have not allowed for,
including electrical noise, tissue compression and physiological motion. For intersecting frames, the
errors are particularly severe around the line of intersection, where there is speckle decorrelation
which is not due to elevational motion, but due to rotation of one frame relative to the other. Since
the decorrelation curve is fairly flat at its left hand end (see Figure 1), even a small underestimate of
the correlation can result in a large overestimate of the elevational separation [8, 14]. Consequently,
the estimated z offsets do not approach zero at the line of intersection, but are instead somewhat
larger, as shown in Figure 7(c) and (d). The residual error for the no-intersection solution (c) may
not be very different from that of the correct solution (d).

So there is considerable uncertainty in the individual z values but, equally, considerable redun-
dancy to exploit. We have 8 × 12 offsets, but we only need three to position frame A relative to
frame B. We therefore adopt a robust regression approach, the aim being to ignore any outliers
in the z values.

We start by considering individual rows and columns of the offset grid independently: see
Figure 8(a). For a row or column comprising N offsets, there are N configurations of signed offsets
to consider, including the no intersection case, as shown in Figure 8(b). We fit a straight line to
each configuration and assume that the one with the smallest residual error reflects the correct
configuration. If this configuration indicates an intersection, then that row or column contributes
one putative point on the line of intersection of the two frames, as shown in Figure 8(c). Other
rows and columns suggest other points. It is tempting to find the line of intersection by a simple
least squares fit to the ensemble of points, though the aforementioned sources of error render such
an approach inappropriate.

Instead, we use a variation of the random sample consensus (RANSAC) algorithm [4]. Each
pair of intersection points defines a candidate line of intersection. We exhaustively evaluate all
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Figure 8: The intersection algorithm. Each row and column (a) of the grid of elevational
offsets should define a straight line. We try all permutations of the signed offsets (b) and select
the one which gives the best straight line fit. This provides one point (c) on the line of intersection
of the two frames. Other rows and columns provide other points, though inevitable errors mean
that a least squares fit to the ensemble of points is not appropriate.
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Figure 9: The uncertainty model. Uncertainty in the zi values leads to uncertainty in the
fitted line. The 95% confidence limits on the intersection point are given by y1 and y2, where the
uncertainty hyperbolae intersect the y-axis. This defines one dimension of the support region in
the offset grid. The other dimension is simply the width of the corresponding row or column.

such lines of intersection and count how many of the other points support the hypothesis that the
line is correct. To qualify as a “supporter”, a point has to be sufficiently close to the line such
that any discrepancy can be explained by the uncertainty in the original elevational z offsets.

To deduce precisely how close a point should be to lend its support to a candidate line, we
return to the least squares fitting process which we used to obtain the putative intersection points
from the z values. For a standard linear regression on the points (yi, zi), i ∈ {1 . . . N}, a y value
predicts a particular z value according to the regression result z = my + c. The 95% confidence
limits on this z value are [2]

z ± 1.96 σ

√√√√
(

1
N

+
(y0 − ȳ)2∑N
i=1 (yi − ȳ)2

)
(1)

where σ is one standard deviation of the uncertainty in the zi values and ȳ is the mean of the
yi values. The loci of the points in (1) define two hyperbolae around the fitted line, as shown
in Figure 9(a). The two points y1 and y2 where the hyperbolae cross the y axis give the 95%
confidence interval on the intersection point. This defines one dimension of the support region,
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as shown in Figure 9(b). The other dimension is simply the width of the corresponding row or
column. If the candidate line of intersection passes through a point’s support region, then that
point supports the hypothesis that the line is correct.

The value of σ can be estimated from the patch-wise elevational separations themselves. If
these define a flat plane, the difference between any two adjacent z offsets in the x direction should
be constant; likewise in the y direction. Any variation in these pair-wise differences is indicative
of uncertainty σ in the z offsets. It is straightforward to show that the variance of the z offsets is
half the variance of the pair-wise differences: this is how we estimate σ from the data itself1.

The output of the RANSAC algorithm is the largest support set found amongst the candidate
lines of intersection. The next step is to decide whether or not to accept this intersection. Where
frames do not actually intersect, it only takes two incorrect intersection points, from any two rows
or columns, to suggest a line of intersection. We therefore compare the size of the support set s to
the maximum possible support smax, and accept the intersection only if s > ksmax. Note that smax

is larger for a line of intersection crossing a good portion of the grid than for one which just clips
one of the grid’s corners. k is the intersection algorithm’s only tunable parameter. As illustrated
in Figure 7(c) and (d), errors in the elevational offsets can cause many intersection points to
be missed: we should therefore set k to a rather low value (0.2 was used for the experiments
in Section 3). Finally, if the intersection is accepted, the line of intersection is refined by an
orthogonal least squares fit to all the points in the support set.

2.3 Non-monotonic reconstruction

Consider a sequence of frames to be reconstructed. The objective is to determine the six degrees of
freedom defining the offset between each adjacent frame pair. These offsets can then be concate-
nated to give the position and orientation of each frame relative to the first frame in the sequence.
Rather than finding all six values together, we simplify the problem by dividing it into in-plane
and out-of-plane components. In the plane of the images, the offset is defined by the axial and
lateral translation at the frame centre and a roll angle about the elevational axis. These values
are found by a least squares fit to the axial and lateral separation estimates at each patch. Out of
the image plane, there are two rotations (tilt and yaw) and an elevational translation at the frame
centre. We again determine these values with a least squares fit to the patch-wise elevational
separation estimates.

As mentioned in Section 1, there is a direction ambiguity in the elevational separation estimates.
At this stage, the intersection algorithm (Section 2.2) would have resolved this ambiguity within
each frame pair, but there is still an ambiguity between different pairs. Figure 10 illustrates the
problem. Given three frames A, B and C, the AB and BC offsets can be found independently,
but their relative directions are not known. Frame C has two possible positions relative to A and
we need to determine which one is correct.

We can distinguish the two possibilities by looking at the distances between frames A and C
and solving an expanded least squares problem for the three frames together. This is in contrast
to all previous work, which has only considered pairs of frames. For a single frame pair, the least
squares problem can be written as d = Xw, where d is a vector of the patch-wise elevational
separation estimates, w is a vector of the three out-of-plane frame-wise offset parameters and X
is a coefficient matrix. We can expand the problem to three frames as follows:




dAB

dAC

dBC


 =




X 0
X X
0 X




(
wAB

wBC

)
(2)

The additional information of the separations between frames A and C disambiguates the two
possible directions of BC relative to AB: we consider both combinations and accept the solution
with the smallest residual error. Note how the frame selection algorithm in Section 2.1 facilitates

1The signs of the pair-wise differences become problematic when the two frames intersect. Ignoring the sign
errors results in an overestimate of σ, though the error is small for approximately parallel (but intersecting) frames.
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Figure 10: Direction ambiguity between frame pairs. There is a direction ambiguity between
offsets AB and BC. Frame C cannot be placed relative to A using just the offsets between adjacent
frame pairs.

this reconstruction technique, by ensuring that three consecutive frames in a coarse sequence are
always within range of each other.

Figure 11(a) shows how we use the multiframe approach to reconstruct the coarsely spaced
sequences of frames. We consider three consecutive frames in a sequence as an independent block
and position them using equation (2). We then consider another block of three frames that overlaps
the first, as shown in the figure. These independently positioned blocks are joined together by
averaging the offset in the overlapping range. By repeating this process, we can build up an entire
sequence of frames.

Correctly reconstructing a sequence relies on correctly reconstructing and joining each indi-
vidual block of three frames. It only takes one spurious change of direction to make the entire
sequence useless. The important next step is therefore to exploit the redundancy afforded by the
multiple coarse sets (Figure 11(b)). We again use a variation of the RANSAC algorithm. We con-
sider each coarse reconstruction in turn and count how many of the others support the hypothesis
that it is correct. The largest set of supporters is taken as the set of correct reconstructions and
the remaining coarse sequences are rejected.

A remaining detail is how we determine whether one reconstruction supports another. Consider
the example in Figure 12. Of the five reconstructions, four are correctly monotonic but one is not.
This is clear when we look at the accumulated offsets over the length of the sequences. We locate
the maximum difference between the accumulated offsets and compare it to a threshold (0.5 mm
was used for the experiments in Section 3). If the difference is less than the threshold, then the
sequences are deemed to support one another.

Having rejected the outliers, we are left with several similar coarse scale reconstructions. By
averaging the maximum offset of each of these, we determine the length of the final reconstruction.
By “maximum offset”, we mean the maximum value in the accumulated offsets. For a monotonic
sequence, this would be at the end of the sequence. For a non-monotonic sequence, it could be at
any of the turning points. The averaging is intended to reduce any non-systematic drift error. We
then arbitrarily choose one of the sequences to form a skeleton for the final reconstruction, and
apply a uniform stretch (or shrink) so that it conforms to the average length (Figure 11(c)).

A complete reconstruction requires that the remaining frames are added to the coarse structure.
We do this by considering blocks of frames between the coarsely spaced frames, as shown in
Figure 11(c). These are reconstructed as an independent block, using an expanded version of
equation (2), and then scaled to fit into the available gap. The positions of the coarsely spaced
frames are unchanged, so the fine detail is added without affecting the established coarse scale
reconstruction.
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Figure 11: The reconstruction algorithm. The algorithm can be summarised in three stages.
The multiple sets of coarsely spaced frames are reconstructed independently. They are then
compared to find a consensus for the correct coarse scale reconstruction, resulting in a single
coarsely spaced sequence. Finally, the remaining frames are added to the coarse structure.

3 Experiments and results

Ultrasound data was recorded with a 5–10 MHz linear array probe connected to a Dynamic
Imaging Diasus ultrasound machine (http://www.dynamicimaging.co.uk). The depth setting
was 4 cm with a single focus at 2 cm. Analogue RF echo signals were digitised after receive
focusing and time-gain compensation, but before log-compression and envelope detection, using
a Gage Compuscope CS14200 14-bit digitiser (http://www.gage-applied.com). The system
works in real time, with acquisition rates of about 30 frames per second. The signal was sampled
at 66.67 MHz, synchronous with the ultrasound machine’s internal clock: this synchronisation
minimises phase jitter between adjacent A-lines. The RF vectors were filtered with a 5–10 MHz
filter, then envelope detected using a Hilbert transform. Each B-scan’s position and orientation was
recorded using a Northern Digital Polaris optical tracking system (http://www.ndigital.com),
with spatial and temporal calibration performed according to the techniques in [15].

The scanning subject was a joint of beef. Three types of scan were performed:

• A hand-held linear sweep over the beef, with no intentional change of direction. Five of these
data sets were recorded (data sets 1–5).

• A hand-held linear sweep over the beef, with the direction of motion intentionally reversed
approximately half way through the scan2. Five of these data sets were recorded (data sets
6–10).

• A rotational scan of the beef, with the probe twisting around an axis aligned roughly with
the centre A-line, and no deliberate change of direction. The probe was mounted in a mech-
anism to constrain the motion appropriately, though it was still turned by hand, resulting in
irregularly spaced frames as expected in a freehand data set. Three of these data sets were
recorded (data sets 11–13).

2This is admittedly not a realistic scanning protocol. In practice, direction changes are likely to be accidental
and transient, as opposed to intentional and sustained. However, having a definite turn at a known position is a
good way to test the algorithm’s ability to reconstruct non-monotonic motion.
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Figure 12: Finding incorrect reconstructions. In this example, four of the five reconstruc-
tions are correct. The incorrect one is found by looking at the maximum difference between the
accumulated offsets in each set.

A meaningful comparison between the sensorless and position sensor reconstructions would require
the beef to remain absolutely stationary with respect to the Polaris system’s reference frame. To
this end, the probe was separated from the beef by a thick layer of coupling gel, to minimise the
chance of any contact force displacing the beef. Note, however, that this precaution is solely for
the benefit of the sensor-based reconstructions. Sensorless reconstructions are not sensitive to
rigid movement of the scanning subject.

The probe was moved sufficiently slowly to yield five interleaved sets of frames in each of
the thirteen experiments. Faster motion would be possible with internal processing of the RF
signal within the ultrasound machine: our acquisition rate is limited by the speed of data transfer
between the Gage card and main memory across the computer’s PCI bus. Note, however, that
moving the probe too fast is not immediately catastrophic, but results in a graceful degradation
of the reconstruction performance. Instead of five independent reconstructions to exploit, there
would be fewer.

Figure 13 shows the linear reconstructions in terms of the cumulative elevational offset at the
centre of the frames. Figure 14 shows the axial rotation reconstructions in terms of the cumulative
yaw angle. All five of the coarse sets are shown separately, along with the equivalent values from the
position sensor. The final reconstructions are not shown, to avoid cluttering the graphs. Adding
the fine detail to the reconstruction is the least important stage, it is the coarse sets that determine
whether or not the reconstruction is successful. Note that the coarse scale reconstructions each
start at different frames in the sequence. In Figures 13 and 14, each line has therefore been offset
at the start by the appropriate amount both horizontally and vertically. The required vertical
offsets were determined by solving an expanded version of equation (2) for a block containing the
five frames at the start of each set.

The results demonstrate robust reconstruction in all thirteen cases. In the worst cases, data
sets 10 and 11, the final reconstruction relied on a consensus of two from five. Data set 10 featured
two points with uncertain monotonicity, whereas most data sets have none. Considering the two
points individually, there is a consensus of three out of five for the correct solution. In data set 11,
there is clear evidence of missed intersections where the graphs flatten out around frame 50. This
is undoubtedly a result of the phenomenon illustrated in Figure 7(c) and (d): unwanted speckle
decorrelation around the line of intersection makes it easy to miss the intersection altogether.
In general, the most brittle part of the reconstruction process is the intersection check, and the
principal mode of failure is missed intersections, not false positives. To verify this last point, we
repeated the reconstructions of the linear data sets with the intersection step skipped: we simply
assumed no intersections at the coarse scale. The results were almost identical, so we can state
with confidence that the errors in Figure 13 are not caused by false positives in the intersection test.

The sensorless reconstructions differ from the position sensor reconstructions in two ways:
small scale jitter and large scale drift. The former is a known limitation of the position sensor

12



0 50 100 150
0

1

2

3

4

5

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

0 50 100 150
−1

0

1

2

3

4

5

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

0 50 100 150
−1

0

1

2

3

4

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

Data Set 1 Data Set 2 Data Set 3

0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

2

2.5

3

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

0 20 40 60 80 100 120
−0.5

0

0.5

1

1.5

2

2.5

3

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)
Data Set 4 Data Set 5 Data Set 6

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

2

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

3

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

Data Set 7 Data Set 8 Data Set 9

0 50 100 150
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

frame number

ac
cu

m
ul

at
ed

 c
en

tr
e 

of
fs

et
 (

m
m

)

Data Set 10

Figure 13: Reconstruction of freehand linear data sets. The graphs show the cumulative
elevational offsets at the centre of the frames. For each data set, the five interleaved reconstructions
are plotted separately. Reconstructions that contribute to the final consensus are shown as solid
lines (—), those that are rejected are shown as dashed lines (- -). For comparison, the centre
offsets given by the position sensor are also shown (-·-).
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Figure 14: Reconstruction of axial rotation data sets. The graphs show the cumulative yaw
angle. For each data set, the five interleaved reconstructions are plotted separately. Reconstruc-
tions that contribute to the final consensus are shown as solid lines (—), those that are rejected
are shown as dashed lines (- -). For comparison, the rotations given by the position sensor are
also shown (-·-).

Data Set 1 Data Set 12

Figure 15: Reslices. On the left are reslices along the length of data set 1, a monotonic linear
scan. On the right are reslices from data set 12, an axial rotation scan: in this case, the reslices
are parallel to the probe face. In each case, the left images are derived from the position sensor
reconstruction and the right ones from the image-based reconstruction.
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which affects reslices of the reconstructed data sets. In Figure 15, small scale mispositioning of the
B-scans results in discontinuities in the sensor-based reslices. In contrast, the sensorless reslices
are far smoother.

On the other hand, large scale drift is a known limitation of sensorless reconstruction tech-
niques. It arises from small biases in the decorrelation-based elevational separation estimates.
The principal sources of the bias are lateral interpolation between A-lines [10], compensation for
coherent scattering [5] and speckle decorrelation caused by probe rotation instead of elevational
motion. The last of these would result in systematic overestimation of elevational separation —
as is evident in many of the results in Figure 13 — and helps explain the somewhat larger drift
for, say, data set 2 compared with previous results obtained with purely translational probe mo-
tion [5, 10]. There is also some drift in the elevational yaw and tilt estimates (see, for example,
the reslice of data set 1 in Figure 15), though we have not cluttered the results by presenting
quantitative details here. This is because drift has its roots in the low-level, patch-wise separation
estimates, which are not the subject of this paper. The high-level frame selection, intersection and
three-at-a-time reconstruction algorithms have, as expected, neither exacerbated nor ameliorated
the drift.

4 Conclusions

We have demonstrated robust sensorless reconstruction of unconstrained freehand 3D ultrasound
data. The most brittle part of the process is the intersection test, though false positives are rare so
this is not a problem with the usual linear scanning protocols. Sensorless reconstructions are not
sensitive to rigid movement of the scanning subject. Moreover, small scale detail is not obscured
by position sensor registration jitter. However, unavoidable drift limits the accuracy of any large
scale measurements based on the sensorless reconstructions.

In future work, we intend to build a hybrid system combining image-based reconstruction with
an unobtrusive, optical fibre-based position sensor (ShapeTape, http://www.measurand.com/)
that runs down the probe cable. Unlike magnetic and optical position sensors, there is no line of
sight requirement and the clinician need not be aware of the extra hardware. Sparse readings from
the ShapeTape could be used to correct the drift in the image-based reconstructions, and bridge
any gaps caused by excessively rapid probe motion.
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