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Abstract

Freehand 3D ultrasound can be acquired without a position sensor by finding the sepa-
rations of pairs of frames using information in the images themselves. However, small biases
in the offset estimates lead to large scale drift in the final reconstruction. In comparison,
position sensors have good large scale accuracy, but are inconvenient to use. In this paper, we
present methods that combine existing sensorless techniques with limited information from a
position sensor, in order to reduce drift errors. We also consider two novel position sensors
that are potentially less inconvenient and we assess their accuracy for the purpose of drift
correction.

1 Introduction

3D ultrasound [6, 19] is an emerging medical imaging modality with many potential applica-
tions [10]. The data can be acquired using special 3D probes, with either a 2D array of crystals
or an internal mechanism to sweep the scan head over a 3D volume. Another possibility is the
freehand approach, which uses a conventional 2D probe. The clinician manually sweeps the probe
over a volume of interest while a sequence of images is recorded. At the same time, a position
sensor attached to the probe labels each image frame with its position and orientation, resulting
in a 3D volume of data. The 3D data can then be visualised in various ways to extract clinically
useful information.

The freehand approach has certain advantages over 3D probes: it allows arbitrary volumes, is
relatively low-cost and works with any standard 2D probe. There are also disadvantages: it is slow
and therefore not suitable for 4D scanning and the data can be distorted by varying probe contact
pressure. 3D probes are currently the focus of most commercial systems. This is perhaps because
of the complexity of the freehand approach, particularly the add-on position sensor. Sensors
have only a limited operating range and they often need a direct line of sight between the device
attached to the probe and the base unit. Also, careful calibration [17] is required each time the
sensor is reattached to the probe. Correct reconstruction requires that there is no movement of
the scanning subject relative to the sensor origin. Even if the subject doesn’t move, small errors in
the sensor measurements combined with small movements of the anatomy due to probe pressure
result in a jitter error, which reduces the clarity of reslice images through the 3D volume of data.

In previous work [12], we have developed an alternative to the position sensor, which determines
the relative position of two image frames using information in the images themselves. In the
plane of the images, the offset is found using standard image registration and motion tracking
techniques [2, 24]. Out of the image plane, we use speckle decorrelation [3, 14, 23] to estimate
the offset at various points over the frame. Given three non-collinear distance estimates, we can
then determine the out-of-plane offset in terms of elevational distance, yaw and tilt angles. By
concatenating the offsets between pairs of frames, a sequence of frames can be reconstructed.

The speckle decorrelation method works by calculating the correlation between two patches of
data, one from each frame. The correlation value decreases as the separation of the two patches
increases, and can therefore be converted to a distance estimate using a calibrated decorrelation
curve like that shown in Figure 1. However, it is not only elevational separation that affects the
correlation value: tissue properties, tissue compression, tissue motion, electrical noise, in-plane
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Figure 1: Reconstruction drift. The correlation between two patches of data depends on
the separation between them. Given a correlation value, this can be converted to a distance.
However, various effects can bias the correlation value, which gives biased distance estimates.
This results in biased inter-frame offsets and therefore a drift error in the reconstructed sequence.
Here, the dashed lines show the correct frame positions and the solid lines show the actual drifted
reconstruction.

probe motion and probe rotation can change the correlation. This results in biased distance
estimates and therefore a bias in the out-of-plane elevational offset between frame pairs. If the
distance bias varies top to bottom over the frame pair, there will also be a bias in the tilt angle.
Similarly, there will be a yaw bias if the distance bias varies left to right. Concatenating the
individual frame pair offsets through the sequence results in a gradually increasing drift error, as
shown in the figure. A consequence of this is that measurements taken from the 3D reconstruction,
for example lengths and volumes, will also be biased.

In previous work, we have addressed some of the issues that lead to bias. The basic speckle
decorrelation theory only holds when the image consists of fully developed speckle. In [9], we
describe an adaptive speckle decorrelation method that adjusts the decorrelation curves to some-
thing more suitable for the tissue being scanned. We have also looked at the problem of in-plane
probe motion [13]. By correcting for the in-plane motion before estimating the correlation, this
source of decorrelation is avoided. We have shown how to improve the accuracy of this correction
by interpolating the in-plane shift and correlation value between the sparse lateral A-lines. Both
of the above methods have been shown to improve the reconstruction accuracy, but they do not
completely remove the drift. In particular, there remains some bias in the elevational separation
between frame pairs, as well as the tilt angle.

Clearly, there are advantages and disadvantages to both the sensor systems and the sensorless
methods. Sensorless reconstruction is ideal for producing clear qualitative images, because it is not
affected by jitter. However, the drift affects the accuracy of measurements taken from the data.
Provided the subject is not free to move and the sensor is used in an appropriate environment,
position sensors provide accurate large scale measurements that are not affected by drift. In
previous work [22], we introduced the idea of using a position sensor to correct for drift when
doing image-based in-plane registration. We use the image-based methods to get improved small
scale reconstruction accuracy, while the position sensor corrects the large scale drift error. We
therefore have a hybrid system, with the best features of each method. In this paper, we present
an extension to our sensorless reconstruction algorithms that uses the hybrid approach to correct
both the in-plane and out-of-plane drift.

With the reconstruction requiring less information from the position sensor, we are also able to
consider some alternative sensor systems. While these are not necessarily as effective as some of the
standard sensors, they may be sufficient in a hybrid system and could potentially be incorporated
into a freehand 3D ultrasound system with less inconvenience to the user. In this paper, we consider
two such sensors. The first is a Measurand ShapeTape! [4], which uses optical fibre sensors to

Thttp://www.measurand.com
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Figure 2: Drift correction. The figure shows the frame position data available to the drift
correction algorithm. The solid lines are the reconstructed frame positions. The dashed lines
show the correct positions. The sensorless reconstruction is done using coarsely spaced frames,
shown by the bold lines. The left sequence of frames is the sensorless reconstruction, which has an
obvious drift error. The right sequence shows a reconstruction using position sensor measurements.

determine its own shape and therefore its end-point position. The second is an Xsens MT9-B2,
which uses magnetometers, accelerometers and rate gyros to track its orientation. Obviously, this
sensor could only be useful in a hybrid system, as it does not provide the complete six degree of
freedom (DOF) information.

The paper is structured as follows. In Section 2, we describe our method for correcting drift
using information from a position sensor. In Section 3, we describe the two position sensors and
our methods for calibrating them to the ultrasound probe. We then assess their accuracy for the
purpose of drift correction in a hybrid system. Finally, we conclude in Section 4.

2 Drift correction using position sensors

2.1 Six degree of freedom position sensors

We have explained in the introduction how the drift error in sensorless reconstructions is a con-
sequence of small biases in the individual distance estimates. These are summed up in the recon-
struction and the positions gradually drift away from the correct positions, as shown in Figure 2.
In comparison, the positions measured by a position sensor do not have a large scale drift error,
but have small scale jitter. The objective of the drift correction is to use the large scale sensor
information as a reference to correct the sensorless drift, but without the jitter affecting the im-
proved small scale accuracy given by the image-based methods. The correction works by applying
a small, constrained adjustment to each of the frame positions relative to the previous frame in
the sequence. In the example in the figure, the appropriate adjustment would move each frame
so that it is slightly closer and at less of an angle to the previous frame. The combined effect of
these small changes significantly reduces the drift error.

The algorithm for correcting drift is designed as an extension to our previous algorithm for sen-
sorless reconstruction [12]. It is therefore necessary to give a brief description of certain features of
that algorithm before describing drift correction. First, the reconstruction is done using coarsely
spaced frames selected from the sequence, rather than every adjacent frame pair, as shown in Fig-
ure 2. This ensures that the distance estimates are taken from the steepest part of the decorrelation
curve (see Figure 1) and are therefore more reliable than if closely spaced frames were used [11].
The rest of the frames are added later, without changing the coarse sequence. Secondly, there is
a directional ambiguity in the reconstruction, as the speckle decorrelation method only gives the
distance and not the direction of the offset. The elevational motion could change direction and this
would not show up in the speckle decorrelation distance estimates. By considering three frames
at a time, the algorithm is able to overcome this and detect non-monotonic elevational probe
motion [12]. Care is taken at the coarse scale to ensure that the sequence is reconstructed with all
the offset directions correct. The drift correction described here will therefore only consider the
frames in the more reliable coarse sequence when adjusting the reconstruction.

2http:/ /www.xsens.com



Having done the coarse scale sensorless reconstruction, the position of each frame f in the
coarse sequence is expressed as a homogeneous transformation matrix, Sy. The drift correction
adjustment is made by premultiplying this by Ty for each frame.

T;=T;1S;C/S;" if f>1 )
Ty =S;CoS;" if f=0

where C is the adjustment of the frame position relative to the previous frame in the sequence.
Note that the adjustment for each frame is applied according to the direction of the bias for
that frame pair, i.e. in image frame coordinates. Multiplying by T;_; takes account of all the
adjustments to earlier frames in the sequence.

The question now is how do we decide on C for each frame. The individual elevational distance
estimates tend to be overestimated. We could most likely improve on the elevational bias by
applying an adjustment that simply scales the offset between each adjacent frame pair. However,
when it comes to the tilt bias, the situation is more complicated. Tilt bias is caused by varying
biases in the distance estimates at different heights in the image. Depending on how these biases
vary over the height, the tilt angle could be overestimated or underestimated. It is expected that as
the probe motion varies through the sequence, the bias between frame pairs will vary. Rather than
trying to understand the details of tilt bias, we have chosen to apply a more complex adjustment
to the inter-frame offsets than a simple scaling. This will allow for the bias variation through the
sequence and should be able to give a better match to the position sensor measurements.

The appropriate transformation matrix C for each frame is determined using a set of six
polynomial curves (two are shown here):

=g+ ait+ oot + ...+ a,t"
y:5o+51t+62t2+...+ﬂnt" (2)

where ¢ is a value between 0 and 1 defining how far through the sequence the frame is. The value
of n determines the degree of flexibility in the warping. For our experiments on drift correction, we
set m to 3. According to the value of ¢, the six equations define the six parameters of the position
adjustment (three translations and three rotations) relative to the previous frame in the sequence.
We also allow an initial offset at the first frame, defined by an extra six parameters, independent
of the correction curves in Equation 2. The overall effect can be thought of as a rigid registration
of the sensorless sequence to the correct sequence combined with a non-rigid deformation.

In non-monotonic data, the out-of-plane offset between a frame pair could be reversed during
the reconstruction and this will reverse the bias direction. For these frame pairs, we multiply
the output from Equation 2 by —1 for the out-of-plane parameters, so that the bias correction is
applied in the correct direction.

The coefficients of Equation 2 and the six initial offset parameters are determined by nonlinear
optimisation (Levenberg-Marquardt [18]) so that the adjusted sensorless reconstruction is as close
as possible to the position sensor measurements, within the limits of the constrained deformation.
For each frame, the optimisation error function is defined as the absolute distance between the
drift-corrected sensorless positions and the measured positions, at each of the four corners of the
frame. This means that errors in the frame orientation as well as the position are detected and
minimised.

One final detail is how the value of ¢ is determined for each frame. The root mean square value
of the elevational offset at the four corners of a frame pair defines an absolute “distance” between
the two frames. These are summed up through the sequence and normalised to the end value.
The result is a value that increases monotonically between 0 and 1 through the sequence and this
gives t for each frame.
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Figure 3: Filtering incorrect distance estimates. Biases in the individual distance estimates
can lead to biases in the elevational offset and tilt angle parameters when a plane is fitted to
the distances, as shown in (a). The dashed line shows the correct plane and the solid line is the
plane defined by the elevational distance estimates. By removing distance estimates that are not
consistent with the measured orientation, the bias can be reduced, as shown in (b).

2.2 Three degree of freedom orientation sensors

As we mentioned in the introduction, there are sensors available that measure only the orientation
and not the position. It is therefore worth considering how such a system could improve on the
drift error. We obviously do not have enough information to do a full six DOF correction in
the way described above, but we could do something similar to the three orientation parameters.
Instead of the six correction curves in Equation 2 and the six initial offset parameters, we have only
three of each. The error function for frame orientations is then the in-plane roll, and out-of-plane
yaw and tilt angles between the drift-corrected sensorless frame orientation and the measured
orientation.

Unlike the six DOF correction, the deformation does not define an entirely new set of frame
locations, it only gives a new set of orientations. We need to somehow rotate the frames to the
new orientations without affecting the translations established by the sensorless reconstruction.
We therefore define C in Equation 1 to rotate the frame so that the frame centre does not move
relative to the previous frame. In our example in Figure 2, the adjustment would decrease the
angle between each frame pair, and this alone would move the end frame significantly closer to
the correct position.

With this correction, there will still be a bias in measurements taken along the sweep, as there
is still an elevational offset bias between frame pairs. However, there are other more subtle ways
that the orientation measurements could be used to improve the initial sensorless offset estimates.
We use the orientation data as a filter to remove distance estimates with large errors. Figure 3
shows a typical frame pair and the resulting variation in distance estimates down the frame, as
determined by speckle decorrelation. In this example, the bias in the distance estimates is larger
towards the bottom of the frame. This could be caused by a lack of signal in this region of the
image, resulting in lower correlations and hence overestimated distance estimates. Fitting a plane
to these distances directly will result in a tilt bias and a small overestimate in the elevational
centre offset parameter, as shown in Figure 3(a).

The filter we propose is based on a RANSAC algorithm [7], which will determine which of
the estimates should be ignored. It works by considering each estimate individually and fitting
a plane to it using the known orientation, measured using the sensor. We then count how many
of the other estimates support the hypothesis that this one is correct, determined by how close
they are to the fitted plane. The plane that results in the largest support set provides the set
of “correct” distance estimates and any others are then ignored. In our example, the distance
estimates highlighted in Figure 3(b) would be ignored, resulting in the much better fit shown in
the figure. The filter has one tunable parameter: the threshold specifying how close an estimate
must be to the fitted plane to count as a supporter. We set the threshold to one standard deviation
of the estimated uncertainty in the distances, determined using the method described in [12].
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Figure 4: Smoothed sensor data. The effect of jitter is obvious when looking at the recon-
structed sequence in terms of the accumulated tilt angle through the sequence. The graph shows
an example of a jittery set of sensor data, and a smoothed version. The vertical lines show the
frames used in the coarse sequence. The jitter affects the measured angle between adjacent frames
in the coarse sequence.

Finally, we need to consider the effect of jitter on the RANSAC filtering. Figure 4 shows an
example of a jittery reconstruction. The jitter averages out over the length of the sequence, but it
is significant between the individual frame pairs used in the RANSAC filter. We reduce the effect
of jitter by smoothing the sensor data using a low pass filter.

2.3 Experiments and results

In this section, we present results showing the effectiveness of the drift correction on some in vitro
data sets. We recorded ten data sets by freehand scanning a beef joint in monotonic and non-
monotonic sweeps. We also recorded one additional scan of a speckle phantom, which was intended
to be more of a stress test for the reconstruction algorithms. This data set has deliberate rotation
as well as non-monotonic elevational motion. For all data sets, the position and orientation of
each frame were recorded using a Northern Digital Polaris optical tracking system?® with a Traxtal
Technologies AdapTrax active tool* attached to the probe.

The sequences were reconstructed without the sensor information using the methods in [12].
We also repeated the reconstruction using the RANSAC filter and warping enhancements described
above, using both the full sensor data and only the orientation data. Figures 5 and 6 show the
two drift correction results for each data set. The results are compared to the purely sensorless
and the position sensor reconstructions. The results are in terms of the accumulated elevational
centre offset between frame pairs through the data set, referred to as the “length” of the sequence,
and the accumulated tilt angle between frame pairs.

There are several observations to make from these results. First, the six DOF position sensor
does a good job of making the drift-corrected length match the measured length. In all eleven
cases, the drift is reduced. The tilt correction is also very good with errors of no more than half
a degree anywhere.

It should be noted that what we have achieved here is to get a close match to the position
sensor. Whether the sensor measurements are correct or not is another matter. When recording
a sweep, care must be taken that the subject does not move relative to the sensor origin. If there
is movement, the sensor based reconstruction will be incorrect and cannot be used as a reference
for drift correction.

The results for orientation sensor data only do not show such significant improvements. In
most cases, there is no noticeable improvement in the length drift. The reason for this must be
that the variation in the elevational distance estimate bias is evenly distributed about the centre

3http://www.ndigital.com
4http://www.traxtal.com
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Figure 5: Drift correction of length. The graphs show the elevational offset at the centre of the
frame accumulated through the data set. The solid lines (—) show smoothed Polaris sensor data.
The dashed lines (- -) show the sensorless reconstruction. The six DOF drift-corrected sensorless
reconstruction (---) and orientation drift correction (|||) are also shown.
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Figure 6: Drift correction of tilt. The graphs show the tilt angle accumulated through the
data set. The solid lines (—) show smoothed Polaris sensor data. The dashed lines (- -) show
the sensorless reconstruction. The six DOF drift-corrected sensorless reconstruction (---) and
orientation drift correction (|||) are also shown.



Figure 7: Reslice images. The images show reslices through the phantom data set. The top row
of reslices are along the length of the data, showing the length and tilt. The central row shows
enlarged versions of the outlined region, highlighting the small scale accuracy. The lower reslices
are parallel to the scanning surface and therefore show length and yaw. All the reslices use frames
from the forward sweep only. (a) Position sensor only reconstruction. (b) Sensorless only. (c) Six
DOF correction. (d) Orientation only correction.

of the frame, so fixing the orientation does not affect the centre offset. This is consistent with our
earlier findings [9] that the bias variation is centred at the focal depth, which in this case is half
way down the image.

It is perhaps not surprising that there is little change in the length, when we have only ori-
entation data to work with. There is, however, a noticeable improvement in the tilt bias in all
eleven data sets. In all cases, this is as good as that achieved using the full six DOF sensor.

Figure 7 shows images of reslices through the phantom data set for the various reconstruction
and drift correction methods. In this example, we can be more confident that the position sensor
has good large scale accuracy. The speckle phantom cannot be distorted by probe pressure in
the way that the beef joint could be. The sensorless only reconstruction (Fig. 7(b)) shows a
significant tilt error, but no qualitatively obvious length error. The small scale accuracy is also
noticeably better for the sensorless reconstruction. Both of the drift correction methods are able
to significantly reduce the tilt error, without losing the improved small scale accuracy.
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Figure 8: Experimental setup for the ShapeTape.

3 Novel position sensors

In the previous section, we described how a position sensor could be used to reduce the drift in
an image-based reconstruction and we used a standard optical tracking system to demonstrate its
effectiveness. However, we discussed in the introduction how position sensors can be inconvenient
to the user. For example, an optical system like the Polaris requires a direct line of sight between
the sensor and its origin.

Here we shall describe two alternative sensors that are potentially less obtrusive in the scanning
process. The first is a Measurand ShapeTape. It consists of a tape about one metre long with
optical fibre sensors along its length. As the tape bends and twists, the optical fibres lose light
according to their curvature. The curvature covered by each sensor can be measured and from
this the overall shape of the tape can be reconstructed. In our application, the end of the tape
is attached to the probe, as shown in Figure 8, so we are only interested in the position and
orientation of this point.

There are some potential difficulties with this system. The process of finding the end-point
position involves summing up the curvatures from each sensor along the tape and integrating to
get the positions. Any small errors in the measured curvatures at each point will be summed up
to give a similarly small error in the end-point orientation. However, a small curvature error in a
sensor near to the start of the tape will be extrapolated to a large position error at the end, so it
is fundamentally difficult for the ShapeTape to accurately measure its end-point position.

Clearly, the accuracy is approximately related to the length of the tape. Our experience with
the ShapeTape is that it is best to clamp it close to the end (see Figure 8) so that no more of
the length than necessary is free to move. Although there will still be large position errors from
sensors near the start of the tape, these will not change during the scan. The relative error in the
recorded positions will be limited to that expected from the reduced length.

The ShapeTape is designed to be able to move into any position and orientation and provide
a correct measurement. However, we have observed that it is most accurate when the movement
is restricted to a single plane, as shown in Figure 8. Where the ShapeTape has been used in other
contexts, it has also been found that it is accurate when used in a well constrained manner [15], but
has very large errors when allowed to move freely [1]. We therefore restrict our scanning protocol
to that shown in the figure. In terms of probe motion, this allows tilted sweeps with mainly
elevational motion over several centimetres, but no deliberate in-plane motion. This motion is
sufficient for most practical scanning situations, which often use only linear or tilting sweeps of
the probe, although it has a very limited operating volume.

The second sensor we consider is an Xsens MT9-B. This device uses rate-of-turn sensors to
measure angular motion. This measured data is then integrated to provide orientations. Typically,
integrating leads to a gradually increasing error, but the device has addition sensors to correct
for this. Magnetometers track the Earth’s magnetic field and accelerometers track gravity, so it is
able to correct the orientation using this fixed reference.

The most significant limitation we have encountered while using this sensor is the effect of
magnetic field distortions. Any ferromagnetic material near the device affects the magnetometer

10
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Figure 9: The ShapeTape calibration process. The coordinate transformation between the
tape tip and the B-scan is found by concatenating five other coordinate transformations. The
dashed line shows a standard calibration procedure that could be used for the Polaris system, the
solid line shows the ShapeTape calibration procedure.

readings resulting in incorrect orientation measurements. A typical working area is unlikely to be
completely free of magnetic field distortions, so care must be taken to avoid them.

3.1 Calibration

Calibration is the process of finding the transformation between the coordinate system of the
sensor attached to the probe and the image coordinate system. The sensor measures the location
of the sensor coordinate system in world coordinates, but we actually need the image location.
We therefore need to know the fixed transformation between the sensor and image so that we can
convert between them. Calibration has been studied in detail and a review of current methods is
given in [17]. Here, we are dealing with unusual position sensors, where the standard methods are
not necessarily suitable.

The ShapeTape is very restricted in its motion: we have discussed how we get the best accuracy
by only allowing it to bend in one plane. An approach that attempts to solve for the calibration
by moving the ShapeTape through all possible degrees of freedom is therefore not appropriate. We
are left with the various techniques that calibrate using just a single position measurement. These
techniques involve concatenating the known transformations between several other coordinate
systems, where the overall transformation is equivalent to the unknown calibration.

The dashed line in Figure 9 illustrates this for the Polaris system. First, we align the ultrasound
image to a known location in a phantom. With knowledge of the phantom geometry, this gives the
transformation between the phantom and the image frame, T pp. . We then measure the location
of the phantom relative to the sensor origin, T po._pp. Finally, the sensor measurement gives the
transformation between the origin and the sensor, T pr._ po. By concatenating these three known
coordinate transformations, we can determine the unknown calibration transformation:

Tpr—p=Tpr—poTro—prPrTpPr—B

where the various transformations are defined in the figure.

This three transformation approach is not possible with the ShapeTape. The main difficulty
is locating the phantom relative to the sensor origin (the start of the ShapeTape). Usually, a
phantom is located in sensor origin coordinates by measuring its location with another sensor in
the same sensor system, but this is obviously not an option with the ShapeTape. Instead, we
concatenate a different set of transformations, shown by the solid line in Figure 9:

Trr—p = Trr—roTro0—PtsTPts—PoOTPO—PTTPT—B

11
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Figure 10: ShapeTape pointer calibration. The ShapeTape can be used as a pointing device
by attaching a narrow rod, with a well defined tip, to the end of the tape. Pointer calibration
is usually able to solve for all three components of the translation from the sensor to the pointer
tip. Due to the movement restrictions on the ShapeTape, we only solve for the x component and
assume the others are 0.

By making use of another sensor system, we bypass the need to find the phantom to tape origin
transformation. This alternative method requires that we attach both the ShapeTape and the
Polaris targets to the probe at the same time and record a position from each system. This gives
us the Trr 7o and Tpo_ pr transformations. Provided the Polaris system is already calibrated
(by any standard method) we also have the Tpr. p transformation.

All that remains then is to determine the relative location of the two sensor origins. To do
this, we fix three points in space, in the bend plane of the ShapeTape. We can easily locate these
points relative to the Polaris origin using a standard pointing device attached to that system. We
then use the ShapeTape as a pointer (see Figure 10) to locate the same three points relative to
the ShapeTape origin. This gives us the Tro. pts and T pispo transformations.

One final complication is how to calibrate the pointing devices. The Polaris pointer is calibrated
using the standard method [5]. This involves placing the pointer tip at a fixed point and rotating
the pointing device around it. This covers all the necessary degrees of freedom to determine the
three components of the translation from the sensing device to the pointer tip (see Figure 10).
Unfortunately, it is not so simple for the ShapeTape, which cannot be rotated into any position
without becoming inaccurate. We therefore have to accept an approximate solution. By rotating it
only in the one plane shown in Figure 8, we have enough information to solve for the z component
of the translation. The translations in the other two directions, y and z, are assumed to be zero,
placing the pointer tip at the centre of the tape’s cross section. This is a reasonable assumption
given the construction of the ShapeTape.

The process of calibrating the MT9-B is much simpler. Unlike the ShapeTape, there is no
movement restriction, so we are able to use our standard plane-based calibration technique [20].
This involves recording several images of a flat plane at the bottom of a water bath. The various
images of the plane consist of a straight line through the image, which gives some information about
the relative position and orientation of the image frame and calibration plane. Combining this
with the recorded positions of the sensor, it is possible to solve for the location of the calibration
plane (defined by three parameters) and the transformation between the sensor and the image (six
parameters). Solving for these nine parameters requires a fairly complicated scanning protocol to
cover the necessary degrees of freedom [21].

For this sensor, we are only looking at orientations, which is a much simpler problem to solve.
Rather than using full six DOF coordinate transformations, we only need to consider three DOF
coordinate rotations. We can solve for the calibration parameters using a simplified version of the
method for a full six DOF calibration. There are now only two parameters defining the orientation
of the calibration plane and three for the desired transformation between the image and the sensor.
The scanning protocol illustrated in Figure 11 is sufficient to solve for these five parameters.

Rather than using a plane, we use our Cambridge phantom [20], which simulates a plane and
makes it easier to automatically detect the lines in the images. We also improve the accuracy by
taking into account the effect of water temperature on the speed of sound. The speed of sound
affects the directions of the lines in the images, so it is important to get this right.

Given only sensor orientation data, there is one ambiguity in the calibration solution. It is
possible to rotate the frame 180 degrees in-plane without changing the orientation of the lines in
the images. The calibration solution could therefore have a 180 degree in-plane rotation error,
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(a) in—plane rotation (b) tilt rotation (c) repeat (a) and (b)
at different yaw angles

Figure 11: Plane-based calibration protocol for orientation.

mean 3D standard
error (mm) | deviation (mm)
T y z
top left 5.17 3.95 212 3.45
top right 5.08 3.93 1.86 3.45
centre 5.88 4.80 1.78 3.90
bottom left 6.88 5.68 2.11 4.46
bottom right 6.84 5.66 1.86 4.55

Table 1: ShapeTape calibration precision. The statistics shown are the mean 3D error and
the standard deviation in each direction, at the frame’s centre and corner points. The 3D error
for a B-scan point p is defined as ||p — p||, where p is the average point location over the 25
calibrations. The standard deviation directions are in the coordinate system of the average frame
location.

as this is indistinguishable from the correct solution. Normally, this would be resolved by the
additional information in the measured translations, but these are not available here.

We overcome this problem by making use of the known geometry of the experimental setup.
Unlike most position sensor systems, the coordinates defined by the sensor origin are not arbitrary.
The x direction is aligned with magnetic north and the z direction is upwards, defined by gravity.
We also know that the calibration plane is roughly horizontal and viewed from above. On average
over all the calibration image frames, we can expect them to be pointing roughly downwards. The
average image y direction (defined down the image) should therefore have a negative z component
in world coordinates. By checking whether this is the case, we can resolve the ambiguity and
correct the calibration if necessary.

3.2 Calibration precision

The precision of the ShapeTape calibration was determined by repeating the calibration process
25 times. Both the ShapeTape and Polaris targets were left attached to the probe between cali-
brations. The three points used for transforming to the Polaris origin were standardised by fixing
them on a mechanical construction. This same set of points was reused for each calibration, but
was repositioned approximately in the ShapeTape’s bend plane each time. The pointer calibra-
tions for both the ShapeTape and Polaris pointer and the calibration of the Polaris target to the
image were done before the calibration experiments and reused each time.

Table 1 shows statistics for the calibration precision. Rather than considering the individual
calibration parameters, we have chosen to show the precision in terms of its effect on the location
of the image frame. The values show how the location of the frame’s corner points and centre
point vary.

The precision of the MT9-B calibration was determined in the same way, by repeating the
process 25 times. For each calibration, the probe was remounted on the Cambridge phantom and
the ultrasound machine gain settings were reset to values within a sensible range for the calibration



roll yaw tilt
standard deviation (degrees) | 0.08 1.09 1.68

Table 2: MT9-B calibration precision. The statistics shown are the standard deviation, in
degrees, of the in-plane roll, and out-of-plane yaw and tilt angles of the 25 calibrations relative to
the average calibration.

process. Table 2 shows precision statistics for in-plane roll, and out-of-plane yaw and tilt angles,
again in terms of the image frame coordinates.

The ShapeTape calibration imprecision can be almost entirely attributed to the sensor itself,
as there was no image or phantom used in the calibration. The only point where a phantom was
imaged was to calibrate the Polaris system and this was done using our most accurate calibration
system [8], which is considerably more precise than the results shown here. The results show worse
precision towards the bottom of the image frame. This is because the tape tip is attached close
to the top centre of the frame, so the sensor orientation errors have more effect at the bottom of
the image, a larger distance from the sensor.

The precision of the MT9-B can be attributed to the accuracy of detecting the lines in the
calibration images. In particular, the tilt is almost entirely dependent on accurately detecting the
angles of the image lines during motion (a) in Figure 11. Unfortunately, the line orientation is
difficult to measure in this position. The plane is imaged at a glancing angle and so does not
produce such a clear image. Also, the temperature correction affects the measured angle of the
line. It is therefore not surprising that the worst precision is in the tilt angle.

3.3 Reconstruction accuracy

The following experiments are designed to show the accuracy of the sensors in terms of their
application to drift correction. For the ShapeTape, we are interested in how accurately it can
reconstruct the length and tilt of an object. For the MT9-B, we need to know how accurately it
can measure the relative angles of frames in a sequence. In these experiments, the position of the
scanning subject in world coordinates is not known. The accuracy results presented below do not
show the accuracy of locating points relative to a fixed reference frame, which is what would be
required for an image guided surgery application. They only show the accuracy of locating points
relative to each other. This is relevant for applications where measurements are taken from the
data, e.g. distances or volumes, without needing to register to an external system.

ShapeTape reconstruction accuracy was determined by recording 25 sweeps of a speckle phan-
tom containing an array of accurately positioned spheres. The spheres were located in the data by
identifying the point where each image intersects a sphere. As each sphere was visible in several
images, we have several points defining the location of the sphere. We apply a calibration to
convert these points to world coordinates (defined by the ShapeTape origin) and then average
them to give a final estimate of the sphere position.

The reconstructed grid of spheres was then compared to the known dimensions of the array of
spheres in the phantom. The reconstructed grid was registered to the correct grid with a six DOF
transformation, i.e. it was translated and rotated, but not scaled. The required transformation
was determined by a non-linear optimisation, minimising the sum of squared errors in each of the
x, y and z directions. Figure 12 shows two examples of this alignment.

Table 3 shows the position accuracy of individual points. Only the accuracy in the length
direction (z in the coordinates of the sphere array) is shown, because the ShapeTape can only be
used to correct drift in this one direction. The results are for each of the 25 calibrations, applied
to all 25 data sets, resulting in 625 separate reconstructions of the array.

Table 4 shows the accuracy of measuring the length between points and the angle between
columns of points in the grid. Length accuracy was determined by considering all possible pairs
of points where both points are in the same row of the grid. Tilt accuracy considers all possible
pairs of columns of points in the grid, where a column is defined by any two points at the same x
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Figure 12: ShapeTape reconstructions. The circles show the correct grid and the crosses show
the reconstructed grid. The left example is one of the worst results. The right is one of the best.

mean error (mm) 0
mean absolute error (mm) | 1.06
standard deviation (mm) 1.41

Table 3: ShapeTape point location accuracy. The errors in locating individual points in the
direction along the length of the grid (z direction). The mean error is 0 as a result of the least
squares alignment of the two grids. For comparison, this statistic is referred to as point location
accuracy in [21] and 3D registration accuracy in [16].

position.

The MT9-B reconstruction accuracy was determined by recording 32 sweeps of a Z-wire cali-
bration phantom. This phantom consists of several wires in Z shapes, as shown in Figure 13. The
recorded images of the phantom consist of points where the image frames intersect the wires. We
use an automatic point detection algorithm to locate these points in the images. The distribution
of each set of three points allows us to locate point p; in both the B-scan and the phantom. Given
at least three of these Z fiducial points, we can locate the image frame in phantom coordinates.
The phantom can be imaged from a range of positions, allowing us to record and reconstruct a
sweep of frames.

The orientations measured by the sensor were compared to the reconstruction given by the
phantom, in terms of roll, yaw and tilt between frames. The two sets of orientations were aligned
to minimise the least squares error in each of the roll, yaw and tilt reconstructions. Figure 14
shows examples of the aligned reconstructions.

A complication in this experiment is the precision of the automatic point detection. Ideally,
each wire passing through the image frame would result in a circular or eliptical feature in the
image and the centre point would be obvious. Unfortunately, due to imperfect focusing of the
ultrasound beam and noise in the images, the centre of each wire cannot be located perfectly. An
error of a few pixels can be significant, so even with careful automatic point detection, there is
noticeable imprecision in the frame location. This causes the jitter that can clearly be seen in
Figure 14. In order to overcome this, we apply a smoothing filter to the orientation data from the
phantom. All calculations are based on this smoothed data, rather than the original.

As the phantom itself could be a significant source of error, it is worth considering its accuracy
for this experiment. We recorded a further data set of the phantom, this time using the Polaris

length error (mm) | —0.29 +2.02
tilt error (degrees) | —0.37 +2.99

Table 4: ShapeTape reconstruction accuracy. The mean and standard deviation of the error
in measuring length and tilt between points in the reconstructed sequence.

15



Po

@ (b) ©

Figure 13: Z-wire calibration phantom. (a) The phantom consists of several wires in Z shapes.
(b) An image of the phantom consists of points where the image frame intersects the wires. (c)
The position of point p; can be found in phantom coordinates from measurements s; and s, taken
in the image.

roll yaw tilt
mean error (degrees) 0 0 0

mean absolute error (degrees) | 0.22 1.04 0.81
standard deviation (degrees) 028 1.32 1.04

Table 5: MT9-B orientation accuracy. The error in the orientation of individual frames. The
mean error is 0 as a result of the least squares alignment.

sensor. This reconstruction is shown in the bottom row of Figure 14. Looking at these graphs,
it is clear that the phantom does not have a large scale drift error, which suggests that the drift
in some of the MT9-B results is due to the sensor. The small scale jitter due to imprecise point
detection is not a problem, because it is removed by the smoothing filter. However, there are
also medium scale errors, for example around frame 35 on the yaw graph and at the start and
end of the tilt graph. These are caused by local variations in the appearance of the points in the
recorded images. We have been careful to avoid the most obvious of these errors in the MT9-B
experiments, by checking the quality of the images.

Table 5 shows the orientation accuracy of individual frames using the MT9-B. The results are
derived from the frame orientation errors in all 32 of the data sets, using each of the 25 calibrations,
giving 800 separate reconstructions.

For our drift correction application, the most relevant ShapeTape result is the length and tilt
accuracy (Table 4). The results show that the ShapeTape will measure lengths and tilts with
relatively little bias (the mean value) but with some uncertainty (the standard deviation). In our
previous work on sensorless reconstruction [12], we have observed drift errors of around 10% of
the length of the sequence. This means that the ShapeTape is likely to improve on the sensorless
length drift for sequences more than about 2 cm long. In a typical scan, the recorded sequences
will be longer than this, so the ShapeTape will be able to improve the reconstruction in most
practical situations.

For the MT9-B experiments, we were careful to avoid the most obvious errors associated
with the Z-wire phantom. However, it would be reasonable to attribute some of the observed
reconstruction error to uncertainty in the point detection. Given the geometry of the phantom,
we would expect point detection errors to have a larger effect on yaw and tilt than on roll and
this appears to be the case in Table 5. These results should be taken as an upper bound on the
values and we can expect the MT9-B to be more accurate than these values suggest, at least in
the yaw and tilt.

The graphs in Figure 6 suggest that there can be large drift errors in the sensorless tilt. For
any usefully long sequence, these will give errors of several degrees. Even with the worst case
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Figure 14: MT9-B reconstructions. The graphs show the roll, yaw and tilt measured by the
sensor, compared to that given by the Z-wire phantom. The solid lines (—) show the original
and smoothed versions of the phantom reconstruction. The dashed line (- -) shows the rotation
according to the sensor. The upper row shows one of the worst examples using the MT9-B and
the middle row shows one of the best. For comparison, the lower row shows a reconstruction using
the Polaris sensor.

accuracy of about 1 degree, the MT9-B is sufficiently accurate to improve on these drift errors.
Also, the graphs in Figure 14 suggest that the angle errors vary slowly over the data set rather
than as independent random errors. The RANSAC filter described in Section 2 makes use of
angles between nearby frame pairs, where the error will be smaller than the overall accuracy in
Table 5 suggests.

We have shown in Section 2 that a sensorless reconstruction can be adjusted to match the
sensor measurements very closely. This is clearly advantageous when using the Polaris system,
since we know that the sensor has good large scale accuracy. For the alternative sensors considered
here, we can say that the large scale accuracy of any hybrid system will depend mainly on the
sensor accuracy. Provided there is no large scale motion of the scanning subject relative to the
sensor origin, the ShapeTape reconstruction accuracy in Table 4 would be a good indication of a
hybrid system’s performance. We have shown that this is sufficient to improve the accuracy of
measurements taken from the data compared to those from a typical sensorless reconstruction.
With the MT9-B, it is possible to reduce the orientation drift in a sensorless reconstruction, which
will give a partial improvement in the reconstruction accuracy. However, it is not possible to
entirely remove the measurement bias using this sensor.

Finally, the purpose of introducing these sensors was as an alternative to the accurate but
inconvenient sensors already available, but we have not yet said anything about their convenience.
We have shown that the ShapeTape can be accurate enough for our application, but only in a
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very restrictive setup. We originally hoped that the ShapeTape could be built into a probe cable
so that the user would be unaware of it, but it appears that this is not possible at the accuracy
that we require. It would, of course, be possible to use the ShapeTape more flexibly, but at the
expense of accuracy. A further limitation is the complexity of the calibration process: it requires
the use of another sensor system, which also needs to be calibrated. We have done the calibration
in this way because it conveniently makes use of existing calibration equipment. The requirement
for a second sensor system could be avoided by building a phantom specifically designed for the
ShapeTape. A Z-wire phantom with three locating points within the ShapeTape’s bend plane
would be suitable.

The MT9-B is a much less obtrusive system. It has no line of sight requirement and no limited
operating volume, and it can be attached to the ultrasound probe without restricting the probe
motion. The only restriction we have encountered is the effect of magnetic field distortions, but
these can be avoided without much difficulty.

4 Conclusions

We have demonstrated that a hybrid system, using both sensorless techniques and limited infor-
mation from a position sensor, is able to significantly reduce the drift found in purely sensorless
reconstructions. At the same time, the improved small scale accuracy in the sensorless reconstruc-
tions is maintained. A full six DOF sensor is able to almost completely remove the drift, using
a general warping of the reconstruction. When only the orientation data is available, we are still
able to achieve a significant improvement in the tilt drift, but there is little improvement in the
length.

We have also looked at two alternative position sensors that are potentially less obtrusive than
the established sensor systems. We have found that both systems are sufficiently accurate to
improve on the sensorless drift. However, since the ShapeTape is both less accurate and more
restrictive than the Polaris sensor system, it is difficult to envisage applications where it might
serve as a viable alternative. The MT9-B shows more promise in terms of ease of use, but will be
less effective for drift correction, given the limited information provided by the sensor.
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