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Abstract

This paper compares two approaches to 3D ultrasonic axial strain imaging. The first
uses a tracked ultrasound probe swept manually over the region of interest to build up a co-
registered sequence of 2D strain images, each obtained by comparing neighbouring B-scans in
the sequence. The alternative uses a mechanically-swept 3D probe to record pre- and post-
deformation volumes, which are then processed to yield a volume of strain data. The resulting
strain images depend on the stress fields induced by the different probe footprints and also on
the signal processing techniques used to produce the strain volumes. Both of these factors are
considered in this paper, which presents a comparison of the two approaches based on finite
element simulations validated through in vitro experimentation. The conclusion is that, for a
given frame density, high quality axial strain data is more easily obtained using the 3D probe.
However, the freehand approach might be preferable in situations where limited access to the
scanning target restricts the use of a large footprint probe.

1 Introduction

Ultrasonic strain imaging is an emerging technique for visualising tissue stiffness. Several poten-
tial applications have been identified, including the detection of tumours in soft tissue [4, 9, 29],
the monitoring of atherosclerosis [6, 27] and the measurement of skin elasticity [32]. This pa-
per is concerned with quasi-static strain imaging [20], which is achieved in 2D by comparing
radio-frequency (RF) echo signals from two or more B-scans with a small difference in the axial
compression applied through the ultrasound probe. Axial strain is determined by calculating the
gradient of axial displacement estimates. This 2D imaging technique has more recently been ex-
tended into 3D, offering the potential for more complete visualisation of the anatomy and more
accurate measurement of the volume of stiff or soft regions.

There are currently two distinct approaches to quasi-static 3D strain imaging. The first ap-
proach will be referred to in this paper as volume-based 3D strain imaging. In this paradigm,
whole volumes are recorded using specialised 3D probes, either 2D arrays or mechanically-swept
1D arrays. Strain data is obtained by comparing two overlaid volumes with a small compression
applied between them [1, 2, 7, 8, 13, 19, 21, 31].

The alternative has received less interest but is also a feasible way to obtain 3D axial strain data.
This approach uses a conventional ultrasound probe, which records a sequence of B-scans while
being swept in the out-of-plane direction over the region of interest. Provided adjacent B-scans lie
within each other’s elevational decorrelation range, they can be compared, as in conventional 2D
strain imaging, to produce a sequence of 2D frames of axial strain data. This sequence of strain
images sweeps out a 3D volume. Each image is located in space either by a position sensing device
attached to the probe [14] or, in the case of intravascular strain imaging, by a continuous pullback
method [28]. We refer to this approach as freehand 3D strain imaging. The freehand in this case
refers to the unconstrained motion of the transducer.

There are several fundamental differences between these two approaches that may affect the
resulting strain images. Firstly, the volume-based approach uses probes that typically have a larger
footprint than the conventional 1D-array probes used in the freehand technique. It is well known
that the stress field, and therefore the strain, induced in the tissue by an applied compression
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depends partly on the size and shape of the compressor [20, 23]. When interpreting stain data,
it is often assumed that the stress field is uniform, so that the strain image represents the tissue
stiffness. This assumption leads to artefacts caused by, for example, stress concentrations around
stiff inclusions [12] and reduced stress with depth. The precise nature of these artefacts will
depend, to some extent, on the probe footprint.

Secondly, there are differences in the way the two approaches record and process the data. The
freehand approach is restricted to calculating strain between pairs of image frames, comparing RF
signals in 2D windows and searching for displacements in the axial and lateral directions. In
contrast, the volume-based approach can estimate displacements using 3D windows. This allows
either an improvement in signal to noise ratio (SNR), because more data is used to estimate each
displacement, or an improvement in axial resolution for the same SNR, by reducing the 3D window
size axially. It is also possible to allow for displacements in the third, out-of-plane direction. This
may further improve the SNR by matching pre- and post-deformation windows more accurately.

The objective of this paper is to compare the two approaches, looking at both the mechani-
cal and signal processing differences, and establish their relative merits by considering resolution,
contrast and SNR. The paper is structured as follows. Section 2 describes a practical implemen-
tation of the two techniques, followed by details of how they can be simulated using finite element
methods. In Section 3, we present experiments based on these simulations, with the known ground
truth facilitating the measurement of quantitative performance metrics such as contrast and SNR.
This section also includes an in vitro validation of the simulation results, with additional com-
mentary on the practical ease of use of the two scanning techniques. Finally, we present our main
conclusions in Section 4.

2 Methods

2.1 Scanning protocol and processing

The two approaches considered in this paper have both been described previously, so we refer
the reader to [14, 15, 17, 18, 31] for implementation details. Here, however, we review the main
features and highlight particularly where the two approaches differ.

The freehand protocol [14] uses a linear-array probe, which is moved slowly over the region
of interest while producing 2D strain images at a rate of about ten per second. At the same
time, the axial contact pressure is varied gently by hand, to produce the necessary inter-frame
deformation. For effective strain imaging, consecutive B-scans must not be separated by more
than the elevational decorrelation distance. A position sensor is attached to the probe to record
the location of each RF image frame.

Subsample axial displacements are estimated between adjacent frame pairs using the Weighted
Phase Separation method [18] in 2D windows of equal aspect ratio. Subvector lateral displacements
are also calculated, for the purpose of improving the axial estimates, by maximising correlation over
a range of ±1 A-line. The precision of each displacement value (estimated from the correlation [17])
is recorded. The location at which each displacement estimate applies is calculated using the
Amplitude Modulation Correction technique [15] and the axial displacements are then interpolated
onto a regular grid. Axial strain is calculated simply by differencing pairs of axial displacement
estimates in the interpolated data.

Since each strain image in the sequence is produced with a different compression, the strain
values are normalized to a consistent range so that each image displays the same relative stiffness
between regions [17]. The normalization is done by fitting a function, by precision-weighted least
squares, to the strain values. The strain values are then normalized by the local value of the
function at each location in the image. The 2D normalization function used in this work is given
by

f2D(x, y) = a(1 + by)(1 + cx) (1)

where x and y are the lateral and axial coordinates respectively and a, b and c are constants
determined when the function is fitted to the data. The y variation compensates to some extent
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for the expected reduction in stress with depth, while the x variation allows for non-uniform
compression along the probe face.

Given the freehand nature of the scan, with varying compression and unconstrained motion,
some pairs of images will produce better strain data than others. A final stage is therefore to
spatially filter the 3D image sequence with a 3D Gaussian smoothing kernel, with each sample
weighted by the precision of the strain estimate [17]. The Gaussian kernel is truncated beyond
± two standard deviations. Not only does this improve the appearance of the 3D data by empha-
sising the high quality data, it also smooths out axial variations in the positions of features caused
by varying axial compression. This is the only stage in the freehand method’s signal processing
that considers the data as a volume rather than as a sequence of individual 2D strain images.

In the volume-based method, we use an RSP6-12 mechanically swept 3D probe (GE Healthcare,
Chalfont St. Giles, UK). The probe is held stationary by hand while the internal mechanism sweeps
the transducer over a known angle. This produces an approximately evenly spaced sequence of B-
scans forming a volume of ultrasound data. A small compression is then applied by hand, roughly
in the axial direction, before recording another volume.

The signal processing is similar to that used in the freehand method, but the volume is treated
as a whole rather than as individual 2D frames. This means displacement estimation windows can
be 3D with an elevational component, and elevational displacements can be tracked in the same
way as lateral displacements are tracked in the freehand method. Since each volume is recorded
with the probe held stationary, the normalization function can be fitted to the entire volume of
data. The 3D normalization function used in this work is

f3D(x, y, z) = a(1 + by)(1 + cx + dz) (2)

where z is the elevational component and d is an additional constant allowing for varying com-
pression in the elevational direction. The volume-based approach also applies a 3D Gaussian
smoothing filter as a final stage. In this case, this simply improves the signal to noise ratio, since
quality variation caused by variable compression is not an issue with volume-based scanning [17].

2.2 Simulations

Many of the experiments in this paper make use of simulations of the two methods. The principal
benefit of such an approach is that quantitative error metrics can utilize the known, ground
truth strain. Previous approaches to simulation have often adopted a two-step method, first
determining the displacement field created by an applied compression and then generating RF
data based on pre- and post-compression geometry [22, 24, 25, 26]. Following this approach,
we used a finite element method (Abaqus 6.7-1, Simulia, Rhode Island, USA) to calculate the
displacements produced in a model of the tissue by a probe pushing on the surface. To fully capture
the pertinent properties of the resultant displacement field, the finite element model was three-
dimensional [3, 22]. We then simulated 3D ultrasound data using Field II [10, 11], with the post-
compression scatterer locations distorted by the displacements found in the finite element stage.

Figure 1 shows the geometry of the two finite element models. Each comprises a cylindrical
volume (14 cm diameter, 6 cm high) of elastic material representing the tissue, and a rigid rect-
angular compressor representing the probe face. The tissue was modelled as an isotropic, linear
elastic material with a Young’s modulus of 10 kPa and a Poisson’s ratio of 0.495. In Figure 1,
the tissue contains a spherical inclusion with a different stiffness, although the experiments in this
paper make use of various inclusion geometries. The compressor dimensions are different in the
two models, reflecting the probe footprints in our two approaches. The freehand probe face was
modelled as a 4 cm × 1 cm compressor, whereas the 3D probe was represented by a larger 5 cm ×
5 cm compressor. In each case, there were frictionless slip conditions at the base of the model and
the contact region between the probe and the top surface. All other surfaces were unconstrained.

The volume-based scanning protocol requires that the position of the probe is adjusted only
once, to change the applied compression between the two volumes. This was straightforward to
model as a single downward movement of the large compressor, with one volume of RF data
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Figure 1: Geometry of the finite element simulations. (a) shows the finite element model for
the volume-based approach, which involves a large compressor applying a downward compression
to a model of the tissue. (b) shows the model for the freehand approach. In this case, a smaller
compressor applies a varying compression at different locations on the tissue surface, one for each
image frame in the data set.

simulated on the uncompressed tissue and another on the compressed tissue. The downward
movement in this case was 0.6 mm, producing a 1% axial compression of the tissue. Each simulated
volume comprised 69 parallel frames of RF data centred on the compressor. The frame spacing was
0.3mm, giving an elevational range of±10.2mm. This is typical of a volume recorded by the RSP6-
12 3D probe. However, it should be noted that the actual probe has a slightly curved surface and
sweeps the transducer through an angle: these details are not captured by this simplified model.

In comparison, the freehand approach requires a larger set of finite element simulations, as
each image frame is produced with the probe in a different location and with a different axial
compression. We modelled this as a sequence of alternating compressed and uncompressed frames,
with a fixed elevational spacing and no lateral probe movement between frame pairs. The axial
displacement was again 0.6mm, giving 1% compression. The frame spacing is one of the parameters
under investigation and, as such, will be discussed in more detail in Section 3.

The Field II simulations were set up to model a typical ultrasound transducer with centre
frequency 6.5MHz. Each image comprised 127 A-lines at a pitch of 0.3mm, giving a lateral B-
scan width of 38.1mm. Each A-line was sampled at 66.67MHz to a depth of 44.0 mm. Both
the lateral and elevational focal depths were set to 20 mm. The scattering density was constant
throughout the tissue, so that any variations in stiffness in the finite element model were not
visible in the simulated B-scans. For the strain SNR experiments described in Section 3.2.2, we
also added Gaussian white noise, reducing the SNR of the RF signal to 20 dB. A typical example
of a simulated B-scan and the associated strain image can be found in Figure 2.

3 Experiments and results

As explained in the introduction to this paper, we are interested in two comparisons. The first
is how well the strain represents the underlying tissue stiffness, which depends to some extent on
the stress field induced by the probe. The second is the trade-off between resolution and strain
SNR: this is influenced by the scanning protocol and the signal processing inherent in the strain
estimation algorithm. Experiments exploring both of these issues are presented in this section.
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Figure 2: Simulated data. The figure shows (a) a B-scan generated from simulated RF data
and (b) a strain image derived from two frames of RF data. This example has a stiff, spherical
inclusion (Young’s modulus 40 kPa) in a uniform stiffness background (10 kPa). The inclusion is
only visible in the strain image. The image size is 38.1 mm × 44.0mm. The lateral and elevational
focal depths are both 20 mm.

3.1 Mechanical stress artefacts

Mechanical stress artefacts were investigated in terms of the appearance of a spherical inclusion.
For these experiments, the finite element model included a spherical region with a different stiffness,
as in Figure 1. This region had a 1.5 cm diameter, was located at the centre of the model 3 cm
below the tissue surface, and was bonded to the surrounding background material. The Poisson’s
ratio in this region was 0.495, the same as the background material, but the Young’s modulus was
set to a range of different values above and below the background value of 10 kPa.

Since we are interested in the fundamental mechanical properties of the two approaches, we
generated the strain images directly from the displacements found in the finite element simulations.
This avoids the inevitable errors introduced by displacement estimation from RF data. We initially
looked at strain images without the location-varying normalization of Equations (1) and (2), thus
displaying all strain images on the same scale. Figures 3(a–b) show the resulting images for the
two approaches with an inclusion stiffness of 40 kPa (four times the background stiffness). Since
we are also interested in the effect of normalization, Figures 3(c–d) show equivalent images using
the location-varying normalization method. Finally, Figures 3(e–f) show normalized results for a
soft inclusion (stiffness 2.5 kPa).

Considering first the unnormalized results, the images reveal several recognisable stress arte-
facts. In both cases, there are stress concentrations around the inclusion. Additionally, the
freehand data exhibits a significant stress decay artefact, making it look softer at the top than at
the bottom. This is less severe with the 3D probe, because the larger compressor area causes the
stress to decay more slowly with depth [20]. When the data is normalized by the location-varying
functions in Equations (1) and (2), the stress decay artefact is much reduced.

It is common, though of course technically incorrect, to interpret medical strain images by
assuming a uniform stress field, since it is difficult to measure the actual stress field. Under this
assumption, the axial strain is inversely proportional to stiffness. We are therefore interested in
how well the strain images reflect the underlying tissue stiffness, and how the different stress fields
induced by our two approaches affect this. In particular, while the inclusion has fairly uniform
strain in all cases, the background does not. Also, while we cannot expect the strain ratio in
the two regions to be quantitatively representative of the tissue stiffness, it is desirable that the
difference in mean image values between the inclusion and the background is sufficiently high for
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Figure 3: Comparison of mechanical stress artefacts in strain images. The images are
derived from displacements taken directly from the finite element simulations. (a, c, e) show the
data from the 3D probe model and (b, d, f) show similar results for the freehand model. (a–b)
are unnormalized and therefore show strain data on the same scale (black is zero strain, white
is 2.0% strain). (c–f) show results after normalization according to Equations (1) and (2). They
are therefore not on equivalent scales, although each image spans the same range 0 (black) to 2
(white) of normalized values. The inclusion in (a–d) has a stiffness four times the background
level. In (e–f) it is 0.25 times the background level. The white lines in (a) outline the 3D region
of interest used to calculate contrast to noise ratio. In each subfigure, the left image is the central
axial-lateral frame in the 3D sweep. The right image is an axial-elevational reslice along the length
of the sweep. All images have a depth of 5.8 cm.

6



0.25 0.4 0.67 1 1.5 2.5 4
0

0.02

0.04

0.06

0.08

0.1

stiffness ratio

va
ria

nc
e

0.25 0.4 0.67 1 1.5 2.5 4
−1

−0.5

0

0.5

1

stiffness ratio

m
ea

su
re

d 
co

nt
ra

st

0.25 0.4 0.67 1 1.5 2.5 4
0

1

2

3

4

5

6

stiffness ratio

C
N

R

(a1) (b1) (c1)

0.25 0.4 0.67 1 1.5 2.5 4
0

0.005

0.01

0.015

0.02

stiffness ratio

va
ria

nc
e

0.25 0.4 0.67 1 1.5 2.5 4
−1

−0.5

0

0.5

1

stiffness ratio

m
ea

su
re

d 
co

nt
ra

st

0.25 0.4 0.67 1 1.5 2.5 4
0

2

4

6

8

stiffness ratio

C
N

R

(a2) (b2) (c2)

Figure 4: Comparison of mechanical stress artefacts. (a) shows the variance of the back-
ground region for the two techniques. (b) compares the difference in the mean strain value in each
region. (c) shows the contrast to noise ratio between the two regions. In each graph, the solid line
(—) gives the result for the volume-based approach and the dashed line (- -) is for the freehand
approach. The upper row of graphs is without the location-varying normalization. Each strain
value is instead scaled by 100 to give image values in the range 0 to 2. The lower row is with
location-varying normalization, again giving image values in the range 0 to 2.

the inclusion to be easily detectable. For example, the soft inclusion in Figure 3 stands out more
in the 3D probe image than in the freehand image.

Figure 4(a) shows the variance of the image values in the background region, as defined in
Figure 3(a). Since we have no estimation noise in our images, the variance here is caused entirely
by mechanical stress variations. Without normalization (Figure 3(a–b)), it is clear from the images
that the 3D probe produces strain data with a more uniform background strain. This is due to
the more significant stress decay with depth when using a smaller compressor. With the location-
varying normalization (Figure 3(c–f)), both variances are reduced to some extent, bringing the
freehand curve into a range comparable with that of the 3D probe.

Figure 4(b) shows the difference in the mean values of the two regions. For this measure,
normalization does not make a significant difference. However, in both cases, the freehand method
produces slightly lower contrast between the two regions for soft inclusions. With stiff inclusions,
the freehand technique and 3D probe produce similar contrast.

A commonly used measure for comparing inclusion detectability is contrast to noise ratio
(CNR) [5]. This is defined as

CNR =

√
2(s̄i − s̄b)2

σ2
si + σ2

sb

where s̄ is the mean value of strain and σ2
s is the variance of the strain. The subscripts i and b refer

to the inclusion and the background regions respectively. This measure captures the combined
effect of the variance and the contrast in Figures 4(a–b). Figure 4(c) shows the CNR for the two
approaches, with and without normalization. The 3D probe produces images with superior CNR,
over all stiffness ratios, both with and without normalization.

In summary, it is evident that without normalization, the smaller compressor is at a disad-
vantage because of the more significant stress decay with depth. Normalization improves this to
some extent and, for this reason, we make use of normalization in all subsequent experiments in
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this paper. However, it remains the case that the larger compressor produces images of inclusions
that are more easily interpreted, even with location-dependent normalization.

3.2 Resolution and noise

The resolution and strain SNR of the two approaches were determined by making appropriate
measurements from combined finite element/Field simulations. This approach provides realistic
decorrelation due to scatterer displacement and allows for the fact that resolution depends partly
on the parameters of the ultrasound system [25, 26]. It is well known that there is a trade-
off between resolution and SNR [30]: the latter can always be improved at the expense of the
former, for example by using larger windows for displacement estimation. In order to make a
fair comparison, we must fix one of the two measures and compare the other. Here, we fix the
resolution and compare the SNR of the two techniques.

3.2.1 Measuring resolution

To fix the resolution, we must determine parameters that result in both techniques resolving small
features to the same degree. We can then ensure a fair comparison by using these parameters when
assessing SNR. Strain image resolution is affected by several factors, including the imaging system’s
inherent resolution [25, 26], the elevational frame spacing and the signal processing parameters
used to generate the strain image from the RF data (window size, window spacing, gradient
estimation kernel size and filter size). The signal processing parameters provide a convenient
route to directly control the resolution, though we still need some way to measure the resolution
in order to know when the two techniques are fairly matched.

To this end, we produced finite element models with an array of small inclusions, as shown
in Figure 5. There are eight stiff inclusions (Young’s modulus 40 kPa) centred in the model at a
depth of 2 cm (the focal depth). These inclusions are arranged in a 2× 2× 2 array, so that there
are four pairs of inclusions in each of the three directions. Each inclusion is an ellipsoid, with the
lateral and elevational dimensions twice the axial dimension1. This size will be referred to as the
feature scale in each direction. The inclusions are spaced so that there is a gap equal to the feature
scale between them. This setup is an extension to 3D of the method used in [16], where bands of
varying stiffness provided resolution estimates in one direction. We created five of these data sets,
with axial feature scales of 0.75 mm, 0.875 mm, 1.0 mm, 1.125 mm and 1.25 mm, and lateral and
elevational feature scales twice these values.

We then produced Field simulations at each feature scale, for both the 3D probe and a freehand
scan. For the freehand data, the frames were distributed in pairs with zero separation within each
pair and 0.3mm separation between pairs. Although this scanning protocol is not practically
feasible, it is useful here to give high quality strain estimates between adjacent pairs and therefore
minimise the effect of decorrelation noise on the resolution measurements. Since the 0.3 mm frame
pair spacing is well below the smallest elevational feature scale and therefore the smallest resolving
limit considered here, the choice of frame spacing does not affect the resolution significantly.
Having determined appropriate signal processing parameters on this ideal data set, we can then
apply the same parameters to any freehand frame spacing, provided the spacing stays well below
the elevational resolving limit.

Since we need to fix the resolution in all three directions, we must be able to adjust the eleva-
tional smoothing in both approaches. We therefore used the final filtering stage (see Section 2.1)
to set the resolution, since this is applied elevationally even in the freehand approach. The other
signal processing parameters that can affect resolution are the displacement estimation window
size, window spacing and the gradient estimation kernel size. These were set to low values, so
that they had a relatively small effect on the resolution. The window size was 6 RF cycles axially

1This finite element model was originally designed to assess B-mode ultrasound image resolution, accounting for
the superior axial resolution relative to the other two directions: hence the ellipsoids. While a spherical inclusion
would have been more natural for this work on strain imaging, and would have led to more uniform filter lengths
in Figure 7, the use of ellipsoids does not materially alter any of this paper’s results or conclusions.
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Figure 5: Finite element model for measuring resolution. (a) shows the geometry of the
finite element model used for determining resolving limits. It has an array of small inclusions
centred under the compressor at 2 cm depth. (b) is a magnified view of the inclusions, showing
the arrangement of the eight inclusions in a 2× 2× 2 array. The feature scales in the axial, lateral
and elevational directions (fsa, fsl and fse respectively) are defined as the inclusion size in that
direction. There are four pairs of inclusions in each direction, with a gap equal to the feature scale
between them. The lateral and elevational feature scales are twice the axial feature scale.

(±0.35mm), ±1 A-line laterally and, in the case of volume-based processing, ±1 frame elevation-
ally. While this is small, it does extend beyond a single frame elevationally, so there is a difference
between the freehand and volume-based windows. The window spacing was set to 0.2 mm, well be-
low the feature scale in any direction. Finally, the gradient was calculated by a simple differencing
operation which again has only a small effect on the resolution.

We measured the resolution in a particular direction by considering the pairs of inclusions
in that direction. We looked at resolvable contrast, defined as the difference between the mean
strain value within a pair of inclusions and in the region in between, along a line through their
centres. As the level of smoothing increases, this contrast decreases, until the inclusions are no
longer individually distinguishable. Since we have an array of inclusions, we measured the average
contrast across each of the four pairs. Figure 6(a–h) shows an example of this, for a lateral feature
scale of 2 mm and four different Gaussian filter widths of 2.0 mm, 3.6mm, 5.0mm and 6.0mm (filter
width is defined as twice the standard deviation of the Gaussian). The filter sizes in the axial and
elevational directions were set equal to the feature scale in that direction, which is well above the
resolving limit for a Gaussian filter. The third of these filters (5.0 mm) gives zero contrast between
the inclusions and the background: they are no longer individually distinguishable laterally in the
image (Figure 6(g)). For larger filter sizes, the contrast becomes negative.

For the purposes of comparing SNR, it is not critical where we set the resolutions, provided
that they are matched. We could, for example, compare SNR at the resolving limit where the
contrast crosses zero and the inclusions become indistinguishable. However, in order to provide
visual confirmation that the resolutions are indeed matched, we instead set the resolution at a level
of smoothing just below that required to merge the two inclusions. This amount of smoothing is
still sufficient to ensure that the filter size dominates the resolution.

Appropriate parameters were chosen by plotting the contrast in one direction against the
Gaussian filter width in that direction, with the filter widths fixed at the feature scale in the
other two directions. Figure 6(i) shows an example of this kind of curve. We then compared the
measured contrast to the actual contrast (determined from the finite element output) and took our
desired filter setting to be where the average measured contrast was 5% of the actual. Repeating
this in all three directions for our two techniques, we determined matched filter settings at each
feature scale. When these three settings are applied simultaneously to the data, the inclusions are
just visible in the images (see Figure 6(j–k), preferably on a computer monitor, not in hard copy).

Figure 7 shows the Gaussian filter width settings in each direction. As expected, there is little
difference in the required settings for the two techniques, because the resolution determining step
(the Gaussian filter) works very similarly in both cases. Axial settings are around half the lateral
and elevational settings. Again, this is what we would expect, given the ellipsoidal inclusions.
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Figure 6: Setting filter sizes. (a–d) show how the strain varies along a line through the centre of
the lateral pairs of 2.0 mm inclusions with four different Gaussian filter widths (2.0 mm, 3.6 mm,
5.0mm and 6.0 mm). The vertical lines on the graphs indicate the true edges of the inclusions.
(e–h) show axial-lateral views of the inclusions at each filter setting, magnified for the region
marked in (l). (i) shows the measured contrast at each filter setting, for all three directions.
From this graph, the 5% relative contrast level provides the filter settings for the subsequent SNR
experiments. (j–k) are axial-lateral and axial-elevational views respectively for the 5% contrast
filter settings, with the inclusions just resolvable (on a computer monitor) in each direction.
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Figure 7: Filter settings for matched resolution. The graphs show the filter width, defined as
twice the standard deviation of the Gaussian, required to give matched resolution just above the
resolving limit for the two techniques. The dash-dot lines (-·-) are for the axial filter, dashed lines
(- -) are for the lateral filter and solid lines (—) are for the elevational filter. In each pair, crosses
(×) mark the line for the volume-based approach and circles (◦) are for the freehand approach.
The lateral and elevational feature scales are twice the axial feature scales.

3.2.2 Comparing SNR

Strain precision depends on the number of independent strain estimates captured by the Gaussian
smoothing kernel (that is, the size of the filter relative to the data density) and on the precision
of the individual estimates. The data density is therefore an important consideration, because, in
the freehand technique, the elevational frame spacing can be freely varied by moving the probe at
different speeds. The precision of the individual estimates depends on the window size and also
on the correlation between the RF data within the windows. Correlation will be low when there
is motion in an untracked direction, for example the elevational direction in freehand data, and
also in regions of high deformation.

Strain signal to noise ratio is conventionally defined as

SNRe =
s̄

σs

where s̄ is the mean strain level and, in data with uniform strain, σs is the standard deviation
of the strain estimates. However, in order for our SNR measurements to capture the effects of
deformation variations between our two approaches (and any consequent variations in estimation
precision), we used Field-simulated data derived from finite element models with uniform stiffness.
Then, to avoid biasing the σs value with true variations in strain, we set σs to the standard
deviation of the strain error, with the finite element simulation providing the ground truth. For
s̄, we used the mean value of the estimated strain data. Our SNRe metric thus captures strain
estimation precision for a uniform stiffness data set.

Several estimates of SNR were obtained from different regions of each data set. We selected
individual frames of data distributed through the sequence so that even at the largest filter size,
they still provided almost independent estimates of SNR. The largest elevational filter size was
4.297 mm (see Figure 7), which allowed for up to five frames to be selected from the 2 cm elevational
range2. Within each of these frames, we divided the image into two regions, as shown in Figure 8,
giving a total of ten SNR estimates from each simulated data set.

2To be entirely independent, the spacing would need to be twice the filter width, because the Gaussian kernel
was truncated two standard deviations from the centre. With the spacing used here, there is a little overlap at the
kernel edges, though the small coefficients at the tails mean that the SNR estimates are almost independent.
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Figure 8: Regions used to calculate SNR estimates. Within a single frame, the two regions
indicated by white boxes were used to calculate two estimates of SNR. They are separated laterally
and leave a gap at the edges to allow for the filter capturing values outside these regions. Within
each simulated data set, five frames like this were used to obtain ten estimates of SNR.

Since we need to consider the effect of varying frame density in the freehand data, we generated
several freehand data sets with different frame spacings of 0.3 mm, 0.2 mm and 0.1 mm. We also
produced one additional freehand data set with pairs of frames at zero separation and 0.3 mm
spacing between pairs. While this scanning protocol is not feasible in practice, it offers a good
comparison with the volume-based data set, as it has the same frame spacing and density. For
this data set, SNR was calculated based only on the overlaid frame pairs, without including any
strain estimates from the 0.3 mm-separated frames.

Figure 9 shows the SNRe values measured in each data set at the five different resolution
settings. There are several observations that can be made. First, the SNR of the freehand
approach depends very much on the frame spacing and density, and can be greater than or less
than that of the 3D probe. As expected, the SNR improves as the freehand spacing decreases,
because there are then a larger number of better quality estimates within the filter range. The
freehand data with zero-separation frame pairs every 0.3 mm actually has a lower SNR than the
0.1mm evenly spaced data. This is because, even though the individual strain estimates are better
with zero spacing, there are fewer of them within the filter range and this reduces the SNR.

Comparing with the volume-based result, the most similar freehand data set is the one with
zero spacing, having the same frame spacing and density as the volume-based data set. The SNR is
therefore very similar in these two results. There are, of course, many differences between the two,
both mechanically, in the way the tissue is distorted by the probe and subsequently normalized, and
also in the signal processing, where the volume-based approach uses 3D displacement estimation
windows and normalizes over the entire data set. The combined effects of these differences give
the volume-based approach a slightly lower SNR.

In practice, it would not be possible to obtain the zero-separation data set in a freehand
scanning protocol. Considering the other freehand sequences, it is apparent that the data would
need to be around twice as densely sampled as that recorded by the 3D probe in order to obtain a
similar SNR. Moreover, considering that these simulations produced idealised freehand data, with
no lateral probe motion and a good compression magnitude between each pair, it is likely that an
even higher density would be required in practice.

3.3 In vitro validation

While the finite element simulations allowed quantitative assessment against a known ground
truth, we must check that the results translate to practical strain imaging with a handheld probe.
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Figure 9: Comparison of signal to noise ratio. The graph shows the mean SNRe values for the
freehand approach at four different frame spacings, compared with the volume-based approach.
The signal processing parameters were set to give matched resolutions in all three directions. The
error bars show ± one standard deviation of the SNRe estimates.

We therefore recorded some real data on an elasticity QA phantom (model 049, CIRS, Norfolk,
Virginia, USA). The freehand scans were performed with a 8-16 MHz probe, which closely matches
the transducer inside our 3D probe, interfaced to a Dynamic Imaging Diasus ultrasound machine.
The location of each RF image was recorded using a Polaris optical tracking system (NDI, Water-
loo, Ontario, Canada). Two scans were recorded, one with the probe moved deliberately slowly
and carefully, the other with a faster and more practically viable scanning speed. The mean frame
spacing in the slow scan was around 0.06 mm and in the fast scan was 0.13 mm. At a frame rate of
around ten frames per second, this corresponds to a probe speed of 0.6 mm per second and 1.3mm
per second respectively3. For the volume-based scan, we used the RSP6-12 mechanically swept
3D probe interfaced to the Diasus scanner. Each volume comprised 50 frames and was swept over
a range of 10 degrees, giving a spacing of 0.34 mm at the frame centre.

For all scans, the image frame dimensions were 33mm axially by 26.7mm laterally. The 3D
probe had a footprint of approximately 5 cm laterally by 5.5 cm elevationally, and the freehand
probe face was 3.5 cm by 0.9 cm. The filter widths were set to 1.4 mm in all directions: Figure 7
shows how this will achieve approximately matched, isotropic resolutions for the two techniques.
The scanning target was a 10mm diameter stiff inclusion, having a stiffness 3.2 times the back-
ground value and located at a depth of 15 mm.

Figure 10 shows the strain images produced from these three data sets. The slow freehand
data clearly has the best SNR, while the 3D probe data appears to be slightly better than the
fast freehand data. These results confirm that the freehand quality depends very much on the
scanning speed. Furthermore, it would appear that in order to match the image quality of the 3D
probe, the frame density must be higher than that suggested by the simulations. This is because
the simulations do not account for many complications of the freehand method that would reduce
the SNR, such as lateral motion. In our experience, it is easier to achieve the idealised conditions
of the simulations using the 3D probe.

The disadvantages of the freehand protocol can be seen in the elevational reslices. The 3D
probe always produces a well-sampled volume, whereas the freehand scanning protocol requires
that the probe motion is carefully controlled over the length of the scan. The low quality regions
in the fast freehand scan are caused by a lack of high quality strain estimates in that region, due
to insufficient frame density, inappropriate axial compression, or a combination of the two.

3The frame rate is limited by the digitization pipeline in our research rig. Any commercial implementation
would be able to achieve at least ten times this frame rate.
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Figure 10: In vitro comparison. The figure shows examples of in vitro data sets for our two
scanning techniques. For the freehand data, the target was scanned with the probe moving at
two different speeds. In the slow scan, the average frame spacing is around 0.06 mm. In the fast
scan, it is 0.13 mm. In each subfigure, the top left image is an axial-lateral view centred on the
stiff inclusion, the bottom left is a lateral-elevational view, the bottom right is an axial-elevational
view and the top right is a 3D view showing the outline of each B-scan and all three slices. The
blue colour wash obscures low quality regions where the strain estimation precision falls below a
certain threshold.
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In general, these results validate the finite element simulations’ findings that, for a given frame
density, the volume-based approach yields superior results. Note, however, that the CIRS phantom
is a relatively easy scanning target. In clinical practice, there are often situations where access
to the target is limited, for example in neurosurgery, and a smaller probe face might offer an
advantage. Even for a relatively accessible target like the breast, it can be difficult to maintain
contact over the entire curved surface of the 3D probe, whereas this presents no problems for a
smaller probe. So there may be some practical scenarios where a carefully controlled freehand
protocol is preferable to the volume-based approach.

4 Conclusions

We have compared two practically feasible approaches to 3D strain imaging: freehand scanning
with a conventional ultrasound probe, and volume-based acquisition with a mechanically-swept
3D probe. In terms of mechanical stress artefacts, we showed that the 3D probe, which has a
larger footprint, produces strain images with more uniform strain in regions with uniform stiffness,
and hence more easily identifiable inclusions. We also compared the two approaches in terms of
resolution and noise. While it is possible to produce high quality strain images using the freehand
method, this requires a considerably higher frame density than with the volume-based technique.
The freehand scanning protocol is also more difficult to master in practice, but may nevertheless
be preferable in clinical scenarios where access to the scanning site is difficult for a large 3D probe.
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