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Abstract

This paper presents improvements to the plane-based technique for calibrating freehand
3D ultrasound systems. The improvements are designed to make it easier for inexperienced
users to perform plane-based calibration and to know that they have got a reliable result.
In particular, we enable the calibration to be performed using water at room temperature
while producing a result that is valid for average soft tissue, and we show how it is possible
to provide feedback on the reliability of the calibration using a metric based on the curvature
of the calibration criterion function. We present comprehensive results showing that these
innovations improve the precision of the calibration and offer useful feedback to the user.

1 Introduction

Freehand three-dimensional (3D) ultrasound [5] is a technique for acquiring ultrasonic data of
a 3D volume by measuring the trajectory of the ultrasound probe using a position sensor. It
has applications in clinical volume measurement, analysis of complex geometry, surgery planning
and radiotherapy planning [7]. As the probe is swept across the volume, the sensor records the
position and orientation of the probe with respect to an external world coordinate system. The
recorded position, however, is the position of the sensor, rather than the scan plane, as shown in
Figure 1. We therefore need to determine the scales in the ultrasound images and the rigid-body
transformation from the electrical centre of the position sensor to the corner of the ultrasound
scan plane. This is done through a process called probe calibration [12]. Points in the B-scan
are first transformed to the sensor’s coordinate system by the parameters found by calibration,
and then to the world space by the sensor’s readings. It is crucial that probe calibration be as
accurate as possible, as any errors will propagate through to subsequent stages of image analysis
and measurement.

of position
sensor

system
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Figure 1: The coordinates associated with the scan plane and mobile part of the position sensor.

The usual technique for 3D ultrasound calibration is to perform a series of scans of an object
with known dimensions (a phantom) [13]. The simplest such object is a point fiducial formed by
cross wires [4, 10] or a small spherical ball [1, 20] in a water bath. This point is scanned from
different directions and segmented in each B-scan. For a given set of calibration parameters, each
point in the B-scan can be mapped to the world coordinate system. Since the same point is being
scanned, they should be all mapped to the same point in space. This sets up an over-determined
system of constraints that can be solved using optimisation techniques.
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There are several difficulties in following the point phantom approach. First of all, each point
in the B-scan needs to be manually or semi-automatically segmented. This makes the calibration
process long and tiresome. Secondly, due to the finite thickness of the ultrasound beam, it is very
difficult to align the probe directly at the centre of the point, as the point fiducial may appear in
the B-scan even when the probe is not directly pointing at it.

Muratore and Galloway Jr. [15] used a 3D localizer, which is essentially an additional position
sensor attached to the point phantom. In general, this requires an additional calibration for the
localizer itself, unless it is precisely designed and manufactured. In any case, this means that
the position of the phantom is known in space during calibration. This greatly simplifies the
optimisation, and allows for closed-form solutions.

A three-dimensional localizer is in general able to locate any point in space, and has been
used to locate points on other types of phantoms. Sato et al. [19] used a two-dimensional phantom
comprising of three pointed edges. These three points are located in space with a 3D localizer. The
planar phantom is then aligned with the B-scan and the three points manually segmented. Since
these three points are known in space, the calibration parameters can be solved algebraically in a
closed form. This approach has the advantage that only one frame is needed for calibration, but it
is nevertheless extremely difficult to align the plane phantom, with the thick beam compounding
the difficulty.

The alignment problem is solved by the design of Z-phantoms [3, 12, 16], where wires are
connected in a ‘Z’ shape. The intersection of the wires with the B-scan forms a virtual plane
phantom, whose location can be deduced from the imaged points. This type of calibration is fast,
since only one image is required and does not require accurate alignment with the plane. However,
the thick beam is still a problem. The wires do not show up as clear dots, but as smeared ellipses.
Locating the centres of such ellipses accurately is difficult and requires human intervention.

Gee et al. [8] designed a high definition mechanical device, where the plane phantom is adjusted
with micrometers and is therefore able to be aligned very accurately. The alignment is also aided
by the use of wedges, which show up as bright patches in the B-scans, and so a slight misalignment
of the phantom can be easily seen from the B-scans. The wedges also serve as the fiducial points
on the planar phantom, which are semi-automatically segmented. This mechanical device has
been shown to be the highest definition system in the current literature.

In all the aforementioned approaches, the calibration requires a purpose built phantom, some
of which need to be very accurately manufactured. Another calibration technique is the single wall
approach [17, 18, 23]. All the hardware that is required is a flat plane emersed in a water tank. The
flat plane could be as simple as the bottom of the water tank. The Cambridge phantom [17] may
be used as a virtual plane to avoid the beam thickness problem and produce strong echoes even
when the plane is scanned from an oblique angle. As the plane is scanned from different angles,
the images of the plane appear as clear, straight lines in the B-scans. This allows the possibility of
automatic segmentation, subject to a few threshold settings prior to calibration. Prager et al. [17]
used the RANSAC line detection algorithm [6] for its robustness against outliers. Rousseau et al.
[18] used Hough transforms [9] to extract the lines and reject outliers from each B-scan. They
went further to assume a smooth varying of the line in neighbouring B-scans in order to reject
any falsely detected lines. For a given set of calibration parameters, points on these lines can be
transformed to the position sensor’s coordinate system and then to the world coordinate system
using the position sensor’s readings. If the calibration is correct, these points will also lie on a
plane in world space. This sets up a list of constraints involving eleven parameters. Six of these
define the rigid-body transformation from the mobile part of the position sensor (attached to the
probe) to the corner of the B-scan image. Three further parameters define the location of the
phantom plane in 3D space. These three are only required internally for the process of calibration
itself; once calibration is complete they are discarded. Two final parameters define the horizontal
and vertical scales in the B-scan image. An iterative optimisation algorithm is then utilized to
find the best fit plane by adjusting the calibration parameters, see Figure 2.

This paper describes some refinements to make the process of single-wall calibration easier and
more reliable for inexperienced users to perform. There are two main problems: (1) the speed of
sound in water at room temperature is slower than its speed in average soft tissue. The sound
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Figure 2: Block diagram of plane-based calibration

speed in water at 20 Celsius is only 1482 m/s [2], while sound travels at 1540 m/s in average soft
tissue. For accurate calibration the water bath should be at 48 Celsius which gives a sound speed
of 1540 m/s. This is difficult to maintain, and uncomfortable for the operator. If the calibration
is performed in cold water without any adjustments, the temperature difference would cause an
error of 3.7%. (2) There is currently no feedback to the user to indicate when the plane has
been scanned from a sufficiently diverse set of positions and angles to produce a well constrained
solution to the resulting non-linear equations. The residue error from the optimisation is not an
accurate measure of calibration quality, since it is possible to perform an incorrect calibration
with a low residue error. An extreme example would be to repeatedly scan the plane from the
same position. In this case, the residue error would be low, but the user has no idea that the
calibration is unreliable. As a result, some inexperienced users have recorded under-constrained
motion sequences leading to incorrect calibrations. In this paper, we show how it is possible to
provide feedback to the user on the reliability of the calibration.

2 Improving the Reliability of Single Wall Calibrations

In this section, we first present the modifications we have made to current single wall calibration
systems used by Prager et al. [17] and Treece et al. [22]. We then performed and analyzed a
number of calibrations in order to measure the reliability of a calibration using a metric based on
the curvature of the criterion function. At the same time, these calibrations were used to compare
with the results from Treece et al. [22], in order to verify the effectiveness of the modifications we
have made to the single wall calibration protocol.

2.1 Improvement to Single Wall Calibrations

We describe the two modifications we have made to improve current plane-based calibration sys-
tems. The first modification is to account for the difference between the speed of sound in water
and soft tissue. The second is to determine the B-scan scales explicitly.

2.1.1 Speed of Sound

The speed of sound problem is fixed by allowing the calibration to be performed at room temper-
ature, but requiring the user to provide a measurement of the water temperature. The ultrasound
images can then be corrected using one of the well-known polynomial models for the speed of
ultrasound in water as a function of temperature [2].

Since sound travels slower in cold water than in average soft tissue, the image of the plane
(dotted lines) appears further away than its actual position (solid lines), as shown in Figure 3.
Corrections can therefore be made by moving the image of the plane toward the face of the probe.

We used the same edge detection algorithm used by Prager et al. [17]. Vertical samples are
taken within the user defined region in the ultrasound image. A likely edge point is where the
derivative of the smoothed signal first exceeds some threshold. The edge could then be found by
applying the RANSAC line detection algorithm to these likely edge points [6]. For a linear probe,
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the correction is a translation of each likely edge point toward the probe face; the axial coordinates
v of the points are multiplied by the temperature correction factor t = speed in cold water

speed in average soft tissue .

v

u

R

Figure 3: The dotted lines shows the distorted the plane due to slower sound speed in cold water.
The solid lines show the corrected plane. The diagram is exaggerated to emphasize the distortion.

In the scenario of a curvilinear probe, the plane appears as a curve rather than a line. We
therefore first detect the probe shape automatically [21]. The probe centre is then the intersection
of the left and right edges. We further assume that the probe face is part of a circular arc with
radius R centred at the probe centre. We then move each point on the curve (shown as a dotted
line in Figure 3) towards the probe face, in the direction of the probe centre, by the temperature
correction factor. The shifted points will then lie on a straight line, and can be detected using the
RANSAC line detection algorithm [6]. Since this correction is mathematically sophisticated and
extra steps need to be followed by the user to detect the probe shape reliably, an approximated
correction is possible for common abdominal curvilinear probes. Please refer to Appendix A for a
detailed discussion.

2.1.2 Explicit Scale Estimation

We increase the robustness of the calibration process by reducing the number of parameters in-
volved. We can establish the image scales at the start of the procedure using a separate protocol,
and hence remove them from the optimisation. The result is that the non-linear optimisation
only has to determine nine rather than eleven parameters, and this makes the system of equations
easier to constrain.

The image scales are determined using the distance measurement tool that is available on most
(if not all) clinical ultrasound machines. This tool provides the distance, in centimetres, between
two points marked in the B-scan image. A simple graphical user interface has been implemented to
enable the user to indicate the point positions and enter their separation. Since most ultrasound
machines provide square pixels to a very good approximation, we have further simplified this
procedure, with little loss of accuracy, by assuming that the horizontal and vertical image scales
are the same. The scale is therefore estimated by distance (cm)√

(∆u)2+(∆v)2
, where ∆u and ∆v the horizontal

and vertical distances, in pixels, between the two marked points on the B-scan.

2.2 Quantification of Calibration Quality

In order to measure the calibration quality and provide feedback to the user, we performed calibra-
tions using three probes on two different ultrasound machines. The first is the Diasus1 5–10MHz
linear-array probe. The analog radio-frequency (RF) ultrasound data, after receive focusing and
time-gain compensation but before log-compression and envelope detection, was digitized using a
Gage CompuScope 14100 PCI 14-bit analog to digital converter,2 and transferred at 10 frames

1Dynamic Imaging Ltd., http://www.dynamicimaging.co.uk/
2Gage Applied Technologies Inc., http://www.gage-applied.com/
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per second to a Pentium(R) 4 2.80GHz PC running Microsoft Windows XP. Since we have access
to RF data, the image scales could be set at our discretion and the B-scans were displayed at
0.01cm/pixel. We also performed calibrations with the Toshiba3 model SSA-270A/HG 7.5MHZ
linear probe, and the 3.75MHz curvilinear probe. The B-scan images were digitized using an
inexpensive frame-grabber card and transferred to an 800MHz PC running Linux. Both probes
were tracked using an AdapTrax4 infrared LED target for the Polaris5 optical tracking system.

We performed calibrations including 30, 60, 90 and 120 images of the plane. Every calibration
was repeated 10 times. For each repetition, the calibration consisting of 60 images was formed by
capturing 30 images of the plane in addition to the 30 images from the previous calibration, and
similarly for the calibrations with 90 and 120 frames. It is important for plane-based calibration
that the plane is scanned in a non-degenerate sequence to constrain the plane in space [17, 22].
These calibrations all included the required motion sequences, namely: vertical movements, side to
side rotations, front to back rotations, translation in the x direction, translation in the y direction
and rotations about the z-axis, where x and y are the two axes in the plane phantom, aligned
with the sides of the water tank, and z the corresponding axis perpendicularly out of the plane, as
shown in Figure 4. The probes and depth settings used in the experiments are listed in Table 1.
One focus at approximately half the depth setting was used in each calibration. The scales in
the Diasus calibrations were set manually to 0.01cm/pixel, since this is the scale at which the
RF data, after log-compression, envelope detection and band-pass filtration, were displayed. The
distance measurement tool was utilized to estimate the scales in the Toshiba calibrations. Both
the temperature and scale estimation is highly repeatable so that the same readings are obtained
in every measurement. Hence there is no variation in the scales in each calibration. In all, a total
of: 4 probes × 4 numbers of plane images × 10 repetitions = 160 calibrations were acquired.

Machine Probe Type Frequency Depth B-scan Scales
Diasus Linear 5–10MHz 3cm 360× 300 Preset
Diasus Linear 5–10MHz 6cm 360× 600 Preset
Toshiba Linear 7.5MHz 6cm 222× 416 Distance Measurement
Toshiba Curvilinear 3.75MHz 6cm 388× 380 Distance Measurement

Table 1: Probes and other settings used in the calibrations.

The quality of each calibration was assessed by measuring its precision and accuracy [22].
Precision is measured by the consistency of the locations of the four corners and the middle of
the image when located in 3D space using the calibration parameters. For each of these points
we measured its mean location in 3D space, and then computed the average magnitude of its
deviation from this point. This measure was called mean 3D error by Treece et al. [22]. These five
errors were then averaged. Figure 5 shows the averaged error as the number of scans is increased
in our calibrations. The decreasing graphs show that more consistent calibrations were achieved
at a higher number of scans.

The precision measurements indicate the variation in the image due to spatial calibration
errors. This variation could be reduced further by averaging over a larger number of calibrations.
Moreover, the repeatability of the calibrations is not an indication of accuracy, as the calibrations
could be highly repeatable but biased.

We assess the accuracy of our calibrations by scanning a tissue mimicking phantom consisting
of coplanar spheres with 2mm diameter [11]. These spheres lie on a grid with known dimensions
(Appendix B), and they show up as dark circles in the B-scans. We scanned the phantom with
the Diasus probe at 3cm and 6cm depth, using the three patterns in Figure 6. In order to
maximize the visibility of the spheres, six focal points were used in the middle region of the
image. The images were recorded at approximately 7–15 frames per second. Although many foci
were used during image acquisition, some of the spheres away from the focal points could not be

3Toshiba Corporation, http://www.toshiba.com/
4Traxtal Technologies, http://www.traxtal.com/
5Northern Digital Inc., http://www.ndigital.com/
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Figure 4: The sequence of probe movement required during calibration to constrain the 11 cali-
bration parameters (before scales estimation). The diagram is taken from Treece et al. [22].
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Figure 5: The variation of the four corners and the centre of the cropped B-scan due to spatial
calibration for the different types of probes.
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seen clearly and segmented properly, and so they were not included in the accuracy assessment.
The phantom was scanned freehand, but as slow as possible so that each sphere appears in a
number of consecutive images. A typical recording consisted of approximately 400 scans down
the 10cm length of the scanning window. The images of the spheres were then semi-automatically
segmented, reconstructed in space using the parameters from our calibrations, and fitted to our
predefined grid of spheres [22]. We measure the error as the 3D distances between the centres of
the reconstructed spheres and their true location in world space.

(a) Translation (b) Horizontal Rotation (c) Vertical Rotation

Figure 6: Scanning patterns used when scanning the phantom. Approximately 400 scans were
recorded in each case.

Figure 7 shows the orthographic projection of the sphere centres’ distribution. The small grey
circles are the actual positions and size of the spheres forming the predefined grid. In order to
make the errors more visible, the small grey circles are magnified by a factor of four and shown
as larger black circles. The crosses show the centre of each reconstructed sphere with the error
magnified by a factor of four. The diagrams in the left column show the reconstruction errors for
the Diasus probe at 3cm depth; the errors at 6cm depth are shown in the right column.

Figure 8 shows the average error as a function of the number of scans. The graphs are relatively
flat. This is most likely because the dominant errors are not caused by spatial calibration. Possible
sources include the optical tracker, temporal misalignments, image capture and segmentation of
the spheres. Nevertheless, from the low errors and the even distribution of located spheres in
Figure 7, we can deduce that our calibrations are unbiased.

In this paper, we will use precision as the measure for calibration quality. This is because pre-
cision is more sensitive to calibration errors than accuracy, since precision measures the variations
caused by spatial calibration only, and not a combination of calibration and other sources of er-
rors. We have also verified that this choice is viable by the low accuracy errors in each calibration,
confirming that the calibrations are unbiased and accurate.

2.3 Curvature of the Criterion Function at the Solution

In each calibration we obtain a set of constraints involving nine variables, since the B-scan scales
have been determined explicitly. These variables are solved using a non-linear optimisation al-
gorithm, and we have ensured that the correct solution is obtained (Appendix C). We wish to
measure how well the solution is constrained. As the nine parameters are similarly scaled, with
distances in centimetres and angles in radians, we can get an indication of an under-constrained
solution using the minimum curvature of the criterion function at the solution. If the minimum
curvature is high then the solution is well-constrained. If the minimum curvature is low then one
or more parameters will be under-constrained. We can thus spot poor solutions and advise the
user to scan the plane from some more angles to introduce further constraints.

We wish to use the minimum curvature at the solution as a measure of the quality of the solu-
tion. We therefore measured the minimum curvature of our calibrations by computing the Hessian,
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(b) Translation at 6cm depth
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(c) Horizontal Rotation at 3cm depth
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(d) Horizontal Rotation at 6cm depth
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(e) Vertical Rotation at 3cm depth
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(f) Vertical Rotation at 6cm depth

Figure 7: Orthographic projection of the phantom and the reconstructed spheres. The small grey
circles shows the true size and location of the spheres in space. The larger black circles shows these
spheres magnified by a factor of four. The distribution of the reconstructed spheres are shown as
crosses, with the error magnified by a factor of four. The consistent magnification means that the
crosses and the large black circles are directly comparable.
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Figure 8: The variation of the system error in terms of distance measurement as the number of
scans is increased in the spatial calibrations.

the matrix consisting of all the second derivatives of the objective function. The eigenvalues and
eigenvectors of the Hessian are evaluated to give the magnitudes and directions of greatest and
least curvature. In all four probes, the eigenvector corresponding to the minimum eigenvalue for
each calibration is found to be in the translation direction that defines the phantom in world
space. This eigenvalue is expected to be lower than other eigenvalues, because this translation is
typically an order of magnitude larger than the other calibration parameters. This means that
the error in this direction is also expected to be an order of magnitude higher than other para-
meters. This does not bother us as the three parameters defining the phantom in world space are
subsequently discarded, and do not judge how well a calibration is performed. We therefore use
the second minimum eigenvalue, whose corresponding eigenvector is in the direction concerning
a combination of the six parameters that define the transformation from the mobile part of the
position sensor to the corner of the B-scan image. For brevity, we will use the word eigenvalue or
minimum eigenvalue in this paper while we are in fact referring to the second minimum eigenvalue
(minimum eigenvalue of interest).

Figure 9 shows the graph of the second minimum eigenvalue (minimum eigenvalue of interest)
of the Hessian at the calibration solution as the number of scans is increased. A clear linear
relationship can be seen. This shows that the minimum curvature at the solution is related to the
number of scans of the plane used in the calibration.
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Figure 9: The graphs shows the second minimum eigenvalue (minimum eigenvalue of interest) of
the Hessian calculated at the solution of the objective function as the number of scans is increased.
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We have shown that the error is related to the number of scans in the calibration in Figure 5.
Hence the number of scans is related to both error and eigenvalue. This enables us to plot the
error against the eigenvalue, as shown in Figure 10. This shows that we can use the size of the
eigenvalue as an indicator for the quality of the solution, and therefore advise the user whether
the calibration is well-constrained.
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Figure 10: The variation of the four corners and the centre of the B-scan as the calibration becomes
more constrained.

2.4 Incomplete Scanning Patterns

We have shown in the previous section that we can use the eigenvalue to determine whether the
solution is well-constrained, hence the reliability of the calibration. This assumes that the user
has performed all the required scanning patterns in Figure 4. Inexperienced users often neglect
some of these motions inadvertently. We performed calibrations consisting of 30 images with one
of the motions missing with the Diasus probe at 6cm depth to investigate whether incomplete
calibrations do result in an under-constrained solution, reflected by a low eigenvalue.

The minimum eigenvalues for these incomplete calibrations are shown in Figure 11. In the two
cases where side to side and front to back rotations are missing, the under-constrained optimisation
resulting from incomplete scanning patterns is reflected by a near zero minimum eigenvalue. For
the case where vertical movements are missing, the minimum eigenvalue also dropped by more
than a factor of two, indicating an insufficiently constrained solution. In the other three cases the
eigenvalue did not drop as expected. This suggests that although these motions are absent, the
solution is well-constrained. We verify this by performing a series of calibrations without these
motions and show that they are just as precise as calibrations with all motions exercised.

We performed an additional 10 calibrations with minimal rotations and translations in the
aforementioned directions, but still containing the remaining three types of motions. Figure 12
shows the graph of average error against the number of scans. The graph for good calibrations
where all motions are exercised using the same probe (Figure 5) is duplicated here for comparison.

From the figure it could be seen that the apparent paradoxical high eigenvalue for calibrations
where rotations about the z-axis and translations in the xy-plane are missing is in fact correct. The
average error is similar in magnitude from a low to a high number of scans. This means that these
motions are not necessary to sufficiently constrain the optimisation for accurate calibration. This
is because we have reduced the number of parameters to be optimized from eleven to nine, hence
reducing the degrees of freedom which the calibration needs to constrain. This observation can be
confirmed by simulating the calibration process mathematically. We have found that successful
calibrations can be simulated excluding the aforementioned motions.
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Figure 11: The minimum eigenvalues for the calibrations where a particular motion is missing.
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Figure 12: Comparison between calibrations with minimal rotation about the z-axis and minimal
translation in the xy-plane, and calibrations where all six types of motion are exercised.

2.5 Precision and Accuracy

We verify the effectiveness of the improvements we have made to single wall calibration by com-
paring our calibrations based on 120 images with the results from Treece et al. [22], where the
highest definition system using plane-based calibrations was reported. Figure 13 shows that the
calibrations in this paper are more precise than those achieved by Treece et al. [22]. The error
for the Diasus 3cm probe has been reduced by more than a half, and the error for the 6cm depth
setting has been reduced by more than a third.

Diasus 6cm

Diasus 3cm

0.00 0.02 0.04 0.06 0.08 0.10

Mean 3D error (cm)

Treece et al. 2003

This Paper

Figure 13: Comparison of the errors due to spatial calibration alone achieved in this paper and in
Treece et al. [22]. The errors shown are the mean 3D errors at the five corners.
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The probe motion during calibration is restricted when the depth is set low at 3cm. This can
result in a weakly constrained optimisation. By removing the scale factors from this optimisation
we reduce the dimensionality of the search and greatly improve the precision of the result.

The higher errors in the calibrations performed by Treece et al. [22] are most likely caused by
the variation in temperature during calibration. The hot 48 Celsius water will cool down rapidly
in the standard room environment. By correcting the temperature differences, calibrations in cold
water is possible.

Figure 14 shows the comparison of our system accuracy with the results from Treece et al. [22].
It shows that our adjustments have improved the system accuracy slightly.

Horizontal
Rotation

Vertical
Rotation

Treece et al. 2003

This Paper

0.04

Translation

Diasus 6cm

Mean 3D error (cm)

Diasus 3cm

0.00 0.02 0.02 0.040.00

Figure 14: Comparison of the errors from distance measurements of the whole freehand 3D ultra-
sound system achieved in this paper and in Treece et al. [22]. The errors shown are the mean 3D
distance errors between the centres of the segmented spheres and their real locations in space.

3 Conclusion

We have proposed some changes to the plane-based 3D ultrasound calibration protocol that in-
crease its reliability and ease of use, while maintaining its state-of-the-art performance. The
compensation for the temperature of the water and the simple technique for explicit entry of scale
values are both easy to use. In particular, fewer degrees of freedom need to be constrained by
spatial calibration, and so rotations about the z-axis and translations in the xy-plane are no longer
needed to achieve a good calibration.

We have also produced a foolproof indicator of the calibration quality by calculating the eigen-
value of the Hessian at the solution of the criterion function. We have ensured that the global
minimum is reached by the non-linear optimisation (Appendix C). Figure 10 shows the variation
of the B-scan corners due to spatial calibration as a function of the minimum eigenvalue. The
high accuracy of the calibrations shown in Figure 8 confirms that these calibrations are unbiased.
Hence we may use the eigenvalue as an indicator for the calibration quality. Figure 11 further
confirms that if a motion necessary for calibration is missing, which is a common scenario for
inexperienced users, the incomplete calibration is indicated by a low eigenvalue. The eigenvalue
criterion has been evaluated and shown to be effective on three different probes and at two different
depth settings.

A The Curvilinear Probe

It is clear that the temperature correction routine is more sophisticated for the curvilinear probe
than for the linear probe. This includes the detection of the probe shape and curvature in addition
to the mathematical adjustments, which is an extra step for the user during calibration. We
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therefore investigate what is the expected error should we use the temperature correction routine
for a linear probe to approximate the exact correction.

Figure 15 (a) shows an exaggerated diagram when the plane is scanned in such a way that the
plane appears as a horizontal line, or in fact a slight curve. The exact correction is shown with
arrows pointing in the direction of the shift, the result is a horizontal straight line, shown as a
dashed line in the diagram. This is the true position of the plane in space. The approximated
correction is shown as arrows ending with a circle. It is clear from the diagram that the maximum
error occurs at the middle of the image, where the point is over corrected. If this central point
appeared at a depth d in the B-scan, and t represents the temperature correction factor, then
the point is corrected to position td. For an exact correction, the point should be corrected to
t(d − c) + c. The overcorrection is thus the difference (1 − t)c. The line detection algorithm is
likely to estimate the line to be around the middle of the two extreme points as the best fit line
(shown as a dashed line), and so the expected error e should be about half the overcorrection
error, i.e. e ≈ 1

2 (1− t)c. Since t = 0.963 for water at 20 Celsius, and c is less than 1cm for common
abdominal curvilinear probes, this error (e ≈ 0.01–0.02cm) is negligible for such probes.

True Position

Incorrectly Adjusted Line

e

d

u

v

c

(a) Horizontal plane

Incorrectly Adjusted Line
True Positi

on

u
v

(b) Oblique plane

Figure 15: The difference between the corrected planes when applying the correct and approx-
imated correction routines to the displayed plane. The approximated correction is shown with
arrows ending with a circle. It is assumed that a best fit line will be fitted to the non-linear
corrected points. Both diagrams are exaggerated to show the correction error more clearly.

Figure 15 (b) shows an exaggerated diagram when the plane is scanned from an oblique direc-
tion. The difference between the two correction routines in this case is mainly a rotational error,
rather than a distance error. The incorrectly corrected line will appear not as steep as the real
position of the plane, while the distance at the centre will remain roughly at the same place as
before. This error is difficult to quantize, as it is dependent on the depth, curvature and width of
the probe, slant of the plane, and even the thresholds in the line segmentation algorithm. As an
estimate of the expected error, we compute the error using the dimensions of our Toshiba curvi-
linear probe, as shown in Figure 16. The plane is scanned at maximum gradient at 17cm depth.
In this case, the error is 0.6◦, and in practise the error will be less than this value. Since this type
of motion only occurs in approximately 20% of the calibration, its impact on the calibration error
is limited.

We verify that using the simple temperature correction is a good approximation to the exact
correction by performing an additional 10 calibrations with the Toshiba curvilinear 3.75MHz
probe using the simple temperature correction routine, and compare this result with the previous
calibrations with the same probe, but with the exact temperature correction routine applied. Since
the probe shape no longer needs to be detected, it is therefore not necessary to have the sides of
the probe visible within the images. This allows the B-scans to be displayed at a wide field of
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Figure 16: An estimate of the error caused by temperature correction differences. The dimensions
are shown in centimetres for our Toshiba curvilinear probe.

view, the more common setting for the curvilinear probe in clinical environments. The difference
in settings for the two sets of calibrations is shown in Table 2.

Correction Cropped B-scan Refresh Rate
Exact 388× 380 36Hz
Approximate 496× 416 18Hz

Table 2: Setting differences for the Toshiba curvilinear 3.75MHz probe used for determining the
effect of the different temperature correction routines. The depth is set at 6cm.

The repeatability of the curvilinear probe shape detection is shown in Table 3, with the values
in pixels. It is clear that the centre and radius of the probe are accurate to within 2 pixels (0.3mm).

Centre Radius
x y 2D

Mean 193.1 -489.5 (193.1;−489.5) 499.1
RMS 0.115 1.120 1.126 1.105
95% ±0.237 ±2.314 ±2.344 ±2.283

Table 3: Repeatability of the estimation for curvilinear probe centre position and radius. The
unit of the values in the table is pixels. The scales in each B-scan are determined explicitly to be
0.0143cm/pixel.

Figure 17 shows the mean 3D errors of the five corners for the curvilinear probe when the
two temperature correction routine is applied. The similarity of the precisions showed in the two
graphs shows that there is not a need for accurate temperature correction. Although the precision
is slightly better when an approximation to the temperature correction routing is used, it is not
statistically significant given the spread of errors in the five corners. The difference is also small
when compared with the error achieved by Treece et al. [22] and in this paper as shown in Figure 5.
An exact temperature correction routine for common abdominal curvilinear probes is therefore
not necessary to achieve high precision.

B Verification of the sphere distances

Although the location of each sphere was precisely manufactured, the phantom has shrunk over the
years by losing water. This has caused the spheres to be closer than the manufactured dimensions,
typically near the scanning window at the top away from the rigid walls. We first measured
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Figure 17: The effect of temperature correction routines on the consistencies of the five B-scan
corners.

the distances between the spheres. This was done by capturing multiple ultrasound images in
the direction of the coplanar spheres with the Diasus 5–10MHz probe with multiple foci down
its depth. The horizontal and vertical distances between the spheres were measured using the
distance measuring tool provided by the ultrasound machine in a single image. The measurements
are shown in Table 4. The vertical distances between spheres have shrunk by approximately 5%,
while the horizontal distances remained roughly unchanged. We modelled the locations of the
spheres to lie on a rectangular grid, with the measured vertical distance and the manufactured
horizontal distance. We have kept the manufactured horizontal distance as we do not anticipate
any shrinking or expanding in the horizontal direction as the phantom is surrounded by rigid walls
on its sides. The very slight difference in the measured distances is within measurement error.

Probe Measured Distances Original Distances
Horizontal Vertical Horizontal Vertical

Diasus 3cm 3.021± 0.0087 0.947± 0.012 3± 0.01 1± 0.01
Diasus 6cm 3.005± 0.0181 1.914± 0.013 3± 0.01 2± 0.01

Table 4: The measured and original manufactured distances between two or three spheres, depend-
ing on the number of spheres that could be seen in each B-scan. All distances are in centimeters,
displayed in the form mean± standard deviation.

C Solution of the Criterion Function

We have utilized the non-linear Levenberg-Marquardt optimisation algorithm [14] to solve for
the solution to the system of non-linear equations involving nine parameters. The calibration
parameters are solved in three stages: the angles are first solved, then the distances, and then
a final global optimisation to fine tune the solution [17]. As is the case for all optimisation
algorithms, a starting point is necessary. This is chosen at random, but within a reasonable
estimate of what the parameters can be. This means that the solution given by the optimisation
algorithm is dependent on the starting point. Hence, we need to ensure that the optimisation
converges to the global minimum, rather than any other local minimum. Based on trial runs of
the optimisation, the convergence to a non global minimum occurs less than 50% of the time. We
therefore repeat the optimisation 50 times at different starting points and accept the solution with
the minimum error. This process takes less than a second on our 800MHz PC. The probability
that the optimisation still converges to the incorrect minimum is 1 in 1015.
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