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Abstract

In a freehand 3D ultrasound system, a probe calibration is required to find the rigid body
transformation from the corner of the B-scan to the electrical centre of the position sensor.
The most intuitive way to perform such a calibration is by locating fiducial points in the
scan plane directly with a stylus. The main problem of using this approach is the difficulty
in aligning the tip of the stylus with the scan plane. The thick beam width makes the tip
of the stylus visible in the B-scan even if the tip is not exactly in the elevational centre of
the scan plane. In this paper, we present two novel phantoms that simplify the alignment
process for more accurate probe calibration. We also compare our calibration techniques with
a range of styli and show that our phantom outperforms other approaches in both accuracy
and simplicity.

1 Introduction

Freehand three-dimensional (3D) ultrasound (Fenster et al., 2001) is a 3D medical imaging system
with many clinical applications in anatomy visualization, volume measurements, surgery planning
and radiotherapy planning (Gee et al., 2003). As a conventional two-dimensional (2D) ultrasound
probe is swept over the anatomy of interest, the trajectory of the probe is recorded by the attached
position sensor. The volume of the anatomy can be constructed by matching the ultrasonic data
with its corresponding position in space. However, the position sensor measures the 3D location of
the sensor S, rather than the scan plane P , relative to an external world coordinate system W as
shown in Figure 1. It is therefore necessary to find the position and orientation of the scan plane
with respect to the electrical centre of the position sensor. This rigid-body transformation TS←P

is determined through a process called probe calibration. In general, a transformation involves
both a rotation and a translation in 3D space. For brevity, we will use the notation TB←A to mean
a rotational transformation followed by a translation from the coordinate system A to coordinate
system B.
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Figure 1: The coordinates associated with the scan plane and mobile part of the position sensor.

3D ultrasound calibration has been an active research topic for several years (Mercier et al.,
2005). The usual approach is to scan an object with known dimensions (a phantom). These scans
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place constraints on the six calibration parameters—3 translations in the direction of the x, y and
z axes and the 3 rotations, azimuth, elevation and roll, about these axes.

The simplest phantom is probably a point target. This can be in the form of a cross-wire
(Detmer et al., 1994; Gooding et al., 2005) or a small spherical ball bearing (State et al., 1994; Amin
et al., 2001; Barratt et al., 2006). The point is scanned from different positions and orientations,
and its location marked in the B-scans. The segmented points can be mapped to the sensor’s
coordinate system by using an assumed calibration and then to the world coordinate system
from the position sensor readings. If the assumed calibration is correct, the points from the B-
scans should have the same coordinates in 3D space. This places constraints on the calibration
parameters. The calibration is solved by an iterative optimisation technique.

A 3D localizer, often called a pointer or a stylus, can be used to aid probe calibration. It is
essentially a point target connected to another position sensor at the end of the stylus, which can
be spherical or sharpened to a point. The rigid-body transform between the tip of the stylus and
the position sensor is usually supplied by the manufacturer (Muratore and Galloway Jr., 2001).
In the case where the transformation is not available, it can be determined by a simple pointer
calibration (Leotta et al., 1997). During a pointer calibration, the stylus is rotated about its tip
while the position sensor’s readings are recorded. Since the tip of the stylus must be mapped
to the same location in 3D space, this places constraints on the possible locations of the stylus’s
tip, whose location can be determined by an iterative optimisation algorithm. In any case, the
location of the stylus’s tip is known in 3D space. The location of the point phantom can therefore
be determined by pointing the stylus at the phantom. If the scales of the B-scan are known
(Hsu et al., 2006), the calibration parameters can be solved in a closed-form by least squares
minimisation (Arun et al., 1987).

Calibrating with the point phantom has three major disadvantages. Firstly, it is very difficult to
align the point phantom precisely with the scan plane. The finite thickness of the ultrasound beam
makes the target visible in the B-scans even if the target is not exactly in the elevational centre of
the scan plane. This error can be several millimetres depending on the ultrasound probe and the
skill of the user. Secondly, automatic segmentation of isolated points in ultrasonic images is seldom
reliable. As a result, the point phantom is often manually or semi-automatically segmented in the
ultrasound images. This makes the calibration process long and tiresome. Finally, the phantom
needs to be scanned from a sufficiently diverse range of positions, so that the resulting system of
constraints is not under-determined with multiple solutions (Prager et al., 1998).

Over the last decade, much research has been undertaken to make probe calibration more
reliable, and at the same time easier and quicker to perform. Prager et al. (1998) were the first
to scan a plane instead of the point phantom. The design complexity of the plane varies from
the floor of a water tank (Prager et al., 1998), a plexiglass plate (Rousseau et al., 2005), a nylon
membrane (Langø, 2000) to a precision made Cambridge phantom (Prager et al., 1998). In each
case, the plane appears as a straight line in the B-scans. This can be automatically segmented
reliably to allow rapid calibration. Just as in the case of a point phantom, the segmented lines
place constraints on the calibration parameters during the optimisation algorithm.

The main advantage of using a plane phantom is the time needed for calibration is shortened
considerably. It is not necessary to align the probe with the phantom and the B-scan images can be
segmented automatically. However, the plane needs to be scanned in a predefined configuration in
order to constrain the calibration parameters. This requires the user to be skilled and experienced,
even though a eigenvalue metric may be used to assess whether the calibration parameters are
under-constrained (Hsu et al., 2006).

A different class of phantoms is the two-dimensional alignment phantom. Sato et al. (1998)
aligned the scan plane with a thin board with three vertices. Each vertex is located in space with
a stylus and segmented manually in the B-scans. The corresponding calibration can be solved in
a closed-form as described previously. These phantoms have the advantage that only one frame
is needed for probe calibration. Nevertheless, up to 20 frames may be necessary for an accurate
calibration (Pagoulatos et al., 2001). The probe still needs to be aligned accurately with the
phantom, which is very difficult with the thick ultrasound beam. The manual segmentation of the
vertices means that calibration remained a lengthy process.
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A Z-fiducial phantom is designed by Comeau et al. (1998) to solve the alignment problem in
2D phantoms. The phantom consists of wires or rods in a ‘Z’ shape. The intersection of the scan
plane with these fiducials forms a virtual 2D phantom that can be used to define the position of
the scan plane in space. The phantom itself is defined in space either by using a stylus (Pagoulatos
et al., 2001; Hsu et al., 2007a) or using another position sensor (Bouchet et al., 2001; Lindseth
et al., 2003; Chen et al., 2006). Automatic segmentation can be achieved by either reducing
the design complexity of the phantom (Chen et al., 2006) or by the aid of an additional planar
membrane (Hsu et al., 2007a). This allows calibration to be completed in a few seconds. However,
the accuracy of such calibration remains poorer than other phantoms (Hsu et al., 2007a).

Gee et al. (2005) designed a mechanical device where the 2D phantom is aligned using mi-
crometers. They mounted wedges onto the planar phantom so that any misalignment could be
easily detected in the ultrasound images. These wedges also served as the fiducial points to be
located in space, which are semi-automatically segmented. The phantom itself is not located in
space using a stylus. Instead a gantry is designed so that both the position sensor and the probe
can be precisely mounted onto the phantom.

It is possible to perform calibration by scanning a phantom and register the ultrasonic im-
age with its geometric model. Blackall et al. (2000) registered the ultrasonic image of a gelatin
phantom. The calibration parameters are found where the reconstructed phantom best fits the
model. Dandekar et al. (2005) used two parallel wires to mimic a plane phantom. The virtual
plane phantom is the unique plane that passes through the two wires. This phantom forego the
automatic segmentation and subsequently the rapid calibration advantage of the plane phantom,
but is still subject to the same disadvantages of using such phantoms. Both these techniques are
time consuming.

Since a stylus can be used to locate points in 3D space, Muratore and Galloway Jr. (2001) cali-
brated their probe by locating points directly in the scan plane. Assuming at least 3 non-collinear
points have been located, calibration can be solved by least squares optimisation as previously
described. This technique nevertheless requires two targets to be tracked simultaneously. Further-
more, it is difficult to align the tip of the stylus with the scan plane.

Khamene and Sauer (2005) improved on this technique by imaging a rod transversely. Both
ends of the rod are pointer calibrated to define the location and orientation of the rod in space.
Each image of the rod sets up a constraint on the calibration parameters. Probe calibration can
then be found using optimisation techniques.

In this paper, we study relative merits of a particular class of calibration algorithms that locate
points in the B-scan with a stylus. We have designed two phantoms with similar designs. We have
published a preliminary calibration result based on one of the phantoms (Hsu et al., 2007b). The
second phantom is a modified stylus that can be used for accurate probe calibration.

2 Materials and Methods

2.1 The Calibration Phantoms

Figure 2 shows the five calibration phantoms. Figures 2(a) and (b) are standard Polaris (Northern
Digital Inc., Canada) styli with a sharp and a spherical tip. Figure 2(c) shows a rod stylus similar
to the one used by Khamene and Sauer (2005). Figure 2(d) and (e) shows the cone phantom
and the Cambridge stylus that we have designed. These are the 5 phantoms that we will use for
probe calibration comparison. During probe calibration, we will scan a point x that is on the
phantom. This point xP ′ = (u, v, 0)t can be segmented in the ultrasound image, where u and v
are the column and row indices of the cropped image in pixels. This point should be changed to

SI units by an appropriate scaling factor Ts =




su 0 0
0 sv 0
0 0 0


, where su and sv are the scales

in millimetres per pixel to give xP = Tsx
P ′ . If the probe calibration TS←P is known, then the
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segmented point can be mapped to world space by:

xW = TW←STS←P xP , (1)

where TW←S is given by the Polaris readings.

(a) Sharp Stylus (b) Spherical Stylus (c) Rod Stylus

(d) Cone Phantom (e) Cambridge Stylus

Figure 2: The calibrations phantoms.

2.1.1 Polaris Styli

Figure 3 shows the coordinate systems involved when calibrating with either of the Polaris styli.
During pointer calibration, the location of the stylus’s tip xL is found in the stylus’s coordinate
system L. This point can be mapped to 3D space by:

xW = TW←LxL, (2)

where the transformation TW←L can be read off the Polaris. If we place the stylus’s tip in the
scan plane, its location in space is given by Equation 1. This means that only the calibration
TS←P and possibly the scale factors Ts are unknown in the two expressions for xW . Calibration
can therefore be found by equating Equations 1 and 2, i.e. minimizing

f1 = f2 =
∑

i

∣∣TW←SiTS←P xP
i − TW←Lix

L
∣∣ , (3)
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Figure 3: The coordinate systems involved when calibrating with a Polaris stylus.

where | · | denotes the usual Euclidean norm on R3. The above equation is minimized by using
the iterative Levenberg-Marquardt algorithm (More, 1977).

2.1.2 Rod Stylus

World
coordinate
system r1

TW L

r2

W

L

x

Figure 4: The coordinate systems involved when calibrating with a rod stylus.

Figure 2(c) shows the rod stylus that is used to follow the approach by Khamene and Sauer
(2005). The corresponding coordinates are shown in Figure 4. We have attached a 15cm long,
1.5mm thick rod to a Polaris active marker. Both ends of the rod are sharpened for accurate
pointer calibration. Again, the end points of the rod rL

1 and rL
2 are found by two separate pointer

calibrations, and their coordinates in 3D space are TW←LrL
1 and TW←LrL

2 respectively. Now, the
point of intersection of the rod and the scan plane is given by Equation 1. Furthermore, this point
lies on the line formed by the two end points of the stylus. This means that the distance from the
point xW to the line rW

1 rW
2 is zero, i.e.

∣∣(rW
2 − rW

1

)× (
rW
1 − xW

)∣∣
∣∣rW

2 − rW
1

∣∣ = 0

⇒
∣∣(TW←LrL

2 − TW←LrL
1

)× (
TW←LrL

1 − TW←STS←P xP
)∣∣

∣∣TW←LrL
2 − TW←LrL

1

∣∣ = 0. (4)

The × in the above equations denotes the cross product of two vectors in R3. Calibration can be
found by minimizing

f3 =
∑

i

∣∣(TW←Lir
L
2 − TW←Lir

L
1

)× (
TW←Lir

L
1 − TW←SiTS←P xP

i

)∣∣
∣∣TW←Lir

L
2 − TW←Lir

L
1

∣∣ . (5)
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2.1.3 Cone Phantom

The cone phantom (Figure 2(d)) is primarily comprised of a polypropylene block machined into
the shape of two hollow cones with 1mm wall thickness. The centre of the circle where the
two cones join is the fiducial point x that we will use for probe calibration. If we view the
cones longitudinally, the cones have diameters varying between 10mm and 50mm. The cones
are supported by an aluminium frame structure consisting of two 135cm × 135cm square plates
held together by four bolts. There are 3 cone-shaped divots di in the two blocks to fit a 3mm
ball-pointed Polaris stylus. The position of the divots, dW

i , are therefore known in 3D space.
These divots serve as the principal axes of the phantom and are used to determine the phantom
position in 3D space. The location of x is measured with a Mitutoyo (Mitutoyo Corporation,
Japan) coordinate measuring machine (CMM) relative to the divots, i.e. xA = fCMM(dA

i ), where
the function fCMM is determined by the coordinate measuring machine and is valid for arbitrary
coordinate system A. In particular, xW = fCMM(dW

i ) in world space. All dimensions are precision
manufactured by our workshop with a tolerance of ±0.1mm.

If we align the scan plane with the circle where the two cones join, we get a circle with a 12mm
diameter. This circle can be segmented with its centre xP ′ automatically. As we shall see later,
the image scales are necessary for reliable segmentation. Let us assume for the moment that the
scales Ts are known, hence xP = Tsx

P ′ can be computed.
Now, recall that we have already found the coordinates of this centre in 3D space. We can

transform this point to the sensor’s coordinate system by using the inverse of the position sensor’s
readings:

xS = T−1
W←SxW

= T−1
W←SfCMM(dW

i ). (6)

For probe calibration, we need to find the single transformation TS←P that best transforms
{xPi} to {xSi} = {T−1

W←Si
fCMM(dW

i )}. This can be found (Arun et al., 1987) by minimizing

f4 =
∑

i

∣∣T−1
W←SfCMM(dW

i )− TS←P xPi
∣∣ .

2.1.4 Cambridge Stylus

Figure 2(e) shows a photograph of our new Cambridge stylus. It consists of a stainless steal
shaft, 120mm in length and 13mm in diameter. On one end of the shaft, a platform is ground
to fit a PassTrax (Traxtal Technologies, Canada) position sensor in such a way that the z axis of
the sensor is parallel to the shaft. The other end of the shaft is sharpened for accurate pointer
calibration. As above, this means that the point rL is found by a pointer calibration. The main
feature of this stylus is that part is thinned in the shape of two cones, to meet at the critical point
x. This point is precisely 20mm above the stylus’s tip. Here, the diameter is 1.5mm. The stylus
was precision manufactured by our workshop with a tolerance of ±0.1mm.

From the geometric model of the stylus, xL = rL− (0, 0, 20)t. We now place fiducial marks by
aligning this critical point with the scan plane. From here, the calibration process is identical as
with a Polaris stylus. The only difference been that we are aligning the critical point, and not the
stylus’s tip. The calibration parameters are found by minimizing

f5 =
∑

i

∣∣TW←SiTS←P xP
i − TW←Li

(
rL − (0, 0, 20)t

)∣∣ . (7)

2.2 Segmentation

Figure 5 shows typical ultrasound images of the various phantoms. In Figures 5(b), (c) and (e),
where the point of the stylus we are imaging is round, an umbrella shaped scatter can be seen
clearly. This is due to the ultrasound deflecting off the curved surface. We will use this fact to
segment the top of the imaged surface.
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(a) Sharp Stylus (b) Spherical Stylus (c) Rod Stylus

(d) Cone Phantom (e) Cambridge Stylus

Figure 5: Typical images of the different phantoms with the segmentation result imposed.

To begin with, we search through the entire image to find the pixel with maximum intensity.
This pixel serves as a starting point for the segmentation algorithm. As we are anticipating
an umbrella shaped response, there should be a near-vertical line of symmetry. We iterate this
line through all possible angles, and across a horizontal distance about 10% of the image width,
near the pixel with maximum intensity. The angles are incremented in steps of 1◦. During each
iteration, the correlation of the image on either side of the line is computed. Once we have found
the line of symmetry corresponding to the maximum symmetric auto-correlation, the required
point is assumed to be on this line. We search for consecutive pixels on this line that have a high
intensity, with a preference given to pixels near the top of the line. This algorithm is used to
segment the image of each stylus, and the results imposed on Figures 5(a)–(c) and (e). The line
of symmetry is shown as well. Since the top, rather than the centre, of the surface is segmented,
the correction is performed in the optimisation process to shift the segmented point downwards
by half the stylus thickness. We have measured the spherical tip of the Polaris stylus to be 3.0mm
in diameter with a digital micrometer. The thickness of the rod and Cambridge stylus is 1.5mm.

In order to allow calibration in cold water, we now post-process the segmented points by shifting
them upwards towards the probe face. Assuming that the user will measure the water temperature,
the speed of sound in water at this temperature can be computed (Bilaniuk and Wong, 1993). We
then shift the pixels upwards by the temperature correction factor sound speed in water

1540 .
For the cone phantom, we first place a user defined threshold on the B-scan to remove any

unwanted scatters, resulting in a binary image consisting mainly of the circle that is to be seg-
mented. We now shift each pixel upwards by the temperature correction factor. Edge detection is
performed by applying a Sobel filter to overlapping 3× 3 blocks of the image. If the image scales
are known, we can apply the Hough transform (Hough, 1959) on the resulting edges to detect a
circle with a 12mm diameter.

3 Results

In order to measure the calibration quality of the different phantoms, we calibrated a Diasus
(Dynamic Imaging Ltd., U.K.) 5–10MHz linear-array probe. The analog radio-frequency (RF)
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ultrasound data, after receive focusing and time-gain compensation but before log-compression
and envelope detection, was digitized using a Gage CompuScope (Gage Applied Technologies Inc.,
U.S.A.) 14100 PCI 14-bit analog to digital converter, and transferred at the PAL rate of 25 frames
per second to a Pentium(R) 4 2.80GHz PC running Microsoft Windows XP. Since we have access
to the RF data, the image scales could be set at our discretion. The B-scans were displayed at
0.1mm/pixel, with a cropped size of 3.00mm × 3.81mm. The probe was tracked using a PassTrax
(Traxtal Technologies, Canada) target for the Polaris (Northern Digital Inc., Canada) optical
tracking system.

A pointer calibration was initially performed on each stylus. Five probe calibrations were
followed by locating 20 points spread throughout the image by the stylus during each calibration.
This whole routine was again repeated five times, each time with a different pointer calibration,
as shown in Figure 6.

Pointer
Calibration

1 Probe
Calibration

1-1

Probe
Calibration

1-2

Probe
Calibration

1-3

Probe
Calibration

1-4

Probe
Calibration

1-5

Group 1

Pointer
Calibration

5 Probe
Calibration

5-1

Probe
Calibration

5-2

Probe
Calibration

5-3

Probe
Calibration

5-4

Probe
Calibration

5-5

Group 5

Pointer
Calibration

2

Group 2

......

Figure 6: The calibration protocol. Five pointer calibrations were performed. For each pointer
calibration, five probe calibrations were performed.

For probe calibrations with the cone phantom, a pointer calibrated stylus (Figure 2 (b)) was
used to locate the phantom in space. Ten readings were taken at each divot, and the mean was
used for probe calibration. Five calibrations, each with 20 images of the cone spread throughout
the B-scan, were performed. Again, this process was repeated five times. Each time re-calibrating
the stylus and relocating the phantom by its divots. Thus, a total of 25 calibrations was computed
for each phantom.

3.1 Precision

One way to assess the calibration quality is by computing its precision. A point pP in the scan plane
can be mapped to the sensor’s coordinate system after probe calibration, since pS = TS←P pP .
If all the calibrations are identical, the point pS should remain stationary. Precision is therefore
measured by calculating

µ =
1
N

N∑

i=1

(
pSi − pSi

)
,

where pSi is the point in the sensor’s coordinate system mapped by the ith calibration, pSi is used
to denote the arithmetic mean of

(
pSi

)
and N is the number of calibrations. It is obvious that

the above measure is dependent on the point chosen in the B-scan. We will therefore measure the
variation of the four corners and the centre of the B-scan.

In order to investigate whether the pointer calibration is sufficiently accurate and measure its
impact on the calibration result, we compute two precision measures. First, the precision for each
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group of the five calibrations specific to the same pointer calibration is calculated. These five
precisions for the five groups of calibrations are then averaged. Specifically,

µ1 =
1
25

5∑

j=1

5∑

i=1

(
pSi

j − pSi
j

)
,

where pSi
j denotes the point mapped by the ith probe calibration associated with the jth pointer

calibration, and pSi
j is the mean of

(
pS1

j , pS2
j , · · · , pS5

j

)
, for a given j. The results are shown in

Table 1. Table 2 shows the precision without differentiating the 25 calibrations, i.e.

µ2 =
1
25

25∑

i=1

(
pSi − pSi

)
.

All units are in millimetres. The mean of the variation of the four corners and the centre of the
B-scan is also given in the same table.

Table 1: Precision of the probe calibrations specific to each stylus pointer calibration.

Point Sharp Spherical Rod Cone Cambridge
Top left 0.52 0.53 4.35 0.33 0.50
Top right 0.53 0.51 1.31 0.53 0.54
Bottom left 0.53 0.54 1.61 1.06 0.55
Bottom right 0.47 0.47 1.55 0.85 0.47
Centre 0.51 0.51 1.46 0.40 0.51
Mean 0.51 0.51 2.06 0.63 0.51

Table 2: Precision of undifferentiated probe calibrations.

Point Sharp Spherical Rod Cone Cambridge
Top left 0.64 0.57 4.36 0.39 0.63
Top right 0.64 0.45 4.38 1.09 0.71
Bottom left 0.55 0.40 5.69 0.96 0.71
Bottom right 0.72 0.45 5.77 0.47 0.58
Centre 0.50 0.31 5.02 0.22 0.45
Mean 0.61 0.44 5.04 0.63 0.62

3.2 Accuracy

While precision measures calibration reproducibility, this does not reflect the accuracy of the
calibration, since there may be a systematic error. We assess the accuracy of our calibrations by
measuring the point reconstruction accuracy of a point target. We scan the tip of a wire that
is 1.5mm thick in water at room temperature. The image of the wire tip is reconstructed in
space by using the obtained calibrations. The 3D location of the wire tip is found by using an
independent stylus. Ten readings were obtained to eliminate errors from the stylus’s readings.
Accuracy is measured by the amount of mismatch between the reconstructed image and the mean
of the stylus’s readings.

Point reconstruction accuracy may be dependent on the position of the probe and the position
of the wire tip in the B-scan. We therefore capture images of the wire tip at five different locations
in the B-scans—near the four corners and the centre of the B-scan. The probe is also rotated
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about the lateral axis at six different locations. Furthermore, five images of the wire are taken at
each probe position and at each location in the B-scans. A total of 150 images of the wire tip are
captured. The point reconstruction accuracy is shown in Table 3, where the figures shown are the
mean of the 30 repetitions at each position in the B-scan in millimetres.

Table 3: Point reconstruction accuracy of the calibrations.

Point Sharp Spherical Rod Cone Cambridge
Top left 4.09 4.26 8.22 2.25 2.78
Top right 3.68 3.72 7.51 2.19 2.43
Bottom left 2.77 3.44 7.85 1.89 1.94
Bottom right 2.86 3.68 7.89 2.39 2.21
Centre 2.65 3.07 7.25 1.84 1.52

4 Discussions

From the precision measures, we see that the rod stylus performs considerably worse than the
other 4 phantoms. The precision is similar for these four phantoms irrespective of which precision
measure is used. This means that the pointer calibrations for these styli are sufficiently accurate
and have a limited effect on calibration precision. For the rod stylus, there is a discrepancy
between the two precision measures. This means that although for a particular pointer calibration,
a precision of about 2mm can be achieved, a significant worse precision of 5mm should be expected
when given an arbitrary probe calibration.

The relatively high error in the point reconstruction accuracy using the calibrations from the
rod stylus further suggests that such a phantom is unreliable for probe calibration. Both the
sharp and spherical stylus have similar point reconstruction accuracies, been slightly worse than
the cone phantom and Cambridge stylus. This difference is mainly attributed to the fact that it
is difficult to align the scan plane with the tip of the sharp and spherical styli. Even though the
spherical stylus produces a better reflection, which can suggest whether we have aligned its tip
correctly, this information is found to be unhelpful as the calibration accuracies have not been
improved. Both the cone phantom and the Cambridge stylus produce the best accuracies since
any misalignment of the phantom with the scan plane is readily visible in the B-scans.

Although precision and accuracy may be the most important measures to judge a calibration
technique, there are other factors that should be noted. Firstly, the image scales need to be known
in order to segment the circle for the cone phantom. We have this information because we have
access to the RF data. This may not be the case for other research groups, in which case the
scales may need to be determined by another technique, such as using the distance measurement
tool (Hsu et al., 2006). The ultrasonic settings such as transmitter and receiver gain and time
gain compensator need to be set manually by the user for optimal segmentation. The user also
needs to ensure that the correct circle has been segmented by the algorithm, reject and repeat any
obvious incorrect segmentations.

The stylus has the advantage that segmentation is not highly dependent on the ultrasound
machine settings. The image scales can also be formed part of the optimisation process, when
functions f1 = f2, f3, f5 are minimized. However, it appears that function f3 has multiple local
minima. In our calibrations, it is necessary to fix the image scales and choose a starting point suf-
ficiently near the solution for the optimisation to converge to the correct minimum. Nevertheless,
since the phantom does not need to be aligned with the scan plane, calibration is easy and rapid
to perform.

A summary of the various factors that should be taken into account when choosing a calibration
technique is given in Table 4. This table is drawn up based our experiences from working with
these phantoms. All the factors are graded into five classes: very poor, poor, moderate, good
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and very good, except the need for the image scales, which is simply classed as required or not
required.

Table 4: Probe calibration factors.

Factor Sharp Spherical Rod Cone Cambridge
Precision Good Good Very poor Good Good
Accuracy Moderate Moderate Very poor Good Good
Image scales Not required Not required Required Required Not required
Easy to use Easy Easy Very easy Moderate Easy
Rapid calibration Rapid Rapid Very rapid Moderate Rapid
Reliability Very Reliable Very reliable Very unreliable Reliable Very reliable
Easy to make Very easy Very easy Very easy Moderate Easy

From the table it can be deduced that the rod stylus lies at one end of the scale, offering
speed and simplicity as its main advantages, but failing to ensure a reliable, precise and accurate
calibration. The cone phantom is an improvement on the sharp and spherical stylus, but the
phantom is considerably larger and requires more skill to use it. The Cambridge stylus clearly
surpasses the other styli, offering better accuracy and retaining calibration simplicity.

5 Conclusion

We have compared different techniques to calibrate freehand 3D ultrasound probes using a stylus.
The rod stylus is very simple and quick to use, but produces very poor precision and accuracy. This
phantom may be useful to obtain a quick estimate of the calibration, although this may be needed
in the first place for the optimisation when using such a phantom. The cone phantom produces
better calibration accuracies at the expense of a more sophisticated phantom, segmentation and
calibration protocol. The Cambridge stylus is clearly an improvement on both the sharp and the
spherical stylus with a small modification to the design. Better accuracies are achieved, while
maintaining its ease of use and calibration simplicity. Both the cone phantom and the Cambridge
stylus produces similar calibration precision and accuracy. The Cambridge stylus is smaller in
size and easier to manufacture. On the other hand, the Cambridge stylus is limited to specific
position sensing devices that can be mounted with its z axis parallel to the shaft of the stylus. One
advantage of the cone phantom over every styli is that calibration does not require two targets to
be tracked simultaneously.
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