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Abstract

This paper considers registration of 3D ultrasound volumes. One way to acquire 3D
data is to use a mechanically-swept 3D probe. However, the usefulness of these probes is
restricted by their limited field of view. While this problem can be overcome by attaching
a position sensor to the probe, an external position sensor can be an inconvenience in a
clinical setting and does not align the volumes correctly when there is tissue displacement
or deformation. The objective of this paper is to replace the 6 degree of freedom (DOF)
sensor with a combination of 3 DOF image registration and an integrated intertial sensor
for measuring orientation. We examine a range of optimisation algorithms and similarity
measures for registration and compare them in in vitro and in vivo experiments. We register
based on multiple reslice images rather than a whole voxel array. In this paper, we use a
large number of reslices for improved reliability at the expense of computational speed. We
have found that the Levenberg-Marquardt method is very fast but is not guaranteed to give
the correct solution all the time. We conclude that normalised mutual information used in
the Nelder-Mead simplex algorithm is potentially suitable for the registration task with an
average execution time of around five minutes, in the majority of cases, with two restarts in
a C++ implementation on a 3.0 GHz Intel Core 2 Duo CPU machine.

1 Introduction

In recent years, it has become increasingly common to produce intrinsically 3D ultrasound (US)
probes. Volumetric imaging has now matured because of the possibility of capacitive micro-
machined US transducers and 2D phased arrays. It is anticipated that some clinical applications
offered by 3D US will replace X-ray computed tomography (CT) with greater safety and will
replace magnetic resonance imaging (MRI) at lower cost [1]. By acquiring 3D volumes from
different viewpoints and subsequently aligning them to create mosaics, volumes can be created
with an extended field-of-view, as well as potentially better data quality, both of which can give
more useful information to clinicians. Essentially, there are two ways to acquire 3D US data.
The first option is to use a 3D probe that when placed on the skin scans a small fixed volume
underneath. The alternative is to use a freehand system [2, 3] which sweeps a conventional 2D
probe over the region-of-interest resulting in a 3D volume. The probe has an additional position
sensor (Fig. 1) to record the position and orientation of each image frame. Even though the
position sensor, if calibrated well, is able to locate the B-scans within a sweep, there are additional
problems associated with determining the relative positions of B-scans in an overlapping sweep.
The main reason is the displacement and deformation of the underlying anatomy when scanned
from different directions in multiple views. Furthermore, the position sensor is mounted on the
probe, which makes it somewhat inconvenient to use. For example, line-of-sight (Fig. 1) may
need to be maintained between the sensor and a reference point. It is also difficult to use a
position sensor in certain 3D US screening methods, for example, with endoscopic, intravascular,
trans-rectal, and trans-vaginal 3D US probes. A possible solution is to consider an image-based
automatic registration technique that uses a matching algorithm to register overlapping data.
Such a technique could also take into account the presence of speckle; directionality in the tissue
backscatter properties; and variation in signal strength at different depths in the B-scans.
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Figure 1: A typical US system with an optical position sensor mounted on the US
probe. In this configuration, a line-of-sight has to be maintained between the sensor and the
reference point. Other types of sensors for 3D US [4, 5, 6, 7, 8] may be magnetic, mechanical or
acoustic.

There is a lot of literature on medical image registration, but very little of it concerns 3D US
volumes although there are examples of US registered to other modalities. The main difficulties in
US registration are that there is an irregular sampling of the acquisition space and the anatomy’s
appearance varies with the direction of insonification. Furthermore, there is a low signal to noise
ratio. The main culprit is the coherent wave interference known as speckle which limits low-
resolution image contrast and may even obscure true structures in high-contrast regions. While
it is difficult to formulate a coherent classification of existing registration techniques, they can
nevertheless be described in terms of common themes. For example, most of the registration
algorithms deal with matching techniques that employ some kind of similarity measure. The
similarity measures are used to calculate the six rigid-body transformation parameters (three for
rotation and three for translation) and optionally include scale factors (including coarse-to-fine
scale [10]) and deformation maps (including thin-plate splines [11] and B-splines [12]). There
are many similarity measures available including mutual information [3, 13, 14, 15, 16], cross-
correlation [17, 18], Bhattacharyaa’s coefficient [19], mean square of intensities [20], correlation
ratio [21, 22, 23], and sum of squared differences [18]. There also exists some studies that consider
the above mentioned similarity measures for multimodality fusion of US images with MRI [4, 17,
21] and CT [22, 24, 25]. Other noteworthy approaches include similarity energy for free-form
deformation [26], variational approaches [27], segmentation-based approaches [28], probe pressure
correction [29], and joint volume reconstruction with image alignment [30].

Some of the US-specific similarity measures are based on a maximum likelihood framework
[21, 31, 32, 33, 34] and model ultrasonic speckle as multiplicative Rayleigh distributed noise (in
the case of envelope-detected US B-mode data), or as signal-dependent Gaussian noise (in the
case of displayed US image data that has undergone logarithmic compression, low and high-pass
filtering, postprocessing, etc.). A recent study by Wachinger et. al. (2008)[18] considered these
US-specific similarity measures for US image sequence registration. By weighting the similarity
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Figure 2: Horizontal and vertical image boundaries for corresponding image pairs in
two overlapping volumes obtained using a mechanically-swept 3D US probe. The
probe is positioned at the top and the direction of insonification is downwards. The image pairs
are generated uniformly over the source and target volumes and located with reference to the first
B-scan in the target volume. The vertical image pairs are generated over the whole volume up
to a 10 pixel margin at either side and a 70 pixel margin at the top. The margins for horizontal
image pairs are 70 pixels at the top and 10 pixels at the bottom. The dimensions of the image
slices are 470× 470 pixels, whereas the dimensions of the B-scans are 266× 352 pixels. The scale
is 0.01 cm/pixel. The image slices are calculated directly from the B-scans using an algorithm
described in [9]. There is no intermediate voxel representation.

measures by a factor dependent on the overlap between volumes, a maximum likelihood framework
based on the logarithm of Rayleigh noise was formulated and was shown to perform better than the
others considered. However, these similarity measures were found to have problems with partial
overlap, clearly favouring a total overlap of the volumes.

Since the images being registered often have outlier image samples due to the presence of
unexpected problems such as noise, deformations and variation in the appearance of the anatomy,
it is necessary to find a measure that is robust and provides statistical efficiency. After analysing
several similarity measures, we have restricted this study to probabilistic similarity measures
[35] which treat the intensity pairs taken from corresponding spatial locations in two images as
independent and identically distributed samples of two random variables. Statistical concepts
such as correlation, joint entropy and mutual information are used as similarity measures by
estimating the statistical properties of the samples. However, these similarity measures come
with a computational burden. In comparison to automatic-landmark-based image registration
techniques, where the data must be interpolated only once to generate the landmarks and only their
spatial locations are matched for corresponding volumes, the similarity-measure-based registration
techniques require interpolation at each iteration of the search algorithm. Despite this advantage,
the automatic-landmark-based techniques, which have been quite successful in the computer vision
community, are not well suited to the registration of 3D US volumes [19]. This is due to the
presence of speckle which generates many false-positives in the automatic corner detection.

In this paper, we make the following assumptions. First, we assume that any distortion of
the tissue is small and therefore that only a rigid body transformation is required for successful
registration. Second, there is reasonable overlap between the volumes. Third, the probe is held
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stationary while recording each volume so there is no need for intra-volume registration. Finally,
we assume that the relative orientation of the volumes is already known. Even though it is
possible to estimate six rigid-body transformation parameters (i.e., three for translation and three
for rotation) based on our recent studies [35, 36], we reached the conclusion that the similarity
measures are quite sensitive to changes in rotation parameters. The convergence of the search
algorithm depends highly on the initial orientation information. This must be within 1-2 degrees
of the correct solution. We are aware that such a restriction may not be an acceptable limit in
clinical practise and to meet more stringent requirements for physiological experimentation, we
propose a hybrid approach.

2 Proposed Approach

Inertial sensors (accelerometers and rate sensors) that do not need line-of-sight to operate cor-
rectly, can be integrated relatively easily with the ultrasound probe. Thus computing 3 DOF
orientation is conceptually straightforward i.e., angular velocities measured by rate sensors are
single-integrated to provide orientation information. However, these inertial sensor measurements
are often not perfect; gyros and accelerometers used in the inertial sensor often have measurement
bias. This bias shows itself as angular drift which increases linearly over time. The accelerom-
eter signals are even worse. The signals with their drifts are transformed and so the drifts are
present in the reference co-ordinate system and hence the errors in orientation and position in-
crease proportionally with elapsed time. In order to compensate for the sensor drift, a process
called augmentation is used in inertial sensors, whereby gyros and acceleration errors are com-
pensated by utilising other measures. For system internal augmentation, cheap inclinometers are
often used, and for external augmentation, odometers, speedometer, or a magnetic compass can
be used to improve the system’s performance.

By using the sensor to measure orientations, we are left with a simpler problem with a lower-
dimensional search space, which improves both the speed and the robustness of the registration
algorithm. The complete solution is determined from both the inertial sensor and the 3 DOF
registration strategies discussed in this paper. There are several commercially available inertial
sensors which have been used for a wide variety of military and commercial applications [37]. They
typically have a documented accuracy of less than 0.05 degrees.

In order to make the algorithm acceptably fast, we consider only corresponding image slices
(Fig. 2) for registration as opposed to complete voxel arrays. We use vertical and horizontal slices
through the region of interest based on nearest-neighbour interpolation of the B-scans for which
we are using a very efficient reslicing algorithm [9]. Using this approach, two sets of images are
obtained for two sweeps across the region-of-interest. On these, we apply some of the most popular
similarity measures. It should be noted that our approach is similar to the one considered in [3],
where the registration is done based on a single reslice plane. In [3], the overlap was typically very
small, with little room for more than one plane on which to compare the volumes. A fundamental
limitation of registration in such circumstances is that a good match on the single reslice plane
does not guarantee good global alignment. In this work, we consider more extensive overlaps into
which we can fit more slices. This should increase robutness and eliminate the need for any manual
intervention.

The probabilistic similarity measures are particularly useful for multi-modality image regis-
tration since they do not assume any functional relationship between the two image values and
have an inherent degree of robustness. These measures may not be statistically efficient, i.e.
the registration variability due to noise can be larger than the sample correlation coefficient,
but since US images have low signal-to-noise ratio, they are well suited to the registration task.
The two images are thus considered as random variables, taking greyscale values between 1 and
256. Probabilities are then denoted with: pi = Pf (f(T (x)) = i), pj = PF (F (x) = j), and
pij = Pf,F (f(T (x)) = i, F (x) = j). Here T represents a transformation over spatial coordinates
x.

The most widely known measure of the diversity of a distribution X is the Shannon entropy
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defined by

H(X) = −
∑

i

pi log pi (1)

Shannon [38] defines the mutual information of two random variables by the reduction in diversity
of the first variable brought by the knowledge of the second variable:

I(X) = H(X) +H(Y )−H(X,Y ) (2)

where
H(X,Y ) = −

∑

i

∑

j

pij log pij (3)

The mutual information of two images expresses how much the uncertainty on one of the
images decreases when the other one is known. It is assumed to be maximum when the images
are registered. In this study, we have used the normalised mutual information (NMI) defined as

NMI =
H(X) +H(Y )

H(X,Y )
(4)

NMI is particularly helpful in those cases where there is a small overlap between the images.
As the overlap decreases, the marginal entropies H(X) and H(Y ) may not necessarily decrease
relative to the joint entropy H(X,Y ). Therefore, we divide the marginal entropies by the joint
entropy and any change in the marginal entropies will be counteracted by a change in the joint
entropy.

We also considered Kolmogorov’s distance as an alternative similarity measure. It belongs to
a family of f-divergences which can be used as a measure between an observed joint distribution
(pij) and a computed joint distribution (pipj) in case of independence. The Kolmogorov’s distance
(Basseville [39], Sarrut and Miguet [40])is defined as

K =
1

2

∑

i

∑

j

∣pij − pipj∣ (5)

In order to find the probabilities, a joint histogram of intensities is calculated. Each entry in
the histogram denotes the number of times intensity i in one image coincides with intensity j

in another image. Dividing each entry by the total number of entries gives the joint probability
distribution pij . The probability distributions (pi and pj) for each image are found by summing
over the rows and columns respectively of the joint histogram.

The 3 DOF position information can then be estimated by using an appropriate search algo-
rithm. One can choose between methods that need only evaluations of the function to be minimised
and methods that require evaluations of the derivative of the function. We have restricted our
study to the following search algorithms: Nelder-Mead simplex algorithm [41], Powell’s direction-
set method [42], particle swarm optimiser [43], and Levenberg-Marquardt method [44]. Details
of each are given in the appendix. We believe that the comparison of the above mentioned algo-
rithms will offer new perspectives for a real-time 3D ultrasound volume registration. From these
four algorithms, we want to select the algorithm which is both reliable and cost-effective in clinical
settings.

3 Experiments and Results

US data was recorded with a GE RSP6-12 mechanically-swept 3D probe interfaced to a Dynamic
Imaging Diasus US machine. The depth setting was 3 cm with a single focus at 1.5 cm. The B-scan
resolution was 0.01 cm/pixel. Analogue RF echo signals were digitised after receive focusing and
time-gain compensation, but before log-compression and envelope detection, using a Gage Compus-
cope CS14200 14-bit digitiser (http://www.gage-applied.com). The RF data was then converted
to B-scan images using Stradwin software (http://mi.eng.cam.ac.uk/˜rwp/stradwin/).
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3.1 In Vitro Assessment

The search algorithms were tested on a series of in vitro scans of a speckle phantom with several
5mm spherical inclusions. The ultrasound probe was mounted on a motorised Zaber’s linear slide
TLSR-300B gantry (http://www.zaber.com) to obtain precise translation offsets (as shown in
Table 1) between two recorded volumes with known relative orientation. Each acquired volume
consisted of 50 frames of data swept over 10 degrees. Since the probe was aligned to the gantry by
eye, it was necessary to determine the transformation between gantry and probe coordinates, in
order to correctly compare the 3 DOF offset of the registed volumes to the gantry translations. This
transformation was determined by a calibration procedure similar to the single point calibration
method described in [45]. Here, we are treating the centre of sphere as a point target. Since all
the volumes were recorded with the probe at the same orientation, the translational components
of the calibration are not required. To determine the relative orientation of the two coordinate
systems, we solved the 6 DOF calibration with the point target at an arbitrary location in the
gantry coordinate system and discarded the resulting translation parameters of the calibration.
The calibration parameters were calculated using the same six-volume gantry data set. The point
target was the centre of the uppermost bright sphere visible in the six recorded volumes. In each
volume, the sphere centre was found by taking many reslices through the sphere in three orthogonal
directions and automatically segmenting the circular section of the sphere visible in each image.
The least-squares intersection point of lines passing through the centre of each segmented circle
in directions perpendicular to the plane of the reslice provides an estimate of the sphere centre
location in probe coordinates. This enabled us to establish a ground truth with which to compare
the performance of the search algorithms.

Dataset x(cm) y(cm) z(cm)
P1 0.2 0 0.2
P2 0.3 0 0
P3 0 0 0.3
P4 0.4 0 0.4
P5 0.5 0 0.5

Table 1: Offsets between the two volumes for in vitro datasets measured by the motorised Zaber’s
linear slide. x is the lateral direction, y is axial and z is elevational. The y-offset is zero in each
case so that there is no probe pressure distortion.

We have considered 10 horizontal and 10 vertical image pairs and 32 histogram bins in the
similarity measures. These values were determined from in vivo data in a preliminary study
[35] in order to achieve the necessary robustness in the algorithms. Even though the similarity
measure works well with at least 5 horizontal and 5 vertical image pairs, we use 10 of each in
these experiments for additional robustness. Similarly, based on [35], we choose 32 histogram
bins because the peaks are more prominent at the ground truth. In order to reduce the effect
of speckle on image registration performance, we use a 5 × 5 Gaussian smoothing filter with a
standard deviation of 1 pixel. However, using this also increases the computational burden.

In all the search algorithms, the centres of the volumes were first aligned and then the positions
of the source volume were initialised to random values in the range ±0.5 cm from the centre in all
coordinates. This accounts for more than 50% overlap of the two volumes and in practical scenarios
gives enough features to register properly. In the Nelder-Mead simplex algorithm, we used the
following parameter settings: � = 1, � = 0.5,  = 2, and � = 0.5 (refer to the appendix). The
total number of iterations was set to 70. The algorithm can also terminate when the decrease in
the similarity measure as a fraction of the similarity value is less than the tolerance of 10−5. Since
the Nelder-Mead simplex algorithm can get stuck in local minima, it is often a good idea to restart
the procedure at a point where it claims to have found a minimum. In the current implementation
of the Nelder-Mead simplex algorithm, we have allowed two restarts by considering the local
minimum as one vertex of the simplex and reinitalising the other N vertices within ±0.25 cm of
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Normalised mutual information Kolmogorov’s distance

Datasets Nelder-Mead Levenberg Particle Powell’s Nelder-Mead Levenberg Particle Powell’s

simplex Marquardt swarm direction-set simplex Marquardt swarm direction-set

method method optimiser algorithm method method optimiser algorithm

P1 0.281(0) 0.220(2) 0.283 0.280(3) 0.313(0) 0.354(1) 0.315 0.315(2)
0.281(0) 0.360(2) 0.281 0.283(1) 0.315(0) 0.362(2) 0.310 0.315(2)
0.280(1) 0.228(3) 0.300 0.280(1) 0.308(0) 0.330(1) 0.314 0.315(1)
0.281(0) NA 0.277 0.281(1) 0.315(0) NA 0.308 0.311(1)
0.281(0) 0.326(2) 0.281 0.283(2) 0.315(0) 0.411(2) 0.320 0.315(3)

P2 0.385(0) 0.412(3) 0.384 0.385(1) 0.385(0) 0.370(2) 0.387 NA
0.386(0) 0.401(2) 0.387 0.386(1) 0.385(0) 0.522(1) 0.387 0.385(2)
0.385(0) 0.439(3) 0.390 0.386(3) 0.385(0) NA 0.385 0.385(1)
0.385(1) 0.415(1) 0.388 0.386(1) 0.386(0) 0.366(2) 0.386 0.385(1)
0.386(0) 0.414(2) 0.387 NA 0.385(0) NA 0.388 0.385(1)

P3 0.123(1) 0.153(2) 0.124 0.104(1) 0.130(0) 0.164(2) 0.130 0.132(1)
0.114(0) 0.201(2) 0.116 0.124(2) 0.129(0) 0.199(3) 0.128 0.131(1)
0.108(0) 0.153(2) 0.117 0.123(2) 0.129(1) 0.157(1) 0.130 0.133(2)
0.114(0) 0.134(2) 0.114 0.123(1) 0.131(2) NA 0.129 0.128(1)
0.114(0) NA 0.122 0.123(3) 0.129(0) 0.171(3) 0.126 0.129(1)

P4 0.327(0) 0.383(3) 0.346 0.348(1) 0.318(1) 0.402(2) 0.320 NA
0.336(0) NA 0.340 0.349(2) 0.318(0) 0.395(2) 0.317 NA
0.329(0) NA 0.345 0.349(1) 0.333(2) NA 0.321 NA
0.342(0) NA 0.336 0.345(1) 0.341(0) NA 0.322 NA
0.327(0) 0.363(3) 0.345 0.348(3) 0.318(2) NA 0.317 0.318(3)

P5 0.387(0) NA 0.378 NA NA NA NA NA
0.384(1) 0.454(1) 0.356 0.360(1) NA NA NA NA
0.387(1) 0.421(1) 0.357 0.364(3) NA NA 0.392 NA
0.365(0) 0.353(1) 0.361 0.364(1) NA NA 0.401 NA
0.375(0) NA 0.367 0.365(1) 0.391(1) 0.436(3) NA NA

Table 2: RMSE(mm) for the in vitro experiments. A total of 200 trials were performed on 5 datasets. NA represent the cases when the
algorithms didn’t converge at all (i.e. RMSE > 0.6 mm). In the case of the Nelder-Mead simplex algorithm, the terms in parentheses represent the
number of restarts required to achieve the convergence. In the case of the Powell’s direction-set method and Levenberg-Marquardt method, the term
in the parenthesis is the most successful of the three attempts. On average, it can be seen that the misalignment was less than 0.4 mm. It can also
be seen here that when there is less overlap, i.e., P4, and P5, normalised mutual information performs much better than Kolmogorov’s distance.
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the claimed minimum. For a 3 DOF estimation problem, this simplex is a tetrahedron and requires
4 initial position estimates. In Powell’s direction-set method, the bracket for the minimum for
both Brent’s method and the gold section search were set to [-0.5 cm,0.5 cm]. The direction
matrix U was taken to be an identity matrix, I3, and the tolerance was set to 10−5. In the
Levenberg-Marquardt method, we consider � = 2 for normalised mutual information, and � = 0.50
for Kolmogorov’s distance, respectively. In order to calculate the Jacobian J, we use the finite
difference approximation by perturbing the current estimates by 1 pixel. In both Powell’s direction-
set method, and the Levenberg-Marquardt method, we have considered two restarts (as considered
in the Nelder-Mead simplex algorithm), however, we choose the best run among the three. For
the PSO algorithm, the total number of iterations was set to 50 and we used 30 particles. The
PSO algorithm was initialised with random offsets of the source volume within the vicinity of the
target volume.

As described in Section 2, we have considered two similarity measures: normalised mutual
information and Kolmogorov’s distance. For each similarity measure, 5 simulations were performed
per dataset (see Table 2) giving a total of 200 simulations over four optimisation algorithms and
two similarity measures. The accuracy and precision of the alignment algorithms were assessed
using the root mean square error (RMSE) between the ground truth and positions obtained from
the search algorithm. RMSE is defined as

RMSE =

√

1

N

∑

d2i (6)

where di is the Euclidean distance between the actual position and estimated position of the B-
scan corner points as shown in Fig. 3. We designate the volumes to be correctly registered if the
RMSE is less than 1 mm. In addition to using RMSE, we considered a visual inspection of the
registered data as a more qualitative indication of the algorithm’s accuracy.

The results of this sets of experiments are given in Table 2 and Fig. 4. Using normalised mutual
information, the Nelder-Mead simplex algorithm converged in all cases out of which 80% required
no restarts and 20% required one restart. Similarly PSO converged in all cases. However, the
success rate of Powell’s direction-set algorithm, and the Levenberg-Marquardt method were only
92% and 72%, respectively. For the case of Kolmogorov’s distance, the success rate of Nelder-
Mead’s simplex algorithm was only 84% out of which 72% required no restarts, 14% required
one restart, and 14% required two restarts. PSO was convergent in 88% of cases and Powell’s
direction set algorithm was convergent in 60% of the cases. In terms of reliability, the worst was
the Levenberg-Marquardt method, which had a success rate of only 56%.

It can be seen from Table 2 that the RMSE is less than 1 mm. There are several possible reasons
for it being greater than zero. First, we have used nearest neighbour interpolation to generate the
candidate reslices. This introduces small errors into the apparent position of features. Second,
the in vitro data has only a few features which may be partly lost in the sparse reslicing. Finally,
we have applied a smoothing filter which blurs the features to some extent. Despite these issues,
on visual inspection of the data (e.g. Fig. 5), it can be seen that the results are quite encouraging
with an obviously good alignment between the volumes.

3.2 In Vivo Examples

While in vitro experiments give a precise assessment of registration accuracy, such experiments
are of limited use considering that B-scans of phantoms are very different to those of the human
body. Therefore, we performed some in vivo experiments using the same settings as before.
For these experiments, each B-scan’s position and orientation was recorded using a Northern
Digital Polaris optical tracking system (http://www.ndigital.com), with spatial and temporal
calibration performed according to the techniques in Treece et al. [29]. A total of 8 in vivo

datasets were acquired consisting of scans of the neck and calf muscles. We retained the orientation
information from the position sensor and aligned the centres of the volumes before application of
the search algorithms.
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We used normalised mutual information for the in vivo datasets and allowed one run of each
algorithm per dataset as it is obvious from the RMSE results given in Table 2 that algorithms
are almost always convergent in the first run. The results are shown in Figs. 6-10 and Table 3.
One would not expect the in vivo datasets to be registered quite as well as the in vitro datasets.
This is because of probe pressure and mispositioning of features due to variations in the speed of
sound in the tissue. Nevertheless, we found the RMSE to be less than 1 mm in those cases when
we were quite careful during data acquisition i.e., no sudden movements, pressure or respiration
artifacts (Class R in Table 3). Three of the datasets were acquired in a less careful manner and
allowed some movement of the scanning subject (Class M in Table 3). Even though the RMSE
results show that the optimal solution is a long way from the actual solution, one can see that the
registration worked well on close visual inspection of the results (Figs. 8-10).

The overall registration time for the algorithms depends on several factors including the number
of iterations, the number of image pairs, and whether we apply the smoothing filter. As a result,
it is not possible to specify an exact time for each algorithm to run. For the configuration chosen
in this paper, we are reporting an average execution time of approximately 5 mins for the Nelder-
Mead simplex algorithm with two restarts, 2 mins for the Levenberg-Marquardt method with
two restarts, 15 mins for Powell’s direction-set method with two restarts, and 17 mins for the
PSO algorithm (as shown in Fig. 4). These execution times are for the algorithms implemented in
Stradwin, running single-threaded on a 3.0GHz Intel Core 2 Duo CPU without using any advanced
code optimisation technique.

In summary we have found that the Nelder-Mead simplex algorithm with normalised mutual
information is the most appropriate choice having a high success rate with restarts. The PSO
algorithm is also very successful but takes longer to run. The Levenberg-Marquardt method is
the fastest of the considered algorithms, however, it is not reliable. One has to use more than
two restarts in the algorithms to make it effective. With Powell’s direction-set method and the
Levenberg-Marquardt method, it is not guaranteed that a restart will produce a better solution.
This is because where the Nelder-Mead keeps track of the previous best solution as one of its
multiple solutions, the Powell’s direction-set method, and Levenberg-Marquardt method only use
the best solution out of three. The time for the Nelder-Mead algorithm could be further reduced
with fewer restarts since the majority of datasets are successfully registered in one attempt. In
this case, the average time is approximately 1.5 mins. It could be made even faster by using
fewer iterations and a smaller search range. In the absence of probe pressure, we can expect the
y-direction to be close to zero-offset.

Figure 3: Difference between true and estimated volume position. The probe is applied
at the top and the direction of insonification is downwards. The lines connecting the corner points
represent the Euclidean distance between the actual positions obtained using the position sensor
(solid boundaries of B-scan) and those obtained using similarity measures (dotted boundaries of
B-scan) and are used in the calculation of root mean square error.
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Figure 4: Comparison of performance of the different algorithms for the in vitro

datasets. For each algorithm, the left bar shows the execution time and the right bar shows
the number of failed alignments (refer to Table 2). For the Nelder-Mead simplex algorithm, the
Levenberg-Marquardt method, and Powell’s direction-set method, the execution time is shown
including the two restarts. The error bars show ± one standard deviation of the execution time.
In the majority of cases, the Nelder-Mead simplex algorithm took around 5 minutes. However,
the execution time for the P2 dataset was 13 minutes on average which explains why there is a
larger error bar for the Nelder-Mead simplex algorithm with normalised mutual information. The
Levenberg-Marquardt method is the fastest among the considered algorithms. However, it is not
very reliable. Normalised mutual information is better suited for image registration as there are
fewer misregistrations. The majority of the failed alignments are on those datasets that have a
small amount of overlap between volumes (P4 and P5). Since Kolmogorov’s similarity measure is
less robust to small overlaps, there are a larger number of misalignments with this measure.

4 Conclusions

The goal of this paper was to present and assess several search procedures for rigid registration of
three-dimensional ultrasound volumes when the orientation information is known. By considering
reslice image pairs instead of a regular voxel grid, a fast computational procedure can be obtained.
Using this technique, we have presented several in vitro and in vivo experimental results to show
that the Nelder-Mead simplex algorithm is potentially suitable for the registration task. In general,
we found that normalised mutual information is better suited for image registration in three-
dimensional ultrasound as it has the ability to register datasets with partial overlaps. We have
also provided a comparative analysis with Powell’s direction set algorithm, Levenberg-Marquardt
method and the particle swarm optimisation algorithm. We were able to register all the in vivo

datasets even when they had very little overlap (say 60%). Also, we are reporting a minimum
registration time of less than 2 mins. It may also be possible to reduce the execution time further
by considering a GPU implementation of the registration algorithm, either to interpolate the
slices in parallel or to let each vertex of the simplex work on a separate parallel core. In the
future, several criteria should be studied to compare precisely the behaviour of each step of the
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(a) 3D view

(b) horizontal slice (c) vertical slice

Figure 5: Alignment results for P5 with Nelder-Mead’s simplex algorithm. (a) A 3D
view showing the location of each image and a vertical and a horizontal slice through the registered
volumes. The third outline (blue) roughly parallel to the individual images indicates the location
of the dividing plane which approximately bisects the overlap region. (b) and (c) are the reslice
images. The line that passes through the inclusion is the intersection with the dividing plane. One
side of the line shows data from one volume and the other side shows the other volume.

registration procedure. For instance, the influence of the interpolation procedure, the histogram
binning algorithms (automatic bin size estimation [46, 47, 48] for probabilistic similarity measures),
probe pressure correction, and multi-scale approach [3] may all lead to further improvements in
reliability as well as speed.
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(a) 3D view

(b) horizontal slice (c) vertical slice

Figure 6: Alignment results for R1 with Nelder-Mead’s simplex algorithm. The detailed
description of the figure is given in the caption to Fig. 5.
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(a) 3D view

(b) horizontal slice (c) vertical slice

Figure 7: Alignment results for R2 with Nelder-Mead’s simplex algorithm. The detailed
description of the figure is given in the caption to Fig. 5. Here, minor misregistration is evident at
the top due to probe pressure artifacts. It should be noted that we do not consider the top region
of the image in the reslices as these are partly imaging the probe face rather than the tissue.

APPENDIX: Search Algorithms

A Nelder-Mead Simplex Algorithm

The downhill simplex method is due to Nelder and Mead [41, 49]. The method requires only
function evaluations, not derivatives, although it is not very efficient in terms of the number of
function evaluations that it requires. The procedure is as follows:
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(a) 3D view

(b) horizontal slice (c) vertical slice

Figure 8: Alignment results for M1 with particle swarm optimiser. The detailed descrip-
tion of the figure is given in the caption to Fig. 5.

∙ Step 1 (Order): For N variables, order N + 1 vertices as f(x1) ≤ f(x2)... ≤ f(xN+1) by
evaluating the similarity measure at each vertex point of the simplex. Let x0 be the centre
of gravity of all points except xN+1. Here, we are considering the minimisation case by
pre-multiplying the similarity measure by -1.

∙ Step 2 (Reflection): Generate a new vertex xr by reflecting the worst point according to

xr = (1 + �)x0 − �xN+1 (7)

where � is the reflection coefficient (� > 0). If the reflected point is better than the second
worst, but not better than the best, i.e. f(x1) ≤ f(xr) < f(xN ), accept the reflection by
replacing xN+1 with xr and go to step 1.
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(a) 3D view

(b) horizontal slice (c) vertical slice

Figure 9: Alignment results for M2 with Powell’s direction-set algorithm. The detailed
description of the figure is given in the caption to Fig. 5.

∙ Step 3 (Expansion): If the reflection produces a function value smaller than f(x1) (i.e.,
f(xr) < f(x1)), the reflection is expanded in order to extend the search space in the same
direction and the expansion point is then calculated by

xe = x0 + (x0 − xN+1) (8)

where  is the expansion coefficient ( > 1). If the expanded point is better than the reflected
point, f(xe) < f(xr), then obtain a new simplex by replacing the worst point xN+1 with
the expanded point xe and go to step 1. Otherwise, obtain a new simplex by replacing the
worst point xN+1 with the reflected point xr, and go to step 1. If the reflected point is worse
than the second worst, continue to step 4.
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(a) 3D view

(b) horizontal slice (c) vertical slice

Figure 10: Alignment results for M3 with Levenberg-Marquardt method. The detailed
description of the figure is given in the caption to Fig. 5. This is a particularly difficult dataset
to register because the anatomy is such that the features tend not to vary in the lateral direction.
As a result it is difficult to find a peak in the similarity measure in this direction.

∙ Step 4 (Contraction): When f(xr) ≥ f(xn), compute the contraction point

xc = xN+1 + �(x0 − xN+1) (9)

where � is the contraction coefficient (0 < � < 1). If the contracted point is better than the
worst point, i.e. f(xc) ≤ f(xN+1), then obtain a new simplex by replacing the worst point
xN+1 with the contracted point xc, and go to step 1. Otherwise, proceed to step 5.

∙ Step 5 (Reduction): For all but the best point (i ∈ {2, ..., N + 1}), replace the point with

xi = x1 + �(xi − x1) (10)
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Figure 11: Position artifacts. The front-view, top-view, and side-view of the unregistered M1
dataset is shown here. During the acquistion, there was a rigid movement of the scanning subject
between the two volumes. As a result the skin surface according to the position sensor appears to
have moved downwards and therefore it is not correctly registered using the position sensor.

Datasets Nelder-Mead Particle Powell’s Levenberg
simplex swarm direction-set Marquardt
method optimiser algorithm method

R1 0.726 0.684 21.3 0.731
R2 0.630 0.634 15.438 8.215
R3 0.994 0.984 21.757 1.037
R4 0.788 0.789 8.445 0.724
R5 0.821 0.795 0.809 0.729
M1 2.771 2.784 2.767 2.790
M2 4.931 4.950 4.919 4.941
M3 1.541 1.537 2.261 1.246

Table 3: RMSE(mm) for in vivo experiments using normalised mutual information as
the similarity measure. The datasets consist of scans of the neck and calf muscles. We have
used two restarts in the Nelder-Mead simplex algorithm, the Levenberg-Marquardt method, and
Powell’s direction-set method. Since it is important in clinical practise that the algorithms are
successful in only one attempt, we have shown the result of only one trial per algorithm. Except
the PSO, all algorithms were allowed two restarts per trial. Two classes of in vivo datasets are
shown: those starting with R represent the case where every effort was made to ensure that the
scanning subject was stationary (no breathing or movement) at the time of acquisition so that
the position sensor readings are close to the correct alignment; those starting with M represent
the cases when small movement (see Fig. 11) or probe pressure were allowed. Apart from the
highlighted results (which didn’t converge based on visual inspection), the R datasets have a much
lower RMSE than the M datasets.

and go to step 1. Here � is the shrinkage coeficient (0 < � < 1). This step is necessary when
the contraction has failed and it shrinks the entire simplex.

B Powell’s Direction-set Method

The multidimensional method consists of sequences of one-dimensional line minimisation in an
appropriate direction in the search space [42, 49]. It is a direction-set method that consist of
prescriptions for updating the set of directions as the method proceeds. It determines a set of di-
rections that take us far along narrow valleys in the cost function and also along the non-interfering
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directions in which the minimisation along one is not spoiled by subsequent minimisation along
another. The procedure is as follows:
Let x0 be an initial guess at the location of the minimum of the function f(x1, x2, ..., xN ), Ek =
[0, 0, ..., 0, 1k, 0, ..., 0] : k = 1, 2, ..., N be the set of standard basis vectors U = [ET

1 ,E
T
2 , ...,E

T
N ] and

i = 0, then

∙ Step 1: Set P0 = xi.

∙ Step 2: For k = 1, 2, ..., N find the value of k that minimises f(Pk−1 + kUk) and set
Pk = Pk−1 + kUk.

∙ Step 3: Set r and Ur equal to the maximum decrease in f and the direction of the maximum
decrease, respectively, over all the direction vectors in step 2. It should be noted that like
in the previous algorithm, we are considering the minimisation case so we pre-multiply the
similarity measure by -1.

∙ Step 4: Set i = i+ 1.

∙ Step 5: If f(2PN−P0) ≥ f(P0) or 2(f(P0)−2f(PN )+f(2PN−P0))(f(P0)−f(PN )−r)2 ≥
r(f(P0)− f(2PN −P0))

2, then set xi = PN and return to step 1. Otherwise, go to step 6.

∙ Step 6: Set Ur = PN −P0.

∙ Step 7: Find the value of  that minimises f(P0 + Ur). Set xi = P0 + Ur.

∙ Step 8: Repeat steps 1 through 7.

Here the first inequality in step 5 indicates that there is no further decrease in the value of f in the
average direction PN −P0. The second inequality indicates that the decrease in the function f in
the direction of greatest decreaseUr was not a major part of the total decrease in f in step 2. If the
conditions in step 5 are not satisfied, then the direction of greatest decreaseUr is replaced with the
average direction from step 2, i.e., PN −P0. In step 7, the function is minimised in this direction.
In step 2 and step 7, for one-dimensional minimisation without calculation of derivatives, we use
Brent’s method. However, this method is not quite as effective as it should be [49] and when
the function has a discontinuous second (or lower) derivative, the golden section search is used
as an alternative. In the current implementation, we have used the two minimisation algorithms
together by initialising Brent’s method with the results obtained from the golden section search
for every one-dimensional line minimisation.

C Particle Swarm Optimiser

The particle swarm optimisation (PSO) algorithm is an evolutionary computation technique pro-
posed by Kennedy and Everhart in 1995 [43] and is based on the social behaviour of a swarm.
It has been widely used in a variety of optimisation problems [50, 51]. The PSO algorithm is
described as:

vk+1 = avk + b1r1 ⊗ (p1 − xk) + b2r2 ⊗ (p2 − xk) (11)

xk+1 = cxk + dvk+1 (12)

The symbol⊗ denotes element-by-element vector multiplication. Equation (11) is used to calculate
the velocity vk+1 of the particle xk according to its current position from its own best experience
p1 and the group’s best experience p2. b1 and b2 represent the strength of attraction towards
its own best experience and the group’s best experience, respectively. The momentum factor a

is used to control the influence of the previous history of velocities on the current velocity. The
particle moves toward a new position according to Eq. (12) affected by the coefficients c and
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d. Here, xk represents the three rigid-body translation parameters for the source volume. The
random numbers r1 and r2 are introduced for good state space exploration. They are selected
in the range [0,1]. At each iteration, the similarity measure is used to update the best position
p1 of each particle if it scores higher than the similarity measure for the previous best position.
Similarly, at every iteration, the globally best position in the whole swarm p2 is also saved.

Trelea [52] performed the theoretical analysis of PSO, by considering the deterministic ver-
sion in one-dimension. It was obtained by setting the random numbers to their expected val-

ues, i.e., r1 = r2 =
1

2
. Also, Eq. (11) was simplified by considering b =

b1 + b2

2
, and p =

b1

b1 + b2
p1 +

b2

b1 + b2
p2. The newly introduced coefficient b represents the average of the own and

social attraction coefficients b1 and b2. The attraction point p is the weighted average of p1 and
p2. It was found that the PSO is convergent if the following sets of conditions are satisfied:

a < 1, b > 0, 2a− b+ 2 > 0 (13)

These tuning parameters can greatly influence the performance of the PSO algorithm, often
stated as the exploration-exploitation tradeoff. Exploration is the ability to test various regions
in the problem space to reach a global optimum and exploitation is the ability to search around
the candidate solution. We have previously tested different parameter settings for the PSO al-
gorithm and found Trelea parameter set 2 [36] to be appropriate in the current context. These
parameters originated from a study by Clerc [53] and favour exploration of the search space over
exploitation. Details are given in Trelea [52] where various parameter sets were tested on different
cost functionals, and it was shown that the PSO algorithm has a much higher success rate with
Trelea parameter set 2. Therefore, in the current implementation, we have only considered this
parameter set, i.e., a = 0.729, b1 = b2 = 1.494, and c = d = 1.

D Levenberg-Marquardt Method

The levenberg-Marquardt method [44] is primarily used as a non-linear least squares minimisation
technique and reduces the sum of square of residuals.

g(x) =
1

2

m
∑

j=1

r2j (x) (14)

Here, x = (x, y, z), and rj is the residual function defined from ℜn to ℜ as

r(x) = � − f(x) (15)

In the current implementation f(x) is the similarity measure score for a single reslice pair from the
corresponding volumes and � is the maximum possible value of similarity measure. Assembling
the residual vector for all image pairs, we have

r(x) = (r1(x), r2(x), ..., rm(x)) (16)

Now g can be rewritten as g(x) = 1

2
∣∣r(x)∣∣2. The derivative of g can be written using the

Jacobian matrix J of r w.r.t. x defined as J(x) =
∂rj
∂xi

, 1 ≤ j ≤ m, 1 ≤ i ≤ n. By defining

▽g(x) = J(x)T r(x), and the Hessian H as J(x)TJ(x), the Levenberg-Marquardt update is given
as

xj+1 = xj − (H+ �diag[H])−1 ▽ g(xj) (17)

The Levenberg-Marquardt method is thus

∙ Do an update as directed by the rule above.
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∙ Evaluate the error at the new parameter vector.

∙ If the error has increased as a result of the update, then reset the increments to their previous
value and increase � by 10 or some other significant factor. Then go to the first step again.

∙ If the error has decreased as a result of the update, then accept the step by keeping the
weights at their new values and decrease � by 10 or so.
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