
Submitted in partial requirement for the

MPhil in Computer Speech and Language Processing

Speaker Tracking

Sue Johnson
Jesus College

27 August 1997

Department of Engineering

University of Cambridge

Copyright c© August 1997 by Sue Johnson
Cambridge University Engineering Department

Cambridge, CB2 1PZ, England

Abstract
This project investigates the problem of labelling segments in a speaker-tracking system. A
mathematical representation of each segment is sought which encaptures the speaker-dependent
information available. It is shown that both the covariance matrix and the Maximum Likelihood
Linear Regression (MLLR) matrix provide such a representation with over 90% success rate in
a speaker identification task.

Several alternative distance metrics to measure the “closeness” of the segments are investigated
and it is found the covariance data performs best on those based on the mathematical means
of the eigenvalues of one matrix relative to another. The MLLR matrix is by contrast found to
work best with elementwise metrics confirming the hypothesis that the individual elements of
the matrix are more significant in this case.

Several hierarchical clustering schemes are then investigated and shown to produce speaker-
specific groups on two and three speaker problems. A full-scale implementation is then de-
scribed and tested on data from the 1996 Broadcast News database. A new criterion for evalu-
ating the clusters is defined and shown to be a good indication of speaker split. Six clustering
schemes are evaluated using this new criterion and the discriminative Lance-Williams scheme
is found to perform the best. Furthest neighbour clustering is also shown to perform well in
some cases.

Tree diagrams for the best cases of three and four clusters are presented and explained in terms
of the clustering strategy which produced them. They illustrate the feasibility of such a system,
with only a few segments being obviously mis-classified. Possible improvements for the system
are then discussed and finally recommendations for further work are given.

Declaration
This thesis is substantially my own work. Where reference has been made to other research this
is acknowledged in the text and bibliography. It has not been submitted in whole or part for a
degree at any other university.

The length of this thesis including footnotes, appendices and bibliography is 14943 words.

Signed:

Acknowledgements
I would like to take this opportunity to thank the many people in the Cambridge University
Speech, Vision and Robotics group for their help, advice and sharing of technical expertise dur-
ing the course of this project. In particular Dr John Openshaw, Antranig Basman, Dr Mark Gales
and Gavin Smith, who provided help and inspiration when it was most needed.

Thanks also go to all the members of the MPhil course and teaching staff who made the year fun
as well as educational and I am grateful to EPSRC for funding my place on the course through
an Advanced Studentship.

I must also mention my family, Dale, Rachel, Steve, Phil, Clare, Neil and Mavis whos constant
support and friendship have brightened up many days throughout the year.

My final note of thanks must go to my supervisor, Phil Woodland, for all he has done for me
throughout the year. His dedication and enthusiasm for his work have inspired me, his ideas
have motivated me, his efforts with HTK have helped me, and his jokes have amused me on
many occasions. I look forward to working with him again over the next few years.

Contents
1 Introduction 1

1.1 What is Speaker Tracking? . 1
1.2 Data . 3

2 Covariance-Based Methods 4
2.1 Introduction . 4
2.2 Distance Measures . 4
2.3 Initial Experiments . 6
2.4 Conclusions . 9

3 MLLR-based Methods 10
3.1 The Theory of MLLR . 10
3.2 Testing the MLLR matrices . 11
3.3 Transforming the Covariance Matrices . 13
3.4 Testing the Transformed Covariances . 13
3.5 Conclusions . 15

4 Hierarchical Clustering 16
4.1 What is Clustering? . 16
4.2 Different Types of Hierarchical Clustering . 17
4.3 Initial Experiments . 21
4.4 Further Experiments . 24
4.5 Conclusions . 25

5 Scaling Up the System 26
5.1 Quantitative Evaluation of Clustering Performance 26
5.2 Testing the Figure of Merit . 27
5.3 Implementation of the Clustering Methods . 28
5.4 Generation of the Distance Matrices . 28
5.5 Running of the system . 29
5.6 Preliminary Results . 29
5.7 Conclusions . 31

6 Improving the System 34
6.1 Symmetrising A - Using AA’ . 34
6.2 Symmetrising the Distance Measures . 35
6.3 Adding Occupancy Counts . 36
6.4 Non-hierarchical methods . 36
6.5 Maximisation of Auxiliary Function Directly . 38

7 Conclusions 39

A Distance Measures Used 41

B Initial Results in Speaker Clustering 42
B.1 Experiment 1: Simple 2-Speaker Case . 42
B.2 Experiment 2: Adding More Segments . 43
B.3 Experiment 3 : 3-Speaker Problem . 43

C Results for Making 2 clusters on a960610 show 45
C.1 Results on Covariance Data . 45
C.2 Results from MLLR transform Matrices . 45

D Results for Making 3 clusters on a960610 show 46
D.1 Results on Covariance Data . 46
D.2 Results from MLLR transform Matrices . 46

i

E Results for Making 4 clusters on a960610 show 47
E.1 Results on Covariance Data . 47
E.2 Results from MLLR transform Matrices . 47

F Results from using AAT with 2 clusters 48

G Results from Symmetric Distance Measures on Covariances 50

H Data Used 51

I Software Written 53
I.1 Classification of Testers and Reference Speakers 53
I.2 Simple Clustering Procedures . 55
I.3 Full-scale Implementation . 56

ii

1 Introduction

1.1 What is Speaker Tracking?
Speaker tracking is the process of following who says what in an audio stream. It has many
applications ranging from identifying speakers specifically, for example in forensic evidence, to
pooling data from the same speaker to increase the performance of speaker-adaptive recogni-
tion systems.

Tracking can broadly be divided into two problems:

• Locating the points of speaker change (Segmentation)

• Identifying the speaker in each segment (Labelling)

Segmentation can be thought of as labelling on a very fine scale. For example consider the case
of having two distinct segments. Suppose you can accurately determine whether they originate
from the same speaker or different speakers. This means the labelling problem has been solved.
Coarse segmentation can be achieved by regularly generating segments throughout the audio
and then joining together the adjacent segments which originate from the same speaker.

This has a large disadvantage in that it only allows a coarse resolution in the time domain. Sup-
pose it takes 500 frames (5 seconds worth of speech) to produce the information for a segment
which allows it to be identified. Then the point of speaker change will be uncertain to within
roughly ± 2.5s. Worse than that if the speaker changes more than once during that time this
information will be lost, and the interjecting speaker may not be identified at all.

This problem can be overcome to some extent by using a sliding window across the audio
stream. This allows a finer resolution in the time domain, as the frequency of possible speaker
boundaries is now determined by the window rate and not the minimum segment size. This is
illustrated in figure 1.

������������

�������
�

S1

b) Coarse Segmentation Problem : All segments of minimum size but non−overlapping

c) Finer Segmentation: Overlapping segments of minimum size

S1 S1 S1 S2 S2 S2 S2

Audio Stream

S2

S2S1
S1

S1

a) The Labelling Problem : Identify Speaker: Segments have known boundaries

Figure 1: Segmentation and Labelling

The maximum window rate is determined by the required time resolution, whilst the minimum
window rate is determined by how easy it is to detect a speaker change. Since much of the data
between adjacent windows will be shared, in order to determine a possible speaker boundary
the differences between the speakers must be sufficiently high to overcome the smoothing effect

1

of using the overlapping window. This means that a very good labelling scheme must be avail-
able in order to successfully track speakers in an audio stream, but given this labelling scheme,
the segmentation problem should be solvable simply by redefining the segments as described
above. This project is concerned with developing a labelling scheme to identify speakers on a
pre-segmented audio track. Further work on a segmentation system involving the ideas given
above can be found in [16].

The labelling problem reduces to finding a representation of each segment which captures the
information about the speaker, whilst, if possible, minimising the intra-speaker variation. These
representations must then be compared to each other to ascertain which ones are most similar
and hence determine which speakers uttered which segments.

Finding such a representation is a difficult problem. For example, if the speech is coded in PLP
parameters, taking the mean vector over a small segment may retain some speaker-specific in-
formation (such as gender), but it will also be highly dependent on which phoneme was being
uttered at that time. One method of reducing intra-speaker variation, which has already been
used in problems similar to this one [1, 21] is using the covariance of the data over a reason-
ably sized segment (e.g. ≥ 5 seconds of speech). This method is text-independent i.e. it does
not require a transcription of what was said, but instead effectively averages out the phoneme
variation over the segment.

Potentially, if a putative transcription of the soundtrack exists, it should be possible to exploit
this information to improve performance. This project also looks at using the Maximum Like-
lihood Linear Regression (MLLR) transform of each segment as a possible representation which
takes the transcription into account, and compares its performance to that of the standard co-
variance case.

Performance is evaluated both for the case of speaker identification and speaker clustering.
The former defines certain segments as references and the others as tests. Each test segment
is allocated to the “closest” reference segment according to the distance metric being used. Per-
formance is then stated simply as the ratio of the number of speakers which were correctly
identified to the number which could have been correctly identified. 1 Sections 2 and 3 look
into this problem for the covariance and MLLR representations respectively.

Speaker clustering is concerned more with the improvement of speaker-adaptive recognition
systems. Some speakers in the soundtrack may only utter a few short segments of speech. In
this case there may be insufficient adaptation data available to improve the recognition perfor-
mance. However, if the identity of the speaker is not critical, it may be possible to pool data for
“similar” speakers to produce enough adaptation data to improve performance for both speak-
ers.

Segments are clustered into groups which are in some sense more similar to members of their
own group than those of the other groups. The ideal case would be if every cluster represented
a different speaker, but this is obviously dependent on the number of final clusters and the
number of speakers in the soundtrack (which is not necessarily known in advance).

Since infrequent speakers may be clustered together without necessarily losing out in recogni-
tion performance, a different method of evaluation is needed for this task. Section 4 looks into
methods of clustering the data whilst section 5 defines a possible performance measure in terms
of a likelihood function of an MLLR-based speaker adaptive system. The final implementation
of the system and results are presented in sections 5 with possible improvements being given
in section 6. Conclusions are then offered in section 7 along with recommendations for further
work on this topic.

1i.e. the speaker of the test segment must also be the speaker for at least one reference segment

2

1.2 Data
The data used throughout this project was from the 1996 Broadcast News database. The speech
had been split into acoustically homogeneous segments which had a single speaker and au-
dio category as defined in table 1. [23] The segments of over 5 seconds duration from the shows
a960521 a960522 a960528 a960604 a960610 a960621 a960624 a960625 and a960626
were extracted giving 625 segments in total. 2

Each segment was parameterised using a modified form of PLP [11] based on Mel-Frequency
Cepstral Coefficient filter-bank analysis. [23] The zeroth to twelfth static coefficients were used
for the representation. Later experiments also included delta and acceleration coefficients.

Category Description Dialect Mode Fidelity Background
F0 Baseline Broadcast Native Planned High Clean
F1 Spontaneous Speech Native Spontaneous High Clean
F2 Telephone Channel Native Any Medium/Low Clean
F3 Background Music Native Any High Music
F4 Degraded Acoustics Native Any High Speech/Other
F5 Non-Native Speakers Non-Native Planned High Clean
FX All Other Combinations

Table 1: Broadcast News 1996 Categories

2A more detailed description of the segments used can be found in appendix H

3

2 Covariance-Based Methods

2.1 Introduction
Recent work in speaker identification has demonstrated the ability of the covariance matrix to
encapsulate speaker information. [1, 3, 21] Given a sufficiently large segment, 3 the effects of
the variation due to different phonemes being uttered is averaged out and the information is a
truer representation of the speakers characteristics.

Given a feature (row) vector Xt at time t of dimension D, the covariance 4 matrix for a segment
of N frames is given by

µ =
1
N

t=N
∑

t=1

Xt

Σ =
1
N

t=N
∑

t=1

(Xt − µ)(Xt − µ)T

2.2 Distance Measures
Once the covariance has been computed for each segment, some measure of distance must be
used to calculate the closeness of the segments in D-dimensional space.

Given the covariance of a reference segment, X, and a test segment, Y, a further matrix, Y X−1,
can be formed which attempts to capture in some sense the similarity between Y and X. For
example, if X and Y are identical in that they come from the same segment, then Y X−1 will be
the identity. The proximity measure between two segments however must be a scalar, so a more
formal way of capturing the similarity of the two matrices is needed.

A family of measures can be obtained based on using the eigenvalues of Y X−1 (termed the
eigenvalues of Y relative to X.) Let these be denoted λi. The converse eigenvectors of X relative
to Y can be seen simply to be 1/λi. The closer these eigenvalues are to unity, the better the
match of the segments. The arithmetic, geometric and harmonic means of these eigenvalues
can then be calculated using the formulae

A(λ1, ...λD) =
1
D

D
∑

i=1

λi

G(λ1, ...λD) = D

√

√

√

√

D
∏

i=1

λi

H(λ1, ...λD) = D

(

D
∑

i=1

1
λi

)−1

These values are particularly appealing because they do not require the calculation of the eigen-
values explicitly and thus are significantly more computationally efficient than distance metrics
using the eigenvalues individually. To see this, note that

A = D−1tr(Y X−1)

G = (det(Y X−1))1/D

H = D(tr(XY −1))−1

where det represents the determinant and tr the trace of the matrix.

3segments ≥ 5 seconds long are used throughout this project
4Alternatively the correlation can be used: R = 1

N

∑t=N
t=1 XtXT

t

4

Five distance measures using these eigenvalues have been investigated by Gish [8], Bimbot and
Mathan [1, 2] and Smith [21]. These are: 5

d1(X,Y) = log
(

A
H

)

d2(X, Y) = log
(

A
G

)

d3(X, Y) = A− log(G)− 1

d4(X, Y) =
1
D

D
∑

i=1

|λi − 1|

d5(X,Y) =
1
D

D
∑

i=1

|min(λi,
1
λi

)− 1|

Gish has shown that d3 is equivalent to the classical log likelihood ratio [8] and he notes that
robustness can be gained by restricting the eigenvalues in the summation to include only those
near unity, hence adapting d4 to give d5.

In the case where X=Y, then Y X−1 is the identity and therefore all λi = 1. Thus A=G=H=1 and all
the distance metrics given above can be seen to be equal to zero. This is an important property
of distance measures. Other properties which distance measures should exhibit if possible are

• Positivity : the distance must never be negative i.e. d(X,Y) ≥ 0

• Symmetry : the distance should not be dependent on the order in which the segments are
presented, i.e. d(X,Y)=d(Y,X)

• Triangle Equality : d(X,Z) ≤ d(X,Y)+d(Y,Z)
This is the least important of the criteria

Since all the eigenvalues of XY −1 are positive, then

A ≥ G ≥ H

with the equality in the case when are eigenvalues are equal, thus the distance metrics given
above all conform to the positivity rule.

By noting that

A(
1
λ1

, ...,
1

λD
) =

1
H(λ1...λD)

G(
1
λ1

, ...,
1

λD
) =

1
G(λ1...λD)

H(
1
λ1

, ...,
1

λD
) =

1
A(λ1...λD)

it can be seen that

d1(Y,X) = log

(

A(1
λi

)

H(1
λi

)

)

= log
(

A(λi)
H(λi)

)

= d1(X, Y)

d2(Y, X) = log

(

A(1
λi

)

G(1
λi

)

)

= log
(

G(λi)
H(λi)

)

6= d2(X, Y)

d3(Y,X) = A
(

1
λi

)

− log
(

G
(

1
λi

))

− 1 = H(λi) + log(G(λi))− 1 6= d3(X, Y)

d4(Y,X) =
1
D

D
∑

i=1

| 1
λi
− 1| 6= d4(X, Y)

d5(Y, X) =
1
D

D
∑

i=1

|min(
1
λi

, λi)− 1| = d5(X, Y)

5all the distance metrics described in this thesis are reproduced in appendix A for the readers convenience

5

2.3 Initial Experiments
This series of experiments used segments of ≥ 5 seconds duration from the shows : a960521
a960522 a960528 a960604 a960610 a960621 a960624 a960625 a960626 in the Broad-
cast News 1996 database. Every third segment in each show was marked as a test segment
whilst the others were assigned to be reference segments. The covariance of each segment was
calculated using HCompVin HTKand a MATLAB program was written to assign each test seg-
ment to the closest reference segment for each distance metric.

A PERL program then counted the proportion of test segments (for which at least one reference
segment existed with the same speaker) which had been identified. In all there were 205 test
segments of which 176 had at least one instance of the same speaker in the reference set, 203
had a reference condition and 160 had a match for both condition and speaker.

In addition to the distance measures given above, I added five more of my own which obeyed
the zero, symmetry and positivity constraints, namely:

d6 = max
i=1:D

|max(λi,
1
λi

)− 1|

d7 = min
i=1:D

|min(λi,
1
λi

)− 1|

d8 =
1
D

D
∑

i=1

(λi −
1
λi

)2

d9 =

(

D
∏

i=1

|max(λi,
1
λi

)− 1|

)1/D

d10 =

(

D
∏

i=1

|min(λi,
1
λi

)− 1|

)1/D

The results are given in table 2 and illustrated in figure 2

ALL FILES; 420 references; 205 testers (160 seen exactly;176 speakers seen;203 conditions seen)

DISTANCE d1 d2 d3 d4 d5 d6 d7 d8 d9 d10
Correct Speaker 159 159 156 143 144 147 63 142 137 133
Correct Conditions 134 137 129 110 116 124 78 119 118 121
Both Correct 108 108 103 94 99 106 36 100 98 97
Speaker Match(%) 90.34 90.34 88.64 81.25 81.82 83.52 35.80 80.68 77.84 75.57
Condition Match(%) 66.01 67.49 63.55 54.19 57.14 61.08 38.42 58.62 58.13 59.61
Total Match(%) 67.50 67.50 64.38 58.75 61.88 66.25 22.50 62.50 61.25 60.62

Table 2: Results using the Covariance Data on d1 to d10

The behaviour of A G and H themselves was also investigated as d11, d12 and d13 respectively.

DISTANCE d11=A d12=G d13=H
Speaker Match 72.16 25.00 2.27
Condition Match 46.80 22.66 12.32
Total Match 46.88 13.12 0.00

These results confirm the ability of the covariance matrix to model speaker characteristics, with
over 90% of test speakers correctly recognised using the arithmetic-harmonic sphericity dis-
tance measure. Note that the best performance comes from the first three distance measures
which are also the least computationally expensive to compute.

An interesting fact from the data is the amazingly poor performance of the harmonic mean as
a distance measure. Only 2% of speakers were correctly classified, a figure which is lower than

6

Speaker

Condition

Exact

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

Distance Measure

%
 s

uc
ce

ss

Success in Identifying Speakers Using Covariance

Figure 2: Results of using distance metrics d1-d13 on broadcast news data

that which would be obtained by chance. This suggests that H could be used as an anti-distance
measure of some sort, i.e. the reciprocal or negative of H could be used as a distance measure. To
check this hypothesis the experiment was re-run with some modified distance measures, d14-
d16. The Bhattacharyya and divergence metrics for Gaussian distributions 6 were also added as
d17-18.

d14 = log
(

A
GH

)

d15 = log
(

A2

GH

)

d16 = A− log(G)−H

d17 =
1
8
(µx − µy)T

(

X + Y
2

)−1

(µx − µy) +
1
2

ln
(

|(X + Y)/2|
|X| 12 |Y | 12

)

d18 =
1
2
tr(X−1Y + Y −1X − 2I) +

1
2
(µx − µy)T (X−1 + Y −1)(µx − µy)

The results are given in table 3 and illustrated in figure 3.

DISTANCE d14 d15 d16 d17 d18
Speaker Match(%) 61.36 91.48 89.20 89.77 90.34
Condition Match(%) 52.71 67.00 67.49 70.44 70.44
Total Match(%) 48.75 68.13 68.75 73.13 73.13

Table 3: Results using the Covariance Data on d14 to d18

All the distance metrics so far have been based on the fact that the representative matrix for
each segment is a covariance of samples from a Gaussian distribution. Later work makes use
of a different matrix whose properties are not as well-defined. In order to be able to make a
fair comparison between these representations, three more distance metrics were added which
can be used between any arbitrary equal-sized matrices as they work in an element-wise fashion.
These are the Euclidean, city and angular elementwise distances, d19-21.

6The derivations of these formulae can be found on [22, p142].

7

The maximum singular value of the difference (Y-X) 7 and the Euclidean distance of the mean
were also added as d22 and d23 respectively.

d19 =
D

∑

i=1

D
∑

j=1

(xij − yij)2

d20 =
D

∑

i=1

D
∑

j=1

|xij − yij |

d21 = 1 −
∑D

i=1

∑D
j=1 xijyij

(

∑D
i=1

∑D
j=1 x2

ij
∑D

i=1

∑D
j=1 y2

ij

)1/2

d22 = σ+(Y −X)

d23 =
1
D

D
∑

i=1

(µyi − µxi)2

Speaker

Condition

Exact

13 14 15 16 17 18 19 20 21 22 23
0

10

20

30

40

50

60

70

80

90

100

Distance Measure

%
 s

uc
ce

ss

Success in Identifying Speakers Using Covariance

Figure 3: Results of using d14-d23 on broadcast news data

The results are given in table 4 and illustrated in figure 3.

DISTANCE d19 d20 d21 d22 d23
Speaker Match(%) 88.64 89.77 89.20 85.23 86.36
Condition Match(%) 71.92 69.46 67.00 69.95 65.02
Condition Match(%) 72.50 71.88 68.75 70.63 64.38

Table 4: Results using the Covariance Data on d19 to d23

7representing the maximum gain of the matrix

8

2.4 Conclusions
The covariance information has been shown to offer a very good representation of the speaker-
specific information in the signal, producing accuracy of over 90% with several different dis-
tance measures.

Table 5 summarises the properties of the best distance metrics which are used in later experi-
ments in this project.

distance Name Speaker % Symmetric Zero if positive
d15 log(A2/GH) 91.48 N X=kY Y
d1 Arithmetic-Harmonic Sphericity 90.34 Y X=kY Y
d2 Geometric-Harmonic Sphericity 90.34 N X=kY Y
d18 Gaussian Divergence 90.34 Y X=Y, µx = µy Y
d17 Bhattacharyya Distance 89.77 Y X=Y, µx = µy Y
d20 City Elementwise 89.77 Y X=Y Y
d16 A - log(G) - H 89.20 N X=Y Y
d21 Angular Elementwise 89.20 Y X=kY Y
d3 Log Likelihood Ratio 88.64 N X=Y Y
d19 Euclidean Elementwise 88.64 Y X=Y Y

Table 5: The best results obtained with covariance data

9

3 MLLR-based Methods

3.1 The Theory of MLLR
Maximum Likelihood Linear Regression (MLLR) is a speaker-adaptation technique which has
attracted much recent research in speech recognition [6, 7, 13, 14, 17, 20]. A speaker independent
system is built and then optimised in a maximum likelihood sense to adapt to a new speaker
thus producing better performance and in the limit, the speaker-dependent rate.

Two methods of adaptation are possible

• Adapting the models to fit the data

• Normalising the data to fit the models

The original method of model adaptation assumed that the principal difference between speak-
ers lay in the means and therefore just adapted the mean vector of the models [13]. A putative
transcription is obtained (for example from forward-backwards alignment of the data) and a
linear transform is applied to the mean parameters of the model so as to maximised the likeli-
hood of the data.

Many models will have parameters tied together to ensure there is sufficient adaptation data
for each set of parameters. This can be based on a regression class tree. For example, broad
phoneme classes may be used such as stops, liquids, front, mid and back vowels, silence, frica-
tives and nasals. Each of these classes can then have the maximum likelihood transform matrix
calculated.

An alternative to this approach is to apply the same transform structure to both mean and vari-
ance information. This is called constrained model-space transformation. [7] The model parameters
are now changed by:

µ̂ = Amµ− bm

Σ̂ = AmΣAT
m

This can be shown to be equivalent to transforming the observed data with the addition of a log
term [7]:

ô(τ) = A−1
m o(τ) + A−1

m bm

= Ao(τ) + b
L(o(τ); µ,Σ, A, b) = N (Ao(τ) + b; µ, Σ) + log(|A|)

For the case of forming a single global transform matrix for each segment, this log term does
not alter the performance and the method can be implemented by applying the transformation
to the data and keeping the models fixed. This will subsequently referred to as the data-based
MLLR transform. When applied to the data it normalises the input so that it matches the model
parameters more closely.

By forming a global MLLR transform matrix for each segment, the variation due to the changing
phonemes has been eliminated for both methods described above, since the transform at any
given time will be from the data to the most active phoneme model. This suggests that the
transform matrix itself could be a good representation of speaker identity.

10

3.2 Testing the MLLR matrices
The data-based MLLR transform was used, which warped the data from the original (x) to the
new (y) domain according to the formula:

y = Ax + b = [b A]
[

1
x

]

The transform was generated using static, delta and acceleration coefficients in block diagonal
form, i.e.:

A =

As 0 0
0 Ad 0
0 0 Aa

but these experiments were only conducted with the static information.

The MLLR (A) matrix itself is very different to the covariance matrix. It is not symmetric and it
does not model a multi-dimensional Gaussian. This means that several of the previous distance
measures used for the covariance matrix no longer apply. The Bhattacharyya and divergence
distances were derived with the Gaussian assumption, and many of the metrics depend on the
eigenvalues of the product XY −1.

Considering the transform matrix warps the data to a set of fixed parameters, the information
should be stored in an elementwise fashion within the matrix. Consider applying a rotation to
the matrix A. Any distance metrics based on the determinant of A will give the same results as
previously, but the rotated A matrix will no longer represent the MLLR transform of the data.
This implies that using distance metrics based purely on the eigenvalues of matrices will not
truly capture the speaker-dependent information stored in the A-matrix.

It is expected therefore that the best results will be obtained from elementwise operations, such
as d19-d21, and as the matrix acts as an operator, the maximum singular value (d22) should
also offer an insight into the speaker as it represents the ’gain’ of the matrix.

The results from using the data-based MLLR matrices with the previous distance measures are
given in table 6. For comparison, the results using the model-based MLLR transform are given
in table 7 and both are plotted in figure 4.

DISTANCE d1 d2 d3 d4 d5 d6 d7 d8 d9
Speaker Match(%) 2.27 1.14 0.00 79.55 78.41 77.84 32.95 2.27 76.70
Condition Match(%) 12.32 12.81 15.27 56.65 56.16 54.19 28.08 18.23 54.68
Total Match(%) 0.62 0.00 0.00 61.25 61.25 57.50 17.50 1.25 58.75
DISTANCE d10 d11 d12 d13 d14 d5 d16 d17 d18
Speaker Match(%) 75.57 4.55 6.82 6.82 1.70 1.70 1.70 41.48 39.77
Condition Match(%) 54.19 17.24 19.70 21.18 25.12 11.82 24.63 42.86 41.38
Total Match(%) 58.12 1.88 2.50 2.50 1.25 0.62 1.25 30.00 28.75

DISTANCE d19 d20 d21 d22 d23
elementwise Speaker (%) 90.91 90.34 90.91 85.23 50.00

measures Condition (%) 62.56 64.04 64.04 63.05 41.38
Total (%) 66.25 68.12 66.88 65.62 35.00

Table 6: Data-based MLLR transform Matrices results

These results confirm the inappropriateness of using many of the previous distance metrics on
the MLLR transform matrices. As predicted however, the maximum singular value (d22) and
the elementwise distances (d19-d21) work well, and show that the MLLR transform does in-
deed store information about the identity of the speaker.

The data-based transform shows these effects more markedly than the model-based transform
and will be used as the representative MLLR transform for the rest of this project, as a higher

11

performance (90.91%) can be obtained with its use.

Note the poor performance of d23, which uses the offset vector. This fairs far worse than the
equivalent mean-based measure in section 2.

DISTANCE d1 d2 d3 d4 d5 d6 d7 d8 d9
Speaker Match(%) 26.70 33.52 35.80 78.98 78.41 67.61 32.39 16.48 77.27
Condition Match(%) 36.45 35.96 39.90 49.75 53.20 53.20 29.06 27.09 53.69
Total Match(%) 20.00 24.38 25.00 56.25 58.12 51.25 16.25 6.88 56.25
DISTANCE d10 d11 d12 d13 d14 d15 d16 d17 d18
Speaker Match(%) 74.43 19.89 31.25 26.14 20.45 34.66 20.45 64.20 44.32
Condition Match(%) 49.75 18.72 20.20 15.27 35.96 39.90 37.93 54.68 44.83
Total Match(%) 52.50 7.50 15.62 10.62 15.00 25.62 16.88 46.25 29.38

DISTANCE d19 d20 d21 d22 d23
elementwise Speaker (%) 83.52 82.39 84.09 73.86 57.39

measures Condition (%) 61.58 60.59 59.11 55.67 48.28
Total (%) 61.25 60.00 60.63 53.12 41.25

Table 7: Model-based MLLR transform Matrices results

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100
Success in Identifying Speakers using MLLR transforms

%
 s

uc
ce

ss

Data−based
Model−based

Figure 4: Results with MLLR transform Matrices

12

3.3 Transforming the Covariance Matrices
Let the original data be represented by mean µx and covariance Σx. After the data-based MLLR
transform has been applied, the transformed data has mean µy and covariance Σy.

µx = E[x]

µy = E[y]

= E[Ax + b]

= Aµx + b

Σx = E[(x− µx)(x− µx)T]

= E[xxT]− E[x]E[x]T

Σy = E[yyT]− E[y]E[y]T

= E[(Ax + b)(xT AT + bT)]− E[(Ax + b)]E[(Ax + b)]T

= E
[

[b A]
[

1
x

]

[1 xT]
[

bT

AT

]]

− [b A]
[

1
E[x]

]

[1 E[x]T]
[

bT

AT

]

= [b A]
[

(1− 1) (E[xT]− E[x]T)
(E[x]−E[x]) (E[xxT]− E[x]E[x]T)

] [

bT

AT

]

= A Σx AT

3.4 Testing the Transformed Covariances
Applying the data-based MLLR transform to the covariance of the data is designed to increase
recogniser performance by warping the data into a more normalised form, thus matching the
generic models better. This implies that applying the transform to the data will remove some of
the speaker-specific information and thus using the transformed covariance after the transform
has been applied will be detrimental to the task of speaker recognition.

This hypothesis is confirmed by the results for the transformed covariance given in table 8 and
illustrated in figure 5.

DISTANCE d1 d2 d3 d4 d5 d6 d7 d8 d9
Speaker Match(%) 77.84 76.14 75.00 70.45 70.45 65.91 26.14 68.18 64.20
Condition Match(%) 56.16 44.83 48.77 45.81 25.12 48.28 45.81 46.80 29.56
Total Match(%) 52.50 46.88 52.50 45.62 10.62 48.12 45.62 44.38 22.50
DISTANCE d10 d11 d12 d13 d14 d15 d16 d17 d18
Speaker Match(%) 62.50 39.77 32.39 22.73 13.07 77.84 17.61 73.86 73.30
Condition Match(%) 54.19 54.68 23.15 17.73 17.73 54.68 18.72 63.05 63.55
Total Match(%) 53.75 52.50 13.75 8.12 5.00 54.38 6.88 57.50 57.50

DISTANCE d19 d20 d21 d22 d23
elementwise Speaker (%) 69.32 72.73 71.02 64.77 69.32

measures Condition (%) 54.68 53.20 51.23 52.22 61.58
Total (%) 49.38 51.25 48.12 47.50 54.38

Table 8: Results from the Transformed Covariance

These results confirm that applying the MLLR transform to the data does indeed normalise it to
some degree by removing speaker-specific information. It is interesting to note that the general
trend is for the transformed covariance results to follow the same pattern as the original results,
with the best results again being obtained from d15 (log(A2/GH)). Noticeable exceptions to this
however, are shown as a dramatic drop in success with d11 (A), but increase in success for d12
(G) and d13 (H). This combined produces a large decrease in performance in d14 (log(A/GH)),
and d16 (A-log(G)-H). In view of this it is rather surprising that d15 (log(A2/GH)) has remained
relatively unscathed.

13

Original

Transformed

Inverse−Transformed

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

80

90

100

Distance Measure

%
 s

uc
ce

ss

Success in Identifying Speakers Using Covariance

Figure 5: The Effect of Transforming the Covariance Matrices

Since applying a transform which holds speaker-specific information to a covariance matrix
which also holds speaker-specific information reduces performance by compensating for the
speaker-dependent effect, it might be possible to exaggerate the speaker-specific properties of
the matrix by applying the inverse transform to the covariance. This concept is illustrated in
figure 6.

Σx

µx

Σy

µy

yµ µ x= A + b

Σ y Σ x
z = A−1(x−b)

Σ z Σ x= A −1 (AT −1)

y = Ax + b

Original Data Modified Data

decreasing speaker information

= A AT

Inverse Modified Data

Σz

µz

µ z = A −1 (µ x − b)

Figure 6: Transforming the Covariance Data

The new covariance equations become:

µz = A−1(µx − b) (1)
Σz = A−1Σx(AT)−1 (2)

The results from “inverse-transforming” the covariance data are given in table 9 and illustrated
in figure 5

14

DISTANCE d1 d2 d3 d4 d5 d6 d7 d8 d9
Speaker Match(%) 90.91 91.48 88.07 78.98 81.82 80.68 26.14 82.39 78.98
Condition Match(%) 69.95 69.46 63.05 52.22 57.14 59.11 33.00 60.10 56.16
Total Match(%) 74.38 75.00 65.62 56.88 63.12 63.75 16.25 67.50 58.75
DISTANCE d10 d11 d12 d13 d14 d15 d16 d17 d18
Speaker Match(%) 67.61 76.70 25.00 1.70 83.52 90.91 89.20 82.95 83.52
Condition Match(%) 48.77 52.22 22.66 12.32 68.47 68.47 65.52 66.01 67.49
Total Match(%) 46.88 53.75 13.12 0.62 70.00 73.75 69.38 65.62 64.38

DISTANCE d19 d20 d21 d22 d23
elementwise Speaker (%) 88.64 87.50 90.34 86.93 86.93

measures Condition (%) 67.98 67.49 68.47 65.02 69.46
Total (%) 72.50 72.50 71.88 70.62 70.62

Table 9: The Effect of Inverse-Transforming the Covariance Matrices

3.5 Conclusions
The experiments done in this section have confirmed the ability of the MLLR transform matrix
to store speaker-dependent information. They have also shown the success in applying MLLR
transforms to normalise input data from different speakers with a resulting drop in speaker-
recognition rate.

The application of the inverse-transform to the covariance matrices produces comparable re-
sults to the untransformed case with a success rate of over 90% being obtained with four dis-
tance metrics.

It is interesting to note that the offset vector does not appear to contain as much speaker-
dependent information as the mean-vector for the Gaussian case. (d23)

The best results obtained using MLLR data are given in table 10 and are seen to be comparable
with the best covariance results given in section 2. The particular values for these distance
metrics for the original covariance case are also shown for ease of comparison.

Method Distance Speaker % Covariance
Data-based MLLR d19 Euclidean Elementwise 90.91 88.64
matrix d21 Angular Elementwise 90.91 89.20

d20 City Elementwise 90.34 89.77
d22 Maximum Singular Value 85.23 85.23

Inverse-Transformed d2 Geometric-Harmonic Sphericity 91.48 90.34
Covariance d1 Arithmetic-Harmonic Sphericity 90.91 90.34

d15 log(A2/GH) 90.91 91.48
d21 Angular Elementwise 90.34 89.20
d16 A-log(G)-H 89.20 89.20

Table 10: The Best Speaker Recognition Results using MLLR Matrices

15

4 Hierarchical Clustering

4.1 What is Clustering?
The results presented in sections 2 and 3 show that the covariance and MLLR transform ma-
trices hold sufficient information to be useful in the speaker recognition task. In the previous
experiments many samples of reference speakers existed and each unknown test segment was
compared to them and assigned to the closest match. Whilst demonstrating the feasibility of
speaker identification with these matrices, it did not provide much help for real-world applica-
tions, where no reference speaker information exists.

For example, consider analysing a broadcast news show and trying to determine which seg-
ments came from the same speaker. No reference segments are available, so the closest speakers
must be matched “on the fly”. This involves grouping the segments into clusters whose mem-
bers are in some way more similar to the other members of their cluster than members of the
other clusters.

Several problems exist with clustering techniques. Often, since proximity decisions may be
made on a local basis, there is no guarantee the solution found will be a global optimum. Also
it is not always apparent what the correct solution should be and so judging how “successful”
a clustering scheme is becomes a matter of subjective opinion. For example, consider the 2-
dimensional data shown in figure 7. It is not obvious how many clusters the data falls in to
despite the fact that it appears that clustering would be beneficial in this case.

o o o
o

o
o

o
o o o

oooo

oo
o

oo
o
o
ooo

oo o o o o
o

o
o

o
o

o
o

ooo
o

o
oo

o
o

o
o
o

oooo o
oooo

ooo
o

oo
o

o
oo

o
ooo

o

o
o

ooo
o

oo
oooo

o

o oo
o
o
o

oooo
o oo

o
o

o
oooo

ooooo
o
o

o

o
o

o

Figure 7: Uncovering Clusters in 2D data

Another difficulty is knowing when to stop clustering. If the success of clustering is based on
some average measure of intra and inter-cluster distance, then splitting a cluster will always
produce “better” performance. In the limiting case the best clusters would just be having one
segment per cluster, which obviously is unacceptable if the purpose of clustering is to group
segments from the same speaker together. The solution to this problem is either to specify
before clustering begins how many clusters are desired, or to define some suitable stopping cri-
terion, for example forcing all clusters to have a minimum occupancy count.

This section investigates several methods of clustering data based on two and three-speaker
problems in order to ascertain which would be useful in a speaker-tracking system.

16

4.2 Different Types of Hierarchical Clustering
Agglomerative Methods

Agglomerative clustering starts by defining a cluster centred on each individual segment. The
nearest pair of distinct clusters are then found and merged to form a new cluster. Some statistic
is generated to represent this new cluster. This merging process is then repeated until the de-
sired number of clusters is obtained.

If a record is maintained of the clustering decision at each stage the clustering process only
needs to be done once, and results for different numbers of clusters can be obtained by re-
tracing the resulting dendogram until the desired number of clusters exist.

The difference between agglomerative clustering schemes lies in the way the closest clusters are
found and how the representative statistic of the new cluster is generated. For more detailed
information on clustering methods and applications see [4].

4.2.1 Merging Statistics of Clusters

Concatenation

This method is not generally used in clustering, but is relevant for this particular problem.
The clusters to merge are simply given by the ones which lie closest together according to the
distance metric being used. The representative statistic is found by assuming the segments in
the cluster originate from the same speaker, and thus the true statistics of that speaker can be
found by calculating new mean and variance information which would result had the data in
both groups been concatenated.

n = n1 + n2

µ =
n1µ1 + n2µ2

n

Σ =
n1(Σ1 + µ1µT

1) + n2(Σ2 + µ2µT
2)

n
− µµT

This method will not work successfully for cross-speaker clustering as the data does not origi-
nate from the same speaker and therefore there is no guarantee that the representative statistic
will be a fair representation of the combined covariances. Consider the 2-dimensional data in
figure 8. The covariance of the two speakers is roughly the same leading to them being clustered
together. However, the joint covariance (shown dotted) does not capture this information at all.

Σ1

Σ2

Σjoint

x x
xxx

x
x

x
xx

x
xx

x
x

xx
x

x

x
x

x

Figure 8: Problems with Concatenation Based Clustering

17

Centroid Clustering

This is similar to concatenation-based clustering, only instead of combining the statistics by
assuming all the data came from the same speaker the weighted average values are used. Thus
the combinatory formulae now become

n = n1 + n2

µ =
n1µ1 + n2µ2

n

Σ =
n1Σ1 + n2Σ2

n

This reduces the problem of a pooled covariance, but still causes problems when the mean is
used as a representative statistic (see figure 9).

Σ1

Σ2
x
x

x
xx

x
xx

x

Σjoint

µ1 µjoint

µ 2

�������� ��

x x
xxxx

xx
x

x

x
x

x

Figure 9: Problems with Centroid and Median Based Clustering

Median Clustering

Median clustering is the same as centroid clustering except that it ignores the number of data
points in each cluster. This means that the data is not weighted by the confidence in that covari-
ance being an accurate representation of the segment, and thus the performance using median
clustering should be worse than that of centroid clustering.

n = n1 + n2

µ =
µ1 + µ2

2

Σ =
Σ1 + Σ2

2

Median clustering also suffers from problems associated with a pooled mean, illustrated in
figure 9.

4.2.2 Neighbourhood Clustering Schemes

Nearest Neighbour (single linkage)

The distance from every segment to every other segment is calculated and stored in the global
distance matrix. A record is maintained of which segments belong to which cluster. The inter-
cluster distance between clusters A and B is then given by the minimum distance between any
member of A and any member of B. This is illustrated in figure 10.

The two groups with the smallest inter-cluster distance are then merged simply by re-defining
the members of the new cluster and de-activating the old two groups.

Unlike in the previous algorithms, no new distances need to be calculated and clustering can
be done based purely on the global distance matrix.

18

Furthest Neighbour (complete linkage)

Furthest neighbour clustering is identical to nearest neighbour except the maximum distance
between any member of cluster A and any member of cluster B is used to define the inter-cluster
distance.

Furthest neighbour clustering has generally been shown to work better than nearest neighbour
as it is more robust to data which contains a few isolated outliers.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������

�������������
�������������
�������������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	
	�	�	�	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

Nearest Neighbour Furthest Neighbour Group Averaging

Figure 10: Distances used in Clustering

Mutual Nearest Neighbour

Mutual nearest neighbour clustering tries to take into account the relative proximity of the com-
bining clusters to all the others. Suppose the individual k is the mth nearest neighbour of in-
dividual j and individual j is the nth nearest neighbour of individual k then the mutual neigh-
bourhood value is given by (n+m). This value is then substituted into the global distance metric
used by the nearest neighbour clustering algorithm.

Note because a ranking is used rather than the distance values explicitly this method gives rise
to an increased likelihood of ties in scoring, so care should be taken by looking at the critical
values to see if they are equal before reading too much into the clusters produced.

Group Averaging

Group average clustering is again similar to nearest neighbour clustering, except that the inter-
cluster distance is now defined as the average of the distances between all pairs of individuals
consisting of one member in A and the other in B. This is illustrated in figure 10.

Although computationally more complex than nearest neighbour it should offer a more ro-
bust representation and also does not need recomputation of the distance metric (unlike the
statistical-merging based methods).

Ward’s Hierarchical Method

Ward’s clustering forms the partitions which minimise the loss associated with each grouping.
At each step the merging of every possible pair of clusters is considered and the fusion which
results in the minimum increase in an information loss is implemented. This information loss is
defined in terms of an error sum-of-squares criterion (ess).

For example the 1D case each group k, has

ESSk =
nk
∑

i=1,iεk

(xi − xi)2

with total information loss being
ESS =

∑

k

ESSk

19

This can be extended to include vectors by averaging over all features and to the matrix case
by computing the sum elementwise. Note this can be seen to be loosely equivalent to using a
squared-Euclidean distance metric.

Ward’s method has been shown to impose a spherical solution onto clustering problems [4, p70]
and therefore may not perform well on real data.

4.2.3 Discriminatory Schemes

Lance and Williams’ recurrence formula

The Lance-Williams recurrence formula gives the distance from a point k to a combined group
{ij} as:

dk(ij) = αidki + αjdkj + βdij + γ|dki − dkj |

where dik represents the distance from i to k.

For example in the case where

αi = αj = 0.5; β = 0; γ = −0.5;

then

dk(ij) = 0.5(dki + dkj)− 0.5|dki − dkj |
= dkj iff dki > dkj

= dki iff dkj > dki

and thus these values represents nearest neighbour clustering.

Similarly, furthest neighbour clustering is defined by

αi = αj = 0.5; β = 0; γ = 0.5;

and group average by

αi =
(

ni

ni + nj

)

; αj =
(

nj

ni + nj

)

; β = 0; γ = 0

These values, although using the same distances as those discussed in section 4.2.2 can poten-
tially give different clusters. This is because the method of calculating which groups to cluster
is altered to make the clustering more discriminatory. In the traditional nearest-neighbour rou-
tine, the groups which possess the closest neighbours are combined. In this version, the total
distance from all other clusters to the new combination is calculated for each possible merge,
using the formula above. The maximum of this cumulative distance is then found to give the
clustering combination which is furthest away (in some sense) to the rest of the clusters. This
merge is then applied and the distance matrix is then updated taking it into account.

Lance-Williams suggest the following values may perform well:

αi + αj + β = 1; αi = αj ; β < 1; γ = 0

They suggest

β = −0.25; αi = αj = 0.625

or β = −0.5; αi = αj = 0.75

20

Divisive Methods

Divisive methods use a top-down approach to clustering. They start with one large cluster and
split it into two smaller clusters. This can then be repeated recursively until the desired number
of clusters is reached.

4.2.4 Polythetic clustering - MacNaughton/Smith Method

All the individuals initially start in one large cluster. The individual which is furthest from all
the other individuals is then split off to form a splinter group. All the individuals left in the
main group then have the average distance from themselves to the member(s) of the splinter
group and the average distance of themselves to the other member(s) of the main group calcu-
lated.

A mathematical measure is then calculated for each individual of the main group by subtract-
ing the average-to-splinter from the average-within-main values. The maximum value of this
measure across all individuals in the main group is found. If this is greater than zero, that in-
dividual is added to the splinter group and the process is repeated, otherwise the splitting is
stopped.

4.3 Initial Experiments
As a simple test for the clustering methods described above, six segments from the show a960521
were taken. To make it easier, the first three were speaker “Ted Koppel ”, with acoustic con-
dition “F0” 8 whilst the second three were “a960521 janedoe001 ” with acoustic condition
“F2”.

All the numerical results from these experiments are reproduced in appendix B.1 for the readers
reference. When a distance measure was needed, the arithmetic-harmonic sphericity metric was
used.

4.3.1 Statistical Merging of Clusters

The statistical merging methods all clustered the data based on the arithmetic-harmonic spheric-
ity distance matrix in the way shown in table 11. The minimum and second minimum values
are also given in the table. This provides an indication of the confidence associated with each
clustering decision. The greater the relative difference between the two values the higher the
confidence. As can be seen from the table, there is very little difference between the methods
for this particular data.

Concat Centroid Median
01 02 03 04 05 06 min 2ndmin min 2ndmin min 2ndmin
| | | | | |
07 | 07 | | | 0.22 0.26 0.22 0.26 0.22 0.26
| | | | | |
08 08 08 | | | 0.23 0.47 0.23 0.47 0.23 0.47
| | | | | |
| | | 09 09 | 0.47 0.50 0.47 0.50 0.47 0.50
| | | | | |
| | | 10 10 10 0.43 0.63 0.42 0.62 0.41 0.64
| | | | | |
11 11 11 11 11 11 0.55 --- 0.55 ---- 0.58 ----

Table 11: Statistical Merging Clustering on 2-Speaker Problem

8see table 1 for a definition of these categories

21

4.3.2 Neighbourhood Clustering Schemes

The dendograms for the neighbourhood clustering methods using the arithmetic-harmonic
sphericity distance measure are given in figure 11, whilst those obtained from Ward’s algo-
rithm on the mean and covariance of the data are given in figure 12.

All of these clustering schemes split the data into the desired clusters, but the Ward’s mean-
based results can clearly be seen to offer the most conclusive evidence of the presence of two
clusters within the data.

0

2

1

3

4

5

6

0.2 0.4 0.60

2

1

3

4

5

6

0.2 0.4 0.6

2

1

3

4

5

6

2

1

3

4

5

6

0.2 0.4 0.60 0.8 1.0

2

1

3

4

5

6

0.2 0.4 0.60 0.8 1.0

Nearest Neighbour Furthest Neighbour

 2 4 60

Mutual Nearest Neighbour Group Averaging

Figure 11: Dendograms for Neighbourhood Clustering Methods

0 25050 100 150 200

Ward 3D (on covariance)

1

2

3

5

6

4

2

1

3

4

5

6

4 8 120 16 20

Ward 2D (on mean)

Figure 12: Dendograms for Ward’s Clustering

22

4.3.3 Lance-Williams’ Clustering

The dendogram for the Lance-Williams’ clustering is given in figure 13. Notice that since a new
distance matrix is calculated at each step of the algorithm, there is no guarantee that the maxi-
mum values on merging at each stage will decrease monotonically. This can be seen in the case
where β=-0.5 where the first merging occurs with value 3.65 but the second with 3.86

Again, all four schemes split the data into the correct clusters.

6

5

4

3

2

1

0123

6

5

4

3

1

2

0123

= − 0.25β

0123

Nearest Neighbour
Furthest Neighbour

2

1

3

4

5

6

4

β = − 0.50

Figure 13: Dendograms for Lance-Williams

4.3.4 Polythetic Clustering

Only the groupings are returned from the polythetic clustering algorithm. These results which
again are correct, are:

>> [splinter,rest] = split_cluster(dist_ahm)
splinter =

5 4 6

rest =
1 2 3

4.3.5 Summary

Every method of clustering discussed in section 4.2 correctly classified the segments into two
speakers. This is encouraging, even though the task was made artificially easy by using a man
and a woman with different acoustic conditions.

To discriminate between the clustering methods, a harder classification task is needed.

23

4.4 Further Experiments
4.4.1 Experiment 2 - Increasing the Number of Segments

The difficulty of the classification task grows as the number of segments increases. For the two
class problem, the growth is exponential as the number of ways of splitting n segments into 2
clusters is given by N(n,2)

N(n, 2) = 2n−1 − 1

New acoustic conditions were also included to make the classification more difficult and the
effect of changing the distance metric was investigated.
The new initial segments are now:

% # S1:a960521_Ted_Koppel_128818_130801_F0
% # S2:a960521_Ted_Koppel_133983_134965_F0
% # S3:a960521_Ted_Koppel_135021_136039_F0
% # S4:a960521_Ted_Koppel_107184_108304_FX
% # S5:a960521_Ted_Koppel_15093_17593_F2
% # S6:a960521_Ted_Koppel_173951_175700_F4
% # S7:a960521_a960521_janedoe001_48331_49159_F2
% # S8:a960521_a960521_janedoe001_51630_52187_F2
% # S9:a960521_a960521_janedoe001_52297_53064_F2
% # S10:a960521_a960521_janedoe001_49159_49942_FX

showing the desired clustering combination to be {1 2 3 4 5 6} and { 7 8 9 10}. The results
using the divergence (d18), Bhattacharyya distance (d17), arithmetic-harmonic sphericity (d1),
arithmetic-geometric sphericity (d2), log-likelihood ratio (d3) and log(A2/GH) (d15) are given
in table 12. More detailed results are given in appendix B.2.

Experiment 2 Experiment 3
Distance d18 d17 d1 d17 d3 d15 gender 3-speaker

split split
Concatenation Y Y Y Y Y Y Y
Centroid Y Y Y Y Y Y Y
Median Y Y Y Y Y Y Y
Nearest Neighbour (NN) Y Y Y Y Y Y Y Y
Furthest Neighbour (FN) Y Y Y Y Y Y Y Y
Mutual N Neighbour Y Y Y Y Y Y Y Y
Group Averaging Y Y Y Y Y Y Y Y
Lance Will. β = −0.5 (LW1) Y Y
Lance Will. β = −0.25 (LW2) Y
LW. Nearest Neigh (LW4)
LW. Furthest Neigh (LW8)
divisive method Y Y Y Y Y Y Y Y
Ward 2D (means) Y
Ward 3D (variances) Y

Table 12: Results for Expt 2: 10-segment 2 cluster, and Expt 3: 20-segment 3 cluster

24

4.4.2 Experiment 3 - Adding More Speakers

A three-speaker experiment was then run to investigate the success of the system when more
than two speakers were present.

The data used was

F0 F2 F4 FX
Ted Koppel 3 1 1 4
a960521 janedoe001 3 1
a960521 johndoe007 7

The results are presented in table 12 with more detailed results given in appendix B.3.

4.4.3 Experiment 4 - Short Segments

The success of the clustering methods using short segments was evaluated in order to inves-
tigate their robustness. Shorter segments do not have as much information available to make
up their representative matrix and hence are more vulnerable to the effects of noise. This ex-
periment used the first 100 frames (1 second) of speech from two Ted Koppel FX and two
a960521 janedoe001 F2 segments. The results are given in table 13.

Distance div bhat log(A/H) log (A/G) lhr log(AA/GH)
Concatenation
Centroid
Median
Nearest Neighbour
Furthest Neighbour Y Y Y Y Y
Mutual N Neighbour Y
Group Averaging Y Y Y Y Y Y
Lance Will. β = −0.5 Y Y Y Y Y
Lance Will. β = −0.25 Y Y Y Y
LW. Nearest Neigh Y Y Y Y Y
LW. Furthest Neigh Y Y Y Y
divisive method Y Y Y

Ward 2D (means) Y Ward 3D (variances) -

Table 13: Results for 4 short-segment 2 cluster case

4.5 Conclusions
The results show that all the clustering algorithms presented here work reasonably well on
small problems. The neighbourhood methods produced the best results in the 3-speaker case
whilst the Lance-Williams formulations worked well for the short segment case indicating they
might be more robust than several of the other methods.

Furthest neighbour clustering was more successful than nearest neighbour 9 but was itself just
out-performed by the computationally more expensive group-averaging scheme. Since the final
system to be built will involve clustering many more segments than presented here, computa-
tional complexity becomes an increasingly important factor in choosing the desired clustering
scheme.

9This result is consistent with that found in [10]

25

5 Scaling Up the System

5.1 Quantitative Evaluation of Clustering Performance
The previous section of this report evaluated the success of a clustering scheme in terms of
whether or not it could separate different speakers into distinct clusters. Whilst this is a good
criterion for the case of many segments with only a few distinct speakers, it does not necessarily
provide the best measure of performance in all cases. [12]

Consider a typical broadcast news show, there may be two or three anchor-men, each of whom
speak for a considerable time. Also in the show there may be upto thirty “extra” people,
(john/janedoes), taking part in interviews or discussions, who speak infrequently and only
for brief periods. Whilst it is obviously advantageous to pick out the anchor-men as separate
speakers, in some cases it is not necessary to distinguish between the johndoes and indeed
can be better not to.

The recognition rate of speaker-adaptive systems increases with the amount of adaptation data
available per speaker. If johndoe001 and johndoe002 have similar enough characteristics
to be clustered together then it may also be true that the estimated parameters for the speaker-
adaptive system for both of them are similar and hence the union of their segments would make
more adaptation data available and hence allow a better model to be built without loss of infor-
mation, thus increasing the performance of the system.

The introduction of a quantifiable measure is also necessary. The number of possible groupings
of n individuals into p clusters is: 10

N(n, p) =
1
p!

p
∑

i=1

(−1)p−i
(

p
i

)

in

Given a show with 60 initial segments from 5 speakers, 7.23x1039 possible clustering combi-
nations exist. The chance of any of the clustering algorithms getting the correct classification,
forgetting the problem of defining what that classification is, is extremely remote. Since all the
clusterings are likely to be slightly wrong, some measure of deciding which are “less wrong”
than the others is required. To remove the subjectivity from this decision, a quantitative mea-
sure is required.

For the case when the speaker-clusters are to be used in an MLLR-based speaker-adaptive recog-
nition system, the auxiliary function value produced after the adaptation has taken place may
provide the basis for such a measure. 11 This value represents the log likelihood of the data
per frame after the MLLR transformation, given a particular alignment. The figure of merit
for a given set of clusters can therefore be calculated by multiplying this likelihood value for
each cluster (auxi) by the number of frames in that cluster (fi) and then summing over all the
clusters.

FOM =
n

∑

i=1

auxi ∗ fi (3)

where n = the number of clusters

In summary, the figure of merit for a given clustering scheme is calculated by the following
process:

1. Cluster all the data into n clusters

2. Output the name of the clusters with their members to a text file

3. For each cluster:
10 from [15]
11This was suggested by Dr. M. Gales.

26

• perform MLLR estimation on all the data in that cluster
• Multiply the resulting auxiliary function by the total number of frames in the cluster

4. Sum this product for all clusters

This value is negative and the higher (less negative) it is, the “better” the clustering performs
under MLLR adaptation. It is postulated that maximising this value also corresponds to a good
speaker-split.

5.2 Testing the Figure of Merit
The figure of merit given in equation 3 was evaluated for various artificially-formed clusters
from the show a960610 to ascertain whether or not it was a good representation of speaker-
split.

The theoretical lower bound on performance was obtained by allocating all the data to one
cluster. Splitting any combination of data off from this group to form a new cluster would au-
tomatically match the data better and therefore produce a higher FOM. The upper bound was
also found by assigning each segment to its own cluster. Combining any of these clusters would
lose information and therefore produce a lower FOM.

All segments in 1 cluster (1122.86s) Lower Bound -7226296
1 segment per cluster Upper Bound -6982096

The results given in table 14 are for the case of two clusters. The clusters were formed by
splitting off all instances of segments whose name contained a certain string into one cluster
and assigning the remainder to cluster two. Since the segment names are of the form

a960610_Chris_Beary_22783_23378_F0.plp

this allows all the instances of one speaker to be easily isolated. 12 This was done for several dif-
ferent speakers and the male/female split was also implemented as it was expected to yield the
“best” possible performance for the two-cluster case. Splitting based on conditions, not speak-
ers, was also tried, to offer a set of values against which the speaker-splits could be compared.
The results are given in table 14 along with the length of the smallest cluster.

FOM Segments split off Smallest Cluster
-7223075 all F3 20.29s }
-7220145 all F4 29.52s }
-7218867 all F2 93.78s } condition splits
-7215061 all F0 and F1 177.79s }

increasing -7214153 all F0 249.25s }
performance -7211182 all F1 427.04s }

-7200651 all janedoes 207.23s }
⇓ -7195990 all john and janedoes 532.70s }

-7188574 Chris Beary 237.69s } speaker splits
-7186080 all johndoes 382.93s }
-7184229 Cokie Roberts 237.69s }

-7173364 all females 495.25s } male/female split

Table 14: FOMs for two-cluster splits of a960610 show

These results confirm:
12The shell-scripts handsplit and handsplit2 to accomplish this task are described in more detail in appendix I

along with all the other implementations discussed in this section.

27

• all the two-cluster splits have a FOM which lies between the lower and upper bound.

• the best two-cluster split occurs in the male/female case

• the FOM is higher for all instances of a speaker being separated than for all instances of a
condition being separated, suggesting that it is indeed a good measure of the separation
of speakers

• whilst the size of the samples naturally has an effect on the score, with more evenly sized
clusters generally producing better results, this is not as significant a factor as the “good-
ness” of split. This can be seen by noting that separating off the speech of Chris Beary
produces a considerably better FOM than separating F1 segments despite the latter hav-
ing much more evenly-sized clusters.

5.3 Implementation of the Clustering Methods
The results from section 4 show that different clustering strategies work best on different data.
For example, the Lance-Williams’ recurrence formula worked best for shorter segments, whilst
the neighbourhood methods were more successful on the 3-speaker test.

A program cluster.c 13 was written which, when given a distance matrix between the seg-
ments, produces a list of which cluster each segment has been assigned to. No information
about the original segments or the way the distance matrix was generated was included. This
allowed the implementation of the neighbourhood methods, the Lance-Williams’ recurrence
formulae and the divisive clustering scheme. The latter was not implemented as the top-down
approach is more computationally expensive than agglomerative methods whilst group aver-
aging and mutual nearest neighbour techniques were rejected on the grounds of being similar
to, but again more computationally expensive than the other neighbourhood schemes.

More details of the program can be found in appendix I. The user can chose between nearest
neighbour, furthest neighbour and all four types of Lance-Williams’ clustering using the -c and
-w options. The output file is specified using -o whilst the log file is set with -l and the trace
level with -T . The -f flag gives the name of the file containing the distance matrix and -n is
used to specify the number of desired clusters. -d can be used to change the form of the output
from the standard form to one which shows all the clustering decisions, or one which just lists
the members of each cluster.

5.4 Generation of the Distance Matrices
Two programs were written to generate an inter-segment distance matrix. The first, gendist.c
uses the MLLR transform matrices as the basic representation of the segments. Elementwise
Euclidean, city, and angular distances were allowed by setting the -d flag, along with the
Arithmetic-Harmonic Sphericity measure to act as a comparison. The -c option allows the
choice of coefficients to be made (statics, deltas and/or acceleration), whilst the -v flag speci-
fies whether the block-diagonal (A) matrix, the (b) offset vector, or both should be used in the
calculations.

The -f option is used to specify a list of files from which the A-matrices can be read. The iden-
tity of the speakers of these files used within the program is written to the speaker-ID file given
by the -s option. The resulting distance matrix is output to the file specified by -o , whilst the
log file is set with -l and trace level with -T as before.

The second program gendistcov.c kept the same -T -l -o and -s options, but changed the
-f option to specify the list of files from which the covariance information could be obtained. The
allowable distances (-d) were also altered to be in keeping with the results from section 2. The
user can chose between the divergence, log(A/H), log(A/G), the likelihood ratio, log(AA/GH),

13A library of i/o, numerical, vector and matrix functions were written in matlib.h and matlib.c , which were
used by all the programs discussed in this section. More details can be found in appendix I

28

A-log(G)-H or the Bhattacharyya distance measures. The -a option allows a list of A-matrices
to be given if adaptation of the covariances is required.

5.5 Running of the system
A flow-chart showing the implementation of the clustering system is given in figure 14. This
tracks the process from the initial segmentation right through to the final evaluation of the figure
of merit.

$config_file$showname segmented PLP data

filelist of matrices
$showname.files

matrices for
all segments

distance matrix
$showname.dist

generate distance matrix

speaker ID file
$showname.sp

allocated segments to clusters

cluster
−c −w clustering type

−d output format type

OPTIONS:

−n number of clusters

$showname.genlog
log file

Cluster allocations
$showname.clusout

log file
$showname.clulog

$showname.clust/$showname.scp
list of clustered files

produce representative matrices
for each segment

− for MLLR datatrans
− for covariancegetcov

OPTIONS:
−c coefficient type

−d distance type
−v matrix/offset

− for MLLRgendist
gendistcov− for covariance

perform MLLR analysis on new clusters log file
$showname.clout

mkclusters6

$showname
$out_direc

$in_direc
$log_filename

for the new clusters
LOG: auxiliary values

calculate FOM for clustering

getauxval

FIGURE OF MERIT

−a MLLR list for
 adaptation

LOG: auxiliary values
for each segment separately

Figure 14: Overall Implementation of the System

5.6 Preliminary Results
The results for forming two, three and four clusters on the a960610 show are illustrated in
figure 15. More detailed results can be found in appendices C, Dand E.

29

Since the FOM is expected to lie between -7173364 and -7226296 for ease of readability the score
reported is the (rounded) second to the fifth numbers in this value. This gives scores with a
possible range of 1734 to 2263 for the two-cluster case, where the minimum value now represents
the best score.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1700

1800

1900

2000

2100

2200

2300
Varying Clustering Algorithms, n=2, a960610

1−4 = Lance−Williams, 5=Nearest N, 6=Furthest N

cov average
cov best
b average
b best
A average
A best

1 2 3 4 5 6 7 8 9 10
1700

1800

1900

2000

2100

2200

2300
Varying Distance Metrics, n=2, a960610

1=d18,2=d2,3=d3,4=d15,5=d16,6=d17,7=d1,8=d19,9=d20,10=d21

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1700

1800

1900

2000

2100

2200

2300
Varying Clustering Algorithms, n=3, a960610

1−4 = Lance−Williams, 5=Nearest N, 6=Furthest N

cov average
cov best
b average
b best
A average
A best

1 2 3 4 5 6 7 8 9 10
1700

1800

1900

2000

2100

2200

2300
Varying Distance Metrics, n=3, a960610

1=d18,2=d2,3=d3,4=d15,5=d16,6=d17,7=d1,8=d19,9=d20,10=d21

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1500

1600

1700

1800

1900

2000

2100

2200

2300
Varying Clustering Algorithms, n=4, a960610

1−4 = Lance−Williams, 5=Nearest N, 6=Furthest N

cov average
cov best
b average
b best
A average
A best

1 2 3 4 5 6 7 8 9 10
1500

1600

1700

1800

1900

2000

2100

2200

2300
Varying Distance Metrics, n=4, a960610

1=d18,2=d2,3=d3,4=d15,5=d16,6=d17,7=d1,8=d19,9=d20,10=d21

Figure 15: Results for 2,3 and 4-cluster case on a960610 show

30

5.7 Conclusions
The results show that Lance-Williams clustering with β = −0.25 (LW2) or β = −0.5 (LW1) give
the best performance for this data. Nearest neighbour clustering performs the worst due to a
phenomenon called chaining. This describes the tendency to group together relatively distinct
clusters which have a series of intermediates between them. This makes the method very sen-
sitive to noise and thus causes poor performance.

Furthest neighbour clustering does not suffer from this problem and has also been shown to be
less sensitive to particular types of observation error [4, p71] than nearest neighbour. This is
reflected in better performance in the furthest neighbour case, especially for 4 clusters.

Both neighbourhood methods however, are not discriminative in that they only consider the
minimum of a certain distance between the groups. Lance-Williams formulae (LW1 and LW2),
take all the distances between all segments into account, joining clusters which are close to each
other but also further away from the remaining ones. This accounts for the generally better
performance of these methods.

The covariance-based methods generally have a better average performance than the MLLR-
based methods, although the best individual cases often came from the latter. Bearing in mind
the poor performance of the offset vector in the speaker-identification task in section 3 it is
perhaps surprising to note that it seems to perform better than the A-matrix case on this data.
However, when the numbers are examined, 14 it is apparent that adding delta coefficients to the
feature vector improves performance in the case of the covariance and offset-vector representa-
tions, but generally decreases performance for the A-matrix case. Since the average is calculated
across the different feature vectors this has the effect of relatively decreasing the performance
of the A-matrix case. It is also noted that adding acceleration coefficients does not produce an
improvement in any case.

There is little to chose between the distance measures for the covariance-based cases with d3
(A-log(G)-1) performing best, although the angular separation appears to have a slight advan-
tage in the MLLR-based methods.

The clustering decisions and final groupings for the best cases of 3 and 4 clusters are given in
figures 16 and 17 respectively.

The 3-cluster case originates from Lance-Williams clustering with β = −0.5 (LW 1) and the an-
gular separation (d21) on the static A-matrix. The tree structure shows the tendency of Lance-
Williams clustering to group the data into a few large plateaus i.e. to keep adding to the same
cluster on each clustering step. This is due to the discriminatory way the clustering works, with
a similar distance being obtained from all data in a group which is quite far from the rest of
the data. By noting when the clustering switches between plateaus an indication of when that
cluster has finished growing can be obtained. This shows that all the segments of that speaker
are likely to have been found. This can then be used to help determine the number of speakers
in the sound-track.

The 4-cluster case originates from furthest neighbour clustering using d3 (A-log(G)-1) on the
static covariance matrix. This shows no tendency to have plateaus since once a group has been
combined it is represented by its furthest distance to the other clusters and hence the focus of
clustering is likely to switch on each step. This makes determining a stopping criterion more
difficult than for the previous case.

Both these tree-diagrams illustrate the ability of the methods to pick out speakers, with only a
few segments being obviously mis-classified.

14see appendices C, D and E for details.

31

54
55
50

07
08
09
06
05
02

04
10

03
11
12
15
13
14
16
49
58

63
62
65
61
64
57
60
56
59
45

26
27

40

52

19
31
22
17

32
30
20

29

24
33

18
43

34

25

23

21
28

Cokie_R_F0
Cokie_R_F3
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F0
Cokie_R_F0
Cokie_R_F0
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F3
Cokie_R_F1

janedoe04_F1

53

48
51

01

35

39

41

36

johndoe02_FX
johndoe05_FX
johndoe07_FX
ABC_Ann_F3
janedoe04_F1
janedoe01_F2
janedoe03_F1
janedoe03_F1

37
24
38
46
44
47

janedoe03_F1
Cokie_R_F1

janedoe03_F1
janedoe04_F1
janedoe04_F1
janedoe04_F1

johndoe08_F2
johndoe08_F2
johndoe04_F2
johndoe06_F2

Chris_B_F0
Chris_B_F4
Chris_B_F1
Chris_B_F4
Chris_B_F0
Chris_B_F0
Chris_B_F0
Chris_B_F4
Chris_B_F4
Chris_B_F0
Chris_B_F1
Chris_B_F1
Chris_B_F1
Chris_B_F1
Chris_B_F0

johndoe03_F2
johndoe10_F2

johndoe12_F1
johndoe13_F1

johndoe13_F1
johndoe12_F1
johndoe13_F1
johndoe09_F2
johndoe12_F1
johndoe08_F1
johndoe11_F2
janedoe04_F1

Cokie_R_F1
Cokie_R_F1

janedoe03_F1

a960610
d21, A−matrix, statics

LW1 clustering

Figure 16: Clusters formed from A-matrix, Lance-Williams 1 and d21

32

07
09
10
05
06

13
14
15

11
12

02
08
03

04

16

56
59
49
58

62
63
61
65
64
60
45
57

50
54
55

01
53

39
40

36
43

41
46
38
44
47
35

23
25
20
29
32

17
22
21

18
26

24
34

30

37
42
28
33

19
31
48
51

52

Chris_B_F0
Chris_B_F1
Chris_B_F0
Chris_B_F0
Chris_B_F4
Chris_B_F4
Chris_B_F0
Chris_B_F1
Chris_B_F1
Chris_B_F1
Chris_B_F1
Chris_B_F0
Chris_B_F0
Chris_B_F4
Chris_B_F4

johndoe12_F1
johndoe13_F1
johndoe12_F1
johndoe13_F1
johndoe13_F1
johndoe12_F1
janedoe04_F1

johndoe09_F2
johndoe08_F1
johndoe11_F2
johndoe03_F2
johndoe10_F2
johndoe06_F2

janedoe03_F1FN: A−log(G)−1
statics covariance janedoe04_F1

janedoe03_F1
janedoe03_F1
janedoe04_F1
janedoe04_F1
janedoe03_F1
janedoe04_F1
janedoe04_F1
janedoe01_F2
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F0
Cokie_R_F0
Cokie_R_F1
Cokie_R_F0
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1
Cokie_R_F1

janedoe03_F1
janedoe04_F1
Cokie_R_F3
Cokie_R_F1
Cokie_R_F1
Cokie_R_F0
Cokie_R_F3

johndoe02_FX
johndoe05_FX

johndoe04_F2
johndoe08_F2
johndoe08_F2

ABC_Announcer_F3
johndoe07_FX

27

Figure 17: Clusters formed from Covariance Matrix, Furthest Neighbour and d3

33

6 Improving the System

6.1 Symmetrising A - Using AA’
The MLLR transform matrix is not symmetric. An option, -y was added to the gendist func-
tion to allow this A matrix to be symmetrised before generating the distance matrix. The allow-
able substitutions were (A + AT), (AAT) and (AT A).

Since most of the distance metrics implemented for this system work in an elementwise fashion,
(A + AT) was not tried as it would duplicate previous results. (AAT) was tried however, as this
represents the result of the transforming an identity covariance matrix.

Σy = AIAT

A summary of the results is given in table 15 and illustrated in figure 18. More detailed results
can be found in appendix F. These results indicate that performance can indeed be improved
slightly by replacing A by AAT before calculating the distance matrix.

1 1.5 2 2.5 3 3.5 4
1700

1800

1900

2000

2100

2200

2300
Varying Distance Metrics, n=2, a960610

1=d1,2=d19,3=d20,4=d21

A average
A best
AAt average
AAt best

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1700

1800

1900

2000

2100

2200

2300
Varying Clustering Algorithms, n=2, a960610

1−4 = Lance−Williams, 5=Nearest N, 6=Furthest N

A average
A best
AAt average
AAt best

Figure 18: Results for 2-cluster case on a960610 show using A and AA’

A-matrix AAT matrix
Coefficient Average Best Score Average Best Score
Statics alone (S) 2169.92 1866 (d21,LW1) 2139.01 1855 (d21,LW1)
Statics and Deltas (SD) 2186.59 2106 (d1,LW1) 2151.88 1947 (d1,LW1)
Statics, Deltas and Accels (SDA) 2181.84 2018 (d19,LW2) 2156.09 1935 (d21,LW1)

Clustering Type Average Best Score Average Best Score
Lance Williams, β=-0.5 (LW1) 2155.50 1866 (d21,S) 2112.42 1855 (d21,S)
Lance Williams, β=-0.25 (LW2) 2172.50 2018 (d19,SDA) 2113.25 1937 (d21,SDA)
Lance Williams, Nearest Neigh. (LW4) 2155.84 2117 (many) 2113.92 2032 (d20,SDA)
Lance Williams, Furthest Neigh. (LW8) 2177.67 2117 (many) 2151.42 2066 (many)
Nearest Neighbour (NN) 2175.58 2177 (d1,SDA) 2203.17 2194 (d1,S)
Furthest Neighbour (FN) 2209.58 2204 (many) 2199.75 2173 (d1,S)

Distance Metric Average Best Score Average Best Score
log(A/H) (d1) 2206.39 2106(LW1,SD) 2135.11 1947 (LW1,SD)
Euclidean Elementwise (d19) 2167.61 2018 (LW2,SDA) 2162.67 2029 (many)
City Elementwise (d20) 2183.22 2023 (LW2,S) 2161.22 2029 (LW2,SD)
Angular Elementwise (d21) 2160.56 1866 (LW1,S) 2135.28 1855 (LW1,S)

Table 15: Using AAT on the 2-cluster problem

34

6.2 Symmetrising the Distance Measures
It was noted in table 5 that although the distance measures d2 (log(A/G)), d3 (A-logG-1), d15
(log(AA/GH)) and d16 (A-logH-G) work well on classifying speakers, they are not symmetric.
This means that the order in which the segments are presented to the system will affect the re-
sults. This is not a desirable property. Furthermore, it has been shown [2] that symmetrisation
of these distance metrics increases performance on a speaker-identification task.

Several methods of symmetrising the distances are possible. In the linear domain, they use the
formula

dsym(X, Y) = ρmnd(X, Y) + ρnmd(Y, X)

ρmn + ρnm = 1

The simplest case is to average the values from the alternate orderings by using

ρmn = ρnm = 0.5

For example, when applied to the Arithmetic-Geometric mean this produces a value equivalent
to the Arithmetic-Harmonic mean

dAH(X, Y) = log(A/H) = log(A/G) + log(G/H) = dAG(X,Y) + dAG(Y, X)

More sophisticatedly, the values of ρ can be used to represent the weighting, or associated con-
fidence of the information in that segment. Such a scheme can use

ρmn = M
M+N scheme a

or
ρmn =

√
M√

M+
√

N
scheme b

Bimbot and Mathan report more success with scheme b than scheme a which in turn was more
successful than the simple averaging case. [2] They also report more efficient symmetrisation
by using

dsym(X, Y) = [d(X,Y)]ρmn [d(Y, X)]ρnm

This is roughly equivalent to performing the previous symmetrisation in the log domain.

A -x option was added to gendistcov to allow this symmetrising to be used when calculating
the distance matrix. A summary of the results are given in table 16 and illustrated in figure 19.
The full results are given in appendix G.

These results show that although a small gain in performance is obtained for the case of log(AA/GH)
and A-logG-H, the effect is not very significant, and symmetrisation of the distance metrics was
not thought to offer significant improvement over the original implementation.

Distance Metric Average Best Score
Original lina linb loga logb

Divergence (d18) 2137.67 2010 (LW2)
log(A/H) (d1) 2132.72 1931 (LW2,SD)
log(A/G) (d2) 2136.83 2133.0 2150.1 2144.7 2134.6 1912 (LW2,SD,nosym)
A-logG-1 (d3) 2105.50 2157.8 2155.0 2117.5 2163.3 1885 (LW1,SDA,nosym)
log(AA/GH) (d15) 2129.28 2111.4 2124.6 2106.5 2110.9 1902 (LW1,SDA,allsym)
A-logG-H (d16) 2144.06 2136.7 2154.3 2122.2 2116.3 1890 (LW2,SD,loga)
Bhat (d17) 2142.12 1956 (LW1,S)

Table 16: Results for Symmetrising the Distance Measures with 2 clusters

35

1 1.5 2 2.5 3 3.5 4 4.5 5
1700

1800

1900

2000

2100

2200

2300

1=nosym,2=lina,3=linb,4=loga,5=linb

Effect of Symmetrizing Covariance Data (2 clusters)

log(A/G)
A−logG−1
log(AA/GH)
A−logG−H

Figure 19: Results of Symmetrising Distance metrics

6.3 Adding Occupancy Counts
In the case where there is one extreme outlier in the data, many of the clustering algorithms
would retain this outlier as an individual and group all the other segments into one large clus-
ter. Although this may still technically form the “best” clusters, it obviously does not give good
speaker identification, and is unlikely to offer an auxiliary-function FOM much greater than the
case of a single cluster.

To overcome this problem, it is possible to use an occupancy count to set a minimum size of each
cluster. This has the added advantage of ensuring that each cluster has sufficient data to enable
satisfactory MLLR transforming subsequently.

The user specifies the maximum number of clusters which are acceptable. From this base level,
clustering is continued until all clusters have reached the minimum occupancy count. This
means that the exact number of clusters is not known in advance. This is also potentially an
advantage since the number of speakers in the soundtrack will in general be unknown.

If the same standard clustering procedure were used throughout, then for the case of one outlier
whose size was less than the minimum occupancy count, one large cluster would be formed.
This is obviously undesirable. To prevent this happening the way of combining clusters should
be changed once the base number of clusters has been reached. Rather than joining the clos-
est groups, the tactic switches to combining the smallest cluster to its closest neighbour. This
ensures the minimum occupancy count on all clusters will be reached relatively quickly. A
flowchart explaining this procedure is given in figure 20.

6.4 Non-hierarchical methods
All the clustering schemes discussed in this report are hierarchical. This means that exactly two
groups are joined on every step. The advantage of this method is that once the dendogram has
been generated, the partioning of an arbitrary number of clusters, n, can be extracted with no
further work. Also, by setting a threshold on the value used to combine clusters, a stopping
criterion can be implemented for the case where the number of speakers in the sound-track is
unknown.

Hierarchical methods however, suffer from the drawback that the groupings made are only lo-
cally optimal and the decisions are irreversible so once an incorrect decision has been made, a
full recovery is never possible.

An alternative to this approach is to use non-hierarchical methods, which specify the desired

36

is number
of clusters = $N ?

do all clusters contain more
data than minimum occupancy?

join smallest cluster to its
closest neighbour

segments

join closest 2 clusters

N

Y

N

output clusters

Y

stop

$N: max. number of clusters

Figure 20: Implementing a Minimum Occupancy Count

numbers of clusters beforehand. The clustering process then must be re-calculated for each dis-
tinct value of n, making it significantly more computationally expensive for the case when the
number of desired clusters is initially unknown, but the problem of irreversible local decisions
is irradicated.

One example of such an approach is K-means clustering [5, p218], where the desired number
of clusters are formed (for example at random initially) and subsequently the segments move
to the clusters with the closest centroid until a stable solution is reached. Whilst this is not
guaranteed to be a global maximum, it does not make hard local decisions at an early stage
which cannot be undone.

37

6.5 Maximisation of Auxiliary Function Directly
Further improvements could be made if the auxiliary function could be maximised directly.
One potential method of doing this is to cluster the data initially as before, generating the MLLR
transform for each cluster. The log likelihood of each segment is then calculated after the ap-
plication of each cluster transform in turn. The segment is then allocated to the cluster which
maximises this likelihood. This guarantees the auxiliary function will either increase or stay
constant during this step.

This process is repeated for all segments. If any of the segments have changed cluster, the
new MLLR transform is calculated, again guaranteeing a monotonic increase in the auxiliary
function, and the process is repeated. 15 This algorithm is illustrated in figure 21.

S2:A2
S2:A1 S3:A1 S4:A1

S3:A2 S4:A2
S5:A1S1:A1

S1:A2 S5:A2

STOP

S1 S2 S3 S4 S5

C 1 C 2

A 1 A 2

form MLLR transform for each cluster

cluster the segments together

m=arg{max{Sn : Am}}
Sn−>Cm where

assign each segment to transform
which maximises the auxiliary function

moved?
has any segment

N

Y

repeat if any segments have moved

for each segment for each transform
calculate the auxiliary function

Figure 21: Direct Maximisation of the Auxiliary Function

Unfortunately time constraints do not permit this algorithm to be implemented, but it is hoped
significant increase in performance could be made with this method.

15This algorithm was suggested by my supervisor, Phil Woodland

38

7 Conclusions
This project set out to investigate speaker tracking. It was shown that this could be broken
down into two problems, namely segmentation and labelling. The latter was the focus of this
work since given a successful labelling scheme, the segmentation problem is solvable by using
a sliding window over the data.

The labelling problem was shown to break down into three main areas. Firstly a mathematical
representation of each segment must be found which holds sufficient information to be able
to identify the speaker of the segment. Secondly some measure of “closeness” between these
representations must be defined. This is done by specifying a distance metric between the rep-
resentations of the segments. Thirdly a method of joining segments which are in some sense
closer to each other than to the remaining ones must be given. This is done with the implemen-
tation of a clustering algorithm.

A method of evaluating the success of the speaker tracking system has to be defined. Initially
experiments were run on a speaker identification problem. This assigned one segment in three
to be a test segment and the remainder to be references. Performance was then evaluated by
noting the proportion of the test set which was correctly identified.

Section 2 showed that the covariance matrix of the data in the segment was a sufficient math-
ematical representation of the speaker to allow correct identification, with over 90% success
in the case of the Gaussian divergence, the geometric-harmonic sphericity and the arithmetic-
harmonic sphericity distance metrics. By noting trends in the results a further distance metric,
log(A2/GH), was defined, which gave a 12% reduction in mis-classification rate.

Section 3 used the MLLR transform matrix as the basic segment representation. This again
proved to offer recognition rates of over 90% using the data-based transform for the case of
element-based distance metrics.

The ability to reduce the speaker-specific information in the data by applying the data-based
MLLR transform to the covariance of the segments was noted and the inverse-transform was
applied in an attempt to exaggerate speaker-dependent properties. This had little effect on the
results, giving the same maximum recognition rate as the un-transformed case.

Section 4 described several hierarchical clustering schemes. These methods either join (agglom-
erative) or split (divisive) segments in an irreversible binary fashion. Whilst not necessarily pro-
viding as good a performance as a fixed-number non-hierarchical scheme such as K-means,
they only have to be run once and allow a stopping criterion to be implemented for the case of
an unknown number of speakers in the soundtrack.

Several experiments were run with different numbers of segments with two and three speakers
on broadcast news data. These confirmed the ability of the methods to form clusters which
represented the speakers in the soundtrack.

Section 5 described the implementation of the clustering system on a larger scale, making use
of all the results from the previous sections. A new measure of performance was defined based
on the likelihood of the data after MLLR transformation given a particular alignment. This was
shown to be a good indication of speaker-split.

Several experiments were run with the different representations, different distance metrics and
different algorithms on the a960610 show of the 1996 Broadcast News database. These showed
the best performance was obtained with the discriminative Lance-Williams scheme, with fur-
thest neighbour clustering outperforming nearest neighbour due to the problems of chaining
with the latter.

Tree diagrams for the best case of three and four clusters were presented showing the ordering
of clustering. These clearly indicated the difference in strategy between Lance-Williams and fur-

39

thest neighbour clustering. The former tends to grow clusters into plateaus which can be used
to identify speaker changes, whereas the latter tends to group them in a more binary fashion.
The speaker groups could clearly be seen in both cases.

Some improvements to the system were presented in section 6. The symmetrisation of the
MLLR matrix was found to improve performance, whereas symmetrising the distance metrics
with covariance data did not make a significant difference.

More improvements were suggested which are left as further work to do on this project. These
include adding a minimum occupancy count and direct maximisation of the auxiliary function
figure of merit. Incorporating the idea of non-hierarchical schemes in making the clustering
decisions reversible by allowing them to move around, could also improve performance.

In summary, this project has demonstrated the validity of using covariance and MLLR matri-
ces as speaker-specific representations for the segments, shown the success of many clustering
methods on a small scale, implemented a large-scale clustering program which has been shown
to produce good speaker splits, defined a new figure of merit for evaluating clusters and sug-
gested ways of improving the overall performance of the system.

40

A Distance Measures Used

d1 = log
(

A
H

)

d2 = log
(

A
G

)

d3 = A− log(G)− 1

d4 =
1
D

D
∑

i=1

|λi − 1|

d5 =
1
D

D
∑

i=1

|min(λi,
1
λi

)− 1|

d6 = max
i=1:D

|max(λi,
1
λi

)− 1|

d7 = min
i=1:D

|min(λi,
1
λi

)− 1|

d8 =
1
D

D
∑

i=1

(λi −
1
λi

)2

d9 =

(

D
∏

i=1

|max(λi,
1
λi

)− 1|

)1/D

d10 =

(

D
∏

i=1

|min(λi,
1
λi

)− 1|

)1/D

d11 =
1
D

D
∑

i=1

λi = A

d12 = D

√

√

√

√

D
∏

i=1

λi = G

d13 = D

(

D
∑

i=1

1
λi

)−1

= H

d14 = log
(

A
GH

)

d15 = log
(

A2

GH

)

d16 = A− log(G)−H

d17 =
1
8
(µx − µy)T

(

X + Y
2

)−1

(µx − µy) +
1
2

ln
(

|(X + Y)/2|
|X| 12 |Y | 12

)

d18 =
1
2
tr(X−1Y + Y −1X − 2I) +

1
2
(µx − µy)T (X−1 + Y −1)(µx − µy)

d19 =
D

∑

i=1

D
∑

j=1

(xij − yij)2

d20 =
D

∑

i=1

D
∑

j=1

|xij − yij |

d21 = 1 −
∑D

i=1

∑D
j=1 xijyij

(

∑D
i=1

∑D
j=1 x2

ij
∑D

i=1

∑D
j=1 y2

ij

)1/2

d22 = σ+(Y −X)

41

d23 =
1
D

D
∑

i=1

(µyi − µxi)2

B Initial Results in Speaker Clustering

B.1 Experiment 1: Simple 2-Speaker Case

The segments for this experiment are: 1 2 3 Ted Koppel F0
4 5 6 a960521 janedoe001 F2

Statistical Merging

Concatenation Centroid Median
Merge min 2ndmin min 2ndmin min 2ndmin
13 0.22 0.26 0.22 0.26 0.22 0.26
123 0.23 0.47 0.23 0.47 0.23 0.47
45 0.47 0.50 0.47 0.50 0.47 0.50
456 0.43 0.63 0.42 0.62 0.41 0.64
123456 0.55 0.55 0.58

Neighbourhood Schemes

Nearest Furthest Mutual Group Average
merge min merge min merge min merge min 2ndmin
13 0.22 13 0.22 13 2 13 0.22 0.26
123 0.26 123 0.33 45 2 123 0.30 0.47
45 0.47 45 0.47 123 3 45 0.47 0.50
456 0.50 456 0.54 456 3 456 0.52 0.79
123456 0.70 123456 0.96 123456 6 123456 0.82

Ward’s method

2-D on means 3-D on covariances
merge min 2ndmin merge min 2ndmin
13 0.25 0.33 12 11.00 13.45
123 0.77 1.40 123 28.36 42.10
45 1.92 2.44 56 59.46 67.66
456 4.25 13.49 456 105.09 176.87
123456 20.35 123456 243.10

Lance-Williams’ Recurrence

Nearest Neighbour Furthest Neighbour β = −0.25 β = −0.5
merge max 2ndmax merge max 2ndmax merge max 2ndmax merge max 2ndmax
45 2.88 2.85 45 2.86 2.85 45 3.30 3.26 13 3.65 3.59
456 2.35 1.80 456 2.35 1.80 456 2.81 2.33 123 3.86 3.03
23 1.01 0.96 23 1.01 0.96 13 1.42 1.39 45 2.28 2.23
123 0.70 0.22 123 0.70 0.22 123 1.21 0.65 456 1.95 1.09

Polythetic divisive clustering

>> [group1,group2]=split_cluster(dist_ahm)
group1=

5 4 6
group2=

1 2 3

42

B.2 Experiment 2: Adding More Segments
The segments for this experiment are:

F0 FX F2 F4
Ted Koppel 1 2 3 4 5 6
a960521 janedoe001 10 7 8 9

The following classifications were the only ones which clustered the segments incorrectly. (Only
the smallest cluster is given for ease of readability).

Distance d18 d17 d1 d17 d3 d15
Lance Will. β = −0.5 1 2 3 4 5 5 2 3 5 6 3 5 2 3 5 6
Lance Will. β = −0.25 5 4 5 5 5
LW. Nearest Neigh 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 6 1 2 3 1 2 3 6
LW. Furthest Neigh 5 10 5 3 9 2 3 7 9 3 9

B.3 Experiment 3 : 3-Speaker Problem
The segments for this experiment are:

1 2 3 Ted Koppel F0
4 5 6 7 Ted Koppel FX
8 Ted Koppel F2
9 Ted Koppel F4
10 11 12 a960521 janedoe001 F2
13 a960521 janedoe001 FX
14 15 16 17 18 19 20 a960521 johndoe007 FX

Each clustering method is traced back to the point where an incorrect decision was made.

B.3.1 Statistical Merging Techniques

Concatenation, Centroid and Median Clustering
two groups 1 2 3 4 5 6 7 8 9 14 15 16 17 18 19 20/10 11 12 13
three groups 1 2 3 4 5 6 7 8 9 14 15 16 17 18 19 20/10 12 13/11
four groups 1 2 3 4 5 6 7 8 9 14 15 16 17 18 19 20/ 10 13/11/12
five groups 1 2 3 4 5 6 7 8 9/14 15 16 17 18 19 20/10 13/11/12

B.3.2 Neighbourhood Methods

Nearest, Furthest, Mutual and Group Average
two groups 1 2 3 4 5 6 7 8 9 14 15 16 17 18 19 20/10 11 12 13
three groups 1 2 3 4 5 6 7 8 9/14 15 16 17 18 19 20/10 11 12 13

B.3.3 Wards Method

Ward 2D (means)
two groups 1 2 3 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20/4 6
three groups 1 2 3 5 7 8 9 10 11/12 13 14 15 16 17 18 20/4 6
...
eight groups 1 2 3 5 7 8 9/14 15 16 17 18 19/4 6/10/11/12/13/20

Ward 3D (covariance)
two groups 1 2 3 4 5 6 7 9 /8 10 11 12 13 14 15 16 17 18 20
three groups 1 2 3 4 5 6 7 9/10 11 12 13 14 15 16 17 18 19 20/8
...
six 1 2 3 4 5 6 7 9/8/10 11 12 13/14 15 16 18/17 20/19

43

B.3.4 Lance Williams Recurrence

Lance Williams, β = −0.5
two groups 1 2 3 4 5 6 7 8 9 14 15 16 17 18 19 20/10 11 12 13
three groups 1 2 3 4 5 6 7 8 9 14 15 16 17 18 20/10 11 12 13/19
...
ten groups 1 2 3 4 5 6 7 8 9/10 11 12 13/19/16/14/15/17/18/20

Lance Williams, β = −0.25
two groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20/19
three groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 20/19/16
...
seventeen 10 11 12 13/19/16/14/15/18/17/20/2/4/6/7/5/9/1/3/8

Lance Williams, nearest neighbour
two groups 1 2 3 4 5 6 7 8 9 10 11 12 13 16 18 19 20/14 15 17
three groups 1 2 3 4 5 6 7 8 9 10 11 12 13 16 18 19 20/14 15/17
...
seventeen 10 11 12 13/14/15/17/18/16/19/20/2/1/5/4/6/7/9/3/8

Lance Williams, furthest neighbour
two groups 1 2 3 4 5 6 7 8 9 10 11 13 14 15 17 18 19 20/12 16
three groups 1 2 3 4 5 6 7 8 9 10 11 13 14 15 17 18 19 20/12/16
...
first merge 8 11

B.3.5 Polythetic Divisive Clustering

>> [splinter,rest]=split_cluster(dist_ahm)
splinter =

11 10 13 12 % these are janedoe001

for i=1:length(rest) % make new distance metric of
for j=1:length(rest) % largest cluster

new_dist(i,j)=dist_ahm(rest(i),rest(j));
end

end

>> [splinter,rest]=split_cluster(new_dist)
splinter =

8 1 3 9 5 2 7 4 6 % Ted_Koppel

rest =
10 11 12 13 14 15 16 % johndoe007

44

C Results for Making 2 clusters on a960610 show

C.1 Results on Covariance Data
STATICS ALONE
clustering type Div. log(A/H) log(A/G) A-logG-1 log(AA/GH) A-logG-H Bhat. FOM
LanceW 1 2172 2127 2087 2052 2209 2093 1956 2099.43
LanceW 2 2140 2107 2107 2028 2107 2195 2117 2114.43
LanceW 4 2066 2099 2099 2147 2099 2099 2178 2112.43
LanceW 8 2156 2099 2099 2147 2099 2099 2178 2125.29
NN 2204 2204 2204 2194 2204 2204 2204 2202.57
FN 2204 2194 2194 2194 2194 2204 2204 2198.29
FOM 2157.00 2138.33 2131.67 2127.00 2152.00 2149.00 2139.50 2142.07
STATICS AND DELTAS
LanceW 1 2171 2078 2164 2064 2151 2174 2009 2115.86
LanceW 2 2010 1931 1912 2009 1931 1998 2217 2001.14
LanceW 4 2066 2099 2099 2066 2099 2099 2066 2084.86
LanceW 8 2156 2099 2099 2066 2099 2099 2117 2105.00
NN 2204 2204 2228 2228 2204 2204 2228 2214.29
FN 2204 2194 2194 2194 2194 2204 2204 2198.29
FOM 2135.17 2100.83 2116.00 2104.50 2113.00 2129.67 2140.17 2119.91
STATICS, DELTAS AND ACCELS
LanceW 1 2085 2215 2206 1885 2156 2216 2159 2131.71
LanceW 2 2010 1985 2151 2088 1985 2109 1997 2046.43
LanceW 4 2066 2178 2099 2099 2099 2099 2066 2100.86
LanceW 8 2156 2178 2099 2099 2099 2099 2223 2136.14
NN 2204 2204 2228 2145 2204 2204 2228 2202.43
FN 2204 2194 2194 2194 2194 2194 2204 2196.86
FOM 2120.83 2159.00 2162.83 2085.00 2122.83 2153.50 2146.17 2135.74

C.2 Results from MLLR transform Matrices
STATICS Offset Vector Using Block Diagonal A only

clustering type Euclid City Angle FOM Euclid City Angle AHM FOM
LanceW 1 2121 2237 2137 2165.00 2175 2171 1866 2189 2100.25
LanceW 2 2195 2090 2122 2135.67 2208 2023 2209 2220 2165.00
LanceW 4 2153 2122 2191 2155.33 2117 2153 2117 2222 2152.25
LanceW 8 2153 2152 2191 2165.33 2117 2240 2117 2222 2174.00
NN 2236 2236 2185 2219.00 2204 2204 2204 2239 2212.75
FN 2238 2236 2200 2224.67 2204 2204 2228 2225 2215.25
FOM 2182.67 2178.83 2171.00 2177.50 2170.83 2165.83 2123.50 2219.50 2169.92
STATICS AND DELTAS
LanceW 1 2222 2012 1881 2038.33 2221 2204 2176 2106 2176.75
LanceW 2 2025 2016 1979 2006.67 2230 2152 2208 2218 2202.00
LanceW 4 2154 1927 2151 2077.33 2117 2172 2117 2232 2159.50
LanceW 8 2154 2135 2201 2163.33 2117 2205 2117 2232 2167.75
NN 2236 2236 2222 2231.33 2204 2204 2204 2215 2206.75
FN 2236 2236 2145 2205.67 2204 2204 2204 2215 2206.75
FOM 2171.17 2093.67 2096.50 2120.45 2182.17 2190.17 2171.00 2203.00 2186.59
STATICS, DELTAS AND ACCELS
LanceW 1 2241 2218 2114 2191.00 2196 2167 2229 2166 2189.50
LanceW 2 2025 2188 1869 2027.33 2018 2208 2206 2170 2150.50
LanceW 4 2153 1973 2151 2092.33 2117 2140 2140 2226 2155.76
LanceW 8 2008 1973 2057 2012.67 2160 2239 2140 2226 2191.25
NN 2236 2236 2222 2231.33 2204 2204 2204 2177 2197.25
FN 2236 2236 2145 2205.67 2204 2204 2204 2215 2206.75
FOM 2149.83 2137.33 2093.00 2126.72 2149.83 2193.67 2187.17 2196.67 2181.84

45

D Results for Making 3 clusters on a960610 show

D.1 Results on Covariance Data
STATICS ALONE
clustering type Div. log(A/H) log(A/G) A-logG-1 log(AA/GH) A-logG-H Bhat. FOM
LanceW 1 1854 2102 2040 1991 2003 1987 1931 1986.86
LanceW 2 2096 2025 2025 2014 2025 2025 2072 2040.29
LanceW 4 2043 2077 2076 2135 2076 2076 2168 2093.00
LanceW 8 2142 2077 2076 2135 2076 2076 2168 2107.14
NN 2169 2169 2169 2169 2169 2169 2169 2169.00
FN 2144 2169 2100 2100 2104 2109 2144 2124.29
FOM 2074.67 2103.17 2081.00 2075.50 2076.33 2073.67 2108.67 2086.76
STATICS AND DELTAS
LanceW 1 1887 2041 2140 2044 1975 2158 1941 2026.57
LanceW 2 1993 1916 1884 1991 1918 1889 2011 1943.14
LanceW 4 2043 2076 2076 2043 2076 2076 2043 2061.86
LanceW 8 2142 2076 2076 2043 2076 2076 2104 2084.71
NN 2169 2114 2116 2116 2114 2114 2169 2130.29
FN 2144 2169 2103 2100 2104 2114 2144 2125.43
FOM 2063.00 2065.33 2065.83 2056.17 2043.83 2071.17 2068.67 2062.00
STATICS, DELTAS AND ACCELS
LanceW 1 1942 2110 2160 1864 2111 2198 2008 2056.14
LanceW 2 1993 1968 1992 2009 1968 2095 1969 1999.14
LanceW 4 2043 2168 2076 2076 2077 2076 2043 2079.86
LanceW 8 2142 2168 2076 2076 2076 2076 2211 2117.86
NN 2169 2114 2116 2116 2114 2114 2169 2130.29
FN 2144 2104 2103 2100 2103 2104 2144 2114.57
FOM 2072.17 2105.33 2087.17 2040.17 2074.83 2110.50 2090.67 2082.98

D.2 Results from MLLR transform Matrices
STATICS Offset Vector Using Block Diagonal A only

clustering type Euclid City Angle FOM Euclid City Angle AHM FOM
LanceW 1 1823 2208 2118 2049.67 2138 2079 1750 2151 2029.50
LanceW 2 2128 2058 2101 2095.67 2129 2007 2129 2194 2114.75
LanceW 4 2107 2101 2171 2126.33 2104 2141 2104 2197 2136.50
LanceW 8 2107 2107 2171 2128.33 2104 2219 2104 2197 2156.00
NN 2211 2211 2153 2191.67 2169 2169 2169 2191 2174.50
FN 2211 2211 2159 2193.67 2169 2169 2138 2201 2169.25
FOM 2097.83 2149.33 2145.5 2130.89 2135.50 2130.67 2065.67 2188.50 2130.09
STATICS AND DELTAS
LanceW 1 1929 1923 1816 1889.33 2111 2014 2149 2093 2091.75
LanceW 2 2004 1973 1958 1978.33 2035 2079 2172 2110 2099.00
LanceW 4 2107 1913 2136 2052.00 2104 2160 2104 2203 2142.75
LanceW 8 2107 2121 2188 2138.67 2104 2196 2104 2203 2151.75
NN 2211 2211 2187 2203.00 2169 2169 2169 2126 2158.25
FN 2211 2211 2104 2175.33 2169 2114 2114 2126 2130.75
FOM 2094.83 2058.67 2064.83 2072.78 2115.33 2122.00 2135.33 2143.50 2129.04
STATICS, DELTAS AND ACCELS
LanceW 1 2213 2096 2090 2133.00 2159 2113 2096 2114 2120.50
LanceW 2 2004 2135 1851 1996.67 2002 2066 2113 2138 2079.75
LanceW 4 2076 1961 2136 2057.67 2104 2126 2126 2197 2138.25
LanceW 8 1992 1961 2037 1996.67 2147 2198 2126 2197 2167.00
NN 2211 2211 2127 2183.00 2169 2144 2169 2126 2152.00
FN 2211 2211 2103 2175.00 2114 2114 2114 2126 2117.00
FOM 2117.83 2095.83 2057.33 2090.33 2115.83 2126.83 2196.67 2149.67 2129.08

46

E Results for Making 4 clusters on a960610 show

E.1 Results on Covariance Data
STATICS ALONE
clustering type Div. log(A/H) log(A/G) A-logG-1 log(AA/GH) A-logG-H Bhat. FOM
LanceW 1 1842 1964 2017 1971 1990 1964 1910 1951.14
LanceW 2 2058 2012 2011 1964 2011 2012 2058 2018.00
LanceW 4 2033 2066 2066 2125 2066 2066 2033 2065.00
LanceW 8 2090 2066 2066 2125 2066 2066 2066 2077.86
NN 2109 2079 2078 2079 2079 2079 2109 2087.43
FN 2109 2075 2008 1590 2079 2075 2109 2006.43
FOM 2040.17 2043.67 2041.00 1975.67 2048.50 2043.67 2047.50 2034.31
STATICS AND DELTAS
LanceW 1 1844 2018 2121 1730 1960 2144 1921 1962.57
LanceW 2 1979 1885 1864 1978 1903 1874 1992 1925.00
LanceW 4 2033 2066 2066 2033 2066 2066 2033 2051.86
LanceW 8 2090 2066 2066 2033 2066 2066 2090 2068.14
NN 2109 2079 2079 2079 2079 2079 2109 2087.57
FN 2109 2075 2007 2059 2079 2054 2109 2070.29
FOM 2027.33 2031.50 2033.83 1985.33 2025.50 2047.17 2042.33 2027.57
STATICS, DELTAS AND ACCELS
LanceW 1 1918 2082 2146 1845 2089 2175 1967 2031.71
LanceW 2 1979 1954 1951 1995 1954 1948 1955 1962.29
LanceW 4 2033 2066 2066 2066 2066 2066 2033 2056.57
LanceW 8 2090 2066 2066 2066 2066 2066 2182 2086.00
NN 2109 2079 2079 2079 2079 2079 2109 2087.57
FN 2109 2008 2008 2008 2008 2079 2109 2047.00
FOM 2039.67 2042.50 2052.67 2009.83 2043.67 2068.83 2059.17 2045.19

E.2 Results from MLLR transform Matrices
STATICS Offset Vector Using Block Diagonal A only

clustering type Euclid City Angle FOM Euclid City Angle AHM FOM
LanceW 1 1629 2082 2092 1934.33 2121 2059 1625 2101 1976.52
LanceW 2 2038 1955 2087 2026.67 2098 1995 2098 2174 2091.25
LanceW 4 2094 2087 2155 2112.00 2090 2130 2090 2166 2119.00
LanceW 8 2094 2094 2155 2114.33 2090 2202 2090 2166 2137.00
NN 2188 2188 2128 2168.00 2079 2079 2079 2100 2084.25
FN 2175 2188 2064 2142.33 2079 2079 2079 2172 2102.25
FOM 2036.33 2099.00 2113.50 2082.94 2092.83 2090.67 2010.17 2146.50 2085.04
STATICS AND DELTAS
LanceW 1 1902 1902 1794 1866.00 2095 1961 2100 2062 2054.50
LanceW 2 1979 1868 1921 1922.67 2017 2007 1995 2088 2026.75
LanceW 4 2017 1899 2122 2012.67 2090 2000 2090 2168 2087.00
LanceW 8 2016 2039 2174 2076.33 2090 2179 2090 2169 2132.00
NN 2188 2188 2128 2168.00 2109 2109 2079 2075 2093.00
FN 2142 2187 1651 1993.33 2079 2079 2079 2061 2074.50
FOM 2040.67 2013.83 1965.00 2006.50 2080.00 2055.83 2072.17 2103.83 2077.96
STATICS, DELTAS AND ACCELS
LanceW 1 2195 1841 2059 2031.67 2111 2081 2061 2083 2084.00
LanceW 2 1979 2119 1836 1978.00 1988 2052 2039 2112 2047.75
LanceW 4 2065 1942 2122 2043.00 2090 2058 2090 2168 2101.75
LanceW 8 1978 1942 2022 1980.67 2137 2135 2090 2168 2132.50
NN 2188 2188 2097 2157.67 2109 2109 2079 2075 2093.00
FN 2142 2188 2043 2124.33 2079 2079 2079 2079 2079.00
FOM 2091.17 2036.67 2029.83 2052.56 2085.67 2085.67 2073.00 2114.17 2089.63

47

F Results from using AAT with 2 clusters
STATICS ALONE

Distance
clustering type Euclid City Angle AHM FOM
LanceW 1 2029 2041 1855 2231 2046.50
LanceW 2 2091 2102 2230 2041 2116.00
LanceW 4 2160 2197 2134 2066 2139.25
LanceW 8 2153 2195 2134 2066 2137.00
NN 2204 2204 2204 2194 2201.50
FN 2204 2204 2194 2173 2193.75
FOM 2140.17 2157.17 2125.17 2128.50 2139.01

STATICS AND DELTAS

Distance
clustering type Euclid City Angle AHM FOM
LanceW 1 2236 2183 2206 1947 2143.00
LanceW 2 2029 2029 2230 2017 2076.25
LanceW 4 2066 2122 2140 2178 2126.50
LanceW 8 2117 2205 2140 2178 2160.00
NN 2204 2204 2204 2204 2204.00
FN 2204 2204 2204 2194 2201.50
FOM 2142.67 2157.83 2187.33 2119.67 2151.88

STATICS, DELTAS AND ACCELS

Distance
clustering type Euclid City Angle AHM FOM
LanceW 1 2231 2231 1935 2194 2147.75
LanceW 2 2298 2146 1937 2209 2147.50
LanceW 4 2066 2032 2140 2066 2076.00
LanceW 8 2228 2195 2140 2066 2157.25
NN 2204 2204 2204 2204 2204.00
FN 2204 2204 2204 2204 2204.00
FOM 2205.17 2168.67 2093.33 2157.17 2156.09

48

49

G Results from Symmetric Distance Measures on Covariances

ST
A

TI
C

S
A

LO
N

E
D

is
ta

nc
e

FO
M

lo
g(

A
/G

)
A

-lo
gG

-1
lo

g(
A

A
/G

H
)

A
-lo

gG
-H

lin
a

lin
b

lo
ga

lo
gb

lin
a

lin
b

lo
ga

lo
gb

lin
a

lin
b

lo
ga

lo
gb

lin
a

lin
b

lo
ga

lo
gb

LW
1

20
89

20
89

22
09

22
09

22
04

22
09

19
93

22
04

22
09

22
09

21
27

21
27

20
63

18
91

21
48

18
91

21
16

.9
LW

2
21

07
21

07
21

07
21

07
21

07
21

07
21

07
21

07
21

07
21

07
21

07
21

07
18

89
21

05
19

89
21

47
20

88
.4

LW
4

20
99

21
78

20
99

20
99

20
99

20
99

21
78

21
48

20
99

20
99

20
99

20
99

21
48

21
55

21
48

20
95

21
21

.3
LW

8
20

99
21

78
20

99
20

99
21

30
20

99
20

99
21

48
20

99
20

99
20

99
20

99
21

48
21

55
21

48
20

93
21

18
.2

N
N

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

21
94

21
94

21
94

21
94

22
01

.5
FN

22
04

22
04

21
94

21
94

22
04

22
04

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
96

.5
FO

M
21

33
.7

21
60

.0
21

55
.3

21
52

.0
21

58
.0

21
53

.7
21

29
.2

21
67

.5
21

52
.0

21
52

.0
21

38
.3

21
38

.3
21

06
.0

21
15

.7
21

36
.8

21
02

.3
21

40
.7

ST
A

TI
C

S
A

N
D

D
EL

TA
S

D
is

ta
nc

e
FO

M
lo

g(
A

/G
)

A
-lo

gG
-1

)
lo

g(
A

A
/G

H
)

A
-lo

gG
-H

)
lin

a
lin

b
lo

ga
lo

gb
lin

a
lin

b
lo

ga
lo

gb
lin

a
lin

b
lo

ga
lo

gb
lin

a
lin

b
lo

ga
lo

gb
LW

1
22

15
21

50
20

78
20

78
21

64
21

92
20

03
21

52
20

78
20

78
20

78
20

78
21

28
21

42
21

28
21

17
21

16
.2

LW
2

20
26

20
27

20
26

20
26

21
44

20
81

20
09

22
08

19
37

19
37

19
31

19
31

20
98

20
79

18
90

20
28

20
23

.6
LW

4
20

99
21

78
20

99
20

99
20

99
20

99
20

99
20

99
20

99
21

78
20

99
20

99
21

40
21

60
20

66
20

86
21

12
.4

LW
8

20
99

21
78

20
99

20
99

20
99

20
99

21
30

20
99

20
99

21
78

20
99

20
99

21
40

21
60

20
66

20
86

21
14

.3
N

N
22

04
22

04
22

04
22

04
22

04
22

04
22

04
22

04
22

04
22

04
22

04
22

04
21

94
21

94
21

94
21

94
22

01
.5

FN
22

04
22

04
22

04
21

94
22

04
22

04
21

94
21

94
21

94
21

94
21

94
21

94
21

94
21

94
21

94
21

94
21

97
.1

FO
M

21
41

.2
21

56
.8

21
18

.3
21

16
.7

21
52

.3
21

46
.5

21
06

.5
21

59
.3

21
01

.8
21

28
.2

21
00

.8
21

00
.8

21
49

.0
21

54
.8

20
89

.7
21

17
.5

21
27

.5
ST

A
TI

C
S

D
EL

TA
S

A
N

D
A

C
C

EL
S

D
is

ta
nc

e
FO

M
lo

g(
A

/G
)

A
-lo

gG
-1

lo
g(

A
A

/G
H

)
A

-lo
gG

-H
)

lin
a

lin
b

lo
ga

lo
gb

lin
a

lin
b

lo
ga

lo
gb

lin
a

lin
b

lo
ga

lo
gb

lin
a

lin
b

lo
ga

lo
gb

LW
1

21
59

22
15

22
19

22
25

22
31

22
31

19
54

22
31

19
02

19
02

19
02

19
02

22
32

22
32

20
94

21
35

21
10

.4
LW

2
19

90
19

90
19

90
19

90
21

51
21

61
21

51
21

51
19

85
19

85
19

85
19

85
21

79
21

79
22

09
21

03
20

74
.0

LW
4

20
99

20
99

21
78

20
99

20
99

20
99

20
99

20
99

20
99

20
99

20
99

20
99

20
66

21
78

20
99

20
99

21
06

.8
LW

8
20

99
20

99
21

78
20

99
20

99
20

99
20

99
20

99
20

99
21

78
20

99
21

78
20

66
21

78
20

99
20

99
21

16
.7

N
N

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

22
04

21
94

21
94

21
45

21
45

21
95

.4
FN

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

21
94

FO
M

21
24

.2
21

33
.5

21
60

.5
21

35
.2

21
63

.0
21

64
.7

21
16

.8
21

63
.0

20
80

.5
20

93
.7

20
80

.5
20

93
.7

21
55

.2
21

92
.5

21
40

.0
21

29
.2

21
32

.9

50

H Data Used
The frequency of occurrence of each speaker and condition in all the shows used for this project
is given in the tables.

a960521 a960528
speaker name F0 F1 F2 F3 F4 FX speaker name F0 F1 F2 F3 F4 FX
ABC NLI Announcer 1 ABC NLI Announcer 1
Ted Koppel 12 4 1 4 12 Dave Marish 6 7
a960521 janedoe001 3 1 Ted Koppel 6 16 1
a960521 janedoe002 1 a960528 janedoe002 6
a960521 janedoe003 1 a960528 johndoe001 1
a960521 johndoe002 6 a960528 johndoe002 1
a960521 johndoe003 1 a960528 johndoe003 1
a960521 johndoe004 1 a960528 johndoe004 1
a960521 johndoe005 3 1 a960528 johndoe005 1
a960521 johndoe006 1 a960528 johndoe006 1
a960521 johndoe007 9 a960528 johndoe007 2
a960521 johndoe008 5 a960528 johndoe008 1
a960521 johndoe009 1 a960528 johndoe009 1
a960522 a960528 johndoe010 2
ABC NLI Announcer 1 1 a960528 johndoe011 1
Ted Koppel 8 1 1 14 3 a960528 johndoe012 1
a960522 janedoe003 1 a960528 johndoe014 4
a960522 janedoe004 1 a960528 johndoe015 8
a960522 janedoe005 1 a960604
a960522 janedoe006 1 Michael Gillen 7 24 1
a960522 janedoe008 1 Ted Koppel 5 2 3 1
a960522 janedoe009 1 a960604 anon001 1
a960522 janedoe010 1 a960604 anon003 1
a960522 johndoe001 1 a960604 anon004 1 5
a960522 johndoe003 1 a960604 anon007 1
a960522 johndoe004 1 a960604 anon008 1
a960522 johndoe007 2 1 a960604 anon010 1
a960522 johndoe008 2 a960604 anon011 4 7
a960522 johndoe009 1 a960604 anon012 2
a960522 johndoe010 1 a960604 anon013 2 2
a960522 johndoe011 1 a960604 anon015 1
a960522 johndoe013 1 a960604 anon016 3 3
a960522 johndoe014 1 a960604 anon017 7
a960522 johndoe015 2 a960625
a960522 johndoe016 1 Adalah Al-Jabah 10
a960522 johndoe017 1 Bill Clinton 2 2
a960522 johndoe018 1 Britt Hume 3
a960522 johndoe019 1 David Baldwin 6
a960522 johndoe020 2 David Ensor 3
a960522 johndoe021 1 Phil Wilcox 2
a960522 johndoe022 1 Ray Madis 4
a960522 johndoe023 1 Secretary Perry 1 1
a960522 johndoe024 1 1 Ted Koppel 23 2 1 3
a960522 johndoe025 1 a960625 anon001 1
a960522 johndoe026 1 a960625 anon007 1
a960522 johndoe028 1

51

a960610 a960626
speaker name F0 F1 F2 F3 F4 FX speaker name F0 F1 F2 F3 F4 FX
ABC NLI Announcer 1 ABC NLI Announcer 1
Chris Beary 6 5 4 Chris Beary 2 11
Cokie Roberts 4 12 2 Chris Wallace 9 5 1 1
a960610 janedoe001 1 Michelle McQueen 3 5
a960610 janedoe003 5 a960626 anon002 1
a960610 janedoe004 7 a960626 anon003 1
a960610 johndoe002 1 a960626 anon005 1
a960610 johndoe003 1 a960626 anon006 1
a960610 johndoe004 1 a960626 anon007 4
a960610 johndoe005 1 a960626 anon008 2
a960610 johndoe006 1 a960626 anon014 1
a960610 johndoe007 1 a960626 anon015 1
a960610 johndoe008 1 2 a960626 anon016 1
a960610 johndoe009 1 a960626 anon017 1 1
a960610 johndoe010 1 a960626 anon018 1
a960610 johndoe011 1 a960626 anon018 1
a960610 johndoe011 1 a960626 anon021 1
a960610 johndoe012 3 a960626 anon024 3
a960610 johndoe013 3 a960626 anon025 1
a960621 a960626 anon026 1
ABC NLI Announcer 2 a960626 anon027 1
Mike Von Fremd 3 1 6 a960626 anon028 1
Ted Koppel 4 11 1 1 a960626 anon029 3
a960621 janedoe002 1 a960626 anon031 1
a960621 janedoe003 1 a960626 anon036 1 1
a960621 johndoe001 1 1 a960626 anon038 1
a960621 johndoe002 7 1 a960626 anon039 1
a960621 johndoe004 3 a960626 anon040 4 1
a960621 johndoe005 3
a960621 johndoe006 4
a960624
Brian Ross 3 1 17 2 Chris Wallace 3 13 1 1 1
Mary Schiavo 2 a960624 anon001 1 1
a960624 anon002 3 a960624 anon003 2 1
a960624 anon005 1 a960624 anon006 4 2
a960624 anon009 1 a960624 anon014 7
a960624 anon015 7

52

I Software Written
A fuller listing of the main software written for this project is submitted in a separate volume.

I.1 Classification of Testers and Reference Speakers
I.1.1 tcsh scripts

dostuff $showname

Generates all the covariance and A-matrix data for all of the shows. Writes the information into
a MATLAB-readable form. Calls getcov, newcovtomat, datatrans and atomat

getcov $showname

Makes an .scp file of all the segments in the show of more than 5 seconds duration. Runs
HCompV -min HTK[18] to generate the inverse-covariance and mean for each segment. Stores
this information in a model file for each segment Lists all model files into $showname.files

datatrans $showname

As above, but runs HERest in HTK to generate the MLLR transpose for each segment. The
config file set in the script determines whether model-based or data-based transforms are gen-
erated.

I.1.2 C programs

USAGE: newcovtomat [OPTIONS] -f filelist

Option Default

-l fn Write debugging info to file fn stdout
-o fn Write matlab output to file fn stdout
-s fn Write Speaker IDs to file fn stdout
-T N Set Trace Level to N 3
-a fn filelist of A matrices for adapting NONE
-i Try using inverse A-adaptation FALSE

Reads in the upper triangular half of the inverse covariance matrix given in the segment files
listed in filelist . Assigns every third one to be a test segment and the others to be references.

If the -a option is set, the transpose of the A-matrices in the following filelist are read in for
adaptation, with the -i flag inverse adaptation is used instead.

Writes the identities of the speakers of the reference/test segments to the file specified by -s
and writes the covariance, inverse of the covariance, mean and number of frames of each seg-
ment in MATLAB-readable form to the file specified by -o .

Allows different amounts of debugging information to be reported using -T and written to the
log file specified by -l .

53

USAGE: atomat [OPTIONS] -f filelist

Option Default

-l fn Write debugging info to file fn stdout
-o fn Write matlab output to file fn stdout
-s fn Write Speaker IDs to file fn stdout
-T N Set Trace Level to N 3
-y N Type of Symmetrizing to use 1

1=none, 2=A+A’, 4=AA’, 8=A’A

Reads in the transpose of the A-matrix from the segment files listed in filelist . Assigns ev-
ery third one to be a test segment and the others to be references.

Allows the transpose of the A-matrix to be replaced by A+A’, AA’ or A’A if having a symmetri-
cal matrix is important, by setting the -y option.

Writes the (transposed) A-matrix, the inverse of this and the offset vector of each segment to the
file specified by -o in MATLAB-readable format.

-s,-T and -l options are as for newcovtomat .

I.1.3 MATLAB Programs

multi off1.m

Reads in the covariance or A-matrix data. Calculates distance matrices between all the testers
and all the reference speakers for all the distances given in appendix A.

Calls show class to find the minimum distance in the matrices and assigns each tester to each
closest reference speaker. Writes the output to an ascii file

show class.m

Given a tester/reference distance matrix, finds the minimum and second minimum value, clas-
sifies the tester as the closest reference speaker and produces an associated confidence of the
log of the ratio of these two values.

bhatrow.m, div2row.m

Finds the Bhattacharyya distance and Gaussian divergence between two distributions assum-
ing the mean is a row vector.

I.1.4 PERL Scripts

evaldist.prl

Takes the speaker ID file generated from dostuff and the classification file generated from
multi off1.m and calculates how many of the classifications for each distance metric have
been assigned to the correct speaker and/or background condition.

Counts the number of unseen speakers and conditions. Calculates the percentage accuracy
based on the ratio of the number of correct classifications to the number of segments which
could have been correctly classified from the reference set. Outputs the results as a LATEXtable.

54

I.2 Simple Clustering Procedures
I.2.1 Distance Measures

aagh(cov1,invcov1,cov2,invcov2) log(AA/GH)
agm(invcov1,cov2) log(A/G)
ahm(cov1,invcov1,cov2,invcov2) log(A/H)
lhr(invcov1,cov2) A-log(G)-1
bhat(mean1,cov1,mean2,cov2) Bhattacharyya
div2(mean1,cov1,invcov1,mean2,cov2,invcov2) Divergence

I.2.2 Combining distributions

[num,mu,cov] =concat stats(n1,mu1,S1,n2,mu2,S2) for Concatenation Clustering
[num,mu,cov] =weight stats(n1,mu1,S1,n2,mu2,S2) for Centroid Clustering
[num,mu,cov] =average stats(n1,mu1,S1,n2,mu2,S2) for Median Clustering
[newdist] =lw comb(distki,distkj,distij) Calculate Lance-Williams Distance

I.2.3 Clustering Procedures

Dist is the input distance matrix.
link is an array which contains the identity of the “parent” of each individual/cluster.
minval is an array of the critical clustering values.

[link,minval] =fneigh(Dist) Furthest Neighbour
[link,minval] =nneigh(Dist) Nearest Neighbour
[link,minval] =mutneigh(Dist) Mutual Nearest Neighbour
[link,minval] =group av(Dist) Group Averaging
[link,minval] =lancew(Dist,NUM DESIRED) Lance Williams
cluster con msms(type,dist fun) dist fun :== bhat, type:==concat| weight| average
cluster con sisi(type,dist fun) dist fun :== ahm| aagh
cluster con is(type,dist fun) dist fun :== agm| lhr
cluster con msimsi(type,dist fun) dist fun :== div2
ward 2D Wards clustering on vectors
ward 3D Wards clustering on matrices
[splinter,rest] =split cluster(Dist) polythetic divisive clustering

Note the type of Lance-Williams clustering used is set by changing the parameters in lw comb.

I.2.4 Utility Functions

[matrix] =array2lmat(array,length) return a lower-triangular matrix with values from array
[smallest,greatest] =order2(a,b) order 2 numbers
[truth] =ismember(number,array) checks if number is in array
[value,index] =secmin(vector) returns second minimum value in an array
get dists get the relevant distance matrix from the data
[max,row,col] =max lmat(matrix) find maximum of Lower-Triangular matrix
[max,row,col] =min lmat(matrix) find maximum of Lower-Triangular matrix
[max,row,col] =min mat nod(matrix) find maximum of matrix ignoring diagonal

I.2.5 Looking at cluster structure

[array] =an link(link) show clustering decisions
show tree2(array,num orig,minval) Show Tree diagram and critical value
show tree3(array,num orig,minval,secval) Show Tree diagram, critical value

and next best value.

55

I.3 Full-scale Implementation
I.3.1 tcsh scripts

handsplit $string

Assigns all the files in C/clust data/a960610.sp which contain the string $string to clus-
ter 1 and all the others to cluster 2. writes output to a file clusout.$string Can be used to form
speaker or condition clusters.

handsplit2 $str1 $str2

As for handsplit but allows two strings to be used to assign segments to cluster 1 (logically
ORed). For example: “handsplit2 Cokie jane ” to give gender-split

mkclustershand $showname $string $outdirec

Uses HERest in HTK to calculate the auxiliary function values of the clusters defined in clu-
sout.$string and places the output in $outdirec/$showname.spec/$string.2cls

gethand

Contains the showname and a list of query strings with which
to call handsplit and mkclustershand .

mkclusters6 $showname $showdir $clusfile $outfile $direc

Reads clusters from $clusfile, speaker id from $direc$showdir.sp makes soft link to PLP infor-
mation. Runs HERest to calculated the MLLR transforms and outputs results to $outfile

getauxval $resfile

Calculate the auxiliary-based FOM for $resfile

getauxall $direc
Calculate the auxiliary-based FOM for all relevant files in $direc

eval all cov fix $showname
Calculate the auxiliary-based FOM based on covariance data for all options specified in the
script.

eval all data fix $showname

As above, but for data-based MLLR transform data.

eval most aat $showname

As above, but for AAT instead of A.

eval all cov sym $showname

As above but for symmetric options on covariance data

56

I.3.2 C programs

USAGE: gendist [OPTIONS] -f filelist

Option Default

-l fn Write debugging info to file fn stdout
-o fn Write distance metric to file fn stdout
-s fn Write Speaker IDs to file fn stdout
-T N Set Trace Level to N 3
-d N Type of Distance Metric to use 1

1=Euclid, 2=City, 4=Ang, 16=Ahm
-c N Type of coefficients to use 1

1=Statics, 2=Deltas, 4=Accels
-v N Type of Data to Use 1

1=matrices only, 2=mean only, 3=all
-y N Type of Symmetrizing to use 1

1=none, 2=A+A’, 4=AA’, 8=A’A

Generate distance matrix based on MLLR transforms

USAGE: gendistcov [OPTIONS] -f filelist

Option Default
-l fn Write debugging info to file fn stdout
-o fn Write distance metric to file fn stdout
-s fn Write Speaker IDs to file fn stdout
-T N Set Trace Level to N 3
-d N Type of Distance Metric to use 1

1=Div, 2=AHM, 4=AGM, 8=AlogG1, 16=aagh,
32=AlogGH, 64=Bhat

-x N Type of Symmetry option on distance 1
1=none, 2=lina, 4=loga, 8=linb, 16=logb

-a fn filelist of A matrices for adapting

Generate distance matrix based on covariance data

USAGE: cluster [OPTIONS] -f distfile

Option Default
-o fn Write output to file fn stdout
-l fn Write debugging info to file fn stdout
-n N set number of final clusters to N 2
-T N Set Trace Level to N 3
-c N Set Clustering Type to N 1

1=LW, 2=NN, 4=FN
-w N Set Lance-Williams type to N 1

1=b=-0.5 2=b=-0.25 4=NN 8=FN
-d N Set display value to N 8

1=clusters 2=links 4=family 8=standard

Cluster the segments using the generated distance matrix.

structures.h

Contains the global constants, structures, enums, and typedefs used in all the programs in this
section.

57

I.3.3 Matrix and I/O Library

All functions are preceded by extern and the routines ludcmp, lubksb, InvertMatrix
were adapted from algorithms in [19].

void Quit(char *message,...); /* exit program */
char* Chop(char *string); /* chop \n if it trails string */

IVector InitIVector (int length);
DVector InitDVector (int length);
TrVector InitTrVector (int length);
Matrix InitMatrix(int num_rows, int num_cols);
Block3 InitBlock3(int num_params);
B3Array InitB3Array(int length);
MVISet InitMVISet(int dimen,int nframes);
MVIArray InitMVIArray(int length);

void PrintIVector(FILE*, IVector);
void PrintDVector(FILE*, DVector);
void PrintTrVector(FILE*, TrVector);
void PrintMatrix(FILE*, Matrix);
void PrintBlock3(FILE*, Block3);
void PrintB3Array(FILE*, B3Array);
void PrintDistances(FILE*, char *filename, Matrix);
void PrintMVISet(FILE*, MVISet);

void FreeIVector(IVector);
void FreeDVector(DVector);
void FreeTrVector(TrVector);
void FreeMatrix(Matrix);
void FreeBlock3(Block3);
void FreeB3Array(B3Array);

/* extracting subsets etc */
DVector SubsetDVec(DVector array, int start, int end);
Matrix SubsetMatrix(Matrix mx, int rowa, int cola, int rowb, int colb);
DVector ConcatDVec(DVector, DVector);
Matrix SuperMatrix2(Matrix mx11, Matrix mx12, Matrix mx21, Matrix mx22);

/* special matrices */
void ZeroMatrix(Matrix);
Matrix EyeMatrix (int dimen);
Matrix CopyMatrix(Matrix Orig); /* returns new matrix copy*/
void CopyMatrixFT(Matrix orig, Matrix copy); /* overwrites copy */
void SymMatrixAdd(Matrix); /* A + A’ */
void SymMatrixMult(Matrix); /* AA’ */
void SymMatrixTrMult(Matrix); /* A’A */

/* Boolean Tests */
Boolean IsSquare(Matrix);
Boolean IsSymmetric(Matrix);
Boolean IsMember(IVector array, int value);

/* arithmetic Matrix Operations */
Matrix ScMultMatrix(float, Matrix);
Matrix MultMatrix(Matrix, Matrix);
DVector MultMatVec(Matrix, DVector);
Matrix AddMatrix(Matrix, Matrix);
Matrix SubMatrix(Matrix, Matrix);

58

Matrix TransposeMatrix(Matrix);
Matrix InvertMatrix(Matrix);
double DetMatrix(Matrix);
double TraceMatrix(Matrix);
double TraceMatrixProd(Matrix, Matrix);
double SumSqMatrix(Matrix);

/* used for inverse */
void ludcmp(Matrix mx,int *index, double *d);
void lubksb(Matrix mx,int *index, double b[]);

/* min max operations */
Element MaxDifMatrix(Matrix, Matrix);
Element MinMatrix(Matrix);
Element MinMatrixNoD(Matrix);
Element MaxMatrixNoD(Matrix); /* no diagonal */
Element MinLMat(Matrix); /* elements below diagonal */
Element MaxLMat(Matrix);

/* special means */
double GeoMeanMatProd(Matrix y, Matrix invx);
double ArithMeanMatProd(Matrix y, Matrix invx);
double HarmMeanMatProd(Matrix invy, Matrix x);

/* distance metrics on Matrices */
double EuclidMat(Matrix, Matrix); /* element wise */
double CityMat(Matrix, Matrix); /* element wise */
double AngMat(Matrix, Matrix);
double AhmMat(Matrix mx1, Matrix mx2, Matrix invmx1, Matrix invmx2);

/* asymmetric distance measures on Matrices */
double AgmMat(Matrix x, Matrix y, Matrix invx, Matrix invy);
double AaghMat(Matrix, Matrix, Matrix, Matrix);
double AlogG1Mat(Matrix, Matrix, Matrix, Matrix);
double AlogGHMat(Matrix, Matrix, Matrix, Matrix);

/* corrected symmetric distance measures on Matrices
dist_f can be AgmMat, AaghMat, AlogG1Mat, AlogGHMat */

double SymDistMat(Matrix x, Matrix y, Matrix invx, Matrix invy,
int numx, int numy, SymDType method,
double (*dist_f)(Matrix, Matrix, Matrix, Matrix));

/* arithmetic vector operations */
DVector SubDVector(DVector, DVector);
DVector AddDVector(DVector, DVector);
double DotProdDVec(DVector, DVector);
Matrix DyadProdDVec(DVector, DVector);
double MaxDifDVector(DVector, DVector);

/* distance metrics on Vectors */
double EuclidVec(DVector, DVector);
double CityVec(DVector, DVector);
double AngVec(DVector, DVector);

/* arithmetic scalar operations */
double max2(double, double);
double absval(double);

59

References
[1] Bimbot F. & Mathan L.

Text-Free Speaker Recognition using an Arithmetic Harmonic Sphericity Measure.
Proc. Eurospeech, 1993, Vol. 1. pp 169-172

[2] Bimbot F. & Mathan L.
Second-Order Statistical Measures for Text-Independent Speaker Identification.
ECSA Workshop on Automatic Speaker Recognition, Identification and Verification, 1994,
pp 51-54

[3] Cook G.
Data Selection and Model Combination in Connectionist Speech Recognition.
Chapter 5, Ensembles for Speaker Adaptation
PhD Thesis, Department of Engineering, University of Cambridge, UK, January 1997.

[4] Everitt B.
Cluster Analysis.
Haltsted Press, New York, 1980

[5] Fukunaga, K.
Introduction to Statistical Pattern Recognition.
Boston; London: Academic Press, 1990

[6] Gales M. & Woodland P.
Mean and Variance Adaptation within the MLLR Framework.
Computer Speech and Language, 1996, pp249-264

[7] Gales M.
Maximum Likelihood Linear Transformations for HMM-Based Speech Recognition.
Technical Report CUED/F-INFENG/TR291 May 1997
ftp://svr-ftp.eng.cam.ac.uk/pub/reports/gales tr291.ps.gz

[8] Gish H.
Robust Discrimination in Automatic Speaker Identification
Proc ICASSP 1990, Vol. 1, pp 289-292

[9] Gish H., Siu M., & Rohlicek R.
Segregation of Speakers for Speech Recognition and Speaker Identification.
Proc. ICASSP 1991, Vol. 2, pp 873-876

[10] Heck L. & Sankar A.
Acoustic Clustering and Adaptation for Improved Speech Recognition.
1997 DARPA Speech Recognition Workshop

[11] Hermansky H.
Perceptual Linear Prediction (PLP) Analysis for Speech.
Journal Acoustic Society of America, Vol. 87, pp 1738-1752

[12] Jin H. & Schwartz R.
Automatic Speaker Clustering.
1997 DARPA Speech Recognition Workshop

[13] Leggetter C. & Woodland P.
Maximum Likelihood Linear Regression for Speaker Adaptation of Continuous Density Hidden
Markov Models.
Computer Speech and Language, 1995, pp 171-185

[14] Leggetter C. & Woodland P.
Flexible Speaker Adaptation for Large Vocabulary Speech Recognition.
Proc. Eurospeech 1995, Vol. 2, pp 1155-1158

60

[15] Liu G.
Introduction to Combinatorial Mathematics.
McGraw Hill, 1968

[16] Mayer D.
Segmentation/Labelling of Unrestricted Audio.
MPhil Thesis 1997, Department of Engineering, University of Cambridge, UK

[17] Neumeyer L., Sankar A. & Digalakis V.
A Comparative Study of Speaker Adaptation Techniques.
Proc. Eurospeech 1995, Vol. 2, pp 1127-1130

[18] Odell J., Ollason D., Woodland P., Young S. & Jansen J.
The HTK Book for HTK V2.0.
Cambridge University, Cambridge, UK, 1995

[19] Press W., Flannery P., Teukolsky S. & Vetterling W.
Numerical Recipes in C.
Cambridge University Press, 1988

[20] Pye D. & Woodland P.
Experiments in Speaker Normalisation and Adaptation for Large Vocabulary Speech Recognition.
Proc. ICASSP 1997, Vol. 2 pp 1047-1050

[21] Smith G.
Speaker Recognition.
Fourth Year Project Report 1997, Department of Engineering, University of Cambridge, UK

[22] Therrien C.
Decision Estimation and Classification.
J. Wiley and Sons, New York, 1989

[23] Woodland P., Gales M., Pye D. & Young S.
Broadcast News Transcription using HTK.
Proc. ICASSP 1997, Vol. 2 pp 719-722

61

	Introduction
	What is Speaker Tracking?
	Data

	Covariance-Based Methods
	Introduction
	Distance Measures
	Initial Experiments
	Conclusions

	MLLR-based Methods
	The Theory of MLLR
	Testing the MLLR matrices
	Transforming the Covariance Matrices
	Testing the Transformed Covariances
	Conclusions

	Hierarchical Clustering
	What is Clustering?
	Different Types of Hierarchical Clustering
	Initial Experiments
	Further Experiments
	Conclusions

	Scaling Up the System
	Quantitative Evaluation of Clustering Performance
	Testing the Figure of Merit
	Implementation of the Clustering Methods
	Generation of the Distance Matrices
	Running of the system
	Preliminary Results
	Conclusions

	Improving the System
	Symmetrising A - Using AA'
	Symmetrising the Distance Measures
	Adding Occupancy Counts
	Non-hierarchical methods
	Maximisation of Auxiliary Function Directly

	Conclusions
	Distance Measures Used
	Initial Results in Speaker Clustering
	Experiment 1: Simple 2-Speaker Case
	Experiment 2: Adding More Segments
	Experiment 3 : 3-Speaker Problem

	Results for Making 2 clusters on a960610 show
	Results on Covariance Data
	Results from MLLR transform Matrices

	Results for Making 3 clusters on a960610 show
	Results on Covariance Data
	Results from MLLR transform Matrices

	Results for Making 4 clusters on a960610 show
	Results on Covariance Data
	Results from MLLR transform Matrices

	Results from using AAT with 2 clusters
	Results from Symmetric Distance Measures on Covariances
	Data Used
	Software Written
	Classification of Testers and Reference Speakers
	Simple Clustering Procedures
	Full-scale Implementation

