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Abstract

Local interest points and descriptors have been used very successfully
to achieve accurate and efficient image retrieval and matching performance
which is robust to occlusion and limited viewpoint change. Currently,
these systems tend to be initialized from still images and require that a
thousand or more points be stored in a retrieval data structure for each
object. Many of these points are rarely if ever used, and thus unnecessarily
limit the number of reference images that can be stored effectively. We
propose a method for determining the stability of local interest points and
their descriptors such that an efficient and effective subset of points can be
stored. This technique has been shown to reduce the number of required
points by an order of magnitude while improving performance, allowing
for significantly smaller data structures for use in retrieval and matching.

1 Introduction

There has been a good deal of work recently using interest points and robust,
local descriptors for image retrieval and matching [12, 7, 11, 15, 6, 9, 13, 20].
The majority of these methods incorporate a nearest neighbor search, where
the closest match for the descriptor at an interest point in the query image
is found for the ultimate purpose of discovering which image or images in a
database appear(s) in the query. Groups of these matches are verified, often
using geometric constraints, and then evaluated; the final result is a ranked list
of possible database images which appear in some form in the query. A sample
result of first choices from such a system is shown in Figure 1.

Given that a nearest neighbor search is involved in almost all these tech-
niques, there has been an accompanying burst in research on nearest neighbor
data structures. While the nearest neighbor problem has been solved for quite
some time in the low-dimensional case [4, 16, 17], the descriptors used in these
systems tend to be quite large in dimension. The smallest are in the 30+ range,
with many in the hundreds, thus suffering from the curse of dimensionality [2].
In this case, as the number of dimensions in the search space increases the cost
of performing a nearest neighbor search using any of the clever low-dimensional
structures approaches the cost of a linear search [5].

There have been many attempts to deal with this problem, mainly taking
the form of improved data structures which perform an approximate nearest
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Figure 1: Sample Retrieval Result. This is a sample query image, in which
reference images from the database have been artificially modified and made to
occlude each other to test retrieval in difficult situations. The rectangles around
each image indicate that it has been correctly identified, with the smaller rect-
angles within each indicating what features were used in the matching process.

neighbor search, where the efficiency of the search is directly related to the
uncertainty of the result. There has not been significant work, however, in
reducing the number of points used. Our contributions in this paper are twofold:

1. A method for determining which interest points are most useful for stor-
age, a condition we term “stability”, in reference to the points being found
in a relatively unaltered state in many different queries (§2).

2. A method for matching images and evaluating those matches in cases
where there is a large proportion of incorrect descriptor matches that aids
in determining stability (§3).

We show that it is possible to maintain and indeed improve performance
with a significantly smaller number of well-chosen interest points and their de-
scriptors, thus improving data storage efficiency and overall system performance
for potentially all image matching and retrieval systems of this kind.

1.1 Previous Work

The use of local interest points for image retrieval was pioneered by Schmid
and Mohr [18] and extended in many recent papers [7, 11, 15, 6, 9, 13, 20].
Several comparison studies of the various interest points and descriptors have
been carried out by Mikolajczyk and Schmid, of which the most recent [14] is
an excellent survey of the field. Of particular interest has been the SIFT system
designed by David Lowe [12], which couples a descriptor that is relatively in-
variant under affine transformations and viewpoint changes with interest points
found by localizing difference of Gaussian extrema in scale space. A similar
system was extended by Ke and Sukthankar, called PCA-SIFT [8], which is of
lower dimension (36 to SIFT’s 128) but achieves similar performance.

All of these systems, when used in the context of image retrieval and match-
ing, require a nearest neighbor search of some kind. In the case of matching
two images, a linear search is often used. However, large scale systems must
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Figure 2: Repeatability of Interest Point Matching. In order to create this
histogram, every point extracted from a still image of an object was matched
against a 600 image training corpus for that object and every correct match (i.e.
resulting in a correct pose prediction) recorded. There are 3656 points in 300
bins, and the points are in no particular order. Notice how there is a distinct
fraction which is being repeatedly detected and matched, and a large number
of points that are never seen in the training data.

employ more effective search structures. Lowe uses a KD-tree with a modified
search algorithm he introduced with Beis in [1] called Best Bin First. Ke et al.

introduced a system in [7] which uses a disk-based version of Indyk and Mot-
wani’s Locality Sensitive Hashing technique [5] for nearest neighbor search. Yet
another approximate nearest neighbor data structure is the spill tree, a modified
metric tree introduced by Liu et al. [11] which utilizes dimensionality reduction
as well to achieve excellent results. All of these data structures show perfor-
mance deterioration as the number of points stored in them increases. As such,
a method of reducing the number of points needed for each reference image will
increase the maximum number of images that can be stored while maintaining
a desired level of quality.

No one has tried to cull the points which enter the data structure as we
try to do. Lepetit et al. [10] warp patches to approximate affine changes in a
still image and use the statistics of the various points to determine an efficient
classifier, but it unclear how their system would scale to large numbers of images
for retrieval databases. Corso and Hager attempt much the same thing as we
do here in their impressive work in [3], though they use image regions obtained
through segmentation to achieve the data reduction, whereas our technique is a
proposed improvement to existing systems which use local interest points and
requires no modification of those systems besides a culling step during database
creation.

2 Stable Points

It is unnecessary to store every descriptor extracted from a still image of a
desired object. They number in the thousands for a standard reference image
(i.e. 640 pixels by 480 pixels) and many of them will be unused in matching.
We have found that, on average, over half of these descriptors are never matched
in queries and that of those which are, an even smaller subset account for the
majority of matches as can been seen in Figure 2. It is the goal of this paper
to lay out a process by which to determine which descriptors are in this small
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subset and the best way to utilize this smaller subset in matching.
We begin by realizing that the best way to discover the properties of the

descriptors extracted from a reference image of an object is to use them to
match a set of query images and to experimentally determine which are used
most often. This set of query images can take the form of a set of machine
modified images (Ke et al. create a set of such images for their tests in [7]), a
video taken of the object in its environment (e.g. of a painting in an art gallery)
or a collection of sample queries for a database. The type of query image set
used can be determined in an application-dependent manner, however each is
an approximate sampling of the overall viewset of the object.

Once an appropriate set of query images has been collected, a nearest neigh-
bor data structure is filled with the descriptors extracted from the reference
image and each query image is matched using this database. After geometric
verification, the remaining pairs are recorded. We used the KD-tree based sys-
tem from [1] in this research, but any appropriate nearest neighbor structure
will do, though a linear search can be time consuming for large query image
sets. For verification, we used the system presented in §3.

With the matching pairs in hand, each descriptor from the reference image
can now be ranked in terms of the number of queries in which it was found.
In addition, all descriptors it was matched to are combined as a sample and
the mean and diagonal covariance computed to describe the statistics of the
descriptor as found in the queries. Once these have been found, the descriptors
are assigned two real valued scores, one for repeatability and the other for
deviation. The repeatability score is computed as

Repeatability =
fi − fmin

fmax − fmin

+ 1 (1)

where fi is the number of frames in which the descriptor i was found, fmin =
argmini(fi) and fmax = argmaxi(fi). Deviation is computed as

Deviation =
di − dmin

dmax − dmin

+ 1 (2)

where di =
√

|Vi|. Vi is the covariance of the descriptor i, dmin = argmini(di)
and dmax = argmaxi(di). The stability is thus computed as

Stability =
Repeatability

Deviation
. (3)

The stability measure is designed to give a preference for descriptors which are
extracted from interest points that are detected in many different views of the
object and which do not exhibit much variance in description. These points
should be given preference in storage, and indeed we show that by using subsets
consisting of descriptors with high stability we can achieve improved perfor-
mance to that of using the entire set of reference descriptors. It is reasonable to
assume that the kinds of transformations used in the training data will create a
preference for certain kinds of points over others, and thus they should ideally
be representative of those transformations that would be present in the desired
application domain.
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Figure 3: Center Clusters. Each circle shown is a proposed center from a
keypoint based on that keypoint’s scale, orientation, location and the relative
position from the center of its matched keypoint in the database. As can clearly
be seen, there is a clear cluster of correct points in the case of a true positive
and just noise for false positives. The color and shape of the keypoints indicate
which mixture component they belong to, again notice that the noise in the
image is explained completely, with the correct matches being identified clearly
for use in geometric verification.

3 Probabilistic Pose Prediction

In order to determine which matching pairs of points in a query image are valid,
a pose for the object must be determined in the query. Only pairs agreeing
with this pose will be retained and used in stability analysis. Instead of the
generalized Hough transform used by Lowe, which produces binning effects that
can result in incorrect matches and pose predictions, we describe here a novel
probabilistic approach to give a candidate pose similar in concept to that used
by Seeman et al. [19] for pedestrian detection.

For every point in a nearest neighbor database, we have encoded position as a
vector pointing from the center of the database image to the feature, denoted x.
For every matching pair, we calculate the difference in orientation, ∆θ = θq −θr

and the difference in scale ∆s = sq/sr and use them to create a transformation
matrix T where

T =

[

∆s cos(∆θ) −∆s sin(∆θ)
∆s sin(∆θ) ∆s cos(∆θ)

]

. (4)

With T , we can now find a vector x′ = Tx, with which we can find the predicted
center of the source image in the query image by subtracting x′ from the query
point position. Thus, every match pair predicts a center, and we can analyze
this plot to group the pairs. Correct poses will correspond to tight distributions
of center predictions which are produced by the true keypoints generated by
the object, while other predictions come from false matches and thus resemble
uniform background noise, as can be seen in Figure 3. The most natural way to
solve the problem is by fitting a mixture model of a bivariate Gaussian distribu-
tion and a uniform distribution to the plot. Those points which belong to the
Gaussian mixture component can then be used to find an affine transformation
between the two images.

Once a transformation has been obtained it must be evaluated for likeli-
hood. We are interested in the joint probability of the transform and the data,
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p(A,D) = p(A|D)P (D), where A is the affine transformation of the pose and
D is the set of matching points. To do this, we model the posterior p(A|D)
as a bivariate Gaussian, the mean and covariance of which are calculated using
the center point predictions of the matching points. p(A|D) is then calculated

by using the affine matrix’s center prediction,

[

tx
ty

]

. For correct matches, the

transform’s center prediction is at or very near the mean and thus gives a high
probability. The prior P (D) is taken as the percentage of total matching points
remaining after fitting represented by the basis points D. For incorrect matches,
the transform’s center prediction is far from the mean and given the distribu-
tion’s large variance in these cases, results in a very low probability for the
match, with the prior ensuring that poses with a small number of correspond-
ing basis points will not be considered as likely as those with more support. The
pose with the highest likelihood is chosen, and its basis recorded for stability
purposes.

4 Results

We performed experiments with 5 different paintings in 5 different environmen-
tal settings. For each setting a video of the painting was recorded using a web
camera in which the painting undergoes a series of affine transformations. The
settings were as follows:

Setting Camera Painting Lighting

1 1, stationary in book, free motion artificial
2 1, stationary in book, free motion natural
3 1, freehand motion in book, stationary artificial
4 2, freehand motion in book, stationary natural
5 3, freehand motion in museum, stationary interior

The first setting was used as training, with the others used as test sets. The full
point set was determined from a still image of the painting, and the standard
matching technique from [12] was used for comparison.

We tested the PCA-SIFT descriptor [7] and the SIFT descriptor, both using
interest points found with Lowe’s Difference of Gaussian detector [12], though
we do not believe this technique to be limited to these choices. All sets of query
images were labeled by hand for scoring purposes to indicate where the painting
is found in each image.

The training set images were matched against the feature points from the
still image of the painting and all valid matches (determined by whether a
pose hypothesis was formed) recorded and the stability of the reference points
determined as described in §2. Then, 10 sets of experiments were run on the
test sets with database entries consisting of 500 to 50 stable data points (in
increments of 50) to determine how performance degrades as the number of
points used for matching decreases. The points are matched using the standard
methodology, with the only difference being the reduction of data points to
those we have determined to be most stable.

The experimental results were evaluated using a precision/recall curve, with
the reported result being the equal error rate for a particular experiment. True
positives were determined as query images in which the labeled center of the
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(A) (D)

(B) (E)

(C) (F)

Figure 4: Results. In (A) and (B) is shown the recall performance for Stubb’s
Gimcrack with John Pratt up on Newmarket Heath in settings 3 and 4, re-
spectively and in (D) through (E) is shown the same for Titian’s Tarquin and

Lucretia. Results for both the best and worst n points are shown to show
the difference a guided subset makes on performance, with the point plotted
being the recall at the break-even point. The line indicates the baseline per-
formance using all the points. In (E) and (F) are shown precision/recall curves
for database retrieval with the SIFT descriptor and PCA-SIFT descriptor, re-
spectively. One line shows the performance on the painting with the reduced
database, the second line with a full database.
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reference image in the query lies in the center of the projected image outline in
that query. The scoring of each query image that is used for the precision/recall
ranking is determined as described in §3. The baseline value shown on the
graph is the equal error rate taken from the precision/recall curve resulting from
performing a full match with every keypoint in the still image of the painting
at each frame. The results can be seen in Figure 4. The performance for the
worse n points is shown to underline the fact that just choosing any subset of
the interest points is not sufficient.

In addition to individual matching with paintings, we tested the technique
when the stable points are stored in a database. For each painting, the 150 most
stable points were stored in a database and then retrieval performed on all of the
test images and precision/recall curves constructed for each, compared against
the curves found when using a similar database with all of the points. Again,
we find that although the number of points stored is an order of magnitude less
(which, coincidentally, also improves database performance) the performance
does not degrade.

As is readily apparent, restricting matching to a subset of stable points not
only maintains baseline performance but indeed improves upon it in many cases.
In all experiments it was found that one had to reduce the number of points
to less than an order of magnitude of the original before performance reduction
was observed. The fact that using a reduced subset of stable points improves
performance may come as a surprise, however it must be understood that many
of the unnecessary points in the full set actually reduce performance by creating
false, seemingly coherent poses and otherwise allowing more room for error due
to matching with points in the background. Since the stable points have been
shown to repeatedly be produced mainly by the object itself as opposed to
the background, as we reduce the total number of points using stability the
likelihood of this kind of clutter decreases and matching/retrieval performance
improves, though at some point (around 50) vital points start to be lost and
performance degrades.

5 Conclusion

We have shown that by using our stability measure, it is possible to reduce the
number of required database points for a reference image by an order of magni-
tude while not sacrificing performance. In addition, we introduced a statistical
distance metric which further improves performance with small sets of database
points. We are interested in exploring further the effect of the training data on
performance. We anticipate that there is a performance gain from tailoring a
database to a particular application through the use of targeted training data,
but would like to determine the extent of the gain. Finally, we have noticed
that our stable feature points appear and disappear in what seem to be clearly
delineated groups, and are intrigued by the possibility of programmatically de-
termining these groupings, which could be used to perform part-based detection
and thus allow for better performance on deformable objects.
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Both Succeed Only Stable Points Succeed

Figure 5: Query Image Results. In these images, a side by side comparison of
experiments from setting 3 for three objects is shown. In all of them, the image
on the left comes from a video made with stable points and on the right from a
video made using all the points extracted from a high resolution still image of
the object (the number of points used is indicated by the white number at the
bottom of the frame). The top three images show frames where both methods
recognize the object correctly, and the bottom three show where only stable
points achieve a correct pose estimation.
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