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Abstract
Vocal tract length normalisation (VTLN) is a commonly used
speaker normalisation approach. It is attractive compared to
many normalisation schemes as it is typically dependent on only
a single parameter, allowing the warp factors to be robustly cal-
culated on little data. However, the scheme normally requires
explicitly coding the data at multiple warp factors. Furthermore,
it is only possible to approximate the Jacobian associated with
the VTLN transformation. A new, simple, linear approxima-
tion to VTLN is described in this paper. This linear approx-
imation allows the Jacobian to be exactly computed. It can
also be highly efficient in terms of warp factor estimation and
application of the warp factors. Both the linear and standard
CUED VTLN schemes were evaluated in the 2003 BNE evalu-
ation framework and found to yield similar performance. When
used in system combination both VTLN schemes yielded slight
gains over the baseline system.

1. Introduction
Broadcast News (BN) transcription is one of the most chal-
lenging and interesting tasks in large vocabulary continuous
speech recognition. Despite significant progress being made
in reducing word-error rates, this task is still difficult because
of the widely varying acoustic environment such as different
speakers, speaking styles (read/spontaneous), background noise
and/or music and different audio transmission channels (wide-
band/telephoneband). To overcome these problems there has
been much interest in the use of normalisation [1, 2, 3] and
adaptation [4] techniques to take into account this highly non-
homogeneous data.

Among the widely used normalisation techniques, vocal
tract length normalisation (VTLN) [1, 2, 3] is one of the most
popular methods to reduce inter-speaker variability. VTLN
is motivated by a desire to reduce inter-speaker variability
that arises due to physiological differences in the vocal-tracts.
VTLN is usually performed by warping the frequency-axis of
the spectra of speakers/clusters by appropriate warp factor prior
to the extraction of cepstral features. The warp factors are esti-
mated by performing a maximum likelihood search with respect
to a model and a transcription (and therefore may not have a re-
lation with the physiological differences). The resulting speech
features are usually less sensitive to inter-speaker variations.

Although many successful implementation and experimen-
tal results have been reported using VTLN, particularly for con-
versation telephone speech (CTS) recognition, there are only a
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few that have been reported for the BN task. VTLN was used
in the 1998 CUED BN English (BNE) transcription system [5],
but not in the 2003 system [6] where a more complex recog-
nition framework was used. This paper describes experiments
using VTLN within the 2003 BNE transcription framework and
presents a simple linear VTLN approximation.

One of the problems with VTLN is that, since it is a trans-
formation of the features, it is necessary to compute the Ja-
cobian of the warping transformation. This is then used in
the calculation of the likelihood to select the appropriate warp
factors. However, as the VTLN transformation is typically
non-linear, exact calculation of the Jacobian is highly complex
and is normally approximated. This has lead many research
groups [2, 3, 7] to explore the possibility of substituting the
frequency-warping operation by a linear transformation in the
cepstral domain. This allows the Jacobian to be exactly calcu-
lated. For the case of the bilinear transform [2] or piece-wise
linear [3] VTLN warping can be expressed as a linear trans-
formation in the linear (no mel-warping) cepstral domain. In
[8] the problem of finding the transformation between VTLN-
warped MFCC and the un-warped MFCC (where the MFCC
is directly computed from the power-spectrum rather than us-
ing a filter-bank) is addressed. In [7], a linear-transformation
between warped and un-warped cepstra is estimated such that
the approximation error is minimised. In this paper a modi-
fied scheme for estimating a linear transformation to represent
VTLN on any data is described.

An issue with applying VTLN to BN transcription is that,
unlike CTS, there are no distinct, homogeneous, speaker-sides.
Hence, it is important to have an automatic segmentation
and clustering scheme to get clusters corresponding to similar
speakers in similar acoustic conditions. There is also a prac-
tical issue associated with this. If standard, non-linear, VTLN
schemes are used it is necessary to either explicitly cut the com-
plete shows into segments (which may impact the calculation
of dynamic coefficients), or code complete shows at all possible
warp factors. Using a linear VTLN approximation overcomes
this problem as it is simple to dynamically switch the linear
transformation on demand.

This paper is organised as follows. First, an overview of
conventional VTLN is presented and a description of the pro-
posed linear VTLN scheme. In section 3, the CUED BNE tran-
scription system is briefly reviewed. Section 4 gives detailed
experimental results. Conclusions are then given.

2. Vocal Tract Length Normalisation
VTLN is usually performed by warping the frequency-axis of
the spectra of the speaker by an appropriate warp factor prior
to the extraction of cepstral features. The warp factors are es-
timated by maximising the likelihood of the warped utterances



with respect to a model and some transcription. This model is
usually either be based on a Gaussian mixture model, or hidden
Markov model. The transcription is either known in training or
obtained by an initial, non-VTLN, decoding pass for test data.
If � and ��� are the original and transformed feature vectors
respectively then the log-likelihood is given by���	��
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where
� � is the Jacobian of the VTLN transformation for warp

factor � and � is the set of model parameters. During estimation
the aim is to find the value of the warp factor, � , that maximises
this likelihood. The data is then warped using the warp factors
and the VTLN models trained on this warped data.

The next section describes the standard implementation of
VTLN at CUED. This is followed by a description of the mod-
ified linear VTLN scheme examined in this paper.

2.1. Conventional VTLN

The standard form of VTLN used in this paper is similar to
that described in [5]. The warping is applied using the stan-
dard HTK scheme. Here a linear frequency warping operation
is implemented by inversely scaling the centre frequencies and
bandwidth of the filterbank prior to multiplication with DFT
coefficients. The warp factors are assumed to lie in the range
0.8 to 1.2. The estimation of the appropriate warp factor for
each homogeneous training segment is based on likelihoods
from a HMM. Since the per-frame log-likelihood tends to be
a parabolic function of the warp factor, warp factors were found
by conducting a parabolic search (instead of a grid search) over
data likelihoods versus warp factors. In order to overcome the
issue of the Jacobian, cepstral mean normalisation (CMN) and
cepstral variance normalisation (CVN) is applied for each of the
warp factors for each segment. By applying CVN the global dy-
namic range of each of the elements of the feature is scaled to
be the same. This may be viewed as a crude way of normalising
the data so that the Jacobian is roughly for the same for each
warp factor. It may then be ignored. The following scheme is
used to obtain the warp factors for the training data.

1. ��% is set to an appropriate non-VTLN model set, &'�)( .

2. Estimate the warp factor for each segment. For each hy-
pothesised warp factor the data is re-aligned using this
initial model and the transcription.
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where
46 � � � 4� � - �;:<:,:�� 4� �= � is the warped data (with

CMN and CVN) associated with the segment.

3. Warp the training data. A new model set, � *,+�- , is then
trained using single pass retraining and standard Baum-
Welch estimation.

4. &>�?&@�?A . Goto (2) until warp factors have stabilised.

The final set of warp factors is then quantised to a resolution of
0.01, yielding a total of 41 possible values. Using this final set
of VTLN warp factors a new decision tree is estimated. This is
then used in the standard training schemes. For this work about
four iterations were required for the warp factors to stabilise.

2.2. Linear VTLN

In linear VTLN (LVTN) a linear transformation is used to ap-
proximate the complex, non-linear, warping of the frequency

axis. In this implementation, rather than transforming the data
to the VTLN domain, the linear transform is trained to effec-
tively “un-warp” the observed data. Thus� � �?B � �C�ED � �GF �IHJ� (3)

where H is the extended feature vector and � is used to indicate
the inverse warping to standard VTLN. With this form of linear
transformation, the Jacobian has a simple closed form solution� �K�ML BN��L . The following scheme is used to obtain the linear
transformations and warp factors.

1. � % is set to an appropriate non-VTLN model set &'�?( .

2. Randomly select a subset of training data. For each warp
factor � compute the set of warped feature vectors

46 � .

3. For each � compute the linear transform, FO� ,F � �?.P/ ��1 .02Q 3 ��
R46 � �#�7*R��FS� 9 (4)

This can be estimated using the standard constrained
MLLR transform formulae [4].

4. For each segment of data estimate the warp factor��*<+�-��?.P/ ��1 .P2� 3 �"
 6 �#��*J��F � � 9 (5)

5. Linearly warp the training data. A new model set, � *,+�- ,
is then trained on using single pass retraining and stan-
dard Baum-Welch estimation.

6. &>�)&T�?A . Goto (3) until warp factors have stabilised.

As the transformation matrices undoes the effects of the VTLN
warping the warp factors that are estimated at stage (4) will
be the inverse of the warp factor estimated using conventional
VTLN. In order to be able to directly relate the LVTN to VTLN
the inverse of the LVTN warp factors were estimated. The set
of possible warp factors was set to be the same as that of the
conventional VTLN.

The warp factor estimation for LVTN may be performed
in the same fashion as conventional VTLN1. However a more
efficient approach is possible using the auxiliary function that is
used to estimate the transform. The auxiliary function isU 
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are defined in [4] andm n�i 
qp � is the component posterior given the current estimate of

the warp factor,
V� . Thus using the sufficient statistics the auxil-

iary function can be used to estimate the warp factor in a single
pass. This can then be refined by obtaining new component
posteriors with this estimate.

3. BNE 10xRT Framework
The system used for the experiments was developed for the
March 2003 Rich Transcription (RT03) evaluation, and employs
a structure of multi-branch, multi-pass and system-combination
for improved accuracy. Full details of the system structure
and the models involved are given in [6]. PLP coefficients
with first, second and third derivatives projected down to 39

1For the implementation used for the experiments an exhaustive
search for LVTN was used. This yielded no difference in performance
to the conventional VTLN search.



dimensions using HLDA are used as the acoustic features. The
cross-word triphone HMMs which contained about 7000 states
each with 16 Gaussians were estimated using the English BN
data released by the LDC in 1997 and 1998. Since some of
BN data, for example telephone interviews, is transmitted over
bandwidth-limited channels, both wideband and narrowband
spectral analysis variants of each model set were trained. All
model sets were trained using MPE and gender-dependent ver-
sions were derived using MPE-MAP. A number of broadcast
and newswire text corpora were used to train a word 4-gram lan-
guage model and a class trigram model. The systems were eval-
uated on two 3 hour test sets the 2003 development, dev03, and
evaluation, eval03, test sets. The system structure is shown in
Figure 1.
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Figure 1: CUED BN-E system structure.

P1 initial transcription: The purpose of the P1 pass is to pro-
vide an initial word-level transcription as the supervision for
gender determination and clustering for adaptation of the P2
models. The adaptation uses global least squares regression
mean transforms and MLLR variance transforms.

P2 lattice generation: Word lattices are generated using the
adapted acoustic models and the 4-gram word LM. The associ-
ated 1-best hypotheses are used in the estimation of up to two
speech MLLR transforms.

P3 lattice rescoring: Two separate model sets are used to
rescore the P2 lattices. The P3.1 system was built using Speaker
Adaptive Training (SAT) employing global constrained MLLR
transforms. The P3.2 system was trained in the normal speaker-
independent fashion but employed a special single pronunci-
ation (SPRON) dictionary. Both P3 model sets were adapted
using lattice MLLR and a global full-variance transform, then
used to rescore the word lattices from P2.

The final system output was derived by combining the con-
fusion networks generated by the P2, P3.1 and P3.2 passes us-
ing Confusion Network Combination (CNC). Finally, a forced
alignment of the final word-level output was used to obtain
accurate word times before scoring. The full system ran in

9.1 r RT on the 2003 evaluation set.

4. Experimental results
4.1. Estimated Warp Factors

It is interesting to see how closely related the two sets of es-
timated warp factors are for conventional VTLN and linear
VTLN. A set of warp factors was estimated using each of the
conventional VTLN and LVTN with a block-diagonal transfor-
mation matrix (static, delta, delta-deltas and third derivatives
where used) and no bias. Note for the LVTN scheme the in-
verse of the estimated warp factor is used for consistency with
conventional VTLN.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

1000

2000

3000

4000
Warp factor distribution for Conventional VTLN

male  
female

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

1000

2000

3000

4000
Warp factor distribution for Linear VTLN

male  
female

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0.8

0.9

1

1.1

1.2

Warp factors for Conventional VTLN

W
ar

p 
fa

ct
or

s 
fo

r L
in

ea
r V

TL
N Warp factor Estimates for Conventional Vs Linear VTLN for same training data clusters

Figure 2: Training data warp factors for VTLN (top) and LVTN
(middle). A scatter plot of VTLN and LVTN is shown at the
bottom.

Figure 2 shows the two sets of warp factors. The top di-
agram shows the warp factors estimated using conventional
VTLN. The standard bimodal distribution can be seen, one peak
is associated with the male speakers the other with the female
speakers. A similar distribution can be seen for the the LVTN
approach. The bottom plot of figure 2 shows a plot for each
of the segments of the VTLN against the LVTN warp factor.
The two estimates are highly correlated with one another with a
correlation coefficient of 0.9812.

4.2. Unadapted Results

Initial comparisons of the system did not make use of the full
BNE 10x framework. Instead experiments using unadapted
models and a trigram language model were conducted to allow
a simple comparison of the two schemes without further adap-
tation. The first issue to be addressed for VTLN normalisation
is to determine the appropriate amount of data to compute the
warp factors. In initial experiments it was found that a reason-
able value was to use the segments obtained from the standard
segmenter and then clustered together to yield a minimum oc-
cupancy of 500. This clustering was used for all VTLN and
LVTN experiments.

Table 1 shows the performance of segment level CMN
(CMN), used in the baseline BNE configuration and cluster
level CMN and CVN (CMVN), with a minimum occupancy



Configuration Front-end
CMN CMVN VTLN LVTN

dev03

MLE 19.7 19.1 18.4 18.1
+HLDA 17.9 17.9 16.9 17.1
+MPE 15.2 15.3 14.6 14.6
+MAP 14.9 — 14.5 14.4

eval03

MLE 17.8 17.1 16.5 16.4
+HLDA 15.9 15.9 14.9 14.9
+MPE 13.7 13.7 13.2 13.0
+MAP 13.4 — 13.0 12.7

Table 1: %WER of dev03 and eval03 with CMN,
CMN+CVN (CMVN), conventional VTLN and linear VTLN
(LVTN) acoustic models.

count of 500. The performance gain of CMVN varies accord-
ing to the complexity of the system. For the standard MLE 16
component system (MLE) the CMVN system outperformed the
baseline CMN scheme. However after training an HLDA trans-
form the performance was about the same. Similarly after using
MPE training the error rates were about the same. Thus for this
task there is no advantage in using CMVN over the standard
CMN for the more complex models.

Table 1 also shows the performance of the VTLN and
LVTN. Comparing the VTLN performance to the CMN and
CMVN schemes shows that using VTLN on top of the mean and
variance normalisation yields consistent gains over all the sys-
tems. Comparing the performance of VTLN and LVTN shows
that the two schemes yield about the same performance. For
MPE training the two schemes show a gain of 0.6% absolute
over the baseline CMN approach for dev03 and about 0.5%
for eval03. Many BNE systems use gender dependent (GD)
models. For table 1 GD models were generated using MPE-
MAP. Even with GD models, which take into account the most
significant speaker difference, VTLN and LVTN both show
gains over the baseline CMN front-end.

4.3. 10xRT system results

The use of VTLN and LVTN was then examined in the BNE
10x framework. The models used for these schemes were more
complicated than those presented in table 1 to be consistent with
the standard CMN system. Prior to MPE training varmix, a
scheme for more distributing the number of components per
state according to the amount of data associated with a state,
was used. In addition lattice regeneration was used2. Here, af-
ter performing initial MPE training, the lattices are regenerated.
New models are then trained on a combination of these new
and original lattices. These two additional techniques reduced
the error rated by about 0.3-0.4% absolute.

Table 2 shows the results of using the VTLN and LVTN sys-
tems in the 10x BNE framework. The two approaches are added
as additional paths in the third stage, labelled P3.3 (VTLN)
and P3.4 (LVTN). Within this more complex framework the in-
dividual VTLN (P3.3) and LVTN (P3.4) systems outperform
the standard CMN system (P3.0). The performance of the two
VTLN systems at the P3 stage are similar. Though in contrast
to the unadapted results VTLN shows small gains over LVTN.

Using either of the VTLN approaches as an additional sys-
tem for combination reduced the final error rate by about 0.2%

2The SAT system presented does not use lattice regeneration.

dev03 eval03

P1 15.9 14.6
P2 12.7 11.6
P3.0 (CMN) 12.3 11.2
P3.1 (SAT) 12.3 11.0
P3.2 (SPRON) 12.0 11.1
P3.3 (VTLN) 11.9 10.8
P3.4 (LVTN) 12.1 10.9
P2+P3.1+P3.2 11.6 10.6
P2+P3.1+P3.2+P3.3 11.4 10.4
P2+P3.1+P3.2+P3.4 11.4 10.3

Table 2: %WER for the 10xRT system.

absolute. This was consistent over both dev03 and eval03.
The best performance, a gain of 0.3% absolute was obtained
using LVTN as an additional stage for system combination.

5. Conclusions
In this work the use of VTLN and a linear VTLN method for
broadcast news transcription was investigated. A linear VTLN
scheme was described that can be simply applied to any data.
Experimental results showed that both VTLN models consis-
tently outperformed non-VTLN models. The proposed lin-
ear VTLN showed comparable performance with conventional
VTLN in terms of WERs while reducing computational time
for re-coding whole training data.
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