
Sensor Fusion and Occlusion Refinement for Tablet-based AR

Georg Klein and Tom Drummond
Department of Engineering

University if Cambridge
Cambridge CB1 2PZ, UK

{gswk2,twd20}@eng.cam.ac.uk

Abstract

This paper presents a set of technologies which en-
able robust, accurate, high resolution augmentation of live
video, delivered via a tablet PC to which a video cam-
era has been attached. By combining several technologies
this is achieved without the use of contrived markers in the
environment: An outside-in tracker observes the tablet to
generate robust, low-accuracy pose estimates. An inside-
out tracker running on the tablet observes the video feed
from the tablet-mounted camera and provides high accu-
racy pose estimates by tracking natural features in the en-
vironment. Information from both of these trackers is com-
bined in an Extended Kalman Filter. Finally, to maximise
the quality of the augmented imagery, boundaries where the
real world occludes the virtual imagery are identified and
another tracker is used to refine the boundaries between
real and virtual imagery so that their synthesis is as con-
vincing as possible.

1. Introduction

Augmented Reality (AR) is the synthesis of real and vir-
tual imagery. In contrast to Virtual Reality where the user is
fully immersed in virtual imagery, AR applications funda-
mentally require the user to be aware of and often interact
with their physical surroundings. In an ideal world, an AR
system should be able to augment a user’s direct view of
the world with high resolution graphics over a wide field
of view with no error, latency or jitter. Currently this tech-
nology is not available (or if it is, a suitable academic dis-
count is not offered) and hence a variety of technologies are
used each of which makes a different compromise. Opti-
cal see-through head-mounted displays offer a high resolu-
tion view of the real world, but usually suffer from latency
or jitter in the virtual imagery and require calibration for
each user. Video feed-through HMDs remove the need for
per-user calibration, but are forced to render the world at

low resolution with latency. Both classes greatly restrict the
user’s field-of-view.

Small, portable displays such as PDAs offer an alterna-
tive to this approach. Rather than augmenting the user’s
view of the world directly, they act as the viewfinder for a
video camera and operate by augmenting the video feed as
it is displayed (in a similar manner to video feed-through
systems). The great advantage is that here, small laten-
cies do not matter and further, a hand-held device can be
less obtrusive than a head-mounted one. Unfortunately the
processing power and bandwidth available on PDAs is lim-
ited while tablet PCs offer the performance required for sys-
tems like ours today. Further, the large screen available on
a tablet provides a better medium for high resolution aug-
mentations.

This paper demonstrates that by combining several track-
ing technologies, it is possible to deliver robust and accurate
live video augmentation via a tablet PC without the use of
artificial fiducials in the scene. After reviewing related work
in the field, this paper first introduces a mathematical frame-
work which allows a transparent and flexible manipulation
of pose, motion and uncertainty information. This frame-
work is described in Section 3.

Next, an edge based tracking system capable of real-time
operation on a tablet PC is presented (Section 4). This sys-
tem employs a CAD model of salient edges which allows
it to produce highly accurate pose measurements for subse-
quent video-see through augmentation. While this system is
very accurate for estimating small pose changes, it cannot
cope with sudden large camera motions. Therefore, a ro-
bust outside-in LED tracker is employed to provide absolute
measurements (Section 5.) This tracker employs a novel
correspondence algorithm to identify six LEDs mounted on
the back of the tablet. To correctly merge the two sources
of pose information, Section 6 describes the implementation
of an Extended Kalman Filter in terms of the mathematical
framework described. To evaluate the performance of the
tracking strategy described, a simple AR entertainment ap-
plication is described in Section 7.

1

Section 8 describes an algorithm to improve the quality
of the augmented visuals by increasing the accuracy with
which virtual objects are occluded by real world geometry.
3D model information available to the edge-based tracker
is exploited to refine individual occluding edges in the cap-
tured video image. Finally, section 9 presents results and
conclusions.

2. Background

Few tablet-based systems have been presented in the lit-
erature. Vlahakis et al. use a tablet as part of the larger
ARCHEOGUIDE project [16]. ARCHEOGUIDE aims to
enhance the experience of visiting archaeological sites e.g.
by rendering reconstructions of historic places in their orig-
inal locations. The project investigates multiple types of
AR apparatus: Head-mounted displays are used for video
see-through augmentations, while tablet and pocket PCs
are used as replacements for paper guides. The tablets are
equipped with differential GPS and a compass, and can re-
play multimedia streams appropriate to the user’s location.

Zhu, Owen et al. present the PromoPad, an augmented
reality shopping assistant [23] using video see-through aug-
mentations. Registration is marker-based and based on the
Owen’s earlier work on ARToolkit markers [12]. Emphasis
is placed on the PromoPad’s ability to detect context from
the user’s location, and to update the presented information
accordingly. For example, products known to be of inter-
est to a customer can be highlighted, while less desirable
products can be hidden through (diminished reality).

Recent research into PDA-based AR has often been fo-
cused on enabling technologies. Notably, a port of the pop-
ular AR Toolkit to the pocket PC platform has been pre-
sented by Wagner et al. [18]. Although pure pose esti-
mation performance of up to 15 frames/sec is possible on
an XScale CPU, current cameras cannot supply more than
8 frames/sec to the CPU; nevertheless, fully self-tracking
PDA applications using this framework have been demon-
strated [17]. MacWilliams et al. demonstrate that PDAs can
in theory coexist with conventional workstation-based AR
in a distributed AR framework [11], but have encountered
some rendering performance issues.

The combination of inside-out and outside-in tracking
has recently been studied by Satoh et al. in [14]. Inside-
out fiducial tracking is combined with outside-in tracking
of single point-like head markers . For the case of only one
head marker, measurements are combined by constraining
the pose output from the inside-out tracking to lie on the line
from the outside camera through the head marker. If more
than one head marker is used the sum squared re-projection
error of all markers in all cameras is used. The transfor-
mation from the head markers to head-mounted camera, as
well as the position of the outside-in camera, are assumed

to be known. Baillot et al. demonstrate a method for cal-
ibrating these transformations on-line from a few motion
correspondences in both reference frames [1].

Early approaches to determining the occlusion of real
and virtual objects include those of Wloka and Anderson
[22] and Breen et al. [4]. Both use stereo cameras to esti-
mate a depth map of the user’s view, and use this depth map
to handle the occlusion of augmented visuals. Wloka moti-
vates this approach by pointing out that in most AR applica-
tions, the assumption of an unchanging scene is unrealistic
because of e.g. the user’s interaction. Breen instead studies
the static case further by replacing the on-line depth map
with pre-registered 3D models of occluding real objects.

Berger [3] does not explicitly estimate depth and does
not use 3D models of real occluding geometry. Rather, an
estimate of occlusion regions is built by tracking 2D con-
tours found in the image. By observing the motion of these
countours over time, they can be labelled as being “in front
of” or “behind” virtual imagery. Impressive results are pre-
sented for scenes without complex textures. Lepetit and
Berger [10] later extend this idea to a high-accuracy off-line
scenario; by tracking using user-seeded occluding curves
through a video sequence, a 3D reconstruction of the oc-
cluding object is computed. The resulting accurate segmen-
tation of the sequence into foreground and background al-
lows virtual objects to be inserted into the video with high
precision.

Recent real-time work occlusion has focused on real ob-
jects dynamically occluding virtual ones. Fuhrmann et al.
use maker-based human motion capture to register occlud-
ing users in a collaborative scene [6]. A transparent 3D
humanoid model aligned to the motion-capture pose is ren-
dered into the z-buffer to occlude scientific visualisations in
a collaborative application. This “phantom” is blurred for
regions which are not directly tracked, e.g. the fingers of
user’s hands. Fischer et al. detect objects occluding objects
by learning the textures of a static surrounding scene. By
comparing video input to a textured predicted re-projection,
occluders can be identified. Further work on the application
of depth-from-stereo to AR occlusion has been presented by
Kanbara et al. [7].

3. Mathematical Framework

This section briefly introduces the mathematical frame-
work employed. Points in 3D space are represented as ho-
mogeneous coordinates of the form (x y z 1)

T . Points are
transformed from coordinate frame A to frame B by left-
multiplication with a 4×4 Euclidean transformation matrix

2

denoted E:

xB

yB
zB
1

= EBA

xA

yA
zA
1

(1)

where the subscript BA may be read as “B from A”. The
product ECA = ECBEBA transforms points from frame A
to C and the transformations have an inverse E−1

AB = EBA.
The matrices take the form

E =

R t

0 0 0 1

 (2)

where R is a rotation matrix (|R| = 1, RT R = I) and t

is a translation vector. The set of all possible E forms a
representation of the 6-dimensional Lie Group SE(3), the
group of rigid body transformations in R

3.
With time, the transformations between coordinate

frames may change and such a change is represented with a
motion matrix denoted M :

EBA|t+ = MBEBA|t (3)

where MB represents motion in frame B and takes the
same form as E in Eq. (2). M is parametrised by a six-
dimensional motion vector µ via the exponential map: for a
given motion vector µB in frame B the corresponding mo-
tion matrix is given by

MB = exp(µB) ≡ e
�

6

j=1
µBjGj (4)

where Gj are the group generator matrices1. Choosing µ1,
µ2 and µ3 to represent translation along the x, y and z axes
and µ4, µ5 and µ6 to describe rotation around these axes,
the generator matrices take the values

G1=

[

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

]

, G2=

[

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

]

, G3=

[

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

]

,

(5)

G4=

[

0 0 0 0
0 0 1 0
0−1 0 0
0 0 0 0

]

, G5=

[

0 0−1 0
0 0 0 0
1 0 0 0
0 0 0 0

]

, G6=

[

0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

]

Using this formulation, complex coordinate frame transfor-
mations are easily differentiable:

∂

∂µBj

(ECBMBEBA) = ECBGjEBA. (6)

Motions can be transformed from one coordinate frame to
another either as matrices

MA = EABMBEBA (7)
1Closed forms of both the exponential and the log exist. Further infor-

mation on the Lie Group SE(3) and its properties may be found in [15].

or as motion vectors using the adjoint operator. The adjoint
of a transformation matrix yields a 6×6 matrix such that

µA = Adj(EAB)µB (8)

and takes the value (writing the cross operator ∧)

Adj(E) =

[

R t ∧ R
0 R

]

. (9)

Often, the true value of a transformation matrix is un-
known and only a noisy estimate Ê can be obtained. In the
same way as motions are defined in a specific coordinate
frame, errors are also relative to a frame. Choosing w.l.o.g.
to represent errors in frame B, the relationship between es-
timate and true state is written

ÊBA = exp(εB)EBA (10)

where the error 6-vector ε is normally distributed:

εB ∼ N(0, ΣB). (11)

Here ΣB is the estimate’s 6×6 covariance matrix in co-
ordinate frame B. It is sometimes desirable to transform
covariance matrices from one coordinate frame to another:
writing e.g. ÊCA = ECBÊBA, errors transform like mo-
tions in Eq. (8)

εC = Adj(ECB)εB (12)

for any sample from the error distribution. It can be shown
that covariance matrices also transform with the adjoint:

ΣC = Adj(ECB)ΣBAdj(ECB)T. (13)

This is shown by equating probabilities for the mapped dis-
tribution,

1

|Adj(EB)|

e−
1

2
ε

T
C

Σ
−1

C
εC

√

(2π)6 |ΣC |
=

e−
1

2
ε

T
B

Σ
−1

B
εB

√

(2π)6 |ΣB|
(14)

and noting that ∀E, |Adj(E)|=1 and (Adj(E)0=0) =⇒
(|ΣB| = |ΣC |) so all denominators cancel. The result in Eq.
(13) is obtained by substituting Eq. (12) and rearranging.

If the errors in 10 were represented in frame A instead
of frame B,

ÊBA = EBA exp(εA) (15)

then the distribution of εA is different from that of εB. For
example, an ambiguity in rotation in coordinate frame B
corresponds to a coupled translation and rotation ambigu-
ity in coordinate frame A. For this reason it is necessary to
know how to transform covariance matrices from one coor-
dinate frame to another.

In the remainder of this paper, the following coordinate
frames are used:

W : World (i.e. Model)
C : Tablet-mounted camera, (z=optical axis)
T : Back of tablet (x, y in plane of tablet)
S : Camera (sensor) observing tablet

3

4. Inside-out edge tracking

This section describes an edge-based tracking system by
which the pose of a tablet-mounted camera is tracked. The
edge-based tracking system employed has previously been
applied to HMD-based AR [9]; what follows here is a brief
review of the system’s operation. Video at 640×480×8bpp
and 30Hz is captured by a fire-wire camera mounted to the
top of the tablet.

The tracking system employed relies on the availability
of a 3D model of the scene to be tracked. This 3D model
must describe salient edges and any occluding faces. Us-
ing a predicted estimate of camera pose, an estimate of the
tablet camera’s view of the model can be projected at ev-
ery frame: a point in the world reference frame xW =
(xW yW zW 1)T projects into the image as

(

u
v

)

= CamProj
(

E
-
CWxW

)

(16)

where E
-
CW is a predicted pose estimate, i.e. the transfor-

mation from the world coordinate frame W to the tablet
camera centered frame C. This prediction may be the pre-
vious frame’s posterior, or could be obtained from the filter
described in Section 6. The projection from camera frame
to image coordinates is modelled by

CamProj

x
y
z
1

=

[

fu 0 u0

0 fv v0

]

r′

r
x
z

r′

r
y
z

1

 (17)

with r =
√

(x/z)2 + (y/z)2, r′ = r + αr3 + βr5 to com-
pensate for radial lens distortion. The relevant parameters
for the camera used are known. Figure 1a shows an example
video frame captured by the camera with the system’s pose
estimate rendered over it. In this image, the rendered model
is not correctly aligned with the video image: the aim is to
compute a camera motion MC which will properly align the
model to give the posterior pose estimate:

ECW = MCE
-
CW (18)

To calculate this motion, sample points are initialised along
the visible model edges. From these points, perpendicular
searches for the nearest video image edge are performed.
This step is illustrated in Figure 1b, in which white lines
represent the perpendicular distances to the nearest image
edge. This distance measure (which is assumed to be noisy)
is written d̂i for the ith of N sample point. Next, Eq. (16)
is differentiated w.r.t. the parameters of the motion MC to
obtain a N×6 Jacobian matrix J such that

Ji,j =
∂di

∂µCj

= n̂i ·

(

∂u
∂µj

∂v
∂µj

)

(19)

a b c

Figure 1. Edge Tracking: a) Prior, b) Measure-
ment c) Posterior

where ni is the edge normal for the ith sample point. The
required motion MC = exp (µC) may then be found after
solution of the equation

JµC = d̂ (20)

which for standard least-squares2 takes the form

µC = J†d̂ = (JT J)−1JT d̂ (21)

An estimate of the accuracy of the motion vector µC is
required to use the pose estimates provided by this system
in a statistical filter. To calculate this, image measurements
are assumed to be corrupted by independent Gaussian noise
of 1 pixel standard deviation:

d̂ = d + δ , δ∼N(0, IN) (22)

Rewriting Eq. (21) in terms of noisy measurements d̂ the
noisy motion estimate is given by

µ̂C = J†d̂ (23)

The covariance can be found using expectation:

ΣC = E
[

(µ̂C − µC)(µ̂C − µT)T
]

= E
[

(J†d̂ − J†d)(J†d̂ − J†d)T
]

= E
[

(J†δ)(J†δ)T
]

= J†E
[

δδT
]

J†T

= (JT J)−1 (24)

Our previous work [9] used inertial sensors to deal with
the large motions of a head-mounted camera. By contrast,
the tablet-mounted camera used here undergoes relatively
moderate motion. Further, while both visual and inertial
sensors in our previous work produced only relative mea-
surements, the external tracking of Section 5 provides a
source of absolute measurements. Occasional failures of
the edge-based tracking are therefore tolerable and for this
reason (and to save weight and bulk) the inertial sensors de-
scribed in [9] are not used with the tablet PC.

2In practice an M-Estimator is used instead.

4

5. Outside-in fiducial tracking

The marker-less inside-out tracking described in the pre-
vious section depends on an approximate prior pose es-
timate, and cannot operate if this prior pose is corrupt.
To complement this, a second source of pose information
should not require information from the past, but calculate
a fresh pose estimate at every single frame.

We attach fiducials to the back of the tablet PC and ob-
serve these with a camera fixed in the world. Infra-red LEDs
are chosen as fiducials as they have a number of advantages
over larger printed markers: their small size makes occlu-
sion by users less likely; their size in the image changes
insubstantially with distance; finally, using an infra-red fil-
ter with the sensor cameras, they are very easy to find in an
image and false positive rates (during indoor operation) are
negligible.

The disadvantage of using LEDs is that in contrast to
paper markers which can have unique patterns printed in
them, LEDs cannot be distinguished by appearance. While
it is possible to strobe LEDs to determine their identity [21],
this requires information to be merged over many frames,
whereas we require a full pose estimate each frame. Instead,
LEDs are identified based on their relative positions in the
image. Six co-planar LEDs are mounted to the back of the
tablet with known positions (Fig 2a).

In an offline procedure, four LEDs are selected (Fig 2a)
and warped to a unit square (Fig 2b) with a plane-to-plane
homography. The warped positions of the remaining two
LEDs (

⊕

) form a characteristic of this permutation, which
is stored in a table. The table is filled for all 120 permuta-
tions for which four LEDs form convex planar shapes.

At runtime, LEDs are detected in a 768x288 greyscale
image by thresholding. After removing the effects of lens
distortion, four of six LEDs detected in the image are ran-
domly selected (Fig 2c). For each permutation in the stored
table, the two characteristic positions from the unit square
are warped into the image plane and the error to the re-
maining detected LEDs is measured (Fig 2d). The per-
mutation with best consensus yields the identity of the de-
tected LEDs. This system copes with the occlusion of a
single LED: beyond this no unique identification is possi-
ble. While it is possible to establish correspondence using
information from past frames or a prior ([2]) this is not at-
tempted here.

After LED identification, tablet frame coordinates of
the form xT = (xT yT 0 1)T of the selected LEDs are
known. The image locations are un-projected by the in-
verse of Eq.(16) to give image plane coordinates of the form
(u′ v′ 1)T . The plane-to-plane homography H such that

ba

Training: Warp measured locations to unit square

c d

Matching: Warp into detected image and measure distance

Figure 2. LED Matching procedure

w′
1u

′
1 ... w′

Nu′
N

w′
1v

′
1 ... w′

Nv′N
w′

1 ... w′
N

 = H

xT 1 ... xT N

yT 1 ... yT N

1 ... 1

(25)
is found using standard techniques. From this homography,
it is possible to obtain an estimate of the 4×4 transformation
matrix ÊST which transforms LED coordinates xT into the
LED camera frame S: such a method is presented e.g. by
Kato and Billinghurst [8], and a similar approach is used
here.

This pose estimate is then refined for the full projection
model and all identified LEDs. Writing the refinement as a
small motion MT ,

Ê′
ST = ÊST nMT . (26)

The re-projection of the LEDs into the image
(

û
v̂

)

= CamProj
(

Ê′
ST xT

)

(27)

can then be differentiated to form a 2N×6 Jacobian matrix
J , where

J2i,j =
∂ûi

∂µT j

, J2i+1,j =
∂v̂i

∂µT j

. (28)

This matrix is used to minimise the re-projection errors (û−
u, v̂ − v) as in Eq. (23). Analogously to Eq. (24), image
locations are assumed corrupted by independent Gaussian
noise with σ = 1 pixel. The covariance in the tablet frame
of the final pose estimate is thus

ΣT = (JT J)−1. (29)

5

6. Filtering

To combine the measurements from the tablet-mounted
camera and any fixed cameras observing the LEDs mounted
on the back of the tablet, an Extended Kalman filter is em-
ployed. This section describes the steps required to filter
the two sources of pose information used. To aid readabil-
ity the notation here is loosely based on Welch and Bishop’s
excellent tutorial [20] on the filter.

The filter used tracks 12 degrees of freedom: the 6DOF
tablet camera pose its 6DOF velocity. However, the filter
state x is not stored as a 12-vector. Pose is represented as
the transformation matrix ECW while velocity is stored as
a 6-vector vC in coordinate-frame C. Then, for time t, the
filter’s estimate x̂t of the actual system state xt is

x̂t =
{

ÊCW|t, v̂C|t

}

. (30)

The state estimate relates to the true state as

ÊCW|t = exp(εpose)ECW|t

v̂C|t = εvel + vC|t
. (31)

The state error 12-vector εC|t at time t is thus

εC|t =

(

εpose

εvel

)

(32)

and is modelled as normally distributed

εC|t ∼ N(0, Pt). (33)

where Pt is the filter’s state error covariance at time t.
Using a constant-velocity model, the filter’s time update

equation (sans unknown noise and driving function but pa-
rameterised by elapsed time δt) is used to provide a prior
estimate of future state:

x̂-
t+δt = f(x̂t, δt) =

{

exp(v̂C|t δt)ÊCW|t, v̂C|t

}

. (34)

The corresponding prior state covariance is

P
-
t+δt

= APtA
T + σ2

p

[

0 0
0 I6

]

(35)

where σp is the system’s process noise parameter and A
takes the from

A =

[

I6 δtI6

0 I6

]

(36)

in accordance with the system dynamics.
To integrate pose measurements from the sensors used,

these pose measurements Ê
m

are converted to an innovation
motion which describes the motion from the filter’s prior
state to the pose described by the measurement:

MC = Ê
m

CW Ê
-
CW|t+δt

−1 (37)

Further, the measurement’s covariance Σ
m

C is transformed
into the filter’s reference frame and used to compute the
Kalman gain K. Dropping the subscript t + δt,

K = P
-
HT

(

HP
-
HT + Σ

m

C

)−1

(38)

where matrix H = [I6 0]. The posterior pose is found by
weighting the innovation motion by the Kalman gain and
applying the result to the prior pose:

ÊCW = exp (K log(MC)) Ê
-
CW (39)

and the posterior covariance is found as

P = (I6 − KH)P
-
. (40)

Since the inside-out tracking of Section 4 produces pose
measurements of the form {ECW , ΣC} (c.f. Eq. (18,24)),
these can be directly filtered as described above. On the
other hand, the LED tracking system described in Section 5
produces pose estimates of the form {ET S , ΣT }; for these
measurements to be filtered they must first be transformed
into the filter’s coordinate frame.

For this purpose, knowledge of the transformations ECT

(Tablet camera from tablet back) and ESW (LED tracking
camera from world) is required. Providing the tablet camera
is rigidly attached to the tablet and the sensor camera rigidly
mounted in the world, these transformations may be con-
sidered fixed and need be calibrated only once. While these
transformations can not be directly measured, they can be
calculated by observing the changes in the two sensor mea-
surements. Chaining together transformations,

ESW = EST ET CECW . (41)

Inserting an observed motion in the tablet camera frame MC

and a simultaneously observed motion in the tablet back
frame MT , this chain remains valid:

ESW = EST MT ET CMCECW = EST ET CECW

MT ET CMC = ET C

MT ET C = ET CM−1
C (42)

Baillot et al [1] have recently identified this problem as one
studied in robotics as AX = XB. A closed form solution
which can generate an estimate for ET C from to a mini-
mum of two sets of motion measurements exists [13] and is
also used here. Once ET C (and thus, simultaneously, ESW)
has been obtained, measurements from LED tracking can be
transformed into the tablet camera frame

E
m

CW = E−1
T CET SESW

Σ
m

C = Adj(E−1
T C)ΣT Adj(E−1

T C)T (43)

and so measurements from both inside-out and outside-in
tracking are accommodated. This completes the equations
required for operation of the filter.

6

Figure 3. Tablet PC with attached camera, and
close-up of two LEDs mounted on back

Figure 4. Left, overview of game. Right, play-
ers can trap ghosts by throwing coins into the
game

7. Tablet-based AR

The edge-based tracking of Section 4 was implemented
on an HP Compaq TC1100 tablet PC, pictured in Figure
3. This device uses a 1GHz ULV Pentium-M processor.
A 10” screen with 1024x768 pixels is driven by an NVidia
Geforce4 420 Go graphics accelerator. Video input is pro-
vided by a Fire-i camera fitted with a wide-angle lens. Un-
fortunately the PCMCIA fire-wire card used provides no
power, so the camera is wired up to draw power from the
USB port, and this also provides current to the six infra-red
LEDs attached to the back of the tablet.

The LEDs are tracked using one or more standard
monochrome PAL video cameras operating at field rate
(50Hz.) Infra-red transmissive filters are attached to the
lenses to block out most of the visible spectrum: The im-
ages produced by these cameras are solid black with only
the LEDs showing as white dots. The cameras are con-
nected to video capture cards in a standard workstation (2
× 2.4 GHz.) This machine runs the LED tracking described
in Section 5 and the statistical filter of Section 6. Measure-
ments and pose predictions are exchanged between work-
station and the tablet PC by wireless network, and the two
machine’s clocks are synchronisation to sub-millisecond ac-
curacy by aggressive NTP polling.

A prototype entertainment application is in development

to evaluate tracking performance. This application is cen-
tered around a real-world 0.8×0.8m playing field resem-
bling a large “Cluedo” board. Figure 4 shows the playing
field, the tablet PC and one of the LED-tracking cameras.
The field is divided into rooms by thin vertical walls: the 3D
locations of these walls are known and form the 3D model
which the edge-based tracking system requires.

The player guides a virtual character around the real
world using the tablet’s pen to point at target positions. The
aim of the game is to collect items from rooms while avoid-
ing contact with virtual ghosts controlled by the computer.
Ghosts can be removed from the game by throwing ghost
traps into their path: The player achieves this by physically
throwing coins into the playing field, whereupon ghosts
(and unfortunate players) in proximity of the landed coin
are sucked into a virtual vortex. Coins are detected using a
ceiling-mounted camera: this is connected to the worksta-
tion which employs background subtraction and an ad-hoc
circle detector. The image location of the detected coin is
mapped into the playing field and transmitted to the tablet
PC which runs the game logic.

To provide augmented visuals, the tablet PC operates a
track-render loop. For each video frame received by the
camera, tracking as described in Section 4 is performed.
This yields a pose estimate ECW which is used to render the
augmented visuals. Rendering is performed using acceler-
ated OpenGL. However, since a wide-angle lens and projec-
tion model with radial distortion terms (Eq. (17)) are used,
the augmented graphics cannot be rendered directly into
the frame-buffer: instead, the texture-mapping approach of
Watson and Hodges [19] is employed, whereby geometry
is first rendered without radial distortion, and the rendered
image is subsequently warped using a textured grid.

For video see-through, this requires a GL visual with
destination alpha support. Each frame, the z-buffer is
cleared and the frame-buffer set transparent. Next, the ge-
ometry used for edge tracking is rendered without distortion
into the z-buffer only. This serves to correctly occlude the
augmented visuals, which are rendered without distortion
into the z and colour buffers. The framebuffer, now contain-
ing only the augmented visuals (player, ghosts etc.) over a
transparent background, is copied into a texture map. The
framebuffer is then overwritten with the video camera im-
age. Finally, the just generated texture map is drawn over
the video image using a 20x20 quad mesh (whose vertices
have been distorted in accordance with the lens distortion)
to form the final composited scene.

8. Occlusion refinement

In augmented reality, virtual objects are often placed in
the real world. To appear believable, these objects should
not only be well-registered with the real world, they should

7

also occlude real objects behind them, and be occluded by
real objects in front. The accuracy of this occlusion greatly
affects the user’s perception that the virtual object belongs
in the scene. If too much is occluded the virtual object looks
like a cardboard cut-out. If too little is occluded, this de-
stroys the depth cues.

This occlusion is often resolved by z-buffering: by pop-
ulating the z-buffer with an estimate of the real world’s
depth, occlusion of the subsequently rendered virtual ob-
jects is automatically handled by the rendering hardware.
The z-buffer can be filled with information generated from
a stored 3D model and a pose estimate (c.f. [4] and the
approach in the previous section) or data generated on-line
(using e.g. depth from stereo [22]). Whichever method is
used, the values in the z-buffer will occasionally not corre-
spond to the real depth in the scene, and occlusion errors
will occur.

Considering only those systems which assume knowl-
edge of the occluding real geometry, the most obvious
source of error is an inaccurate model of this geometry.
However, even if the model is accurate, tracking errors (or
jitter) or incorrect projection parameters can produce no-
ticeable occlusion errors in the image. This is particularly
true of systems in which the tracked feature and the occlud-
ing geometry are some image distance apart: in this case,
any small rotational tracking error produces an amplified
occlusion error. By tracking the visible edges in the scene
to obtain pose, our system is also optimising for those fea-
tures which cause occlusion and this goes a long way to
providing a good level of realism. However, the system still
produces substantial occlusion errors on occasion. Figure
5a shows an example in which the occluding wall has been
rendered into the z-buffer too far to the right, so that too
much of the virtual character is occluded. Even though the
position of the occluding wall was measured during track-
ing, it is drawn in the position which is best fits all measured
edges. To solve this problem, an approach has been devel-
oped which optimises the modelled location of an occluding
edge using measurements from that edge only. To achieve
this, the rendering process described in the previous section
must be modified:

As before, the frame-buffer is cleared to be transparent.
However the z-buffer is no longer populated by rendering
the entire occluding model; instead, virtual geometry is oc-
cluded object by object. For each object, the potentially
occluding world geometry is identified. This task is simpli-
fied by the structure of the world model used, which con-
tains only vertical walls. Once an occluding wall has been
identified, it is projected to a clipping polygon in the image
plane. The object-occluding sides of this polygon are then
optimised by searching in the video image. Figure 5b shows
this optimisation, as well as the non-occluding edges of the
clipping polygon drawn as solid lines.

a b

c d

Figure 5. Occlusion refinement. a) No oc-
clusion refinement: too much of the virtual
object is clipped, b) clipping polygon is re-
fined through image search, c) character is
rendered and clipped with refined polygon,
d) composited scene.

At this point, clipping the virtual object could simply be
performed by rendering the clipping polygon into the sten-
cil buffer and using this as a mask for rendering the vir-
tual object. However this would produce a very sharp edge,
whereas edges in the video image are slightly blurred by the
camera optics. This produces an unrealistic and jarring con-
trast. It is preferable to clip the virtual object with a slightly
graduated edge to blend it into the blurred video edge.

To achieve this blending effect it is necessary to first ren-
der the object unclipped, and to subsequently overwrite its
alpha channel with a modified clipping polygon. The clip-
ping polygon has the occluding edges transformed into thin
quads which are transparent along one side and opaque on
the other. OpenGL interpolates this into a smooth alpha-
graduated occluding edge. The stencil buffer can be used
to ensure that the clipping polygon only overwrites pix-
els which were drawn by the corresponding virtual object.

8

Figure 5c shows a clipped virtual object. The final scene
is composited as described in Section 7, and is pictured in
Figure 5d, showing substantial improvement over the com-
posite shown in Figure 5a.

9. Results

9.1. Real-time performance

The full AR system described in Sections 7 and 8 oper-
ates at between 25 and 30 frames per second on the tablet.
CPU usage on the tablet registers at 60%. We expect to
achieve consistent 30 frames per second performance with
some optimisation of graphics calls. On the workstation,
LED tracking, filtering and coin detection run at full frame-
rate and occupy a total of 15% of processor time.

9.2. Errors

Tracking jitter was evaluated by keeping the tablet static
and observing the noise in incoming measurements. Typical
RMS jitter values for the edge-based and LED tracking are
tabulated in Table 1. Tracking jitter reduces the apparent
registration of real and virtual objects, with virtual objects
appearing to wobble on a static background.

Edges LEDS
Trans/ Rot Trans/ Rot

Jitter (mm/deg) 1.1 0.17 5 0.5
σ (mm/deg) 1.0 0.15 8 2.85

Table 1. Tracking jitter compared to estimated
standard deviation

The observed jitter of the edge-based tracking agrees
with the expected error. The LED measurements yield
lower observed jitter than the expected error. This is likely
to be due to the fact that the LED centroids in the image
can be extracted to sub-pixel accuracy and the σ=1 pixel
assumption in Section 5 is overly pessimistic.

A systematic error between LED measurements and
tablet camera measurements was observed in some situa-
tions. Depending on the position of the tablet in the playing
volume, this error was as large as 2cm. It is likely that this
errors is caused by inaccuracies in the calibration of ESW

and ET C and errors in camera parameter values.

9.3. Dynamic performance

A video file demonstrating tracking performance is en-
closed. In this video, the tracked edges are rendered into the
scene to allow visual inspection of tracking performance.
During normal operation, these edges are not rendered.

In standalone operation, the edge based tracking of the
tablet camera is prone to failure on rapid motions. Further,
there is a possibility of the edge based tracking falling into
local minima. These failure mechanisms are illustrated in
the enclosed video file.

The LED tracking does not suffer any adverse effects
from rapid motion. The LEDs are bright enough that the
LED camera’s exposure time can be set to a small enough
value to eliminate motion blur. However, the LED tracking
by itself is not accurate enough to properly register the aug-
mented visuals. This is due to both the systematic pose er-
rors described above and the relatively large tracking jitter.

When edge-based tracking and LED tracking are com-
bined, the LED tracking’s initialisation is for the most part
sufficient to allow the edge-based tracking to converge. Re-
covery from total edge-tracking failure is possible as long as
the LEDs are in view of the observing camera. It should be
noted this volume is larger than appears in the result video,
in which the tablet is tethered for filming.

The systematic error described above can produce os-
cillatory behaviour in the system state. However, since the
augmented visuals are rendered using the edge tracking pos-
terior, this oscillatory behaviour of the state is not observ-
able in the AR display - there is however a small probabil-
ity that at any given frame, edge-tracking will not converge
correctly, and this causes occasional one-frame glitches in
the display. Initial attempts to adaptively weight [5] the in-
novations of the different sensors in the EKF have shown
great potential in reducing this oscillation. Simultaneoulsy,
re-convergence after edge-tracking failure can be sped up.
This is an area of future work.

9.4. Occlusion Refinement

The accompanying video file demonstrates the effect of
occlusion refinement. In most scenes, the use of occlu-
sion refinement is beneficial to the composited appearance.
However for some configurations the refinement introduces
new errors. In particular this is the case if an occluding edge
in the image is very low-contrast and in close proximity to
other texture edges or shadows. In this case the edge posi-
tion refinement converges on an incorrect edge, producing
large, often dynamic, and mostly very noticeable occlusion
errors. Some preliminary efforts to reduce these errors (the
use of M-estimation, and the imposition of zero-motion pri-
ors on an edge’s displacement and rotation) have reduced
the likelihood of such errors, but there remains scope for im-
provement (by e.g. using alternative line-fitting techniques,
information from previous frames or adjoining edges.)

In the absence of correspondence failures, the occlusion
refinement system enhances the appearance of the compos-
ited scene. In particular, the visible effect of tracking jit-
ter can be reduced. Further, the “crawling jaggies” effect

9

when occluding edges are near-horizontal or near-vertical
is mostly eliminated by the alpha-blended clipping proce-
dure.

9.5. Conclusion

This paper has demonstrated the feasibility of robust and
accurate AR on a tablet PC without the use of markers
placed in the scene. The complementary strengths of inside-
out edge-based tracking and outside-in LED tracking are
combined in an Extended Kalman Filter, using a powerful
mathematical framework which facilitates the manipulation
of noisy data from different reference frames.

Further, this paper has shown that by fine-tuning individ-
ual occluding edges in the image, the apparent registration
of virtual objects in the real world can be greatly improved.

In direct comparison to PDAs, the tablet (1.4kg) is un-
comfortably heavy to hold one-handed for extended peri-
ods of time. Further, the device becomes rather hot. It is
expected that as tablet PCs become lighter and PDAs more
powerful, full frame-rate handheld AR will become a very
practical possibility.

References

[1] T. Baillot, S. Julier, D. Brown, and M. Livingston. A tracker
alignment framework for augmented reality. In Proc. Sec-
ond IEEE and ACM International Symposium on Mixed and
Augmented Reality, pages 142–150, Tokyo, October 2003.

[2] M. Bajura and U. Neumann. Dynamic registration correc-
tion in video-based augmented reality systems. IEEE Com-
puter Graphics and Applications, 15(5):52–61, 1995.

[3] M. O. Berger. Resolving occlusion in augmented reality: a
contour based approach without 3d reconstruction. In Pro-
ceedings of the 1997 Conference on Computer Vision and
Pattern Recognition (CVPR ’97), page 91. IEEE Computer
Society, 1997.

[4] D. Breen, R. Whitaker, E. Rose, and M. Tuceryan. Inter-
active occlusion and automatic object placement for aug-
mented reality. In Proc. of Eurographics, pages 11–22,
Poitiers, France, August 1996.

[5] T. Cipra and R. Romera. Robust kalman filter and its appli-
cation in time series analysis. Kybernetika, 27(6):481–494,
1991.

[6] A. Fuhrmann, G. Hesina, F. Faure, and M. Gervautz. Oc-
clusion in collaborative augmented environments. In Proc.
5th EUROGRAPHICS Workshop on Virtual Environments,
Vienna, June 1999.

[7] M. Kanbara, T. Okuma, H. Takemura, and N. Yokoya.
A stereoscopic video see-through augmented reality sys-
tem based on real-time vision-based registration. In Proc.
IEEE Virtual Reality 2000 (VR2000), pages 255–262, March
2000.

[8] H. Kato and M. Billinghurst. Marker tracking and hmd cal-
ibration for a video-based augmented reality conferencing

system. In Proc. 2nd Int’l Workshop on Augmented Reality,
pages 85–94, San Francisco, CA, Oct 1999.

[9] G. Klein and T. Drummond. Robust visual tracking for non-
instrumented augmented reality. In Proc. Second IEEE and
ACM International Symposium on Mixed and Augmented
Reality, pages 113–122, October 2003.

[10] V. Lepetit and M. O. Berger. Handling occlusions in aug-
mented reality systems: A semi-automatic method. In Proc.
International Symposium on Augmented Reality (ISAR),
pages 197–146, October 2000.

[11] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer,
G. Klinker, and B. Brügge. Herding sheep: Live system
development for distributed augmented reality. In Proc. Sec-
ond IEEE and ACM International Symposium on Mixed and
Augmented Reality, Tokyo, October 2003.

[12] C. Owen, F. Xiao, and P. Middlin. What is the best fiducial?
In Proc. First IEEE International Augmented Reality Toolkit
Workshop, pages 98–105, Darmstadt, September 2002.

[13] F. Park and B. Martin. Robot sensor calibration: Solving
AX=XB on the euclidean group. IEEE Transactions on
Robotics and Automation, 10(5):717–721, 1994.

[14] K. Satoh, S. Uchiyama, H. Yamamoto, and H. Tamura. Ro-
bust vision-based registration utilizing bird’s-eye view with
user’s view. In Proc. Second IEEE and ACM International
Symposium on Mixed and Augmented Reality, Tokyo, Octo-
ber 2003.

[15] V. Varadarajan. Lie Groups, Lie Algebras and Their Repre-
sentations. Number 102 in Graduate Texts in Mathematics.
Springer-Verlag, 1974.

[16] V. Vlahakis, N. Ioannidis, J. Karigiannis, M. Tsotros, and
M. Gounaris. Virtual reality and information technology for
archaeological site promotion. In Proc. 5th International
Conference on Business Information Systems (BIS02), Poz-
nan, Poland, April 2002.

[17] D. Wagner and I. Barakonyi. Augmented reality kanji learn-
ing. In Proc. Second IEEE and ACM International Sym-
posium on Mixed and Augmented Reality, Tokyo, October
2003.

[18] D. Wagner and D. Schmalstieg. Artoolkit on the pocketpc
platform. Technical Report TR-188-2-2003-23, Technical
University of Vienna, 2003.

[19] B. Watson and F. Hodges. Using texture maps to correct for
optical distortion in head-mounted displays. In Proc. IEEE
Virtual Reality Annual Symposium (VRAIS’95), pages 172–
178, March 1995.

[20] G. Welch and G. Bishop. An introduction to the kalman fil-
ter. Technical Report TR 95-041, University of North Car-
olina at Chapel Hill, 1995. Updated 2002.

[21] G. Welch, G. Bishop, L. Vicci, S. Brumback, K. Keller, and
D. Colucci. The hiball tracker: High-performance wide-area
tracking for virtual and augmented environments. In Proc.
ACM Symposium on Virtual Reality Software and Technol-
ogy, 1999.

[22] M. M. Wloka and B. G. Anderson. Resolving occlusion in
augmented reality. In Proc. Symposium on Interactive 3D
Graphics, pages 5–12, New York, April 1995.

[23] W. Zhu, C. Owen, H. Li, and J.-H. Lee. Personalized in-store
e-commerce with the promopad: an augmented reality shop-
ping assistant. Electronic Journal for E-commerce Tools and
Applications, 1(3), Feb 2004.

10

