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Abstract

Background noise can have a significant impact on the perfor-
mance of speech recognition systems. A range of fast feature-
space and model-based schemes have been investigated to in-
crease robustness. Model-based approaches typically achieve
lower error rates, but at an increased computational load com-
pared to feature-based approaches. This makes their use in many
situations impractical. The uncertainty decoding framework can
be considered an elegant compromise between the two. Here, the
uncertainty of features is propagated to the recogniser in a math-
ematically consistent fashion. The complexity of the model used
to determine the uncertainty may be decoupled from the recogni-
tion model itself, allowing flexibility in the computational load.
This paper describes a new approach within this framework,
Joint uncertainty decoding. This approach is compared with
the uncertainty decoding version ofSPLICE, standardSPLICE,
and a new form of front-end CMLLR. These are evaluated on
a medium vocabulary speech recognition task with artificially
added noise.

1. Introduction
It is well known that speech recognition performance degrades
in the presence of environmental noise. When models trained
in clean conditions are used in the real world, the mismatch
between the training conditions and the test causes significant
loss in recognition accuracy. Two approaches to improving
noise robustness are feature-based and model-based compensa-
tion schemes. In feature-based schemes an estimate of the clean
speech is made using a noise-model, or representation of the ef-
fects of the noise on the speech. SPLICE [1] is one recent exam-
ple of this approach. Alternatively in model-based approaches,
the parameters of the system are altered to reflect speech in the
new acoustic environment. Examples in this class include Par-
allel Model Combination (PMC) [2] and Vector Taylor Series
(VTS) compensation [3]. Model-based approaches often yield
better performance than feature-based compensation schemes,
especially in low SNR conditions, or in complex recognition
tasks. However model-based schemes are usually more com-
putationally expensive, especially if the acoustic environment
is rapidly changing. Recently an elegant compromise between
the two schemes, uncertainty decoding, has been proposed [4].
This approach allows the uncertainty of features to be propa-
gated to the recogniser in a mathematically consistent fashion.
The complexity of the model used to determine the uncertainty
may be decoupled from the recognition model itself, allowing
flexibility in the computational load associated with the scheme.
This approach has been used to give a version of the SPLICE
algorithm incorporating uncertainty [5].
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this paper an alternative implementation within the un-
nty decoding framework is presented, Joint uncertainty
ing. This new approach is compared to both the standard
ncertainty versions of SPLICE. In addition, the approach
trasted with constrained MLLR [6] as the resultant com-
tion may be viewed as an extended version of a linear
e-space transformation. These schemes are evaluated on
ium vocabulary speech recognition task with artificially
noise.

. Uncertainty Decoding Framework
ffects of environmental noise can be represented in a dy-
Bayesian network as shown in figure 1. Here, the noise
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Figure 1: Uncertainty Decoding DBN

pted speech observation yt at time t is assumed to be con-
ally independent of all other observations given the clean
h xt and the noise nt at that time. The clean speech and
are assumed to be generated by HMMs with states θn

t for
ise1 and θt for the clean speech. Under these assumptions
elihood of the corrupted observation may be expressed as

yt|M, M̌, θt) =
∫

p(yt|xt, M̌)p(xt|M, θt)dxt (1)

p(yt|xt, M̌) =
∫

p(yt|xt, nt)p(nt|M̌, θn
t )dnt (2)

ˇ the front-end compensation model. The acoustic model
nsists of Gaussian components each defined by a prior, cm,
, µ(m), and variance, Σ(m). The likelihood calculation
as two distinct parts. Only the first, p(yt|xt, M̌), is a

ion of the noise. Equation 1 does not depend on the noise
the form of p(yt|xt, M̌). Uncertainty decoding takes
tage of this factorisation by using an appropriate form of
ximation for the conditional distribution of the corrupted
h given the clean speech for a particular noise environment.
e complexity of this approximation may be independent of
mplexity of the actual acoustic models, there is a large

e of flexibility in choosing the computational cost of the
ing process.

single state is assumed for the noise model in this paper.



An example of using uncertainty decoding is the uncertainty
version of SPLICE [5]. An N -component Gaussian Mixture
Model (GMM) is used to approximate the conditional distribu-
tion. Equation 2 is re-written using Bayes’ rule as

p
(
yt|xt, M̌

)≈∑N
n=1 p

(
xt|yt, šn, M̌)

p
(
yt|šn, M̌)

čn

p
(
xt|M̌

) (3)

where the parameters associated with component šn, are the
prior, čn, and µ̌

(n)
i and σ̌

(n)2
i , the mean and variance of di-

mension i of (xt − yt) given the GMM component. Directly
marginalising this form of conditional distribution is highly com-
plex. Hence the GMM in the denominator is approximated
by a single Gaussian component with the parameters µ̄x and
Σ̄x. This yields the following form of the conditional corrupted
speech posterior for a particular front-end component šn

p
(
yt|xt, M̌, šn

)
=f(yt, šn)N

(
A(n)yt+b(n); xt,Σ

(n)
b

)
(4)

where f(yt, šn) is only a function of the corrupted observation
and uncertainty model component [7] and the diagonal matrix
A(n), bias vector b(n) and variance offset Σ(n)

b are given by

a
(n)
ii =

σ̄2
xi

σ̄2
xi − σ̌

(n)2
i

, σ
(n)2
bi = a

(n)
ii σ̌

(n)2
i (5)

b
(n)
i =a

(n)
ii

(
µ̌

(n)
i − σ̌

(n)2
i

σ̄2
xi

µ̄xi

)
(6)

for dimension i. Due to the approximation for the GMM in the
denominator of equation 3, the denominator in the estimation
of a

(n)
ii can go negative. Flooring the denominator term avoids

this. To improve the efficiency, rather than summing over all
the components, only the most probable component šn∗ is com-
monly used, selected by the component posterior

šn∗ = arg max
šn

(
čnp

(
yt|šn, M̌)

∑N
i=1 čip

(
yt|ši, M̌

)
)

(7)

With this simplification, the overall number of Gaussian eval-
uations during decoding remains unchanged, and the term
f(yt, šn) can be ignored since it now does not affect the recogni-
tion results. After marginalising over the components, the noise
corrupted speech likelihood of equation 1 for state θt, is given
by

p(yt|M,M̌, θt) ∝ (8)∑
m∈θt

cmN
(
A(n∗)yt+b(n∗); µ(m),Σ(m) + Σ(n∗)

b

)

where the marginalisation of the two Gaussian distributions sim-
plifies to a single Gaussian. One problem is that the cost of
applying the variance bias is a function of the complexity of
the acoustic model, M, rather than the uncertainty model, M̌.
However for a diagonal variance bias, this cost is small.

3. Joint Uncertainty Decoding
The approach taken in this paper is to again approximate the
conditional distribution in equation 2 with a GMM, but use the
GMM directly. Now

p(yt|xt, M̌) ≈
N∑

n=1

P (šn|xt, M̌)p(yt|xt, M̌, šn) (9)

With
comp
speec
comp
take.

In
nent p

where
than t
from
speec
chang
the sa
Gaus

T
front-
distri
bution

[

The c
When
the co
has th
given

and t
the fo
SPLI
comp
tion 8
bias v
and t
for Jo
tures
for ev
will d
bias,
by re
equat

It
ing w
is app
fied th
transf
inite.
appro
can b
It is a
ramet
may b
in equ
this form of the conditional, two main issues arise: the
onent posterior P (šn|xt, M̌) is a function of the clean
h, not the corrupted observation; and the form that the
onent compensation parameters p(yt|xt, šn, M̌) should

this work a simple approximation is used for the compo-
osterior given the “clean” speech. Here

P (šn|xt, M̌) ≈ P (šn|yt, M̌) (10)

the model M̌ is now matched to the test condition rather
he clean speech. This decouples the front-end distribution
being dependent on the acoustic model through the clean
h variable xt. However, the conditional distribution may
e significantly over the clean speech integral. Thus using
me front-end distribution for every clean acoustic model

sian is not optimal.
he parameters of the conditional distribution given the
end model component, šn, are determined from the joint
bution of the clean and corrupted speech. This joint distri-

is assumed to be Gaussian, hence for component šn

xt

yt

]
∼ N

([
µ(n)

x

µ(n)
y

]
,

[
Σ(n)

x Σ(n)
xy

Σ(n)
yx Σ(n)

y

])
(11)

onditional distribution will therefore also be Gaussian.
this form is used in the uncertainty decoding framework,
nditional likelihood of the corrupted speech observation
e same form as equation 4, but the parameters are now
by

A(n) =Σ(n)
x Σ(n)-1

yx

b(n) =µ(n)
x − A(n)µ(n)

y (12)

Σ(n)
b =A(n)Σ(n)

y A(n)T − Σ(n)
x

he normalisation term f(yt, šn) is simply |A(n)|. As
rm of the conditional distribution is the same as that of
CE the final decoding likelihood, again using only the
onent with the largest posterior, has the same form as equa-
. However, in contrast to SPLICE where the form of the
ector, given in equation 5, means that the variance bias term
he feature transform are diagonal, the transform and bias
intmay be full. Though a full transformation of the fea-

may be efficiently applied, the resultant covariance matrix
ery component in the decoding system will be full. This
ramatically increase the computational load. The variance
Σ(n)

b , may be restricted to be diagonal, or block-diagonal,
quiring that each block of the joint covariance matrix in
ion 11 is diagonal, or block-diagonal.
is interesting to compare this form of uncertainty decod-
ith SPLICE. In SPLICE the denominator in equation 3
roximated by a single Gaussian component. This simpli-
e marginalisation, but requires the setting of a floor on the
orm scaling to ensure that the variance was positive def-
In contrast the Joint distribution does not require this

ximation, but assumes that the posteriors of the clean data
e approximated by the posteriors of the corrupted speech.
lso possible to relate the two forms of compensation pa-
ers. For example the variance for the SPLICE scheme
e expressed in terms of the joint distribution parameters
ation 11 as

Σ̌
(n) = Σ(n)

y + Σ(n)
x − Σ(n)

xy − Σ(n)
yx (13)



4. Model-based Uncertainty Decoding
It is interesting to note that the final likelihood expression for
both the SPLICE and Joint uncertainty decoding, equation 8,
is similar to constrained MLLR [6]. The standard form of the
CMLLR likelihood calculation is given by

p(yt|θt, M, M̌) = (14)∑
m∈θt

cm|A(rm)|N
(
A(rm)yt + b(rm); µ(m),Σ(m)

)

where rm indicates the transform-class that acoustic model com-
ponent m is assigned to and M̌ now denotes the model com-
pensation parameters. There are some interesting differences
between the uncertainty decoding, equation 8, and equation 14.
First, the transform is estimated using the differences between
the clean speech and noise corrupted speech, rather than maxi-
mum likelihood training. Second, there is a bias applied on the
variances. This increases the compensation cost, but can yield
improved recognition performance in noise, as discussed in sec-
tion 6. The final difference is that the transform is determined by
the component with the greatest posterior in the front-end. CM-
LLR is normally implemented by associating transforms with
components of the system. The first two differences are funda-
mental to the different forms of compensation. The final differ-
ence motivates a modification to both the CMLLR scheme and
the Joint uncertainty decoding scheme.

Instead of estimating joint distributions and transforms per
region of the acoustic space partitioned by a front-end GMM,
they could be trained for each transform class in a similar fash-
ion to CMLLR. For example, rather than estimate Σxy for a
component šn, it is found for each transform class rm

Σ(rm)
xy =

∑
m∈rm

γm(t)xty
T
t∑

m∈rm
γm(t)

− µ(rm)
x µ(rm)T

y (15)

where γm(t) is the component posterior at time instance t. The
joint mean, [µ(rm)T

x µ(rm)T
y ]T, and other covariance terms can

be similarly obtained. It is now possible to estimate a Joint
uncertainty decoding transform for each transform class. This
has the advantage that the posterior approximation in equation 10
is unnecessary. Also, for standard uncertainty decoding, as the
front-end component changes, a new variance bias must be ap-
plied to each acoustic model component. This is not necessary in
this transform class approach. However the disadvantage, in the
same fashion as CMLLR, is that at each time instance multiple
transformed feature-spaces are required, each with a different
normalisation term |A(rm)|. This approach will be referred to
as model-based Joint uncertainty decoding.

5. Front-end CMLLR
As it is useful to compare the uncertainty decoding schemes to
approaches such as CMLLR, CMLLR can be modified to use a
GMM front-end selection process. This is simply achieved by
associating a single CMLLR transform with each front-end com-
ponent šn. These transforms can be estimated using a slightly
modified version of the training algorithm described in [6]. For
example, to accumulate the sufficient statistic G(in) the accu-
mulation is modified to

G(in) =
∑
t,m

P (šn|yt, M̌)

σ
(m)2
i

γm(t)ζtζ
T
t (16)

where ζt is the extended observation vector [1 yT
t ]T. A similar

expression can be obtained for k(in). Compared to standard
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LR this has the advantage that only a single transform is
at each time instance. This form of transform will be

ed to as Front-end CMLLR (FE-CMLLR).

6. Results
ection describes preliminary results comparing the various
es described in this paper. For this work, noise was arti-

y added to a medium vocabulary speech recognition task,
00 word Resource Management (RM) database. Opera-

Room noise from the NOISEX-92 database was added at
aveform level. Though this task is artificial and is expected
ld better performance than would be obtained on realistic
it allows a comparison of the various techniques in a highly
olled fashion. RM was used as a speaker independent task

consists of 109 training speakers reading 3990 sentences
mpted script totalling 3.8 hours. All results are quoted
average of three of the four available test sets, Feb’89,
89 and Feb’91. This gives a total of 30 test speakers and
tterances. State-clustered triphone models were built using
andard RM recipe in the alpha version of HTK 3.3. The
ard front-end, MFCC plus normalised energy with delta
elta-delta parameters, were used for all experiments. A
of noise SNRs from 32 dB to 8 dB were examined, how-

he results are only quoted at 20 dB SNR. For further details
er SNRs see [7].
he RM database was selected for evaluation, rather than,
ample, the small vocabulary AURORA digit string recog-
task, because uncertainty decoding is expected to be more

rtant on more complex tasks. To verify the performance
SPLICE implementations, both standard and with uncer-

, the code was run onAURORA giving similar performance
t in [5], where only relatively small gains from uncertainty
ing were obtained.
he GMMs for the front-end uncertainty models were
d using iterative mixture splitting on the clean speech data.
ompensation parameters, either those associated with un-
nty decoding or the CMLLR transforms, were estimated
stereo data for the specific noise condition. This allows

chniques to be assessed without having to consider inaccu-
that result from the noise estimation process, or approx-

ons in the mismatch function. In practical situations the
ensation parameters can be estimated using PMC or VTS
schemes. This is discussed in more detail in [7].

Feature-based Compensation

lly feature-based compensation was evaluated. All these
es use a GMM in the front-end to determine the appro-
component for the compensation scheme. Only diagonal
ns of the FE-CMLLR and Joint schemes were assessed.

tem
With # Front-end Components

Uncertainty 1 4 16 256

an — 33.2

LICE
No

24.6 20.7 17.0 12.3
CMLLR 16.3 15.3 12.8 13.5

LICE
Yes

11.4 12.4 12.2 9.9
int 10.7 9.2 9.8 8.2

tched — 7.2

1: Feature-based compensation WER (%) at 20 dB SNR



Table 1 shows the performance of the various schemes
against the number of components in the front-end GMM.As ex-
pected the matched scheme, generated using single-pass retrain-
ing [2], significantly out-performed the standard clean system.
This matched system, the “perfect” model-based approach2, is
the baseline number for experiments. For reference, the error
rate on clean uncorrupted data was 3.3%, demonstrating the
considerable confusability that results from the addition of noise
where the error rate was more than doubled to 7.2%. The two
schemes with no uncertainty decoding, standard SPLICE and
FE-CMLLR, both gave reasonable gains over the baseline, clean,
system. However further large reductions in WER are achieved
by using SPLICEwith uncertainty or the Joint approach. Us-
ing a single component front-end with either scheme was bet-
ter than the best non-uncertainty decoding approach. This is
interesting since it illustrates the importance of incorporating
the variance bias term to allow some frames to be effectively
de-weighted. Comparing the SPLICE and Joint uncertainty
schemes, Joint appears to be better with fewer components,
but with 256 components the performance of the two is approx-
imately the same. This may be explained by the very simple
posterior approximation used in the Joint scheme. The overall
performance of the best scheme was still about 2.0% absolute
worse than the matched approach.

6.2. Model-based Joint Compensation

The Joint and CMLLR forms can also be applied in a model-
based manner. For these experiments the complexity of the
transforms was also varied to determine what effect the more
complex Joint transforms will yield.

System
Transform # Transform Classes
Structure 1 4 16

Clean — 33.2

CMLLR
Diagonal 16.3 14.6 10.3

Full 17.8 14.9 9.2

Model-Based Diagonal 10.7 9.6 8.2
Joint Full 10.1 8.0 7.4

Matched — 7.2

Table 2: Model-based compensation WER (%) at 20 dB SNR

As expected, when using more complex, or additional trans-
forms the performance of the system generally improves. In
table 2 using 16 full CMLLR transforms yields an error rate of
9.2%, the performance of the best front-end uncertainty scheme.
Note the performance of the standard model-based CMLLR was
generally better than the FE-CMLLR, though at the additional
computational expense of multiple input transforms. Comparing
the diagonal model-based Joint approach with the front-end
Joint scheme results in table 1, shows that the model-based
approach is better as the number of components/transforms in-
creases. This is not really surprising given the posterior approx-
imation used. Interestingly, using a full model-based Joint
approach consistently yielded the best performance over all the
schemes. Unfortunately, this scheme is computationally very ex-
pensive for decoding as the variance bias is a full matrix, bearing
an overall computational cost of a full covariance matrix system.
The performance of the 16 transform full Joint system gave an
error rate, 7.4%, that is approximately the same as the matched
system.

2This matched scheme can be improved upon, for example see [2].
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ne approach to reducing the computational load of the full
e would be to diagonalise the variance bias term. This still

a full transform, A, but an approximate diagonal variance
Σb. Unfortunately, using this simple approach produced
performance with error rates of about 30%.

7. Conclusions
aper has discussed the application of uncertainty decoding

ise robust speech recognition. The framework allows the
tainty to be propagated from the front-end process into the
nition search. Two forms of uncertainty decoding were
ared, the SPLICE formulation and a new Joint one.
schemes are based on the use of a GMM in the front-
hough making very different approximations to allow for
nt operation. In addition, a model-based version of the
t algorithm was briefly discussed along with a modified
n of CMLLR, FE-CMLLR. The performance of the var-
chemes was evaluated on an artificially noise corrupted
n of RM. As expected, the maximum likelihood trained

MLLR transforms performed better than MMSE SPLICE
er numbers of front-end components. Uncertainty decod-
as found to be far more accurate than the front-end com-
tion schemes SPLICE and FE-CMLLR. However, even
a 256-component GMM in the front-end the best system
till 2% worse than the matched system. The performance

model-based compensation schemes, where transforms
associated with sets of recogniser components rather than
end components, were generally better than the equiva-
ront-end scheme. Furthermore, using a full model-based
t transform gave an error rate approximately the same as
atched scheme.
he experiments presented in this paper were artificial in
ays: corrupted speech was simulated by adding noise to
speech and the compensation parameters were estimated
reo data. Future work will examine real found data, such
adcast news, and the application of schemes such as VTS
ermine the compensation parameters.
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