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A bst r act

We present an elastography system using freehand 3D ult rasound. A review is provided
of the standard elastography methods that have been adapted for this purpose. The scanning
protocol is simple and promising results are presented of 3D st rain images from freehand scans.
Robustness is a problem, however, and the main sources of error are explained. Measures have
been developed to improve the quality of the freehand images by means of dropout correct ion
and frame � ltering. Results from the applicat ion of these techniques provide an indicat ion
of development st rands which should lead to a system that is both easy-to-use and produces
reliable, high quality images.

1 I nt roduct ion

Ult rasound elastography seems certain to become an important medical imaging tool. It has al-
ready been used in clinical t rials for applicat ions such as imaging diseased arteries [1], detect ing
prostate tumours [2] and categorising breast lesions [3, 4]. The most common approach is stat ic
compression elastography, where frames of data are recorded before and after a controlled com-
pression has been applied to the t issue. Quasistatic compression elastography refers to variants in
which theprobe/ compressor is st ill moving at themoment when data is acquired. Cross-correlat ion
analysis is used to t rack t issue displacements from which the st rain � eld can be est imated. The
technique has been in development for over a decade [5], and can produce elastograms (st rain
images) with high SNR. Its most commonly cited applicat ion is the invest igat ion of st i� tumours
in soft t issues, where it has been shown that elast icity measurements could be useful for both
detect ion and categorisat ion purposes [6].

Against this, stat ic compression elastography presents several challenges which may part ly
explain why it has yet to be widely adopted into clinical pract ice. First ly, it is usual during
scanning that the probe or a separate compressing plate is cont rolled by a mechanical actuator to
produce precise deformat ion of the t issue. This rest ricts the  exibility with which the technique
may be applied. A second considerat ion with any imaging system is the delay after scanning
before elastograms are ready for inspect ion. Increases in the speed of modern processors have
helped to reduce computat ion t imes, but the processing t ime for an individual 2D elastogram
may be anything from tens of milliseconds [2] up to minutes depending on the number of pixels
required, the sampling rate, the choice of algorithm, and the numerous algorithmic parameters
governing t rade-o� s between speed, accuracy and robustness. Fast processing is crucial for feasible
3D elastography, sinceto span a volumea much larger number of st rain est imatesmust beproduced.
3D imaging confers many advantages, such as improved accuracy of volume est imat ion and the
possibility of viewing planes that are usually inaccessible; a comprehensive discussion is provided
by Gee et al. [7].

There are two main alternat ives to stat ic compression elastography, each with advantages in
certain situat ions. First ly, the term sonoelast icity refers to mot ion detect ion when the t issue is
excited by a vibrat ing actuator [8, 9]. It is st raight forward to view sonoelastograms in real t ime
because the signal processing is essent ially equivalent to well established Doppler methods, and
the images are useful since t issue's dynamic behaviour is a funct ion of its st i� ness � eld. The other
alternat ive is radiat ion force elastography, which has arisen more recent ly: an ult rasound beam
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of high intensity exerts a force at its focus inside the t issue; this is used either in a quasistat ic
mode [10] or as a means of inducing shear waves for a vibrat ion analysis [11]. Radiat ion force
elastography may confer advantages for inverse problem approaches to st i� ness est imat ion, since
boundary condit ions are less important with the internally applied force. Nevertheless, for our
system quasistat ic compression was chosen ahead of sonoelast icity and radiat ion force because the
elastograms are easier to interpret . Sonoelastograms often contain complicated vibrat ion modes;
quasistat ic radiat ion force elastography is likely to require that the probe is held stat ionary for
several milliseconds while each 2D elastogram is acquired, so it may be incompat ible with freehand
scanning. Meanwhile, it is often reasonable to interpret quasistat ic compression elastograms as
inverse st i� ness images. The interpretat ion is st rict ly incorrect , because the applied st ress � eld is
generally inhomogeneous, especially in a freehand scan, but it will be seen from the results in this
paper that the consequent artefacts are not severe.

The focus of the work presented is on developing quasistat ic elastography techniques for use
within an exist ing freehand 3D ult rasound system [12, 13]. The at t ract ion of a freehand implemen-
tat ion is twofold. It confers superior ease of use and versat ility, so that interact ive scans can be
carried out by a skilled pract it ioner to locate features of interest and invest igate them in whatever
way is most useful. Freehand technology also reduces the requirement for addit ional hardware, so
elastography could be incorporated in a commercial system at minimal cost (at present 3D scanning
necessitates the use of a posit ion sensor, but in t ime this may be replaced by accurate sensorless
posit ion est imat ion [14]). These advantages are especially pronounced in 3D ult rasound, where the
majority of systems scan volumes using either oscillat ing head or 2D phased array t ransducers,
which increase the size of the probe footprint . Instead, freehand 3D ult rasound uses a normal 2D
probe and the volume is populated with data from 2D scans where the locat ions of the planes have
been recorded in 3D.

Freehand elastography has at t racted a lot of interest in recent years. Doyley et al. [15] have
shown that it is possible o� -line to produce freehand elastograms of good quality by t raining
an operator to move the freehand probe upon the region of interest in a compressive direct ion
at a prescribed st rain rate. Typically though, freehand systems require real-t ime imaging to
guide the operator, which was a serious challenge for earlier research. For example, Bamber
et al. [16] looked at a minimally intensive st rain est imator based on speckle decorrelat ion, but
increased speed came at the expense of reduced accuracy. Subsequent work by Pesavento et al. [17],
however, produced a fast phase-based algorithm which was at least as accurate as convent ional
cross-correlat ion techniques. Hall et al. [4] have documented a system which exploits real-t ime
operat ion by running 2D elastogram and B-scan displays side by side, providing feedback to the
operator so that it is easier to pract ise a successful scanning technique.

It was ant icipated that the main di� culty with extending freehand elastography to 3D would
arise from the requirement that the probe be translated in the elevat ional direct ion to sweep out
a volume. This means that pairs of consecut ive ult rasound frames are usually non-coplanar, so
the level of signal decorrelat ion is increased. Strain est imates in these circumstances are at best
less accurate and at worst ent irely erroneous. A more general problem is that whereas visual
feedback may aid an operator in producing several successful freehand 2D elastograms, a 3D data
set comprises a collect ion of many 2D images, where it is perhaps inevitable that some of the planes
are dominated by st rain est imat ion errors. For this reason, correct ion techniques are an important
featureof the freehand 3D elastography system that isdocumented in thispaper. Sect ion 2 provides
background informat ion, with a review of tools from the literature that are reapplied here; Sect ion
3 out lines the freehand 3D elastography system and the results that have been achieved; Sect ion 4
documents the development of suitable correct ion techniques; � nally some conclusions are drawn
in Sect ion 5.

2 Background

The elastography method incorporated in our 3D system is based on quasistat ic techniques that
have received a lot of at tent ion since being proposed originally by Ophir et al. [5]. Two frames

2



Figure 1: T issue model led as a col lect ion of elast ic spr ings: compressive pressure is applied
and if the displacement � eld can be est imated, its derivat ive is st rain, which may highlight salient
t issue features.

of ult rasound data are recorded: one before and one after a sect ion of t issue is compressed (see
illust rat ion in Figure 1). T issue displacements give rise to shifts in the t ime-delays of corresponding
sect ions in the recorded ult rasound signals. The shifts can be est imated by windowing data in
the pre- and post-compression signals, and ident ifying the temporal displacement that produces
the closest match between the windows | usually this is determined by locat ing the maximum
in the normalised cross-correlat ion funct ion. The temporal displacements correspond closely to
mechanical t issue displacements, assuming that variat ions in the speed of sound are small, so
the local gradient of the displacement est imates is used to est imate st rain. By this method, a
column of st rain est imates is produced for each A-line in the recorded ult rasound signal. These
are mapped to pixel intensit ies in the resultant 2D elastogram. We display low strains as bright
regions (corresponding to st i� inclusions) and darker patches indicate higher st rains (softer t issue).

Ult rasound is an excellent imaging modality for elastography. This is not only on grounds of
low cost , but also because ult rasound signals exhibit variat ions due to microscopic t issue features,
so even in fairly homogeneous t issue each piece has a unique speckle pat tern. For this reason
t ime-delay est imat ion can produce highly accurate est imates of the actual t issue mot ion. A dis-
t inguishing feature between the many di� erent implementat ions is the method by which the t issue
is compressed. Some systems have used a stat ionary probe, and relied on pressure variat ions from
within the t issue caused by normal processes such as the cardiac cycle. However, a more common
approach is the applicat ion of pressure through the probe, which is pressed into the t issue in pre-
cisely cont rolled increments using a stepper motor [3, 5]. The freehand scanning approach that
will be described here falls into the separate quasistat ic compression category because the probe
is actually in cont inuous mot ion. The best interpretat ion of the result ing elastograms is st ill to
assume that they show equilibrium strain states. However, it should be acknowledged that image
interpretat ion may be more di� cult in t issues where st rain has a st rong t ime dependency.
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2.1 A xial st rain est imat ion

The naming convent ion for a set of 3D axes relat ive to an ult rasound probe is illust rated in Figure
2. Displacement and st rain est imat ion for elastography is often rest ricted to the axial direct ion
[5, 17, 18]. The principal reason is that while ult rasound probes have excellent axial resolut ion, the
lateral resolut ion is far poorer: the rateof decorrelat ion when t issuemoves relat ive to an ult rasound
A-line has been shown by Dickinson and Hill [19] to be roughly an order of magnitude lower
for lateral movement , and while axial sample spacing depends on the RF sample rate (typically
providing > 3000 samples over a scan depth of 4cm) the lateral sampling rate is dictated by the
spacing of the piezoelect ric crystals on the probe (127 samples over 4cm for our probe).

A degree of lateral and elevat ional movement is nonetheless inevitable. First ly, this is because
uniaxial st ress gives rise to secondary st rains in the perpendicular direct ions, where Poisson's Rat io
is the material property that measures this tendency. A second cause of non-axial mot ion is st ress
concentrat ions, a feature of inhomogeneous t issues which means that some regions bear non-axial
st resses even if the applied pressure is ent irely uniaxial. These sources of decorrelat ion are common
to any quasistat ic compression system, though freehand elastography is further compromised by
the handheld probe: rotat ions and translat ions in � ve of the six degrees of freedom are sources of
addit ional decorrelat ion. When the operator applies axial pressure, an unintended non-axial com-
ponent is unavoidable. Furthermore, in freehand 3D elastography non-axial mot ion is a necessary
requirement so that a volume may be swept out .

One way of mit igat ing decorrelat ion in general is rapid data acquisit ion. Reducing the temporal
spacing of consecut ive data frames lowers the between-frame mot ion in every direct ion: lateral,
elevat ional and axial. The correlat ion can thus be improved, but it comes at the expense of a
reduct ion in the axial st rain that is to be est imated. If the pre- and post -compression frames are
uncorrelated, the SNR will be t iny even if the axial st rain is large. On the other hand, a correlat ion
of 100% acquired with zero axial st rain also yieldszero SNR becausethere isno elastographic signal.
Therefore, a suitable protocol must be devised to operate somewhere between these ext remes.

It has become popular to regard elastography systems as st rain � lters, with passbands and
stopbands as described by Varghese et al. [20]. Models developed by Varghese et al. incorporated
the e� ects of elect ronic noise and signal decorrelat ion due to axial st rain, and they predicted
passbands at 1{ 10% strain. However, the same models do not apply to freehand elastography
because of the addit ional decorrelat ion when axial st rain is accompanied by lateral and elevat ional
mot ion. This probably means that the freehand elastography passband is shifted to lower st rains.
Doyley et al. [15] acknowledged this problem in the design of their freehand 2D elastography
system, but they also assumed that freehand palpat ion would necessarily involve st rains of > 2%,
so they focused on rest rict ing the extent of non-axial freehand mot ion. Since non-axial mot ion is
unavoidable in a 3D scan, our approach is necessarily di� erent . The focus is on ident ifying the low
strain range at which the best freehand results are produced.

2.1.1 R F signal pr ocessing

The raw signals from the transducers on an ult rasound probe are in the radio frequency range.
Normal ult rasound scanners produce B-scan amplitude images by detect ing the signal envelope
and applying a non-linear scaling to determine the intensit ies of the display pixels. Therefore, the
envelope signal is the standard output from commercial ult rasound machines in the form of \ video
detected data" . This is undesirable, however, because it provides only a few hundred samples per
A-line. Even if the number of samples can be increased, there are advantages to using the full RF
signal. The di� erence between the RF signal and its envelope is illust rated in Figure 3a. In the
past it was common to perform cross-correlat ion analyses using the signal envelope [19, 21], but
most recent elastography has used the full RF signal [5, 15, 17]. If it can be acquired, the RF signal
o� ers much more accurate st rain est imat ion, because the peak of the normalised cross-correlat ion
funct ion is sharper, so it is more robust in the presence of noise. Figure 3b demonstrates this by
comparing the auto-correlat ion of the envelope and RF signals at small shifts of -2/ + 2 samples.
RF data is especially important for achieving an acceptable SNR in freehand 3D elastography,
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Figure 2: Six degr ees of fr eedom for t he movement of t he pr obe: the probe is held in
the hand and pressed light ly against the object to be scanned. Although the operator moves the
probe in the axial (downward) direct ion, this is accompanied by small mot ions in the lateral and
elevat ional direct ions which violate the assumpt ions of axial displacement t racking.

(a) (b)

Figure 3: R F signal ver sus envelope: (1) Sect ion from an RF ult rasound signal and the
corresponding signal envelope. (2) Cross correlat ion values for this signal at temporal shifts in the
range -2/ + 2 samples, calculated using both envelope and full RF data.

because the signal (t issue st rain) is smaller than in most other systems.

2.1.2 St r ain images fr om speckle t r acking

Some form of search is required to est imate the displacements of corresponding data windows
in the pre- and post -compression frames, achieving accurate sub-sample precision. This can be
accomplished with good accuracy by interpolat ing the RF signals at sub-sample locat ions and
recalculat ing the normalised cross-correlat ion, but an exhaust ive search on this basis is ext remely
computat ionally expensive. Commonly the analysis is made faster by applying peak interpolat ion
techniques [1, 22, 23] to est imate sub-sample displacements from values of the normalised cross-
correlat ion to either side. Alam et al. [24] among others have noted that speckle t racking in
this form is subopt imal for elastography, because t issue compression causes both displacements
(which are est imated) as well as within-window deformat ions (which are ignored); Alam et al. have
devised an alternat ive technique which addresses this issue, but at the low strains of freehand
elastography it isunlikely that theperformance improvementswould besu� cient ly large to warrant
the signi� cant increase in the computat ional overhead.

Speckle t racking is repeated at overlapping window posit ions spaced regularly along each A-
line to produce vectors of displacement est imates. These are converted to st rain vectors using the
method of least squares (LSQ): a line is � t ted through nearby displacements; its gradient is the
st rain est imate [18]. Note that in the limit when just two displacement est imates are used, the least
squares � lter is equivalent to taking the di� erence between consecut ive displacements. Afterwards,
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(a) (b) (c) (d)

Figure 4: Log compr ession: (a) Input-output characterist ic of the log compression of amplitude
for compression factors c = 0.1, 1, 10, 100 and 1000. (b) Sonogram of human lower arm; 1%
compressive st rain simulated in the lower half. (c) Elastogram using basic EPZS. (d) Elastogram
using EPZS with log compression (c = 100).

the st rains are mapped to greyscale levels for display purposes.
The quality of the st rain est imat ion depends on the propert ies of the scan subjects, the level of

signal decorrelat ion, and also on three elastographic parameters. These are: window length (T),
window spacing (� t) and LSQ � lter length (L l sq). Together they govern the t rade-o� between
axial resolut ion and est imat ion noise. An inst ruct ive discussion of this is provided by Righet t i et
al. [25].

Elastography in this framework produces unbiased st rain est imates provided that the init ial
unbiased displacement est imates are performed at regularly spaced locat ions. In fact , this is rarely
the case, because the locat ions of displacement est imates do not generally correspond to the centres
of the analysis windows. Each displacement est imate is weighted towards locat ions where the RF
signal has a large amplitude. High amplitude blips, such as the specular re ect ions at boundaries
where the refract ive index changes, distort the spacing of the est imates. For example, if neigh-
bouring, overlapping windows contain a common bright boundary, their displacement est imates
are e� ect ively samples at the same posit ion: therefore, the di� erence (st rain est imate) is zero,
regardless of the actual local st rain. This artefact produces ghost images of B-scans superposed
on the elastograms. However, it can largely be eliminated by log compression of the RF ampli-
tude [26]. This is not an ideal solut ion, because it has been shown that log compressed signals
int roduce bias at the peak interpolat ion stage [23]. Less biased est imates can be made, however,
using a search of the phase of the complex cross-correlat ion (CCC). Figure 4 shows the e� ect of log
compression in this context , where the elastograms have been produced from a simulated uniform
compression of RF data in the lower half of a real scan. The ghost image is almost ent irely absent
from Figure 4d where log compression is used. The search variat ion using CCC phase is preferable
for 3D elastography anyway, because it has a low computat ional overhead.

2.1.3 E� cient phase zer o sear ching

The speckle t racking algorithm in the freehand 3D ult rasound system is adapted from the original
concept of Pesavento et al. [17], which is described in this sect ion. They demonstrated superior
accuracy and speed by working on analyt ic signals and using the CCC phase in an iterat ive search.
It will be referred to as the e� cient phase zero search (EPZS).

The window matching approach assumes that port ions of the pre- and post -compression A-lines
are t ime-shifted copies of the same signal. It makes sense, therefore, to consider the propert ies of
the auto-correlat ion funct ion: complex signals have pure-real auto-correlat ion values at zero lag.
Similarly, the CCC of a pair of complex t ime-shifted signals has zero phase at the displacement
where the signals match, as illust rated in Figure 5. The phase zero is easy to � nd when working
with ult rasound signals because their average phase gradient is approximately equal to the probe
centre frequency. A highly accurate est imate can usually be produced after a single iterat ion of
gradient descent .

Consider a pair of complex signals, a and b. The unnormalised CCC is calculated as per
Equat ion 1, where T is the window length, n� t is the posit ion of the start of the window, and t0
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Figure 5: CCC pr oper t ies at t he mat ching point : the CCC phase is zero at the matching
point and varies approximately linearly with displacement . Its average gradient is equal to the
frequency centroid of the RF signal.

is the displacement of the post -compression window.

ha; bi (n� t; t0) =
n � t + TX

t = n � t

a� (t)b(t + t0) (1)

Sub-sample precision is achieved by linear interpolat ion. This is most accurate at baseband fre-
quencies, so a baseband conversion is calculated according to Equat ion 2, where ab is the baseband
analyt ic signal and ! 0 is a suitable modulat ion frequency.

ab(t) = a(t)e� j ! 0 t (2)

Using baseband analyt ic signals xb1 (pre-compression) and xb2 (post -compression), the iterat ive
gradient descent mot ivated by Figure 5 was expressed in [17] in the form of Equat ion 3, where ! c

is the local frequency centroid. t0
k and t0

k+ 1 are successive iterat ive est imates of the displacement
(posit ive values indicate displacement towards the probe). The search is init ialised with the � nal
displacement est imate from the previous window, i.e. t0

0;n = t0
K ;n � 1.

t0
k+ 1 = t0

k +
arg

�
e� j ! 0 t 0

k hxb1; xb2i (n� t; t0
k )

�

! c
(3)

In this form the arg funct ion returns phase values in the range � � to + � . This means that the
search will fail if the change in displacement between one window and the next is > � =2, where �
is the wavelength corresponding to the probe centre frequency. The upper limit this places on the
st rain rate is fortunately much higher than the st rains that are encountered during scanning.

At thebaseband conversion stage, signalsare log compressed asment ioned in Sect ion 2.1.2. This
is performed according to Equat ion 4 following Pesavento et al. [17], where c is the compression
factor. The phase is preserved, so the iterat ive search of Equat ion 3 can be applied without
modi� cat ion.

ab;log = log
�
1 + cjabj

�
ej arg ab (4)
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Figure 6: Layout of t he high de� ni t ion fr eehand 3D ult r asound syst em.

2.2 Freehand 3D ult rasound

Thepurposeof thiswork is to incorporatepract ical elastography within the freehand 3D ult rasound
system of Treece et al. [13]. This is illust rated in Figure 6. It has an AdapTrax1 target at tached to
the probe, t racked by a Northern Digital2 Polaris opt ical posit ion sensor. Custom calibrat ion and
imaging software are exploited, such that the system as a whole can register 3D point locat ions to
an accuracy of 0.5 mm. Each ult rasound frame is t reated as a rectangular plane in 3D space, and
many planes are stacked together to produce 3D datasets. Typical applicat ions include reslicing
to view planes that are normally inaccessible, examining features that lie along curved surfaces,
and est imat ing volumes.

3 Freehand 3D elast ography

3.1 Syst em out l ine

A modi� ed Dynamic Imaging3 Diasusult rasound machinewith a 5{ 10 MHz probe isused to acquire
RF data at frame rates of 15{ 40 Hz. The probe centre frequency is 6.0 MHz, and samples are
taken at 67 MHz using a Gage4 CompuScope 14100 analogue-to-digital converter. A Hilbert � lter
with a 5{ 10 MHz passband is applied to produce analyt ic signals, so that axial st rain est imat ion
can be performed using EPZS5 with parameters T = 13:5� , � t = 3:5� and L l sq = 2, although
experiments with longer LSQ � lters are presented in Sect ion 4. The criterion for stopping EPZS
iterat ions is jt0

k � t0
k � 1j < 0:01� , where � is the RF sample spacing. This means that most searches

consist of two iterat ions, although longer searches can occur when the signals are decorrelated.

1ht t p: / / www. t r axt al . com
2ht t p: / / www. ndi gi t al . com
3ht t p: / / www. dynami ci magi ng. co. uk
4ht t p: / / www. gage- appl i ed. com
5 In fact we also conducted experiments incorporat ing a lateral search. Neighbouring A-lines were searched in

parallel. T hen linear peak interpolat ion of t he normalised cross-correlat ion was applied in the lateral direct ion to
ident ify t he best axial displacement est imate. T he e� ect of t his on the freehand elastograms was impercept ible,
however, so lateral searching receives no furt her discussion in this paper.
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Figure 7: D own-sampl ing levels: from left to right : 1x (all data), 10x, 15x, 16x, 17x. The
images degrade when the down-sampling level is increased, but the quality decays gracefully, with
the SNR increasing only gradually while the sampling rate is st ill more than twice the probe
bandwidth.

Some opt imisat ion of the EPZS implementat ion has been applied in order to achieve a good
frame rate. Three aspects are worth ment ioning:

1. Algorithm simpli � cation. We assume that ! c � ! 0, where ! 0 was the modulat ion frequency
used in the baseband conversion and ! c is the frequency centroid. We choose ! 0 equal to
the nominal probe centre frequency. This enables us to simplify the iterat ion formula in
Equat ion 3 to obtain the more e� cient expression of Equat ion 5. It should be noted that
the phase of the baseband CCC may be > 2� , so the arg funct ion is potent ially ambiguous.
To handle this, our implementat ion assumes that the phase for each window remains within
� radians of its init ial value at t0

0;n = t0
K ;n � 1. This makes no di� erence to the upper limit

on between-window displacements that was ment ioned in Sect ion 2.1.3.

t0
k+ 1 =

arg
�

hxb1; xb2i (n� t; t0
k )

�

! 0
(5)

2. Down-sampling. The bandwidth of the probe is 2.1 MHz, so the Nyquist sampling frequency
for baseband signals is 4.2 MHz. In fact all of the 67 MHz samples are used for the ini-
t ial phase est imat ion with the Hilbert � lter. However, thereafter up to 16x down-sampling
can be performed assuming that the Nyquist sampling frequency is su� cient for accurate
elastography. In pract ice, any down-sampling reduces the SNR, but it has been found that
down-sampling up to 10x leads to only a minimal reduct ion in image quality. A demonstra-
t ion using 2D elastograms of a phantom is shown in Figure 7. Down-sampling by a factor n
reduces the computat ional overhead for Hilbert � ltering, baseband conversion and log com-
pression by O(n), and for the iterat ive search by O(n2). With 10x down-sampling, a mean
frame rate of 21.8 Hz has been achieved, which increases to 25.1 Hz if log compression is
omit ted (measurements were carried out on a machine with a 3 GHz CPU).

3. Limit amplitude compression. It was noted that log compression of the baseband signal, as
in Figure 4, gave similar results for compression factors in the range 101{ 106. This mot ivated
an experiment where the amplitude was set to unity at every sample posit ion, so only phase
informat ion was retained. This is desirable, since calculat ing the CCC phase then requires
only addit ions and subtract ions. However, we were unable to produce sensible results by
this method. It is assumed that after log compression the residual amplitude informat ion
provides a weight ing, so that regions where the phase est imates are ext remely uncertain are
ignored. The log compression factor is 100 for all of the results that are presented here.

2D elastograms are produced by processing pairs of consecut ive frames recorded during scan-
ning. High speed elastography with 10x down-sampling provides a real t ime elastographic display
for invest igat ing suitable targets. For 3D elastography, however, the processing is performed o� -
line. This allows data to be acquired at a higher frame rate during the 3D sweep, averaging 30
Hz, which reduces between-frame decorrelat ion and has been found to give bet ter elastographic
results. Elastographic processing then proceeds o� -line without down-sampling in order to achieve
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Figure 8: A simple 3D scanning pr ot ocol: axial and lateral mot ion are avoided while the
freehand probe is t ranslated slowly in the elevat ional direct ion.

Figure 9: P ixel int ensi t y mapping: a non-linear max-min st rain scale focuses on variat ions in
st i� er regions.

the maximum quality. The fast EPZS algorithm st ill o� ers a frame rate of several Hz, so a 3D
elastogram consist ing of several hundred 2D frames can be produced within 1{ 2 minutes.

The freehand 3D scanning protocol is surprisingly simple. It is illust rated in Figure 8. The best
results are produced when no at tempt is made at deliberately varying the pressure applied through
the probe. The probe is swept slowly in the elevat ional direct ion, typically covering 3 cm in the
course of 10 s. This gives an elevat ional spacing of � 0.1 mm, which is well below the elevat ional
width of the ult rasound resolut ion cell. The beam is narrowest at the focal depth, with a minimum
elevat ional width of � 2 mm for our probe. Therefore, consecut ive frames overlap, and the level
of decorrelat ion due to elevat ional t ranslat ion is small. Between-frame strain is the result of small
involuntary variat ions in the applied probe pressure, and in vivo scans include the addit ional e� ects
of t issue-internal st resses. Mean st rains between consecut ive freehand data frames are in the range
0.03{ 0.50%.

Obviously the st rain direct ion in this protocol is variable. Somet imes elastograms record an
increase in compression and somet imes they record relaxat ion. Furthermore, since t issue is highly
inhomogeneous, a single elastogram may contain some regions of compression, and others of relax-
at ion. In any case, the interest ing result for a qualitat ive interpretat ion is the magnitude of the
st rain, which is taken to indicate t issue st i� ness. For this reason, the st rain modulus is recorded,
and the sign on each est imate is ignored.

The � nal processing stage maps absolute st rain est imates to pixel intensit ies. The 2D elas-
tograms must be normalised according to their st rain dist ribut ions, so that pixels in the same type
of t issue have similar intensit ies, regardless of the absolute level of st rain in any part icular frame.
Another considerat ion is the property of interest : st i� ness rather than st rain. This is inversely
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Figure 10: Phant om: st i� inclusion in soft t issue.

correlated with st rain, and variat ions on a linear st rain scale will tend to give the best cont rast
between di� erent regions of soft t issue, which are perhaps of limited interest . Instead, a nonlinear
scale linked to the minimum-maximum strain range is used, as shown in Figure 9. St i� regions are
bright and soft regions are dark.

To produce 3D elastograms, the pixel intensit ies of the 2D elastograms are writ ten to � le and
stored together with the posit ion sensor data. These � les can be read by the Stradx6 freehand 3D
ult rasound software to produce a range of 3D visualisat ions.

3.2 First result s

Phantoms were const ructed to mimic st i� inclusions in soft t issue (olive in gelat in, see Figure 10).
Note that wires prevented the olive  oat ing out of the gelat in before it had set , but they were
not intended to a� ect the mechanical propert ies thereafter. A suspension of  our in the gelat in
provided suitable scat tering propert ies, and a layer of  our sediment presented another relat ively
st i� region.

Figure 7 displays an example of a 2D elastogram from a phantom scan. Note that the image is
uncalibrated | i.e. it is not intended for the purpose of taking quant itat ive st rain readings | but
the normalisat ion chosen gives a good contrast between the inclusion and the surrounding t issue.
Another interest ing point is that while the st i� ness is fairly constant within the gelat in, the pixel
intensit ies indicate higher st rains towards the top of the image. This is because the st ress spreads
out away from the probe, so we witness the \ target -hardening artefact " , which has been ment ioned
in the literature [5]. Another typical artefact is the dark high-st rain shadow around the edge of
the olive, also ment ioned in other studies [18, 27], which is caused by a st ress concentrat ion. We
note that these artefacts are easy to interpret , and high-st rain shadow can actually be assistive
when it comes to ident ifying the boundaries between di� erent st i� ness regions.

The 2D elastogram was one among 389 combined in the 3D elastogram of Figure 11. Two
reslices have been const ructed, where intensit ies on these planes are assigned by nearest neighbour
interpolat ion from the original 2D elastograms. The boundary of the olive can be seen easily
thanks to the high-st rain shadow, and there is an appreciable (though small) cont rast between the
regions of the resliced st rain images within and outside the olive. The out line view in Figure 11c
thus gives a clear impression of the 3D locat ion of the inclusion.

Several artefacts are in evidence in Figure 11. First ly, vert ical st reaks of est imat ion errors are
present on the left hand edge of the 2D elastogram. We refer to these as \ dropouts" . They are
caused by tracking errors, where the init ial value in each iterat ive search is too far from the locat ion
of the correct match, so the search converges to an erroneous displacement . This limitat ion of the
EPZS search is invest igated in Sect ion 4.1. Another region of poor st rain est imates is present below
the centre of the olive. From the B-scans it was apparent that a pocket of air had formed in this
part of the phantom, so only noise was recorded. The air pocket is full of st rain est imat ion errors,

6T he software is available for free download from ht t p: / / mi . eng. cam. ac. uk/ ~r wp/ st r adx/ .
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(a) (b) (c)

Figure 11: 3D elast ogr aphy of ol ive/ gelat in phant om: (a) 2D elastogram. (b) Perpendicular
reslice. (c) 2D elastogram and two such reslices.

(a) (b) (c)

Figure 12: 3D elast ogr aphy of t he human calf: (a) 2D elastogram. (b) Reslice. (c) 2D
elastogram and reslice.

observable as a dark smear in both the 2D elastogram and in the reslice. A separate artefact of
the reslices is the st reaky appearance. This is the result of producing an image based on thin slices
through many closely-spaced 2D elastograms of variable quality; it is not caused by variat ions in
the applied st ress | the normalisat ion accounts for di� erent st rain ranges. On the other hand,
some elastograms exhibit more est imat ion noise than others, and out liers result ing from est imat ion
errors can skew the normalisat ion. An approach to improving these 3D data sets is out lined in
Sect ion 4.2.

Freehand 3D elastography was also tested on a human subject . In this instance, the real-t ime
display was used for locat ing suitable scan regions before performing the blind 3D sweep: speckle
should be present throughout the t issue, and there should be few decorrelat ing phenomena (e.g.
blood vessels). One such target within the human calf is displayed in Figure 12. Layers of soft
fat (dark) and st i� er muscle (light ) are easy to ident ify in both the 2D elastogram and in the
perpendicular reslice.

4 Cor rect ion t echniques for robust imaging

Our experience has shown that the di� cult ies in producing 2D elastograms during a freehand 3D
scan are essent ially the same as in normal freehand 2D elastography. This is because the level of
degradat ion due to small elevat ional t ranslat ions is not signi� cant . One problem in both 2D and
3D cases is that quality can be compromised by the accumulated decorrelat ion due to involuntary
movements in all � ve degrees of freedom that violate the assumpt ions of an axial search. This
mat ters less in 2D elastography if elastograms with below average SNR can be ignored, but the
3D elastogram comprises all of the 2D frames, so any poor results det ract from the overall quality
of the data set .
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(a) (b) (c)

Figure 13: LSQ st r ain est imat ion: (a) Di� erence of neighbouring est imates (L l sq = 2).
(b) L l sq = 5 (c) L l sq = 10

One means of generally improving the SNR is by increasing the length of the LSQ � lter that
converts displacement est imates to st rains [18]. Figure 13 presents a demonstrat ion of this, where
the SNR has been improved at the expense of the axial resolut ion. The opt imal value for L l sq

dependson thedata. A long LSQ � lter may reduce the informat ion content of good 2D elastograms,
whereas for poor 2D elastograms the boost to the SNR is more important .

Two other methodshavebeen devised for improving the3D elastography results. Frame� ltering
automat ically rejects 2D elastograms that are predicted to be of poor quality. A separate method
corrects dropouts in 2D elastograms. From a visual inspect ion of the images, dropouts are the
most severe artefact . They merit special at tent ion because dropouts often mar images where the
overall image quality would otherwise be good.

4.1 D ropout det ect ion and cor rect ion

Dropouts are easy to spot by eye: they appear as incongruous vert ical st reaks usually extending to
thebot tom of the image, as in Figure14a. A point is reached in such A-lineswhere thedisplacement
t racking breaks down and subsequent displacement est imates are erroneous. This is perhaps made
clear by inspect ion of the surface plots (produced using MATLAB7) of displacement est imates in
two elastograms, one of which produced a good image (Figure 14c) the other of which contained
dropouts (Figure 14d). An error-free elastogram from a volume of connected t issue must have a
cont inuous displacement � eld, whereas it can be seen that dropouts give rise to discont inuit ies.

Dropouts propagate because at each window EPZS is init ialised with the previous est imate, so
a single large error can wipe out the remainder of an A-line. However, the cause of these large
errors is not obvious. An init ial theory was that mismatches occurred if the local st rain went above
a threshold, since the EPZS search cannot move further than � =2 at a single window. As a test ,
EPZS was applied to synthet ic data of the same form as used in Figure 4, where much higher
st rains were simulated. In fact , it was found that high st rains can produce dropouts, but only at
st rains upward of 5.4%. This is almost two orders of magnitude higher than typical mean st rains
in the freehand data, so it is unlikely to be a frequent cause. A more plausible explanat ion for
most dropouts was devised after careful inspect ion of the freehand elastograms where dropouts
were present , together with the features evident from the corresponding B-scans. It was observed
that dropouts begin at t issue features with local decorrelat ing propert ies. These include slip planes
between the inclusion and the gelat in, pockets of  uid within the jelly, mult iple specular re ect ions
between the probe and metal wires, and all locat ions of  uid  ow. A good example is provided
by Figure 14b, showing a largely homogeneous sect ion through the human calf. The dark patch
is a blood vessel, where blood  ow causes decorrelat ion between one frame and the next . Several
est imat ion errors in the vessel are large enough to produce dropouts.

Dropouts can be detected automat ically by ident ifying displacement out liers within each row of
est imates. A-lines where the displacement is more than three standard deviat ions from the mean
are marked as dropped-out . Start ing from the top of the image, at each row the displacement
mean and standard deviat ion are recalculated based only on the A-lines that have not dropped

7M AT LAB is a registered t rademark of T he M athWorks Ltd.
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(a) (c) (e)

(b) (d) (f )

Figure 14: D r opout s: (a) 2D elastogram with dropouts. (b) Human calf elastogram including a
blood vessel. (c) Surface plot of displacement est imates in a clean elastogram. (d) Displacement
est imates in an elastogram with dropouts. (e) Corrected version of a. (f ) Corrected version of b.

out , and new out liers are marked as dropouts. In a study of 80 freehand 2D elastograms, this
method detected 100% of the dropouts that were spot ted by eye, in addit ion to which 30% of the
automat ic dropout detect ionswereeither falseposit ivesor had been missed in thevisual inspect ion.

At tempts have been made to devise data-driven dropout correct ion methods, since error prop-
agat ion often masks sect ions of A-lines where the data is good. The general principle is to detect
dropouts and reinit ialise EPZS in the sect ion below with the average of est imates in neighbouring
clean A-lines. A challenge with this is � nding the start of the dropout , so that errors are eliminated
as far as possible.

The best method yet devised gets around this by working backwards up the image, so the
dropout start posit ion is not required. A � rst pass of EPZS displacement est imat ion proceeds as
usual. Then an est imate is made of the mean axial displacement at the bot tom of the elastogram
| the bot tom row of displacement est imates is averaged, with out liers excluded. This provides
the init ialisat ion for a second pass of EPZS beginning at the bot tom of the image. Dropped-out
A-lines are divided into two sect ions: above and below the decorrelat ion patch. Est imates from
the � rst pass are reliable in the upper sect ion, before breaking down at the patch. Second pass
est imates are bet ter in the lower sect ion, but again they break down. In both passes the normalised
cross-correlat ion is evaluated for every window match, and ult imately est imates are adopted from
whichever pass had the higher correlat ion. The computat ional cost of this correct ion is not large,
since the signal pre-processing stages that const itute most of the load are ent irely unchanged.
The iterat ive search must be carried out twice, but it is a small fract ion of the overall processing.
Normalised cross-correlat ion computat ions present a further small increase in the overhead.

The method corrects most dropouts, so decorrelat ion patches such as blood vessels cause dis-
placement error blips, but errors no longer propagate. The most common except ion to this occurs
when more than one decorrelat ion patch is present within a single A-line, in which case est i-
mates between the patches are likely to remain erroneous. However, the correct ion to many 2D
elastograms is impressive, such as in Figures 14e{ f (corrected versions of Figures 14a{ b). An ex-
periment was conducted using the data from a 3D data set with 309 2D elastograms, recording by
eye the number of dropouts in each frame and their lengths, in order to produce an est imate of the
image area fract ion (IAF) lost to dropouts. The IAF before dropout correct ion was 0.65%, whereas
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applying the correct ion method reduced it to 0.26%. The numbers sound small, but dropouts seem
to have a disproport ionate e� ect on the perceived image quality: for interpretat ion purposes, many
images appear great ly improved.

4.2 Frame � l t er ing

4.2.1 Obser vat ions

Asidefrom dropouts, thegeneral imagequality variesa great deal between 2D elastograms. Aspects
of this are variat ions in the apparent level of est imat ion noise and in the contrast between di� erent
t issue regions (despite the min-max st rain normalisat ion). The overall quality of 3D elastograms
could be improved signi� cant ly by hand picking the best 2D results, so this sect ion int roduces
automat ic frame � ltering.

A survey of 2D elastograms from a single 3D phantom scan is presented in Table 1. The
images were manually selected, picking ten 2D elastograms perceived as being \ good" and ten
perceived as being \ bad" . Frames with large numbers of dropouts were avoided so as not to confuse
general image quality determinants with the causes of the dropouts. Two metrics were evaluated a
posteriori for each of the elastograms: (1) mean magnitude of the normalised cross-correlat ion; and
(2) mean st rain. The � rst of these entailed calculat ing the normalised cross-correlat ion between
analysis windows where EPZS found a match, and averaging these values across the ent ire 2D
elastogram. The mean strain was found by making a robust mean displacement est imate from the
speckle t racking data, excluding out liers, and dividing this by the number of samples in the A-line.
Note that the sign on the st rain denotes either compression (posit ive) or relaxat ion (negat ive).
This records the direct ion of the deformat ion that physically occurred during the scan. It does not
a� ect the elastographic processing since the labelling of pre- and post -compression frames could
just as well be reversed.

There are marked di� erences between the dist ribut ions of the metrics for the good and bad 2D
elastograms in Table 1. It was ant icipated that mean st rain would be an important determinant
of elastographic SNR, based on the not ion that the mean squared st rain is the elastographic signal
power. Indeed, the st rains of the good elastograms are generally larger. However, 4G has a lower
st rain than most of the bad elastograms, although the image is evident ly superior. Conversely, 2B
has a relat ively high st rain but the image is poor. The intuit ion that SNR is linked to mean st rain
may be correct , but this parameter alone does not separate the good results from the bad.

A more st riking observat ion is that every one of the good elastograms was an instance of
relaxat ion (negat ive st rain), whereas more than half the bad elastograms were compressions. This
suggests some asymmetry in the elastography scanning: either hysteresis behaviour in the phantom
reducing decorrelat ion e� ects in the relaxat ion direct ion, or smoother movement of the freehand
probe as pressure is reduced. This sample is not stat ist ically signi� cant , but it should not be ruled
out that asymmetry might be a common feature of freehand 3D scanning.

Correlat ion values provide a bet ter separat ion of the good and bad dist ribut ions. While all of
the good elastograms were in the range 0.7719{ 0.8721, the values for seven of the bad elastograms
were below this range. Of the remaining three, 8B and 9B had posit ive st rains, which seems to have
precluded successful elastography with this phantom. Closer inspect ion of the displacement est i-
mates for elastogram 10B showed that in this frametheprobehad twisted, with small relaxat ions in
A-lines at one end and larger compressions in A-lines at the other. This unusual displacement � eld
may explain why the axial st rain display is ambiguous. Mean correlat ion appears more promising
than mean st rain as a metric for select ing good 2D elastograms, though qualitat ive observat ions
alone provide insu� cient evidence for any � rm conclusions to be drawn.

4.2.2 Exper iment al ver i � cat ion

Contrast -to-noise rat io (CNR) is an image analogue of SNR. CNR measurements were used as
the basis for a quant itat ive invest igat ion of frame � ltering. We adopt a de� nit ion of CNR from
Chaturvedi et al. [28] as stated in Equat ion 6, where s1 and s2 are the mean pixel intensit ies in
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Good elast ogr ams B ad elast ogr ams
A B C D A B C D

1G 0.8370 -0.29 1B 0.6250 -0.12

2G 0.8581 -0.12 2B 0.3641 + 0.20

3G 0.8656 -0.17 3B 0.5693 + 0.054

4G 0.8652 -0.051 4B 0.6031 + 0.051

5G 0.8101 -0.31 5B 0.5336 -0.071

6G 0.8370 -0.16 6B 0.5490 0.0044

7G 0.7719 -0.36 7B 0.7092 + 0.14

8G 0.8348 -0.34 8B 0.8675 + 0.052

9G 0.8721 -0.46 9B 0.8800 + 0.079

10G 0.8516 -0.40 10B 0.8374 -0.16

Table 1: Quant i t at ive sur vey of good and bad elast ogr ams. A: Elastogram number. B:
Mean normalised cross-correlat ion magnitude. C: Mean st rain (%). D: Thumbnail elastogram.

the inclusion and in the soft t issue respect ively, � 1 is the standard deviat ion of pixel intensit ies in
the inclusion and � 2 is the standard deviat ion in the soft t issue.

CNR =

s
2(s1 � s2)2

� 2
1 + � 2

2
(6)

Phantom scans were inspected o� -line in B-scan mode to draw manual 3D segmentat ions of
the inclusion and the soft t issue. In each data set the ent ire segmented volume was used as the
basis for CNR evaluat ion. Usually the CNR would be calculated for a 2D resliced image, but the
CNR values vary between reslices depending on the plane that is inspected: for example, reslices
in elevat ional-lateral planes generally have lower CNR than elevat ional-axial reslices because they
miss the st ress concentrat ions, so the overall cont rast is lower. Instead, 3D elastograms were
resampled onto regular voxel arrays using nearest -neighbour interpolat ion, and all of the voxel
intensit ies throughout the segmented regions were used for the CNR calculat ions. The e� ect of
this was to est imate the expected CNR for a reslice through each data set on a plane of arbit rary
orientat ion.

With CNR as the measured output variable, the primary input variables were the threshold
levels in the minimum strain and minimum correlat ion � lters. Mean st rain and mean correlat ion
were calculated as previously described, and 2D elastograms which fell below the threshold levels
were omit ted from the 3D elastograms. The elastography algorithm used for this experiment was
largely ident ical to the setup described earlier, although only 60 windows were used in each A-line
with T = 40� and � t = 4:5� | these conservat ive values tend to result in smaller errors in the
poor elastograms, although resolut ion is reduced in the best elastograms. Another change was
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Figure 15: M inimum st r ain � l t er : Left : percentage of data retained versus minimum strain.
Right : CNR performance versus minimum strain, with comparison of LSQ � lters. The upper set
of curves is for L l sq = 5, while the lower set is for L l sq = 2. Cross-hatching marks the range of
results with each LSQ � lter.

the use of di� erent lengths of LSQ � lters for st rain est imat ion: they were applied for comparat ive
purposes, and to see if frame � ltering had di� erent e� ects depending on L l sq. Several values were
t ried for L l sq, but for clarity only two are displayed in the graphs of results. The behaviour of the
intermediate � lters was unsurprising, so results are shown only for L l sq = 2 (di� erence est imat ion)
and L l sq = 5 (a long LSQ � lter).

Figure 15 presents results for the minimum strain � lter and Figure 16 for the minimum corre-
lat ion � lter. The graphs on the left show the proport ion of the data that was retained after the
� lter, which indicates the e� ect on elevat ional resolut ion (frame � ltering reduces frame density in
the elevat ional direct ion). On the right , two curves are plot ted for each data set , one for each
LSQ � lter. Cross-hatching between the curves marks the sets corresponding to each LSQ � lter,
where the longer � lter produces a higher CNR. Note that the vert ical axis is relat ive (as opposed
to absolute) CNR: this is the absolute CNR divided by the value of the CNR when no frame � lter
was applied and L l sq = 2. The CNR varied signi� cant ly between the data sets, so performance
comparison on an absolute scale would be di� cult .

Figure 15 shows unambiguously that a � lter on the minimum strain can improve the CNR, and
the improvements may be larger than are yielded by the applicat ion of a long LSQ � lter. LSQ
� ltering and frame � ltering have a common feature in that the resolut ion is reduced. LSQ � ltering
reduces axial resolut ion, while frame � ltering reduces elevat ional resolut ion. When the resolut ion
becomes ext remely poor, the CNR is eventually also a� ected, since nearest neighbour interpolat ion
of sparsely dist ributed 2D elastograms distorts the apparent shape of the inclusion: high thresholds
produce errat ic results in data set n3 because few frames are retained, and the relat ively poor CNR
with a 0.18% strain threshold is based on extending just a single 2D elastogram to � ll the whole
elevat ional depth. However, a promising feature of these results is that data sets n1 and n2 (where
10{ 20% of the data was retained at the highest threshold) cont inued to exhibit increasing CNR. It
might have been expected that the greater level of mot ion implicit in these elastograms would cause
greater decorrelat ion and therefore a reduct ion in image quality, but this has not been recorded. It
suggests that if su� cient frames at higher st rains were available, then the st rain � lter would o� er
signi� cant ly improved 3D images.

The trend for minimum correlat ion � ltering in Figure 16 again shows that a threshold can
improve the CNR. In this case the data sets all had moderate or good coverage of the elevat ional
dimension up to a correlat ion threshold of 0.93, at which point 15{ 20% of the data was retained.
This is roughly where the relat ive CNR peaks, and the size of the improvement is similar to the
maximum gain of the minimum strain � lter. Note that the n3 data set \ caught up" with the others
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Figure 16: M inimum cor r elat ion � l t er : Left : percentage of data retained versus minimum
correlat ion. Right : CNR performance versus minimum correlat ion, with comparison of LSQ � lters.
As in Figure 15, upper and lower curves are for L l sq = 5 and 2 respect ively, and cross-hatching
marks the range of results in each case.

Figure 17: Compar ison of st r ain and cor r elat ion � l t er s: CNR versus the proport ion of the
data that has been discarded (data set n1, LSQ � lter length = 2).

by 0.93, since less data was discarded for n3 at the lower thresholds. Up to 0.93 the curves appear
to be converging towards similar performance improvements. Thereafter, the behaviour becomes
errat ic, so it is unclear whether there cont inues to be a correlat ion between higher thresholds
and increased CNR. This cannot be explained simply as the e� ect of sparse data with inadequate
resolut ion, because at least 10 frames were retained in each data set right unt il the 0.945 threshold.
There may be an addit ional reason why high correlat ion thresholds eventually become unhelpful.
Good correlat ion indicates a close match between data in the pre- and post -compression frames, so
the est imat ion noise will be lower than average. However, the best correlat ion will be recorded for
a stat ionary probe. While it is noted that surprisingly small st rains can yield good elastograms,
Figure 15 demonstrates that higher st rains at the upper end of our low-st rain range are to be
preferred. A high correlat ion threshold disproport ionately selects frames where the st rain is low,
and for this reason it will eventually yield a reduced SNR (and CNR) as the signal amplitude
approaches zero.

An alternat ive way of comparing the merits of minimum strain and minimum correlat ion � lters
is to plot a characterist ic curve of CNR against the proport ion of the data that is retained. Figure
17 shows a pair of such curves for the n1 data set . It is clear that the � lter init ially o� ering the
\ best value" is minimum correlat ion, but as the data become more sparse (and the correlat ion
� lter begins to posit ively select low strain) the minimum strain � lter eventually yields higher
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(a) (b)

Figure 18: Fr ame � l t er ed r esl ice: (a) Before and (b) after � ltering.

performance. The same pat tern is repeated in the n2 and n3 data sets. The implicat ion is that
neither minimum correlat ion nor minimum strain will alone yield an opt imal � lter | both are
required.

As a visual example, Figure 18 shows a reslice through data set n2. Images with L l sq = 5
are presented before and after frame � ltering, where a st rain threshold of 0.04% and a correlat ion
threshold of 0.87 have been applied together. Unlike the procedure in the experiments, the display
here is produced by linear interpolat ion. It is evident that the � lter has improved both the contrast
and the CNR.

A secondary implicat ion of this invest igat ion is that higher st rains on average do produce
bet ter CNR. This is predictable given the st rain � lter analyses of researchers in stat ic compression
elastography. However, for the reasons explained it does not necessarily follow that high st rains
in excess of 1% are desirable in freehand elastography. Init ial experience of freehand scanning
showed prior to these results that low acquisit ion rates and coarser palpat ion through the probe
produce worse elastograms. Despite this, the frame � ltering results indicate that a somewhat
rougher scanning technique might produce superior results if it could be combined with suitable
� ltering to remove error frames when they arise.

5 Conclusions

We have presented a novel system for freehand 3D elastography. The scanning protocol is simple
and the elastograms are const ructed in real t ime using a standard PC and unmodi� ed freehand
3D ult rasound equipment .

Some convent ional elastography techniques have been adopted for freehand 3D purposes, in-
cluding the phase zero searching algorithm for displacement est imat ion. Down-sampling of the
analyt ic signal is a useful way to increase the processing speed whenever high frame rates are re-
quired during scanning. It has been found that freehand 3D data acquired at a high frame rate is
amenable to the same processing as 2D by exploit ing the � nite elevat ional width of the ult rasound
beam. We � nd that at low strains planar elastograms with good contrast are often produced, and
a simple normalisat ion scheme means that the display data can be combined to const ruct 3D data
sets even though the applied compressions are uncontrolled. Reslices through the 3D elastograms
are easy to interpret , especially for ident ifying st i� ness boundaries, although the overall CNR is
not high.

The challenge of freehand 3D elastography is in developing a suitably robust imaging system.
Quality variat ions between the planar images contribute to a high level of noise in the 3D elas-
tograms. This is most ly the result of variable CNR due to di� erences in the physical condit ions of
each frame, such as average st rain and the level of decorrelat ion. A frame � ltering method has been
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shown to produce marked CNR improvements by omit t ing bad planes. Other errors are caused by
dropouts: error propagat ion following decorrelat ion patches. Most of these are now removed by a
second pass correct ion method.

Future work must invest igate opt imal criteria for frame � ltering. It would be helpful if a uni� ed
measure of image quality could be devised, so that the CNR/ resolut ion t rade-o� could be assessed
within a clear framework. Frame � ltering may ult imately need to apply variable thresholds across
thevolumeto obtain an opt imal balancebetween CNR and resolut ion at all locat ions. Furthermore,
the improvements may be greater if similar � ltering can be int roduced at the sub-frame level, to
const ruct 3D data sets from the best patches within the frames. Successful � ltering methods
will have knock-on implicat ions for the freehand scanning protocol that delivers the best results.
There is scope for both theoret ical and experimental work to develop a solid understanding of this
interact ion.
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