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Abstract

We present an elastography system using freehand 3D ultrasound. A review is provided
of the standard elastography methods that have been adapted for this purpose. The scanning
protocol issimple and promising results are presented of 3D strain images from freechand scans.
Robustnessis a problem, however, and the main sources of error are explained. Measures have
been developed to improve the quality of the freehand images by means of dropout correction
and frame Itering. Results from the application of these techniques provide an indication
of development strands which should lead to a system that is both easy-to-use and produces
reliable, high quality images.

1 Introduction

Ultrasound elastography seems certain to become an important medical imaging tool. It has al-
ready been used in clinical trials for applications such as imaging diseased arteries [1], detecting
prostate tumours [2] and categorising breast lesions [3, 4]. The most common approach is static
compression elastography, where frames of data are recorded before and after a controlled com-
pression has been applied to the tissue. Quasistatic compression elastography refersto variantsin
which the probe/ compressor is still moving at the moment when data isacquired. Cross-correlation
analysis is used to track tissue displacements from which the strain eld can be estimated. The
technique has been in development for over a decade [5], and can produce elastograms (strain
images) with high SNR. Its most commonly cited application is the investigation of sti tumours
in soft tissues, where it has been shown that elasticity measurements could be useful for both
detection and categorisation purposes [6].

Against this, static compression elastography presents several challenges which may partly
explain why it has yet to be widely adopted into clinical practice. Firstly, it is usual during
scanning that the probe or a separate compressing plate is controlled by a mechanical actuator to
produce precise deformation of the tissue. This restricts the exibility with which the technique
may be applied. A second consideration with any imaging system is the delay after scanning
before elastograms are ready for inspection. Increases in the speed of modern processors have
helped to reduce computation times, but the processing time for an individual 2D elastogram
may be anything from tens of milliseconds [2] up to minutes depending on the number of pixels
required, the sampling rate, the choice of algorithm, and the numerous algorithmic parameters
governing trade-o s between speed, accuracy and robustness. Fast processing is crucial for feasible
3D elastography, sinceto span a volume a much larger number of strain estimates must be produced.
3D imaging confers many advantages, such as improved accuracy of volume estimation and the
possibility of viewing planes that are usually inaccessible; a comprehensive discussion is provided
by Gee et al. [7].

There are two main alternatives to static compression elastography, each with advantages in
certain situations. Firstly, the term sonoelasticity refers to motion detection when the tissue is
excited by a vibrating actuator [8, 9]. It is straightforward to view sonoelastograms in real time
because the signal processing is essentially equivalent to well established Doppler methods, and
the images are useful since tissue's dynamic behaviour is a function of its sti ness eld. The other
alternative is radiation force elastography, which has arisen more recently: an ultrasound beam



of high intensity exerts a force at its focus inside the tissue; this is used either in a quasistatic
mode [10] or as a means of inducing shear waves for a vibration analysis [11]. Radiation force
elastography may confer advantages for inverse problem approaches to sti ness estimation, since
boundary conditions are less important with the internally applied force. Nevertheless, for our
system quasistatic compression was chosen ahead of sonoelasticity and radiation force because the
elastograms are easier to interpret. Sonoelastograms often contain complicated vibration modes;
quasistatic radiation force elastography is likely to require that the probe is held stationary for
several milliseconds while each 2D elastogram is acquired, so it may be incompatible with freehand
scanning. Meanwhile, it is often reasonable to interpret quasistatic compression elastograms as
inverse sti ness images. The interpretation is strictly incorrect, because the applied stress eld is
generally inhomogeneous, especially in a frechand scan, but it will be seen from the resultsin this
paper that the consequent artefacts are not severe.

The focus of the work presented is on developing quasistatic elastography techniques for use
within an existing freehand 3D ultrasound system [12, 13]. The attraction of a freechand implemen-
tation is twofold. It confers superior ease of use and versatility, so that interactive scans can be
carried out by a skilled practitioner to locate features of interest and investigate them in whatever
way is most useful. Freehand technology also reduces the requirement for additional hardware, so
elastography could beincorporated in a commercial system at minimal cost (at present 3D scanning
necessitates the use of a position sensor, but in time this may be replaced by accurate sensorless
position estimation [14]). These advantages are especially pronounced in 3D ultrasound, wherethe
majority of systems scan volumes using either oscillating head or 2D phased array transducers,
which increase the size of the probe footprint. Instead, freehand 3D ultrasound uses a normal 2D
probe and the volume is populated with data from 2D scans where the locations of the planes have
been recorded in 3D.

Freehand elastography has attracted a lot of interest in recent years. Doyley et al. [15] have
shown that it is possible o -line to produce freehand elastograms of good quality by training
an operator to move the freehand probe upon the region of interest in a compressive direction
at a prescribed strain rate. Typically though, freehand systems require real-time imaging to
guide the operator, which was a serious challenge for earlier research. For example, Bamber
et al. [16] looked at a minimally intensive strain estimator based on speckle decorrelation, but
increased speed came at the expense of reduced accuracy. Subsequent work by Pesavento et al. [17],
however, produced a fast phase-based algorithm which was at least as accurate as conventional
cross-correlation techniques. Hall et al. [4] have documented a system which exploits real-time
operation by running 2D elastogram and B-scan displays side by side, providing feedback to the
operator so that it is easier to practise a successful scanning technique.

It was anticipated that the main di culty with extending freehand elastography to 3D would
arise from the requirement that the probe be translated in the elevational direction to sweep out
a volume. This means that pairs of consecutive ultrasound frames are usually non-coplanar, so
the level of signal decorrelation is increased. Strain estimates in these circumstances are at best
less accurate and at worst entirely erroneous. A more general problem is that whereas visual
feedback may aid an operator in producing several successful freehand 2D elastograms, a 3D data
set comprises a collection of many 2D images, where it is perhapsinevitable that some of the planes
are dominated by strain estimation errors. For this reason, correction techniques are an important
feature of thefreehand 3D elastography system that isdocumented in thispaper. Section 2 provides
background information, with a review of tools from theliterature that are reapplied here; Section
3 outlines the freehand 3D elastography system and the results that have been achieved; Section 4
documents the development of suitable correction techniques; nally some conclusions are drawn
in Section 5.

2 Background

The elastography method incorporated in our 3D system is based on quasistatic techniques that
have received a lot of attention since being proposed originally by Ophir et al. [5]. Two frames
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Figure 1: Tissue modelled as a collection of elastic springs: compressive pressure is applied
and if the displacement eld can be estimated, its derivative is strain, which may highlight salient
tissue features.
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of ultrasound data are recorded: one before and one after a section of tissue is compressed (see
illustration in Figure 1). Tissuedisplacementsgiveriseto shiftsin thetime-delays of corresponding
sections in the recorded ultrasound signals. The shifts can be estimated by windowing data in
the pre- and post-compression signals, and identifying the temporal displacement that produces
the closest match between the windows | usually this is determined by locating the maximum
in the normalised cross-correlation function. The temporal displacements correspond closely to
mechanical tissue displacements, assuming that variations in the speed of sound are small, so
the local gradient of the displacement estimates is used to estimate strain. By this method, a
column of strain estimates is produced for each A-line in the recorded ultrasound signal. These
are mapped to pixel intensities in the resultant 2D elastogram. We display low strains as bright
regions (corresponding to sti inclusions) and darker patchesindicate higher strains (softer tissue).
Ultrasound is an excellent imaging modality for elastography. Thisis not only on grounds of
low cost, but also because ultrasound signals exhibit variations due to microscopic tissue features,
so even in fairly homogeneous tissue each piece has a unique speckle pattern. For this reason
time-delay estimation can produce highly accurate estimates of the actual tissue motion. A dis-
tinguishing feature between the many di erent implementations is the method by which the tissue
is compressed. Some systems have used a stationary probe, and relied on pressure variations from
within the tissue caused by normal processes such as the cardiac cycle. However, a more common
approach is the application of pressure through the probe, which is pressed into the tissue in pre-
cisely controlled increments using a stepper motor [3, 5]. The freehand scanning approach that
will be described here falls into the separate quasistatic compression category because the probe
is actually in continuous motion. The best interpretation of the resulting elastograms is still to
assume that they show equilibrium strain states. However, it should be acknowledged that image
interpretation may be more di cult in tissues where strain has a strong time dependency.



2.1 Axial strain estimation

The naming convention for a set of 3D axesrelative to an ultrasound probeisillustrated in Figure
2. Displacement and strain estimation for elastography is often restricted to the axial direction
[5, 17, 18]. The principal reason isthat while ultrasound probes have excellent axial resolution, the
lateral resolution isfar poorer: therate of decorrelation when tissue movesrelativeto an ultrasound
A-line has been shown by Dickinson and Hill [19] to be roughly an order of magnitude lower
for lateral movement, and while axial sample spacing depends on the RF sample rate (typically
providing > 3000 samples over a scan depth of 4cm) the lateral sampling rate is dictated by the
spacing of the piezoelectric crystals on the probe (127 samples over 4cm for our probe).

A degree of lateral and elevational movement is nonetheless inevitable. Firstly, thisis because
uniaxial stress givesriseto secondary strainsin the perpendicular directions, where Poisson's Ratio
isthe material property that measures this tendency. A second cause of non-axial motion is stress
concentrations, a feature of inhomogeneous tissues which means that some regions bear non-axial
stresses even if the applied pressureisentirely uniaxial. These sources of decorrelation are common
to any quasistatic compression system, though freehand elastography is further compromised by
the handheld probe: rotations and trandlationsin ve of the six degrees of freedom are sources of
additional decorrelation. When the operator applies axial pressure, an unintended non-axial com-
ponent is unavoidable. Furthermore, in freehand 3D elastography non-axial motion is a necessary
requirement so that a volume may be swept out.

Oneway of mitigating decorrelation in general israpid data acquisition. Reducing the temporal
spacing of consecutive data frames lowers the between-frame motion in every direction: lateral,
elevational and axial. The correlation can thus be improved, but it comes at the expense of a
reduction in the axial strain that isto be estimated. If the pre- and post-compression frames are
uncorrelated, the SNR will betiny even if the axial strain islarge. On the other hand, a correlation
of 100% acquired with zero axial strain also yields zero SNR becausethereisno elastographic signal.
Therefore, a suitable protocol must be devised to operate somewhere between these extremes.

It has become popular to regard elastography systems as strain lters, with passbands and
stopbands as described by Varghese et al. [20]. Models developed by Varghese et al. incorporated
the e ects of electronic noise and signal decorrelation due to axial strain, and they predicted
passbands at 1{10% strain. However, the same models do not apply to freehand elastography
because of the additional decorrelation when axial strain is accompanied by lateral and elevational
motion. This probably means that the freehand elastography passband is shifted to lower strains.
Doyley et al. [15] acknowledged this problem in the design of their freehand 2D elastography
system, but they also assumed that freehand palpation would necessarily involve strains of > 2%,
so they focused on restricting the extent of non-axial freehand motion. Since non-axial motion is
unavoidable in a 3D scan, our approach is necessarily di erent. The focusis on identifying the low
strain range at which the best freehand results are produced.

2.1.1 RF signal processing

The raw signals from the transducers on an ultrasound probe are in the radio frequency range.
Normal ultrasound scanners produce B-scan amplitude images by detecting the signal envelope
and applying a non-linear scaling to determine the intensities of the display pixels. Therefore, the
envelope signal isthe standard output from commercial ultrasound machinesin the form of \ video
detected data". Thisis undesirable, however, because it provides only a few hundred samples per
A-line. Even if the number of samples can be increased, there are advantages to using the full RF
signal. The di erence between the RF signal and its envelope is illustrated in Figure 3a. In the
past it was common to perform cross-correlation analyses using the signal envelope [19, 21], but
most recent elastography has used the full RF signal [5, 15, 17]. If it can be acquired, the RF signal
0 ers much more accurate strain estimation, because the peak of the normalised cross-correlation
function is sharper, so it is more robust in the presence of noise. Figure 3b demonstrates this by
comparing the auto-correlation of the envelope and RF signals at small shifts of -2/ + 2 samples.
RF data is especially important for achieving an acceptable SNR in freehand 3D elastography,
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Figure 2: Six degrees of freedom for the movement of the probe: the probe is held in
the hand and pressed lightly against the object to be scanned. Although the operator moves the
probe in the axial (downward) direction, this is accompanied by small motions in the lateral and
elevational directions which violate the assumptions of axial displacement tracking.
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Figure 3: RF signal versus envelope: (1) Section from an RF ultrasound signal and the
corresponding signal envelope. (2) Cross correlation values for this signal at temporal shiftsin the
range -2/ + 2 samples, calculated using both envelope and full RF data.

because the signal (tissue strain) is smaller than in most other systems.

2.1.2 Strain images from speckle tracking

Some form of search is required to estimate the displacements of corresponding data windows
in the pre- and post-compression frames, achieving accurate sub-sample precision. This can be
accomplished with good accuracy by interpolating the RF signals at sub-sample locations and
recalculating the normalised cross-correlation, but an exhaustive search on this basis is extremely
computationally expensive. Commonly the analysis is made faster by applying peak interpolation
techniques [1, 22, 23] to estimate sub-sample displacements from values of the normalised cross-
correlation to either side. Alam et al. [24] among others have noted that speckle tracking in
this form is suboptimal for elastography, because tissue compression causes both displacements
(which are estimated) as well as within-window deformations (which areignored); Alam et al. have
devised an alternative technique which addresses this issue, but at the low strains of freehand
elastography it isunlikely that the performanceimprovementswould besu ciently largeto warrant
the signi cant increase in the computational overhead.

Speckle tracking is repeated at overlapping window positions spaced regularly along each A-
line to produce vectors of displacement estimates. These are converted to strain vectors using the
method of least squares (LSQ): a line is tted through nearby displacements; its gradient is the
strain estimate [18]. Notethat in thelimit when just two displacement estimates are used, the least
squares lIter isequivalent to taking thedi erence between consecutive displacements. Afterwards,
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Figure 4: Log compression: (a) Input-output characteristic of the log compression of amplitude
for compression factors ¢ = 0.1, 1, 10, 100 and 1000. (b) Sonogram of human lower arm; 1%
compressive strain simulated in the lower half. (c¢) Elastogram using basic EPZS. (d) Elastogram

using EPZS with log compression (c = 100).

the strains are mapped to greyscale levels for display purposes.

The quality of the strain estimation depends on the properties of the scan subjects, the level of
signal decorrelation, and also on three elastographic parameters. These are: window length (T),
window spacing ( t) and LSQ Iter length (L sq). Together they govern the trade-o between
axial resolution and estimation noise. An instructive discussion of thisis provided by Righetti et
al. [25].

Elastography in this framework produces unbiased strain estimates provided that the initial
unbiased displacement estimates are performed at regularly spaced locations. In fact, thisisrarely
the case, because thelocations of displacement estimates do not generally correspond to the centres
of the analysis windows. Each displacement estimate is weighted towards locations where the RF
signal has a large amplitude. High amplitude blips, such as the specular re ections at boundaries
where the refractive index changes, distort the spacing of the estimates. For example, if neigh-
bouring, overlapping windows contain a common bright boundary, their displacement estimates
are e ectively samples at the same position: therefore, the di erence (strain estimate) is zero,
regardless of the actual local strain. This artefact produces ghost images of B-scans superposed
on the elastograms. However, it can largely be eliminated by log compression of the RF ampli-
tude [26]. This is not an ideal solution, because it has been shown that log compressed signals
introduce bias at the peak interpolation stage [23]. Less biased estimates can be made, however,
using a search of the phase of the complex cross-correlation (CCC). Figure 4 showsthee ect of log
compression in this context, where the elastograms have been produced from a simulated uniform
compression of RF data in the lower half of a real scan. The ghost image is ailmost entirely absent
from Figure 4d where log compression isused. The search variation using CCC phase is preferable
for 3D elastography anyway, because it has a low computational overhead.

2.1.3 E cient phase zero searching

T he speckle tracking algorithm in the freehand 3D ultrasound system is adapted from the original
concept of Pesavento et al. [17], which is described in this section. They demonstrated superior
accuracy and speed by working on analytic signals and using the CCC phasein an iterative search.
It will bereferred to asthe e cient phase zero search (EPZS).

T hewindow matching approach assumesthat portions of the pre- and post-compression A-lines
are time-shifted copies of the same signal. It makes sense, therefore, to consider the properties of
the auto-correlation function: complex signals have pure-real auto-correlation values at zero lag.
Similarly, the CCC of a pair of complex time-shifted signals has zero phase at the displacement
where the signals match, asillustrated in Figure 5. The phase zero is easy to nd when working
with ultrasound signals because their average phase gradient is approximately equal to the probe
centre frequency. A highly accurate estimate can usually be produced after a single iteration of
gradient descent.

Consider a pair of complex signals, a and b. The unnormalised CCC is calculated as per
Equation 1, where T is the window length, n t isthe position of the start of the window, and t°
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Figure 5: CCC properties at the matching point: the CCC phase is zero at the matching
point and varies approximately linearly with displacement. Its average gradient is equal to the

frequency centroid of the RF signal.

is the displacement of the post-compression window.
nxt+ T
he;bi(n t;t% = a (t)b(t + t9 (1)
t=n t
Sub-sample precision is achieved by linear interpolation. Thisis most accurate at baseband fre-
guencies, so a baseband conversion is calculated according to Equation 2, where ay, is the baseband

analytic signal and !  is a suitable modulation frequency.
ap(t) = a(t)e J'of (2
Using baseband analytic signals xy,; (pre-compression) and Xy, (post-compression), theiterative

gradient descent motivated by Figure 5 was expressed in [17] in the form of Equation 3, where! ¢
isthe local frequency centroid. t% and t%. ; are successive iterative estimates of the displacement

(positive values indicate displacement towards the probe). The search is initialised with the nal

displacement estimate from the previous window, i.e. t%., = t%., 1.
3

arg e 1ot hxp xpoi (- t5t%)

the1 = tho+ ,
s C
to+ . Thismeansthat the

In this form the arg function returns phase values in the range
search will fail if the change in displacement between one window and the next is> =2, where
is the wavelength corresponding to the probe centre frequency. The upper limit this places on the
strain rate is fortunately much higher than the strains that are encountered during scanning.

At the baseband conversion stage, signalsarelog compressed asmentioned in Section 2.1.2. This
is performed according to Equation 4 following Pesavento et al. [17], where c is the compression
factor. The phase is preserved, so the iterative search of Equation 3 can be applied without

4

modi cation.
Aplog = l0g 1+ Gapj & 292
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Figure 6: Layout of the high de nition freehand 3D ultrasound system.

2.2 Freehand 3D ultrasound

The purpose of thiswork isto incorporate practical elastography within the freehand 3D ultrasound
system of Treece et al. [13]. Thisisillustrated in Figure 6. It has an AdapTrax* target attached to
the probe, tracked by a Northern Digital? Polaris optical position sensor. Custom calibration and
imaging software are exploited, such that the system as a whole can register 3D point locationsto
an accuracy of 0.5 mm. Each ultrasound frame istreated as a rectangular plane in 3D space, and
many planes are stacked together to produce 3D datasets. Typical applications include reslicing
to view planes that are normally inaccessible, examining features that lie along curved surfaces,
and estimating volumes.

3 Freehand 3D elastography

3.1 System outline

A modi ed Dynamic Imaging® Diasus ultrasound machinewith a 5{10 MHz probeisused to acquire
RF data at frame rates of 15{40 Hz. The probe centre frequency is 6.0 MHz, and samples are
taken at 67 MHz using a Gage® CompuScope 14100 analogue-to-digital converter. A Hilbert Iter
with a 5{10 MHz passband is applied to produce analytic signals, so that axial strain estimation
can be performed using EPZS® with parameters T = 135, t = 35 and Lisq = 2, although
experiments with longer LSQ Iters are presented in Section 4. The criterion for stopping EPZS
iterationsisjt? t? ,j< 0:01 ,where istheRF sample spacing. This meansthat most searches
consist of two iterations, although longer searches can occur when the signals are decorrelated.

Ihttp://vww traxtal .com

2http://wan ndi gi tal . com

Shtt p: // v dynami ci nagi ng. co. uk

4ht t p: / / waw gage- appl i ed. com

5In fact we also conducted experiments incorporating a lateral search. Neighbouring A-lines were searched in
parallel. Then linear peak interpolation of the normalised cross-correlation was applied in the lateral direction to
identify the best axial displacement estimate. The e ect of this on the freehand elastograms was imperceptible,
however, so lateral searching receives no further discussion in this paper.



Figure 7. Down-sampling levels: from left to right: 1x (all data), 10x, 15x, 16x, 17x. The
images degrade when the down-sampling level isincreased, but the quality decays gracefully, with
the SNR increasing only gradually while the sampling rate is still more than twice the probe
bandwidth.

Some optimisation of the EPZS implementation has been applied in order to achieve a good
framerate. Three aspects are worth mentioning:

1. Algorithm simpli cation. We assumethat ! . !, where! 3 was the modulation frequency
used in the baseband conversion and !  is the frequency centroid. We choose !  equal to
the nominal probe centre frequency. This enables us to simplify the iteration formula in
Equation 3 to obtain the more e cient expression of Equation 5. It should be noted that
the phase of the baseband CCC may be >2 , so the arg function is potentially ambiguous.
To handle this, our implementation assumes that the phase for each window remains within

radians of its initial value at t%., = t%., 1. This makes no di erence to the upper limit
on between-window displacements that was mentioned in Section 2.1.3.

arg Xpp; Xpi (n - t;t%)

, (5)

-0

t0%1 =

2. Down-sampling. The bandwidth of the probeis 2.1 MHz, so the Nyquist sampling frequency
for baseband signals is 4.2 MHz. In fact all of the 67 MHz samples are used for the ini-
tial phase estimation with the Hilbert Iter. However, thereafter up to 16x down-sampling
can be performed assuming that the Nyquist sampling frequency is su cient for accurate
elastography. In practice, any down-sampling reduces the SNR, but it has been found that
down-sampling up to 10x leads to only a minimal reduction in image quality. A demonstra-
tion using 2D elastograms of a phantom is shown in Figure 7. Down-sampling by a factor n
reduces the computational overhead for Hilbert Itering, baseband conversion and log com-
pression by O(n), and for the iterative search by O(n?). With 10x down-sampling, a mean
frame rate of 21.8 Hz has been achieved, which increases to 25.1 Hz if log compression is
omitted (measurements were carried out on a machine with a 3 GHz CPU).

3. Limit amplitude compression. It was noted that log compression of the baseband signal, as
in Figure 4, gave similar results for compression factorsin the range 10*{ 10%. This motivated
an experiment where the amplitude was set to unity at every sample position, so only phase
information was retained. This is desirable, since calculating the CCC phase then requires
only additions and subtractions. However, we were unable to produce sensible results by
this method. It is assumed that after log compression the residual amplitude information
provides a weighting, so that regions where the phase estimates are extremely uncertain are
ignored. The log compression factor is 100 for all of the results that are presented here.

2D elastograms are produced by processing pairs of consecutive frames recorded during scan-
ning. High speed elastography with 10x down-sampling provides a real time elastographic display
for investigating suitable targets. For 3D elastography, however, the processing is performed o -
line. This allows data to be acquired at a higher frame rate during the 3D sweep, averaging 30
Hz, which reduces between-frame decorrelation and has been found to give better elastographic
results. Elastographic processing then proceeds o -line without down-sampling in order to achieve



Figure 8 A simple 3D scanning protocol: axial and lateral motion are avoided while the
freehand probeis translated slowly in the elevational direction.

Figure 9: Pixel intensity mapping: a non-linear max-min strain scale focuses on variations in
sti er regions.

the maximum quality. The fast EPZS algorithm still o ers a frame rate of several Hz, so a 3D
elastogram consisting of several hundred 2D frames can be produced within 1{2 minutes.

The freehand 3D scanning protocol is surprisingly simple. It isillustrated in Figure 8. The best
results are produced when no attempt is made at deliberately varying the pressure applied through
the probe. The probe is swept slowly in the elevational direction, typically covering 3 cm in the
course of 10 s. This gives an elevational spacing of 0.1 mm, which is well below the elevational
width of the ultrasound resolution cell. The beam is narrowest at the focal depth, with a minimum
elevational width of 2 mm for our probe. Therefore, consecutive frames overlap, and the level
of decorrelation due to elevational trandlation is small. Between-frame strain isthe result of small
involuntary variationsin the applied probe pressure, and in vivo scansinclude the additional e ects
of tissue-internal stresses. Mean strains between consecutive freehand data frames are in the range
0.03{ 0.50%.

Obviously the strain direction in this protocol is variable. Sometimes elastograms record an
increase in compression and sometimes they record relaxation. Furthermore, since tissue is highly
inhomogeneous, a single elastogram may contain some regions of compression, and others of relax-
ation. In any case, the interesting result for a qualitative interpretation is the magnitude of the
strain, which is taken to indicate tissue sti ness. For this reason, the strain modulus is recorded,
and the sign on each estimate is ignored.

The nal processing stage maps absolute strain estimates to pixel intensities. The 2D elas
tograms must be normalised according to their strain distributions, so that pixelsin the sametype
of tissue have similar intensities, regardless of the absolute level of strain in any particular frame.
Another consideration is the property of interest: sti ness rather than strain. This is inversely
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Figure 10: Phantom: sti inclusion in soft tissue.

correlated with strain, and variations on a linear strain scale will tend to give the best contrast
between di erent regions of soft tissue, which are perhaps of limited interest. Instead, a nonlinear
scale linked to the minimum-maximum strain range is used, as shown in Figure 9. Sti regions are
bright and soft regions are dark.

To produce 3D elastograms, the pixel intensities of the 2D elastograms are written to le and
stored together with the position sensor data. These les can be read by the Stradx® freehand 3D
ultrasound software to produce a range of 3D visualisations.

3.2 First results

Phantoms were constructed to mimic sti inclusions in soft tissue (olive in gelatin, see Figure 10).
Note that wires prevented the olive oating out of the gelatin before it had set, but they were
not intended to a ect the mechanical properties thereafter. A suspension of our in the gelatin
provided suitable scattering properties, and a layer of our sediment presented another relatively
sti region.

Figure 7 displays an example of a 2D elastogram from a phantom scan. Note that theimageis
uncalibrated | i.e. it isnot intended for the purpose of taking quantitative strain readings| but
the normalisation chosen gives a good contrast between the inclusion and the surrounding tissue.
Another interesting point is that while the sti nessis fairly constant within the gelatin, the pixel
intensities indicate higher strains towards the top of the image. This is because the stress spreads
out away from the probe, so we witnessthe\target-hardening artefact”, which has been mentioned
in the literature [5]. Another typical artefact is the dark high-strain shadow around the edge of
the olive, also mentioned in other studies [18, 27], which is caused by a stress concentration. We
note that these artefacts are easy to interpret, and high-strain shadow can actually be assistive
when it comes to identifying the boundaries between di erent sti ness regions.

The 2D elastogram was one among 389 combined in the 3D elastogram of Figure 11. Two
reslices have been constructed, where intensities on these planes are assigned by nearest neighbour
interpolation from the original 2D elastograms. The boundary of the olive can be seen easily
thanks to the high-strain shadow, and there is an appreciable (though small) contrast between the
regions of the resliced strain images within and outside the olive. The outline view in Figure 11c
thus gives a clear impression of the 3D location of the inclusion.

Several artefacts are in evidence in Figure 11. Firstly, vertical streaks of estimation errors are
present on the left hand edge of the 2D elastogram. We refer to these as \ dropouts'. They are
caused by tracking errors, where theinitial value in each iterative search istoo far from thelocation
of the correct match, so the search converges to an erroneous displacement. This limitation of the
EPZSsearch isinvestigated in Section 4.1. Another region of poor strain estimatesis present below
the centre of the olive. From the B-scans it was apparent that a pocket of air had formed in this
part of the phantom, so only noise was recorded. The air pocket is full of strain estimation errors,

6T he software is available for free download from http://m . eng. cam ac. uk/ ~r wp/ st r adx/ .
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(a) (b) (c)

Figure 11: 3D elastography of olive/ gelatin phantom: (a) 2D elastogram. (b) Perpendicular
reslice. (c) 2D elastogram and two such reslices.

(@ (b) (c)

Figure 12: 3D elastography of the human calf: (a) 2D elastogram. (b) Reslice. (¢) 2D
elastogram and redlice.

observable as a dark smear in both the 2D elastogram and in the reslice. A separate artefact of
thereslicesisthe streaky appearance. Thisistheresult of producing an image based on thin slices
through many closely-spaced 2D elastograms of variable quality; it is not caused by variations in
the applied stress | the normalisation accounts for di erent strain ranges. On the other hand,
some elastograms exhibit more estimation noise than others, and outliers resulting from estimation
errors can skew the normalisation. An approach to improving these 3D data sets is outlined in
Section 4.2.

Freehand 3D elastography was also tested on a human subject. In thisinstance, the real-time
display was used for locating suitable scan regions before performing the blind 3D sweep: speckle
should be present throughout the tissue, and there should be few decorrelating phenomena (e.g.
blood vessels). One such target within the human calf is displayed in Figure 12. Layers of soft
fat (dark) and sti er muscle (light) are easy to identify in both the 2D elastogram and in the
perpendicular reslice.

4 Correction techniques for robust imaging

Our experience has shown that the di cultiesin producing 2D elastograms during a freehand 3D
scan are essentially the same as in normal freehand 2D elastography. This is because the level of
degradation due to small elevational translations is not signi cant. One problem in both 2D and
3D casesisthat quality can be compromised by the accumulated decorrelation due to involuntary
movements in all ve degrees of freedom that violate the assumptions of an axial search. This
matters less in 2D elastography if elastograms with below average SNR can be ignored, but the
3D elastogram comprises all of the 2D frames, so any poor results detract from the overall quality
of the data set.
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Figure 13: LSQ strain estimation: (a) Di erence of neighbouring estimates (L|sq = 2).
(b) L|Sq =5 (C) L|5q =10

One means of generally improving the SNR is by increasing the length of the LSQ Iter that
converts displacement estimatesto strains [18]. Figure 13 presents a demonstration of this, where
the SNR has been improved at the expense of the axial resolution. The optimal value for Lsq
dependson thedata. A longLSQ Iter may reducetheinformation content of good 2D elastograms,
whereas for poor 2D elastograms the boost to the SNR is more important.

Two other methods have been devised for improving the 3D elastography results. Frame Itering
automatically rejects 2D elastograms that are predicted to be of poor quality. A separate method
corrects dropouts in 2D elastograms. From a visual inspection of the images, dropouts are the
most severe artefact. They merit special attention because dropouts often mar images where the
overall image quality would otherwise be good.

4.1 Dropout detection and correction

Dropouts are easy to spot by eye: they appear as incongruous vertical streaks usually extending to
thebottom of theimage, asin Figure14a. A point isreached in such A-lineswherethe displacement
tracking breaks down and subsequent displacement estimates are erroneous. Thisis perhaps made
clear by inspection of the surface plots (produced using MATLABY) of displacement estimates in
two elastograms, one of which produced a good image (Figure 14c) the other of which contained
dropouts (Figure 14d). An error-free elastogram from a volume of connected tissue must have a
continuous displacement eld, whereas it can be seen that dropouts give rise to discontinuities.

Dropouts propagate because at each window EPZS is initialised with the previous estimate, so
a single large error can wipe out the remainder of an A-line. However, the cause of these large
errorsisnot obvious. An initial theory was that mismatches occurred if the local strain went above
a threshold, since the EPZS search cannot move further than =2 at a single window. As a test,
EPZS was applied to synthetic data of the same form as used in Figure 4, where much higher
strains were simulated. In fact, it was found that high strains can produce dropouts, but only at
strains upward of 5.4%. This is almost two orders of magnitude higher than typical mean strains
in the freehand data, so it is unlikely to be a frequent cause. A more plausible explanation for
most dropouts was devised after careful inspection of the freehand elastograms where dropouts
were present, together with the features evident from the corresponding B-scans. It was observed
that dropoutsbegin at tissue features with local decorrelating properties. These include slip planes
between theinclusion and the gelatin, pockets of uid within the jelly, multiple specular re ections
between the probe and metal wires, and all locations of uid ow. A good example is provided
by Figure 14b, showing a largely homogeneous section through the human calf. The dark patch
is a blood vessel, where blood ow causes decorrelation between one frame and the next. Several
estimation errors in the vessel are large enough to produce dropouts.

Dropouts can be detected automatically by identifying displacement outliers within each row of
estimates. A-lines where the displacement is more than three standard deviations from the mean
are marked as dropped-out. Starting from the top of the image, at each row the displacement
mean and standard deviation are recalculated based only on the A-lines that have not dropped

"MATLAB is a registered trademark of The MathWorks Ltd.
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Figure 14: Dropouts: (a) 2D elastogram with dropouts. (b) Human calf elastogram including a
blood vessel. (¢) Surface plot of displacement estimates in a clean elastogram. (d) Displacement
estimates in an elastogram with dropouts. (e€) Corrected version of a. (f) Corrected version of b.

out, and new outliers are marked as dropouts. In a study of 80 freehand 2D elastograms, this
method detected 100% of the dropouts that were spotted by eye, in addition to which 30% of the
automatic dropout detectionswere either false positives or had been missed in the visual inspection.

Attempts have been made to devise data-driven dropout correction methods, since error prop-
agation often masks sections of A-lines where the data is good. The general principle isto detect
dropouts and reinitialise EPZS in the section below with the average of estimates in neighbouring
clean A-lines. A challengewith thisis ndingthe start of the dropout, sothat errors are eliminated
as far as possible.

The best method yet devised gets around this by working backwards up the image, so the
dropout start position is not required. A rst pass of EPZS displacement estimation proceeds as
usual. Then an estimate is made of the mean axial displacement at the bottom of the elastogram
| the bottom row of displacement estimates is averaged, with outliers excluded. This provides
the initialisation for a second pass of EPZS beginning at the bottom of the image. Dropped-out
A-lines are divided into two sections. above and below the decorrelation patch. Estimates from
the rst pass are reliable in the upper section, before breaking down at the patch. Second pass
estimatesare better in the lower section, but again they break down. In both passesthe normalised
cross-correlation is evaluated for every window match, and ultimately estimates are adopted from
whichever pass had the higher correlation. The computational cost of this correction is not large,
since the signal pre-processing stages that constitute most of the load are entirely unchanged.
The iterative search must be carried out twice, but it is a small fraction of the overall processing.
Normalised cross-correlation computations present a further small increase in the overhead.

The method corrects most dropouts, so decorrelation patches such as blood vessels cause dis-
placement error blips, but errors no longer propagate. The most common exception to this occurs
when more than one decorrelation patch is present within a single A-line, in which case esti-
mates between the patches are likely to remain erroneous. However, the correction to many 2D
elastograms is impressive, such as in Figures 14e{f (corrected versions of Figures 14a{b). An ex-
periment was conducted using the data from a 3D data set with 309 2D elastograms, recording by
eye the number of dropoutsin each frame and their lengths, in order to produce an estimate of the
image area fraction (IAF) lost to dropouts. The |AF before dropout correction was 0.65%, whereas
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applying the correction method reduced it to 0.26%. T he numbers sound small, but dropouts seem
to have a disproportionate e ect on the perceived image quality: for interpretation purposes, many
images appear greatly improved.

4.2 Frame Itering
4.2.1 Observations

Asidefrom dropouts, the general image quality variesa great deal between 2D elastograms. Aspects
of thisare variations in the apparent level of estimation noise and in the contrast between di erent
tissue regions (despite the min-max strain normalisation). The overall quality of 3D elastograms
could be improved signi cantly by hand picking the best 2D results, so this section introduces
automatic frame Itering.

A survey of 2D elastograms from a single 3D phantom scan is presented in Table 1. The
images were manually selected, picking ten 2D elastograms perceived as being \ good" and ten
perceived as being \ bad". Frameswith large numbers of dropouts were avoided so as not to confuse
general image quality determinants with the causes of the dropouts. Two metrics were evaluated a
posteriori for each of the elastograms. (1) mean magnitude of the normalised cross-correlation; and
(2) mean strain. The rst of these entailed calculating the normalised cross-correlation between
analysis windows where EPZS found a match, and averaging these values across the entire 2D
elastogram. The mean strain was found by making a robust mean displacement estimate from the
speckle tracking data, excluding outliers, and dividing this by the number of samplesin the A-line.
Note that the sign on the strain denotes either compression (positive) or relaxation (negative).
This records the direction of the deformation that physically occurred during the scan. It does not
a ect the elastographic processing since the labelling of pre- and post-compression frames could
just as well be reversed.

There are marked di erences between the distributions of the metrics for the good and bad 2D
elastograms in Table 1. It was anticipated that mean strain would be an important determinant
of elastographic SNR, based on the notion that the mean squared strain is the elastographic signal
power. Indeed, the strains of the good elastograms are generally larger. However, 4G has a lower
strain than most of the bad elastograms, although the image is evidently superior. Conversely, 2B
has a relatively high strain but theimage is poor. Theintuition that SNR islinked to mean strain
may be correct, but this parameter alone does not separate the good results from the bad.

A more striking observation is that every one of the good elastograms was an instance of
relaxation (negative strain), whereas more than half the bad elastograms were compressions. This
suggests some asymmetry in the elastography scanning: either hysteresis behaviour in the phantom
reducing decorrelation e ects in the relaxation direction, or smoother movement of the freehand
probe as pressureis reduced. This sampleisnot statistically signi cant, but it should not be ruled
out that asymmetry might be a common feature of freehand 3D scanning.

Corrélation values provide a better separation of the good and bad distributions. While all of
the good elastograms were in the range 0.7719{ 0.8721, the values for seven of the bad elastograms
were below thisrange. Of theremaining three, 8B and 9B had positive strains, which seemsto have
precluded successful elastography with this phantom. Closer inspection of the displacement esti-
mates for elastogram 10B showed that in thisframethe probe had twisted, with small relaxationsin
A-lines at one end and larger compressionsin A-lines at the other. Thisunusual displacement eld
may explain why the axial strain display is ambiguous. Mean correlation appears more promising
than mean strain as a metric for selecting good 2D elastograms, though qualitative observations
alone provideinsu cient evidence for any rm conclusions to be drawn.

4.2.2 Experimental veri cation

Contrast-to-noise ratio (CNR) is an image analogue of SNR. CNR measurements were used as
the basis for a quantitative investigation of frame Itering. We adopt a de nition of CNR from
Chaturvedi et al. [28] as stated in Equation 6, where s; and s, are the mean pixel intensities in
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Good elastograms Bad elastograms

A B C D A B C D
1G 0.8370 -0.29 1B 0.6250 -0.12
2G 08581 -0.12 2B 03641 +0.20
3G 0.8656 -0.17 3B 05693 +0.054
4G 0.8652 -0.051 4B  0.6031 +0.051
56 08101 -0.31 5B 0533 -0.071
6G  0.8370 -0.16 6B  0.5490 0.0044
7G 07719 -0.36 7B 07092 +0.14
8G 08348 -0.34 8B 0.8675 +0.052
9G 08721 -0.46 9B  0.8800 +0.079
10G 0.8516 -0.40 10B 0.8374 -0.16

Table 1: Quantitative survey of good and bad elastograms. A: Elastogram number. B:
Mean normalised cross-correlation magnitude. C: Mean strain (%). D: Thumbnail elastogram.

the inclusion and in the soft tissue respectively, ; isthe standard deviation of pixel intensitiesin
theinclusion and 5 isthe standard deviation in the soft tissue.

s

2
cnR= 2oL _S2F (6)
1 2

Phantom scans were inspected o -line in B-scan mode to draw manual 3D segmentations of
the inclusion and the soft tissue. In each data set the entire segmented volume was used as the
basis for CNR evaluation. Usually the CNR would be calculated for a 2D resliced image, but the
CNR values vary between reslices depending on the plane that is inspected: for example, reslices
in elevational-lateral planes generally have lower CNR than elevational-axial reslices because they
miss the stress concentrations, so the overall contrast is lower. Instead, 3D elastograms were
resampled onto regular voxel arrays using nearest-neighbour interpolation, and all of the voxel
intensities throughout the segmented regions were used for the CNR calculations. The e ect of
this was to estimate the expected CNR for a reslice through each data set on a plane of arbitrary
orientation.

With CNR as the measured output variable, the primary input variables were the threshold
levels in the minimum strain and minimum correlation Iters. Mean strain and mean correlation
were calculated as previously described, and 2D elastograms which fell below the threshold levels
were omitted from the 3D elastograms. The eastography algorithm used for this experiment was
largely identical to the setup described earlier, although only 60 windows were used in each A-line
with T =40 and t= 45 | theseconservative valuestend to result in smaller errorsin the
poor elastograms, although resolution is reduced in the best elastograms. Another change was
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Figure 15: Minimum strain Iter: Left: percentage of data retained versus minimum strain.
Right: CNR performance versus minimum strain, with comparison of LSQ Iters. The upper set
of curvesis for Lisq = 5, while the lower set is for Lisq = 2. Cross-hatching marks the range of
results with each LSQ lter.

the use of di erent lengths of LSQ Itersfor strain estimation: they were applied for comparative
purposes, and to see if frame Itering had di erent e ects depending on Lsq. Several values were
tried for Lsq, but for clarity only two are displayed in the graphs of results. The behaviour of the
intermediate Iterswas unsurprising, so results are shown only for Ljsq = 2 (di erence estimation)
and Lisq = 5(along LSQ lter).

Figure 15 presents results for the minimum strain Iter and Figure 16 for the minimum corre-
lation Iter. The graphs on the left show the proportion of the data that was retained after the

Iter, which indicates the e ect on elevational resolution (frame Itering reduces frame density in
the elevational direction). On the right, two curves are plotted for each data set, one for each
LSQ Iter. Cross-hatching between the curves marks the sets corresponding to each LSQ Iter,
where the longer Iter produces a higher CNR. Note that the vertical axisis relative (as opposed
to absolute) CNR: thisis the absolute CNR divided by the value of the CNR when no frame Iter
was applied and Lisq = 2. The CNR varied signi cantly between the data sets, so performance
comparison on an absolute scale would be di cult.

Figure 15 shows unambiguously that a Iter on the minimum strain can improve the CNR, and
the improvements may be larger than are yielded by the application of a long LSQ Iter. LSQ

Itering and frame Itering have a common feature in that the resolution isreduced. LSQ Itering
reduces axial resolution, while frame Itering reduces elevational resolution. When the resolution
becomes extremely poor, the CNR iseventually also a ected, since nearest neighbour interpolation
of sparsely distributed 2D elastograms distortsthe apparent shape of theinclusion: high thresholds
produce erratic resultsin data set n3 because few frames are retained, and the relatively poor CNR
with a 0.18% strain threshold is based on extending just a single 2D elastogram to Il the whole
elevational depth. However, a promising feature of these resultsisthat data setsnl and n2 (where
10{20% of the data was retained at the highest threshold) continued to exhibit increasing CNR. It
might have been expected that the greater level of motion implicit in these elastograms would cause
greater decorrelation and therefore a reduction in image quality, but this has not been recorded. It
suggests that if su cient frames at higher strains were available, then the strain Iter would o er
signi cantly improved 3D images.

The trend for minimum correlation Itering in Figure 16 again shows that a threshold can
improve the CNR. In this case the data sets all had moderate or good coverage of the elevational
dimension up to a correlation threshold of 0.93, at which point 15{20% of the data was retained.
This is roughly where the relative CNR peaks, and the size of the improvement is similar to the
maximum gain of the minimum strain Iter. Notethat the n3 data set \ caught up" with the others
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Figure 16: Minimum correlation Iter: Left: percentage of data retained versus minimum
correlation. Right: CNR performance versus minimum correlation, with comparison of LSQ Iters.
As in Figure 15, upper and lower curves are for Lisq = 5 and 2 respectively, and cross-hatching
marks the range of results in each case.

Figure 17: Comparison of strain and correlation Iters: CNR versus the proportion of the
data that has been discarded (data set n1, LSQ Iter length = 2).

by 0.93, since less data was discarded for n3 at the lower thresholds. Up to 0.93 the curves appear
to be converging towards similar performance improvements. T hereafter, the behaviour becomes
erratic, so it is unclear whether there continues to be a correlation between higher thresholds
and increased CNR. This cannot be explained simply asthe e ect of sparse data with inadequate
resolution, because at least 10 frames wereretained in each data set right until the 0.945 threshold.
There may be an additional reason why high correlation thresholds eventually become unhelpful.
Good correlation indicates a close match between data in the pre- and post-compression frames, so
the estimation noise will be lower than average. However, the best correlation will be recorded for
a stationary probe. While it is noted that surprisingly small strains can yield good elastograms,
Figure 15 demonstrates that higher strains at the upper end of our low-strain range are to be
preferred. A high correlation threshold disproportionately selects frames where the strain is low,
and for this reason it will eventually yield a reduced SNR (and CNR) as the signal amplitude
approaches zero.

An alternative way of comparing the merits of minimum strain and minimum correlation lters
isto plot a characteristic curve of CNR against the proportion of the data that isretained. Figure
17 shows a pair of such curves for the nl data set. It is clear that the Iter initially o ering the
\best value' is minimum correlation, but as the data become more sparse (and the correlation

Iter begins to positively select low strain) the minimum strain Iter eventually yields higher
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Figure 18: Frame Itered reslice: (a) Before and (b) after Itering.

performance. The same pattern is repeated in the n2 and n3 data sets. The implication is that
neither minimum correlation nor minimum strain will alone yield an optimal Iter | both are
required.

As a visual example, Figure 18 shows a reslice through data set n2. Images with Lisq = 5
are presented before and after frame Itering, where a strain threshold of 0.04% and a correlation
threshold of 0.87 have been applied together. Unlike the procedure in the experiments, the display
hereis produced by linear interpolation. It isevident that the Iter hasimproved both the contrast
and the CNR.

A secondary implication of this investigation is that higher strains on average do produce
better CNR. Thisis predictable given the strain Iter analyses of researchersin static compression
elastography. However, for the reasons explained it does not necessarily follow that high strains
in excess of 1% are desirable in freehand elastography. Initial experience of freehand scanning
showed prior to these results that low acquisition rates and coarser palpation through the probe
produce worse elastograms. Despite this, the frame Itering results indicate that a somewhat
rougher scanning technique might produce superior results if it could be combined with suitable

Itering to remove error frames when they arise.

5 Conclusions

We have presented a novel system for freechand 3D elastography. The scanning protocol is simple
and the elastograms are constructed in real time using a standard PC and unmodi ed freehand
3D ultrasound equipment.

Some conventional elastography techniques have been adopted for freehand 3D purposes, in-
cluding the phase zero searching algorithm for displacement estimation. Down-sampling of the
analytic signal is a useful way to increase the processing speed whenever high frame rates are re-
quired during scanning. It has been found that freehand 3D data acquired at a high framerateis
amenable to the same processing as 2D by exploiting the nite elevational width of the ultrasound
beam. We nd that at low strains planar elastograms with good contrast are often produced, and
a simple normalisation scheme means that the display data can be combined to construct 3D data
sets even though the applied compressions are uncontrolled. Reslices through the 3D elastograms
are easy to interpret, especially for identifying sti ness boundaries, although the overall CNR is
not high.

The challenge of freehand 3D elastography is in developing a suitably robust imaging system.
Quality variations between the planar images contribute to a high level of noise in the 3D elas-
tograms. Thisis mostly the result of variable CNR dueto di erencesin the physical conditions of
each frame, such as average strain and thelevel of decorrelation. A frame Itering method has been
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shown to produce marked CNR improvements by omitting bad planes. Other errors are caused by
dropouts: error propagation following decorrelation patches. Most of these are now removed by a
second pass correction method.

Future work must investigate optimal criteriafor frame Itering. It would be helpful if auni ed
measure of image quality could be devised, so that the CNR/ resolution trade-o could be assessed
within a clear framework. Frame Itering may ultimately need to apply variable thresholds across
thevolumeto obtain an optimal balance between CNR and resolution at all locations. Furthermore,
the improvements may be greater if similar Itering can be introduced at the sub-frame level, to
construct 3D data sets from the best patches within the frames. Successful Itering methods
will have knock-on implications for the freehand scanning protocol that delivers the best results.
There is scope for both theoretical and experimental work to develop a solid understanding of this
interaction.
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