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Abstract

Ultrasonic strain imaging is usually basedon displacement estimates computed using ¯nite-
length sections of the RF ultrasound signal. Amplitude variations in the ultrasound are
known to cause a perturbation in the location at which the displacement estimate is valid.
If this goes uncorrected, it is an important source of estimation noise, which is ampli¯ed
when the displacement ¯eld is converted into a strain image. We present a study of this
e®ect based on theoretical analysis and practical experiments. A correction method based
on the analysis is tested on phase and correlation coe±cient strain imaging, and compared
to the log compression technique from an earlier study. The performance is also compared
against adaptiv estrain estimation. Results indicate that the new correction yields a substantial
reduction in estimation noise.

1 In tro duction

Ultrasonic elasticity imaging spans a broad range of techniques that processultrasound signals
to extract information relating to tissue's mechanical properties. A majorit y of these techniques
require high quality displacement tracking at the ¯rst stageof signal processing.Examples include
quasistatic compressionimaging [26, 29], axial shear wave imaging [32] and acoustic radiation
force imaging in both quasistatic/impulsiv e [24] and dynamic [2] forms. The principal alterna-
tiv e, sonoelasticity imaging [18, 27], employs Doppler velocity estimation in mechanically vibrated
tissues. This is a practical technique, although the imagesit yields are relatively di±cult to inter-
pret. Displacement-based imaging systemshave been investigated for a wide range of diagnostic
purposes,spanning screeningfor soft tissue tumours [7, 9, 28], monitoring of atherosclerosis[6],
assessment of skin pathologies [8, 40] and examination of cardiac disease[15] among other appli-
cations. The simplest form of meaningful visualisation is the strain image. This is extended by
someof the more complicated systems,wherestrain imagesequencesare analysedto infer material
property estimatessuch as elastic [12, 32] and viscoelastic [2, 10] moduli.

The cornerstoneof elasticity imaging | displacement tracking | is easilyunderstood. Consider
a pair of ultrasound framesrecordedconsecutively during a scan: we refer to them as the pre- and
post-deformation frames. A window is placed around a point of interest in the pre-deformation
frame, and the closest match in the post-deformation frame is located. In practice, this is an
optimisation problem, where the peak must be found in somesuitable measureof signal similarit y,
such as the correlation coe±cient [20, 26], sum of absolute (SAD) or squared (SSD) di®erences
[17, 21, 39] or mutual information [22]. Numerousphase-basedapproacheshavealsobeendeveloped
[5, 25, 29], which exploit a property of the cross-correlationfunction peak, and are advantageous
becauseof relatively low computational cost. Whichever technique has been used to match the
windows, it is usually assumedthereafter that the mechanical displacement of tissue at the centre
of the window is equal to the optimal window displacement [13, 20, 26, 29, 31]. Window-matching
is applied at positions throughout a grid over the acquired frame of ultrasound data, constructing
a ¯ne map of the displacement ¯eld.
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(a) (b) (c)

Figure 1: (a) B-mode image of RF data from a scan of human arm. The signal is temporally
compressedto simulate a uniform compressive strain of 1%. On a linear scale from black (0%
strain) to white (2%), this should produce a uniform strain image with extremely low estimation
noise, since the signal SNR is higher than could possibly be achieved in a real compressionscan.
However, (b) the standard correlation coe±cient maximiser producesa strain imagethat is severely
degraded(and misleading) owing to the AM e®ect,while (c) shows the (near perfect) result from
applying the best of the correction techniquesintro duced in this paper. Strain estimation for both
imagesusedwindows of length 13.5̧ .

A strain image can be produced by displaying spatial derivatives from the estimated displace-
ment ¯eld. In this paper weconsiderin detail the problem of axial strain imageformation, although
someof the principles we derive are more generally applicable. Strain estimation may be regarded
as a stochastic process,in which casethe terms \mean squared error", \estimation noise" and
\estimation variance" may be used interchangeably when referring to the typical discrepancies
betweenactual deformations and the estimates that are recorded and displayed. Errors in strain
images arise mostly from two sources. The ¯rst is displacement estimation error, which is well
understood. Following Carter [3] and Walker and Trahey [41, 42] it has becomepopular to ap-
ply Cramer-Rao lower bound analyses(and variations thereon) to signalswith known properties,
thereby identifying a lower bound on the displacement estimation variance that could be achieved
by a maximum likelihood estimator [13, 14, 16, 36, 37, 38, 39].

Comparedto displacement estimation error, the secondsourceof noisehasreceived little atten-
tion in the literature. The problem is estimation location variance: it is not generally true that the
displacement estimate most closely tracks the actual displacement at the window centre. It was
noted in an earlier study by C¶espedesand Ophir [4] that if there is intra-window compressionand
the signal envelope is not constant, then the actual estimation location is skewed towards higher
amplitude portions of the windowed signal. This causesartefacts at the boundaries between re-
gionsof di®eringechogenicity, asdemonstratedby Figure 1. It is observed that strain estimatesare
corrupted by unwanted modulation from the amplitude, which we call the amplitude modulation
(AM) e®ect. In fact, the AM e®ectalso degradesstrain estimates within regions that are isoe-
choic, sincethe signal returned from a ¯ne scatterer distribution doesnot have a constant envelope.
Nevertheless,the AM e®ectis most dangerousin anisoechoic regions, where AM noise correlates
strongly with the features in B-mode images,and can easily lead to severe misinterpretations of
strain images.

It will be shown in the following section that the AM e®ectis often the primary sourceof error
in ultrasonic strain images where it is not corrected. Two correction techniques were proposed
by C¶espedesand Ophir [4]. Firstly , log compressionof the signal envelope reducesamplitude
°uctuations, thereby shifting estimation locations towards the window centres. This is an e®ective
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means of mitigating the AM e®ect, and has consequently been reapplied in more recent strain
imaging systems[19, 29]. The secondsuggestionwasadaptive stretching [4], which compensatesfor
intra-window compressionby stretching the signal to enablea closematch to the true displacement
at all points. This has been shown in numerous studies to be a good way of reducing strain
estimation noise, although such techniques are computationally expensive [1, 21, 22, 33]. The
estimation location variancecan alsobe reducedby using shorter estimation windows [20], but this
is inevitably accompaniedby reducedaccuracy in the displacement estimates, sincedisplacement
estimation variance increasesas the reciprocal of the window length.

The AM e®ectis present in all displacement tracking methods that useamplitude information,
including methods basedon the (normalised) correlation coe±cient. To eliminate the AM e®ect,
the amplitude must be entirely suppressed,asin one-bit compression,but this may bring unwanted
side e®ects.The following section examinesthe AM e®ectfrom a theoretical standpoint, leading
to a surprisingly simple AM correction method (AMC 1). Experiments have beenperformed using
simulated RF ultrasound data to compare the performance of phase and correlation coe±cient
methods, and to evaluate the e±cacy of correction by AMC, log compressionand one-bit (limiting)
compressionin both cases.All of the corrections are computationally e±cient and suitable for use
in real-time imaging systems. Further experiments are performed using a direct strain estimator
with adaptive stretching, which is slower but provides an AM suppressionbenchmark by which
the other techniques may be judged.

2 Amplitude mo dulation theory

This section analysesthe estimation of strain from a set of window displacement estimates. For
the sake of clarit y, we examine the simplest method for converting 1D displacement estimates to
1D strains, by taking the di®erencebetween displacements at consecutive windows, and dividing
this by the spacingbetweenthe assumedestimation locations.

ŝ =
d̂2 ¡ d̂1

¿̂2 ¡ ¿̂1
(1)

ŝ is the strain estimate, d̂1 and d̂2 are the displacement estimatesfor windows 1 and 2 respectively,
and ¿̂1 and ¿̂2 are assumedto be the estimation locations. It is commonly assumedthat Equation
1 contains only two random variables: d̂1 and d̂2. In this paper we examinethe neglectedvariables,
¿̂2 and ¿̂1. New variables D̂ and F̂ are de¯ned to simplify the strain calculation.

D̂ = d̂2 ¡ d̂1 (2)

F̂ =
1

¿̂2 ¡ ¿̂1
(3)

ŝ = D̂ F̂ (4)

The sourcesof estimation noise are illustrated in Figure 2. We will assumethat errors in D̂ and
in F̂ are uncorrelated. This allows the strain estimation variance, ¾2

ŝ , to be expressedin a simple
form.

¾2
ŝ = ¾2

D̂
¾2

F̂
+ ¹ 2

F̂
¾2

D̂
+ ¹ 2

D̂
¾2

F̂
(5)

¹ D̂ is the expectation of D̂ , which for an unbiasedestimator is equal to the actual di®erence,D ,
between the displacements of the two windows. ¾2

D̂
is the variance of D̂ , which is approximately

equal to the sum of the variancesof the individual displacement estimates, d̂1 and d̂2 (it is exactly
equal only if errors in d̂1 and d̂2 are uncorrelated, which is not the casefor overlapping windows).
¹ F̂ is the expectation of the reciprocal location spacing estimate, F̂ , which may correspond to
the reciprocal of the spacingbetweenconsecutive windows. Finally, ¾2

F̂
is the mean squarederror

betweenF̂ and the actual reciprocal spacing,F . In general,F is not equal to the reciprocal of the
1AMC is the subject of UK patent application number GB 0606125.3.
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Figure 2: A practical estimate is displayed between two ideal estimates. There are two noise
sourcesin practical displacement estimation.

window spacing, since the actual estimation locations, ¿2 and ¿1, do not generally correspond to
the window centres.

We want to know what impact the terms in Equation 5 have on strain image quality. We
consider a quality measuredenoted SNRe, which has previously been de¯ned [4, 37] and can be
measuredexperimentally in imageswhere the underlying strain ¯eld is known to be homogeneous.

SNRe =
¹ ŝ

¾̂s
(6)

¹ ŝ is the mean strain estimate and ¾̂s is the standard deviation. The presenceof ¹ 2
D̂

in the third
term of Equation 5 becomesimportant when SNRe is evaluated. The noisecontribution from the
AM e®ectis therefore proportional to the strain, s, so the AM e®ectis expected to becomethe
dominant sourceof strain estimation noiseas the level of strain increases.

SNRe =

Ã
¾2

D̂
¾2

F̂
+ K 2

1 ¾2
D̂

s2 + K 2
2 ¾2

F̂

! ¡ 1
2

(7)

Equation 7 is derived by substituting the RHS of Equation 5 into Equation 6. The ¯nal result
incorporates somesimplifying assumptions. (1) ¹ ŝ = s. (2) The assumedvalue of F̂ is usually a
constant, i.e. ¹ F̂ = F̂ = K 1. (3) ¹ D̂ = K 2s where K 2 is a constant (the expected shift equalsthe
strain multiplied by the window spacing).

2.1 Examples with pulse train signals

Window matching tracks the displacement of the enclosedsignal. However, if displacement varies
within the window, then the actual signal displacement cannot be matched at all points. The
location at which the actual displacement of the signal is equal to the displacement estimate
varies depending on both signal and displacement ¯eld properties. In general, the estimation
location comesfrom a random distribution throughout the window. It has low probabilit y density
at the ends, and in the absenceof additional information its expectation is the window centre.
Where the location cannot be estimated, it is best to assumethat windows sample displacement
at their centres. Unfortunately this meansthat the AM e®ectintro ducesdisplacement and strain
estimation noise,as illustrated in Figures 1 and 2.

It is not possibleto devisean estimator that both producesoptimal displacement estimatesand
samplesdisplacement at the centre of the window. This is becausesomeportions of the signal may
contain no information, or the quality of the information may be variable. This is demonstratedby
exampleswith pulse train signalsin Figure 3. In the absenceof information betweenthe pulses,an
optimal displacement estimator tracks the displacement of the pulse(s) within each window. The
examplemedium has beendeformedby a uniform strain ¯eld, so displacement varies linearly with
distance. The assumption of estimation at the window centre now leads to signi¯cantly di®erent
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(a) (b)

Figure 3: Extreme examplesof the AM e®ect:(a) and (b) show the output of a perfect displacement
estimator operating on di®erent pulse train signalswith uniform strain. The strain (displacement
gradient) is (a) underestimated and (b) overestimated.

strain estimates if (a) overlapping windows track the same pulse, or (b) neighbouring windows
track pulses at their extremities. When a uniform strain, s, is being tracked, and there is no
displacement estimation error, the AM e®ectnonethelessdistorts the result, such that the strain
estimation lower bound is 0 for overlapping windows, and the upper bound is s £ T +¢ t

¢ t . T is the
window length and ¢ t is the spacing between successive windows. For non-overlapping windows
the lower bound is s £ ¢ t ¡ T

¢ t .
Of course, a real ultrasound signal is not a pulse train. Otherwise the AM e®ectcould be

corrected easily, by noting that displacement estimation occurs at the pulse locations. However,
real ultrasound signalsdo incorporate amplitude variations, which are often large even over small
distances. Lower amplitude sectionsusually have lower SNR, and a good displacement estimator
should incorporate a mechanism for preferentially tracking the most reliable data. Ideally it should
also be possibleto estimate the actual displacement location when this is not equal to the window
centre. The remainder of this section presents an analytical investigation of the AM e®ectin the
context of somecommon ultrasonic strain estimation techniques.

2.2 Phase-based metho ds

We derive an approximate expressionfor the AM e®ectwhen windows are matched by identifying
the zerocrossingof the complex cross-correlationphase. Phase-basedmethods operate on analytic
signals with real and imaginary parts, which are produced by applying the Hilb ert transform
(or someapproximation thereof). The complex cross-correlation function and its phasemay be
expressedas follows.

ha1; a2i
³

n¢ t; ~d
´

=
n ¢ t + TX

t = n ¢ t

a¤
1(t)a2

³
t + ~d

´
(8)

Á
³

n¢ t; ~d
´

= \ ha1; a2i
³

n¢ t; ~d
´

(9)

a1 and a2 are analytic ultrasound signals, ¤ denotesthe complex conjugate, n¢ t is the location
of the beginning of the analysis window in the pre-deformation signal, T is the window length,
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Signal real part

Imaginary part

Envelope

Figure 4: The signal model is a constant frequencysinusoid with arbitrary signal envelope, subject
to an arbitrary deformation.

and ~d is the candidate displacement applied to the post-deformation window to look for a match.
Eventually the match or displacement estimate, d̂n , is found where Á has a zero crossing.

Á
³

n¢ t; d̂n

´
= 0 (10)

It will be noted that if Á is only expressedin the range [¡ ¼; + ¼] then a zero crossingoccurs on
averageoncefor every wavelength shift in ~d. It is therefore necessaryto incorporate a system for
guiding the search to ensurethat the correct zero crossingis always selected.This is analogousto
eliminating \p eak-hopping" errors from correlation coe±cient analysis [41]. We do not investigate
this issuehere, but in practice we have found that it is always possible to eliminate this sort of
outlier error by extending error detection and correction techniques similar to those described in
past studies [19, 43].

To analysethe properties of phase-basedmethods, we usea simple signal model with no noise,
wheredecorrelation occursonly asa result of the 1D signal stretching that accompaniesmechanical
strain. Our model of the pre-deformation signal, a1, is a constant frequency sinusoid, scaledby a
positive real signal envelope, f . This is illustrated in Figure 4.

a1(t) = f (t)ej ! t (11)

The main limitation of this model is the constant frequencyassumption. RealRF ultrasound signals
are narrowband, although the frequency may be substantially constant over short distances. In
our model the post-deformation signal, a2, is produced by an arbitrary temporal warping of a1,
such that every point, a1(t), undergoesa displacement, d(t).

a2
¡
t + d(t)

¢
= a1(t) (12)

This is a simpli¯cation of the signal transformation that occurs in a real compressionscan. Firstly ,
it will be noted that a uniform strain in our model givesrise to a changein the frequencycentroid in
the post-deformation signal, which will not usually be re°ected in reality (although local frequency
changesdo occur). Secondly, we have assumedthat the only change to the signal envelope will
be a 1D warping. In reality, changes in the interference patterns of closely spaced scatterers
intro duce unpredictable components in the post-deformation signal, resembling the addition of
an uncorrelated narrowband noise signal. Furthermore, axial compressionin real materials with
¯nite compressibility is inevitably accompaniedby additional motions in the lateral and elevational
directions. Nevertheless,wepursueanalysiswith our simpli¯ed model, and the predictions are later
tested on real and simulated ultrasound data.

We examine the properties of the signals in matched windows. In general, the estimated
displacement is similar but not equal to the local displacement at each position in the window.
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We therefore intro duce a new symbol, t2, denoting the pre-deformation location in a1, of the data
with which a1(t) is matched.

t2 + d(t2) = t + d̂n (13)

The complex cross-correlationfunction at the match is now expressedas follows.

ha1; a2i
³

n¢ t; d̂n

´
=

n ¢ t + TX

t = n ¢ t

a¤
1(t) a2

³
t + d̂n

´
(14)

=
n ¢ t + TX

t = n ¢ t

a¤
1(t) a1(t2) (15)

=
n ¢ t + TX

t = n ¢ t

f (t)f (t2) ej ! ( t 2 ¡ t ) (16)

In order to satisfy the match criterion (Equation 10), the imaginary part of the complex cross-
correlation function must be zero.

=

Ã
n ¢ t + TX

t = n ¢ t

f (t)f (t2) ej ! ( t 2 ¡ t )

!

= 0 (17)

This leadsto an alternativ e expressionfor the phasezero condition.

n ¢ t + TX

t = n ¢ t

f (t)f (t2) sin
³

! (t2 ¡ t)
´

= 0 (18)

It is noted that t2 ¡ t = d̂n ¡ d(t2) is the local discrepancybetweenthe displacement estimate and
its actual value. This is small, so ! (t2 ¡ t) ¿ ¼

2 at all points in the window for typical window
lengths and operating strains. It follows that Equation 18 may be simpli¯ed by applying the small
angle approximation.

n ¢ t + TX

t = n ¢ t

f (t)f (t2) ! (t2 ¡ t) ' 0 (19)

Equation 19 can be converted to an expressionwith clearer relevanceto the physical deformation
by examining the term t2 ¡ t. This is performed as follows, employing the relation from Equation
13, and expanding a Maclaurin seriesabout d(t).

t2 ¡ t =
n

d̂n ¡ d(t)
o

¡
n

d (t2) ¡ d(t)
o

(20)

=
n

d̂n ¡ d(t)
o

¡
dd(t)

dt

n
t2 ¡ t

o
¡ O

n
(t2 ¡ t)2

o
(21)

=
n

d̂n ¡ d(t)
o

¡ s
n

d̂n ¡ d(t2)
o

¡ O
½³

d̂n ¡ d(t2)
´ 2

¾
(22)

Secondorder terms will be neglected,as will the term scaledby s (strain), sincethe vast majorit y
of previously documented ultrasonic strain imaging systemsoperate with s ¿ 1:0. Now the result
from Equation 22 is substituted into Equation 19.

n ¢ t + TX

t = n ¢ t

f (t)f (t2) !
³

d̂n ¡ d(t)
´

' 0 (23)

Rearrangement yields a good approximate formula for the displacement estimate, d̂n .

d̂n '
P n ¢ t + T

t = n ¢ t f (t)f (t2)d(t)
P n ¢ t + T

t = n ¢ t f (t)f (t2)
(24)

We have shown that an approximation of the phase-baseddisplacement estimate is a weighting of
point displacements by the crosspower of the local signal envelope.
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2.3 Amplitude mo dulation correction

We show that the actual estimation location can be estimated for the important casewhere strain
may be consideredconstant at the scaleof the individual windows. The constant strain condition
is expressedmathematically as follows.

d(t) = ®+ st (25)

We substitute this into Equation 24, and rearrangeto produce a convenient form for the approxi-
mation.

d̂n '
P n ¢ t + T

t = n ¢ t f (t)f (t2)(®+ st)
P n ¢ t + T

t = n ¢ t f (t)f (t2)
(26)

' ®+
s

P n ¢ t + T
t = n ¢ t f (t)f (t2)t

P n ¢ t + T
t = n ¢ t f (t)f (t2)

(27)

The location estimate, ¿̂n , is de¯ned to be the position at which the displacement estimate approx-
imation is equal to the actual displacement, i.e. d̂n ' ®+ s¿̂n . Hence,

¿̂n =
P n ¢ t + T

t = n ¢ t f (t)f (t2)t
P n ¢ t + T

t = n ¢ t f (t)f (t2)
(28)

These location estimates are substituted into Equation 1 to re¯ne the strain estimates. This
amplitude modulation correction (AMC) also allows a more accurate identi¯cation of the image
region corresponding to the spacebetweensuccessive displacement estimates,thereby producing a
more accuratecorrespondencebetweenthe physical locations of tissue features,and their apparent
locations in strain or displacement images.

2.4 Correlation coe±cien t metho ds

Correlation coe±cient methods have to date been the most popular approach for displacement
tracking, at least within the ultrasonic strain imaging communit y. The correlation coe±cient for
real RF signals r 1 and r 2 at window n with a candidate shift ~d is evaluated as follows.

½r 1 r 2

³
n¢ t; ~d

´
=

P n ¢ t + T
n ¢ t r 1(t)r 2

³
t + ~d

´

r
P n ¢ t + T

n ¢ t r 1(t)2
P n ¢ t + T

n ¢ t r 2

³
t + ~d

´ 2
(29)

The displacement estimate is chosento maximise the correlation coe±cient.

d̂n = argmax
~d

½r 1 r 2

³
n¢ t; ~d

´
(30)

In common with the analysis of phase-basedmethods, it would be highly desirable to derive a
similar estimation location expression.The starting point is to identify the properties of stationary
points (including the maximum) by di®erentiating ½r 1 r 2 with respect to ~d. However, we have thus
far beenunable to derive an analytic expressionfor ¿̂n in the caseof correlation coe±cient methods.
Instead we apply the following heuristic, which is motivated by an assumption that the AM e®ect
on correlation coe±cient methods is similar to the e®ecton phase-basedmethods, for which AMC
has already beenderived.

¿̂n =
P n ¢ t + T

t = n ¢ t jr 1(t)r 2(t + d̂n )jt
P n ¢ t + T

t = n ¢ t jr 1(t)r 2(t + d̂n )j
(31)

Simulation results are included later to investigate whether or not this is a useful technique.
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2.5 Bene¯ts of amplitude mo dulation

AMC increasesthe utilit y of displacement estimatesfrom a spatially varying displacement ¯eld by
estimating the actual estimation location. The alternativ e approach for handling the AM e®ectis
to reducethe level of amplitude variation, for example by log compressionof the signal envelope.
This may be a useful technique in somecircumstances,but it should be recognisedthat the AM
e®ectmay actually be bene¯cial for high quality displacement estimation.

Appendix A analysesa simple model of a genericdisplacement estimator, whereshort windows
produceunreliable estimates,but the estimation variancecan be reducedby using longer windows
to take a weighted moving average. Following reasonableassumptions,it is shown that an optimal
displacement estimator weights the importance of di®erent signal sectionsin proportion with the
local crosspower, r 1(t)r 2(t + d̂n ). This outcomeis similar in form to the approximation in Equation
24 for phase-basedmethods. It implies that the weighting becomessuboptimal if the amplitude
is compressed,thereby reducing the accuracy of the displacement estimator. We therefore expect
that if location estimation such asAMC is performed accurately, then the lowest strain estimation
noiseis achieved in the absenceof log compression.It is lessclear how far theseconclusionsapply
to correlation coe±cient methods, but the correlation coe±cient also incorporates a weighting of
someform, since high amplitude sectionswithin a window have a greater impact on the overall
correlation coe±cient value.

2.6 Adaptiv e strain estimators

Adaptiv e strain estimators work on the principle of reversing the deformation that has occurred,
to obtain the best match to the pre-deformation signal. Uniform strain is assumedat the scale
of the individual windows | this is the sameas the assumption applied in Section 2.3 to derive
AMC. In 1D, an adaptive strain estimator uniformly stretchesthe post-deformation window until
its similarit y to the pre-deformation window is maximised. Past studies have shown that strain
estimation error in these systemsis lower than in conventional displacement-based methods. A
feature of adaptive strain estimation is an increasein the correlation coe±cient. This has been
discussedby Srinivasanet al. [35], where increasedcorrelation was identi¯ed as a causeof reduced
strain estimation error. It is appropriate that in this paper we additionally note the likely contri-
bution of the AM e®ect. If the local strain is actually uniform, adaptive strain estimation has the
advantage of being able to correctly match the displacement at every point within the window.
This meansthat for uniform strains the question of estimation location is irrelevant, becausethe
correct displacement can be found everywhere. Tests of adaptive strain estimation on uniform
strain simulations are therefore expected to be independent of the AM e®ect. It is for this reason
that we employ an adaptive strain estimator asour AM suppressionbenchmark. It is alsoexpected
that the absenceof the AM e®ect(by contrast with the other estimators) will result in a markedly
di®erent shape to the SNRe-strain characteristic.

3 Exp erimen tal metho ds

3.1 Simulation

Simulated RF ultrasound data hasbeengeneratedusing Field I I [11]. The simulations have 2£ 105

scattererspositioned at random according to a uniform distribution throughout a 50£ 50£ 6 mm
volume, with random scattering strengthsdistributed uniformly over the range[0; ° max ]. The probe
parameters model the 5-10 MHz probe of the Dynamic Imaging2 Diasus ultrasound machine, for
which the point spread function has been measured experimentally | the pulse has a centre
frequencyof 6.0 MHz and bandwidth 2.1 MHz | and the sampling frequency is 66.7 MHz.

For each frame 128 A-lines have been simulated, spanning 40 mm in the lateral direction,
recorded to a depth of 40mm. Simulations have beenperformed at a range of compressions(0%,

2http://www.dynamicimaging.co.uk
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Figure 5: B-scan of simulated RF data.

0.01%, 0.1% 0.5% 1.0%, 2.0%, 4.0%) by rescaling the axial spacing of the scatterers. This is
important, becausethe relative performance of the strain estimation algorithms we compare is
strain dependent. Five data setshave beengeneratedfor di®erent scatterer ¯elds. This contributes
to the reliabilit y of the results, which record the mean and standard deviation acrossthe ¯v e data
sets.

The Field I I output hasbeenconverted to the RF ultrasound format of the Stradwin3 freehand
3D ultrasound system. RF samplesare recorded with 16-bit signed integer precision. To ensure
reproducibilit y of the resultant SNR and AM e®ects,the signalswerenormalisedbeforeconversion,
such that in all casesthe mean power is ¯xed at Vrms = 210, corresponding to a mean SNR of 71
dB in the presenceof quantisation noise. Testshave also beenperformed on simulated data with
additiv e white Gaussian noise, reducing the SNR to 20 dB. Figure 5 shows an example B-scan
from the simulated data.

3.2 In vitr o and in vivo scanning

Scanshave beenperformedusing a Dynamic Imaging Diasusultrasound machine with a 5{10 MHz
probe, sampled at 66.7 MHz by a Gage4 CompuScope 14200analogue-to-digital converter, with
a PC running the Stradwin freehand 3D ultrasound software. As per previous work [19], frames
were acquired at 30 Hz during a freehand scan, and exaggeratedpalpating movements were not
necessary. The imagesare usedonly for qualitativ e assessment of the strain estimation algorithms.
Results are shown for (1) olive/gelatin phantom mimicking a sti® inclusion in soft tissue, (2)
tissue-mimicking phantom with two layers, (3) human male breast in vivo, (4) human calf muscle
in vivo.

3.3 Strain estimators

For comparative purposes,we test phase, correlation coe±cient and adaptive strain estimators.
The performanceof phaseand correlation coe±cient estimators is comparedfor several variations:
uncorrectedstrain estimation, log compression,limit log compressionand AMC. Quantitativ e tests
usesimulation data, where the performanceis measuredby evaluating SNRe; the strain standard
deviation is calculated from the raw strain estimates, where no smoothing has beenapplied. For
a qualitativ e assessment, we also present example imagesfrom in vitr o and in vivo scans.

Fair comparison is made possibleby ¯xing the window parametersacrossall of the estimators
in each test. It should be noted, that where there is a priori knowledge of a uniform strain
¯eld, the processof imaging strain by di®erencingcloselyspacedwindows servesonly to intro duce
noise; instead, windows separatedby a large distance should be di®erencedin order to achieve an
SNRe that becomesarbitrarily high for large window spacing. Alternativ ely, in practical systems
it is sensibleto match larger numbers of closely spacedwindows, and to combine their estimates

3http://mi.eng.cam.ac.uk/~rwp/stradwin/
4http://www.gage- applied.com
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by ¯ltering methods such as least squaresor wavelet decomposition. To varying degrees,these
techniquesreduceboth noiseand resolution, although the AM e®ectwill remain important. Since
the entire purposeof our study is to investigatethe noisethat is intro ducedby erroneousestimation
location assumptions, and to evaluate the performance of the proposed AMC technique, in our
quantitativ e tests we stick to the method of di®erencingwindows at a ¯xed window-spacing,¢ t =
2:7¸ (i.e. 0.45¹ s, 0.35mm, 30 RF samplesat 66.7MHz). The window length, T, is varied between
tests, with the chosenlength stated in each case.

The remainderof the experimental methodssectionprovidesa full description of each estimator,
the properties of the simulation data, and the nature of the in vitr o and in vivo ultrasound scans.

3.3.1 E±cien t phase zero search

The e±cient phasezero search (EPZS) is drawn from previous work [19] adapting the concept of
Pesavento et al. [29]. To summarise,a 5{10 MHz ¯lter is applied to the RF data (r 1, r 2) before
converting to analytic signal representations (a1, a2), which are modulated to the baseband(ab1,
ab2) to enhancethe accuracyof linear interpolation. ab2 must be estimated at subsamplelocations
by basebandlinear interpolation, to enableaccuratesubsampleestimation of d (for a discussionof
interpolation frequency responses,seeProakis and Manolakis [30]). Phase-basedmethods require
that the displacement of the analysis window is known already to within ¸= 2; this is achieved by
initialising each window with the ¯nal displacement estimate from the precedingone; windows at
the top of each A-line are initialised with ~d = 0. Displacement estimatesare di®erencedto produce
strain estimates following Equation 1.

The estimation location is usually assumedto be the window centre.

¿̂n = n¢ t +
T
2

(32)

The phaseis preserved but the amplitude is partially suppressedwhen the signal is log compressed
according to the following formula.

ab;log (t) = log
¡
1 + cjab(t)j

¢
ej arg ab ( t ) (33)

c is the compressionfactor. The larger the value of c, the smaller the amount of amplitude
information that is retained, sincethe sizeof variations in the log compressedamplitude becomes
smaller comparedto the mean value. We refer to this algorithm as EPZS L1. As c ! 1 all of the
amplitude information is discarded, since log compressedamplitude variations becomein¯nitely
smaller than the mean. Limit log compressionhas a simpler form.

ab;log (t) = ej arg ab ( t ) (34)

We refer to limit log compressionasEPZS L2. For phase-basedmethods, EPZS L2 is the counter-
part of one-bit compressionor zerocrossingtechniquesin correlation coe±cient methods [4, 34, 39].
We also present results for EPZS with AMC, referred to as EPZS A. In addition to producing an-
alytic signals,we detect the signal envelope, jaj, which is exploited as follows for AMC estimation
of ¿̂n (c.f. Equation 28).

¿̂n =
P n ¢ t + T

t = n ¢ t ja1(t)jja2(t + d̂n )jt
P n ¢ t + T

t = n ¢ t ja1(t)jja2(t + d̂n )j
(35)

EPZS L2 usesnoneof the amplitude information, so the AMC versionof ¿̂n is identical to the win-
dow centre assumption. However, EPZS L1 still exhibits a degreeof AM susceptibility, so results
are presented for an algorithm combining EPZS L1 with AMC (operating on the log compressed
signal envelope), referred to as EPZS LA.

3.3.2 Correlation coe±cien t maximiser

The correlation coe±cient maximiser (CCM) searches initially at integer sample locations for the
maximum value of the crosscorrelation coe±cient (seeEquation 29). The estimate is re¯ned by
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allowing subsamplevalues of d and interpolating r 2 at subsamplelocations. Again, a complex
basebandrepresentation of r 2 allows highly accurate subsampleinterpolation, as with EPZS, but
in CCM it is converted back to a subsamplereal signal for the correlation coe±cient calculation.
This requiresthe following calculation, where! m is the modulation frequencythat wasusedearlier
to shift the analytic signal down to the baseband.

r 2(t) = <
©

ab2(t)ej ! m t ª (36)

¿̂ is again usually assumedto be the window centre (Equation 32). Log compression(CCM L1)
is tested as a meansof reducing the error in ¿̂, using the following formula, as ¯rst proposedby
C¶espedesand Ophir [4].

r log (t) = log
¡
1 + cjr (t)j

¢
sign

¡
r (t)

¢
(37)

To maximise algorithm performance, the full RF signal is used for subsample interpolation of
r 2, which is only log compressedat the moment of computing the correlation coe±cient. In the
limiting caseasc ! 1 variations in the log compressedsignal magnitude becomein¯nitely smaller
than the mean magnitude, so only the sign is important. A simpler expressionmay be used.

r log (t) =
½

+1 r (t) ¸ 0
¡ 1 r (t) < 0

(38)

Subsampleinterpolation actually still employs the full RF signal, so zero crossingsare identi¯ed
with high accuracy. We call this variation CCM L2. It has previously been described as one-bit
compression[4] and is equivalent to zerocrossingmethods [34]. AMC is applied to CCM following
Equation 31, which is referred to as CCM A. AMC is also applied alongside non-limiting log
compressionin CCM LA.

3.3.3 Adaptiv e strain estimator

Typical adaptive strain estimators from previous studies have two search dimensions| displace-
ment and stretch | for each spatial dimensionof strain estimation [1, 33]. A typical algorithm has
the following stages:(1) each post-deformation window is shifted till the best match is located; (2)
the shifted window is stretched to maximise a similarit y measure;(3) displacement is re-estimated
for the stretched window; and (4) the processrepeats iterativ ely until convergence. Once arrays
of displacement and stretch have beencalculated, either the displacement estimatesmay be di®er-
enced(as in displacement-based methods) to re-estimate strain, or the stretch estimates may be
displayed directly (which is the approach followed in this study). An estimator of this form was
observed by the authors to producesigni¯cantly better strain imagesthan those that are achieved
by the basic displacement estimation approaches,with the greatest improvement for high strains.
SAD was found to outperform the correlation coe±cient, so this is the chosen signal similarit y
measure. The origin of this di®erencemay lie in the fact that often ½r 1 r 2 ' 1:0 at the correct
stretch, in which caseSAD is lessprone to quantisation errors.

It has subsequently beennoted that a minor modi¯cation to the adaptive stretching algorithm
yields a further performanceimprovement. The modi¯cation concernsthe way that displacement
is estimated: our adaptive strain estimator (ASE) estimatesthe locations of the windows directly
from the strain estimates,rather than searching over two dimensions. This hasbeenfound to yield
higher SNRe.

The initialisation of EPZS dependson the fact that the displacement at the top of each A-line
is zero. Similarly, ASE searchesonly over strain (and not over displacement) in the top window of
each A-line. This utilises the prior knowledgethat a search over displacement could only degrade
the accuracy of the estimate in the event that a non-zerodisplacement were found for the top of
the window. The displacement at subsequent windows is estimated accurately by integrating the
estimated strains, where it will be recognisedthat integration is a noise-suppressingoperation.
The o®setof the ¯rst sample in a succeedingoverlapping window is, of course,not equal to the
displacement at the end of the ¯rst window. Rather, the relationship we assumeis illustrated in
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Figure 6: Illustration displacement o®setsin ASE. The estimated displacement of window n is ¯xed
at the end displacement of window n ¡ 1, while ŝn is the estimated displacement gradient across
the window. This yields ·sn ¡ 1 as the higher resolution strain estimate for the previous window.

Figure 6, whereestimated strains are displayed asgradients on a plot of displacement against time.
The window strain estimate multiplied by the window length, Tŝn ¡ 1, provides the best estimate
for the displacement di®erencebetween the end and the start. The following window is therefore
pinned at this end point, and stretched on either side to ¯nd the next estimate, ŝn . This means
that the o®setdisplacement at the start of window n dependson: the o®setof window n ¡ 1, the
previous window stretch, and the candidate window stretch, ~s.

dos;n = dos;n ¡ 1 + ŝn ¡ 1T ¡ ~s(T ¡ ¢ t) (39)

This leads immediately to a secondresult for increasedresolution with overlapping windows. An
estimate that resolvesstrain changesat the scaleof the shift betweenwindows (thereby matching
the resolution of the displacement methods) is produced as follows.

·sn ¡ 1 =
©

ŝn ¡ 1T ¡ ŝn (T ¡ ¢ t)
ª

=¢ t (40)

This is a consequenceof the geometry in Figure 6. Increasedresolution comesat a cost of increased
estimation noise. We present results using ·s rather than ŝ, however, sincethe higher resolution of
·s makes it the appropriate comparison with the displacement-based methods. Having dealt with
the displacement o®setand resolution issues,the basic form of the ASE search is an optimisation
problem similar to the other methods.

SAD(n; ~s) =
n ¢ t + TX

t = n ¢ t

¯
¯
¯
¯
¯
r 1(t) ¡ r 2

Ã

t + dos;n + ~s
µ

t +
1

2f s
¡ n¢ t

¶ ! ¯
¯
¯
¯
¯

(41)

f s is the sampling frequency. ŝn minimises SAD(n; ~s) .

ŝn = argmin
~s

SAD(n; ~s) (42)

It might be possibleto adapt fast algorithms to this optimisation problem, but for now we usean
exhaustive search.

4 Results

Quantitativ e results indicate the advantages and disadvantages of each technique. Important
trends are illustrated by graphs. Where there is spacefor error bars theseextend to one standard
deviation either side of the mean. We also present strain imagesfor qualitativ e assessment.
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Figure 7: SNRe against window length for EPZS and EPZS A, with both 71 dB and 20 dB data
at 0.5% strain. Uncorrected EPZS with 71 dB data reaches a plateau at T = 10̧ , which the 20
dB results converge towards for long windows. When AMC is applied there is no such plateau
and much higher SNRe is achieved | SNRe is initially a linear function of window length, and it
continuesto increasefor long windows, although the gradient becomeslesssteep.

4.1 Windo w length

Results for EPZS, EPZS A, CCM, CCM A and ASE with window lengths, T, in the range 2.8{
27.1̧ indicate a suitable choice of T for the later tests. They also serve as a ¯rst opportunit y for
assessingthe AMC technique. Figures 7 and 8 show performanceagainst window length at 0.5%
strain, while Figure 9 shows the e®ectof window length on EPZS A and ASE at a higher strain.
13.5̧ is employed for all other results in this report.

To illustrate the practical meaningof SNRe, Figure 10showsstrain imagesat 0.5%compression.
The characteristics of the imagescan be comparedwith the corresponding SNRe results from the
graphs. The imageshave a linear scalewith 0 (black) representing zero strain, 127.5(mid-grey) is
the simulated strain of 0.5%and 255(white) represents 1%. Saturation occursat 0 and 255,and no
smoothing has beenapplied, so each section betweensuccessive estimation locations has constant
brightness. An ideal estimator would yield a uniform greyscalelevel, but this is unachievable in
practice.

4.2 Compression factor

A justi¯cation is presented for the choice of log compressionfactor in the algorithms EPZS L1,
EPZS LA, CCM L1 and CCM LA. The e®ectof log compressionvariesto a large degreedepending
on the strain level, so Figures 11{13 show results at strains representing the smallest, largest, and
mid-range in the simulation data. It is evident that log compressionis not always desirable, but
the choice of c re°ects a value that is likely to boost SNRe in high strain regions,whilst avoiding
extreme degradation of low strain estimates. c = 103 is employed for all of the remaining results.
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Figure 8: SNRe against window length for CCM and CCM A, with both 71 dB and 20 dB data
at 0.5% strain. Uncorrected CCM is almost identical to EPZS. However, AMC is obviously less
accurate for CCM, sincethe improvement with CCM A is much smaller and the results are erratic
for long windows.
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Figure 9: SNRe against window length for EPZS A and ASE, with 20 dB data at 4% strain. ASE
performs lesswell with short windows, but it reachesa high and fairly constant level of performance
for T > 10̧ . EPZS A, by contrast, performs well with short windows and hasa higher peakSNRe.
However, windows with T > 10̧ have a di®erential displacement of > 0.4̧ betweenthe ends,so in
this range EPZS A su®erssubstantially increaseddecorrelation and estimation noise.
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(a) SNRe = 1:63 (b) SNRe = 1:62

(c) SNRe = 3:86 (d) SNRe = 2:05

Figure 10: Strain imagesfor a 0.5% compressionwith 20 dB data using T = 13:5¸ : (a) EPZS; (b)
CCM; (c) EPZS A; (d) CCM A. The performanceof EPZS and CCM is similar, though EPZS A
performs considerably better than CCM A.
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Figure 11: SNRe results for EPZS L1, EPZS LA, CCM L1 and CCM LA with 20 dB data at 0.01%
strain asa function of c, the compressionfactor. At low strains, the main e®ectof log compression
is increasednoise. This e®ectis more pronounced with CCM L1. AMC has almost no e®ectin
theseimages.
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Figure 12: SNRe results for EPZS L1, EPZS LA, CCM L1 and CCM LA with 20 dB data at
0.5%strain as a function of c, the compressionfactor. At this strain, log compressionsigni¯cantly
improvesthe performanceof EPZS L1. CCM L1 is alsoimproved by slight log compression.Better
performance is produced by AMC, although this is degradedby log compression,so as c ! 1
EPZS LA and CCM LA convergewith the curveswhere AMC has not beenapplied.
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Figure 13: SNRe results for EPZS L1, EPZS LA, CCM L1 and CCM LA with 20 dB data at
4% strain as a function of c, the compressionfactor. At this strain all of the algorithms can
be improved by applying an appropriate level of log compression. The greatest improvement is
exhibited by EPZS L1, while the ACM algorithms are still degradedby high compressionfactors,
and they eventually convergewith the curveswhere AMC has not beenapplied.

4.3 Strain dependence

With parametersT and c selectedas per the precedingsections,Figures 14{16 compare the per-
formanceof EPZS, EPZS L1, EPZS L2, EPZS LA, EPZS A, CCM, CCM L1, CCM L2, CCM LA,
CCM A and ASE acrossa range of strains.

4.4 In vitr o and in vivo results

Finally, images from real ultrasound scansare presented. For the sake of concision, we restrict
ourselves to EPZS, EPZS L1, EPZS L2 and EPZS A, allowing a qualitativ e assessment of log
compressionand AMC whenapplied to real data. The imagesin Figures17{20 havebeensmoothed
slightly by estimating strain with a 1 mm least squares¯lter along the axial direction; no other
¯ltering has beenapplied and the valuesof parametersT and c are unchanged.

5 Discussion

5.1 In terpretation of results

Window length results in Figure 7 show that AMC is extremely e®ective when applied to EPZS,
which validates the analysisin Sections2.2 and 2.3. Notice that while increasingthe window length
is known to reduce ¾2

D̂
, neverthelessthe uncorrected algorithm quickly reaches a plateau: this is

becausethe primary sourceof noise is the AM e®ectwhen long windows are used. Meanwhile,
when AMC is applied the remaining noise is mainly due to ¾2

D̂
, so higher SNRe is achieved with

the 71 dB data. It is encouraging,however, that the curve for 20 dB data has the sameform as for
71 dB data. This shows that although AMC was derived consideringnoiselessdata, the technique
has a similar e®ectin the presenceof noise.
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Figure 14: SNRe-strain characteristics for the EPZS family of algorithms with 20dB data. EPZS A
hasthe best performanceacrossa wide rangeof strains, although the SNRe is lower at high strains
and at 4% the best performanceis from EPZS LA.
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Figure 15: SNRe-strain characteristics for the CCM family of algorithms with 20 dB data. At
all strains CCM A signi¯cantly outperforms the other algorithms. In the absenceof AMC, log
compressionboosts CCM performance at strains above 1.5%, though the best log compression
performancecomesfrom the combination algorithm, CCM LA.
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Figure 16: SNRe-strain characteristics for EPZS A, CCM A and ASE with 20 dB data. Theseare
the best algorithms from each of the three families. EPZS A performs best acrossmost strains,
though ASE does slightly better at 4%, where the other algorithms have lower SNRe owing to
signi¯cant decorrelation.

(a) (b) (c) (d) (e)

Figure 17: Olive/gelatin phantom: (a) B-scan, (b) EPZS (white=255=1% strain), (c) EPZS L1,
(d) EPZS L2, (e) EPZS A.

(a) (b) (c) (d) (e)

Figure 18: Gelatin phantom with two regions: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS L1,
(d) EPZS L2, (e) EPZS A.
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(a) (b) (c) (d) (e)

Figure 19: Human male breast: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS L1, (d) EPZS L2,
(e) EPZS A.

(a) (b) (c) (d) (e)

Figure 20: Human male calf: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS L1, (d) EPZS L2, (e)
EPZS A.

Note from Figure 8 that the performance of uncorrected CCM is almost identical to EPZS.
However, AMC for CCM is lesssuccessful,which probably re°ects the lack of a formal derivation,
rather than implying that it is not possible to correct the AM e®ectin this case. The formula
in Equation 31 was basedon intuition. The derivation of a superior CCM A algorithm would be
a valuable contribution, since it is a considerably more challenging mathematical problem than
EPZS A.

Figure 9 con¯rms that ASE o®ersan alternativ e route to high-performancestrain estimation.
In particular, it is possibleto achievegood performanceusingarbitrarily long windows. This means
that locationsof extremely high strain will not besubject to reducedSNRe whenthe window length
hasbeenchosenfor optimal performanceat a rangeof lower expectedstrains. It is also interesting
to note that EPZS A actually outperforms ASE for short window lengths, and EPZS A has the
higher peak performance. Of course,EPZS A performs lesswell with longer windows, where high
strains causesigni¯cant decorrelation. The window length chosenfor subsequent tests (T = 13:5¸ )
was determined by two factors: (1) long windows eventually reduce resolution in practical strain
imaging; and (2) 13:5¸ is a sensiblebalancefor near-optimal performanceacrossall algorithms at
all strains in the range 0.01{4%.

The log compressionresults in Figures 11{13 demonstrate the behaviour that was predicted
in Section 2.5. ¾2

D̂
dominates at the low strain in Figure 11, so the key to noise suppressionis

using all of the amplitude data to maximise the accuracyof the displacement estimates. Therefore,
log compressionservesonly to degradeperformance. EPZS and EPZS A have identical ¾2

D̂
, while

¾2
F̂

is lessimportant, so AMC is irrelevant. The sameobservation applies to CCM and CCM A.
However, EPZS and EPZS A are degraded less severely by log compression,since the retention
of phaseinformation makes these algorithms more robust. CCM only usesthe real signal, so ¾2

D̂
increasesrapidly with log compressionas information is discarded.

However, 0.5% strain in Figure 12 is already su±ciently high for the noisecontribution of ¾2
F̂

to becomeimportant. Log compressionyields a signi¯cant improvement in EPZS L1, and slight
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log compressionalso improves CCM L1. Better performance is achieved by the AM corrected
algorithms, although theseare still degradedby log compression.EPZS A and CCM A eventually
convergewith the uncorrected curvesas c ! 1 . Log compressionis most bene¯cial at the higher
strain in Figure 13. Estimation noiseherecomesmostly from ¾2

F̂
, soEPZS L1 performsmuch better

when a high level of log compressionis applied. CCM L1 is also improved by high log compression,
although it peaksat a relatively low valueof c. The AMC algorithms arealsoimprovedby slight log
compression,indicating that the AMC formulae are lessaccurate at high strain, so a combination
of AMC and log compressionyields the lowest location variance. However, the AMC algorithms
have considerably higher peaks than the uncorrected algorithms, so performance convergenceas
c ! 1 represents a signi¯cant reduction in SNRe. The choice of c = 103 for subsequent tests
re°ects a balancebetweenthe EPZS L1 optima at 0.5% and 4% strain.

The SNRe-strain characteristics in Figures 14{16 further demonstrate the advantage of apply-
ing AMC. It yields the best performance in both EPZS and CCM families of estimators. The
uncorrected EPZS and CCM curves again reach a plateau in the region where ¾2

F̂
dominates, as

predicted by Equation 7. It is also interesting to note that the AMC curvespeak at lower strains
than the other algorithms, which follows from the combined e®ectsof AMC becominglessaccurate
at high strains and ¾2

D̂
becomingmore important as the level of signal decorrelation increases.In

the caseof EPZS A, AMC is precisely accurate for small strains, but it divergesfrom the correct
estimation location at higher strains where errors in the assumptions of the derivation become
increasingly signi¯cant. The hybrid algorithm, EPZS LA is the best at 4% strain, so the combina-
tion of AMC with moderate log compressionmay be the best noise suppressionstrategy at high
strains.

Figure 16 comparesthe best estimators from each family of algorithms. EPZS A has the best
performanceat most strains by a large margin. At low strains the worst algorithm is ASE. This
may indicate that the signal stretching technique is inherently more noisy, although at higher
strains its advantagesare the absenceof the AM e®ectand lower signal decorrelation. Therefore,
ASE outperforms CCM A for strain > 2%, at 4% it also outperforms EPZS A, and the gradient
of the curve is still positive, so ASE may o®erfurther performancebene¯ts at yet higher strains.
However, it is likely that the main advantage of ASE is the relative independenceof performance
and window length. On the other hand, we have already seenin Figure 9 that EPZS A outperforms
ASE by a large margin if the optimal window length is selected.

Imagesfrom real ultrasound scansin Figures 17{20 provide further evidenceof the comparative
properties of thesealgorithms. In general, the EPZS A imagesare the least noisy, while EPZS L1
and EPZS L2 are more or lessnoisy than EPZS depending on the local strain (c.f. Figures 11{12).
Theseimagesalsodemonstratethe importance of AM correction when AM artefacts correlate with
features in the B-scans. It is evident in Figure 17 that the AM e®ecthas distorted the shapesof
features in the EPZS image, particularly in the attenuation shadow below the olive. Figure 18
shows a more extreme example. The specular re°ection is of unknown origin | possibly a crack
has developed in the gelatin matrix. It causessevere distortion of EPZS, where the dark patch in
Figure 18b looks like a low strain planar inclusion. However, EPZS L2 is provably una®ectedby
the AM e®ect,so real tissue features must also appear in Figure 18d. The dark patch is absent,
proving that it is actually an artefact. A mild artefact is alsoobserved with EPZS A in Figure 18e,
where the local sparsenessof estimation locations around the re°ection causesa textural change
in its vicinit y.

The in vivo imagesin Figures 19 and 20 demonstrate that AM artefacts often occur in scans
of real human tissue | isoechoicity is rarely a feature of salient scan planes. The male breast in
Figure 19 has an appreciably di®erent strain image with EPZS comparedto the other algorithms.
A bright band at the top of the lower section reappears as a zero-strain band in Figure 19b, but
this is an artefact, absent from Figures 19c{e. Many similar artefacts are present in the calf scan
of Figure 20. This is extremely anisoechoic, and comparisonbetweenFigure 20b and Figures 20c{e
shows that all of the main features in the EPZS image are artefacts.
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5.2 Conclusion

The AM e®ecthas been theoretically intro duced and empirically investigated. A new technique
called AMC hasbeenderived for the enhancement of ultrasonic displacement and strain estimates.
Simulation, in vitr o and in vivo results show a substantial reduction in the level of estimation
noise. However, it is always possibleto reducenoiseby applying ¯lters, thereby sacri¯cing spatial
resolution in order to boost SNRe. It is likely in practice, therefore, that the main impact of AMC
will be an improvement in spatial resolution, and AMC can be extendedtrivially to enhancestrain
imaging in 2D or 3D if required. The ultimate limiting factor in ultrasonic displacement and strain
estimation will be the limited bandwidth of RF ultrasound signals, i.e., the point spreadfunction
is not an impulse. This meansthat even if signal displacements weretracked perfectly, there would
be a residual error between those displacements and the actual tissue motion. Developments in
ultrasound deconvolution for enhancedultrasonic resolution may eventually play an important role
in high quality ultrasonic strain imaging [23].

It should not be overlooked that the AM e®ectis likely to feature in many displacement esti-
mation problems where other typesof signalsare used,such as standard video data. In principle,
AMC is a modalit y independent technique for enhancedtracking of small motions. There are likely
to be applications in a wide range of research ¯elds | cosmology, for example | although it is
also possiblethat in someof these areasequivalent techniques may already have been developed
independently .

Regarding immediate developments in ultrasonic strain imaging, when AMC is applied with
regularly spacedwindows of a ¯xed length this leadsto variable spacingof the estimation locations.
It will be necessaryto investigate intelligent algorithms for automatically varying the length and
spacingof the windows to maintain spatial resolution with AMC, or to achieve a balancebetween
spatial resolution and estimation noiseaccording to an appropriate cost function.

Another limitation of AMC aspresented is the assumptionof locally constant strain. Estimation
noise will increasewhen the secondderivative of displacement is non-zero within any particular
window. The samelimitation applies to ASE. These¯rst order correctionsare already very useful,
but it should be possibleto derive superior AMC formulae by exploiting correlations betweenthe
errors in overlapping windows. This is a topic for further investigation. It is also noted that AMC
was lessaccurate when applied to CCM, even for uniform strains, so the derivation of a superior
AMC for CCM presents another possibleavenue for future work.

On the other hand, the secondary¯nding of this study is the relative easewith which correction
techniquescan be developed for phase-basedmethods. Log compressionin both its moderate and
limiting forms has beendemonstrated to be far more useful with phase(EPZS L1 and EPZS L2)
than with the correlation coe±cient (CCM L1 and CCM L2). The retention of phase informa-
tion, regardlessof how far the amplitude is compressed,makesphase-basedmethods more robust.
Indeed, in sometests EPZS L2 has been one of the most successfulalgorithms. This appears to
con°ict with the amplitude modulation bene¯ts predicted in Section 2.5, but EPZS L2 actually
doesexhibit a higher level of displacement estimation error (¾2

D̂
). Crucially EPZS L2 is una®ected

by location errors (¾2
F̂

). At high strains ¾2
F̂

is often the primary sourceof error, so EPZS L2 out-
performs someof the other estimators. This is especially interesting, sincethere are computational
advantages if all of the amplitude information can be discarded.

In conclusion,wehaverevisited log compressionand found that EPZS L2 is a good algorithm for
imaging high strains, potentially at extremely low computational cost. However, it is inferior to the
EPZS A algorithm incorporating AMC. EPZS A is marginally more computationally expensive,
but it is still suitable for real-time strain imaging. It outperforms all of the other algorithms tested
in this study throughout the typical range of strains encountered in practical ultrasonic strain
imaging systems.

Ac kno wledgemen ts

JamesNg measuredthe point spreadfunction of the Dynamic Imaging Diasus 5{10 MHz probe.
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App endices

A Bene¯ts of amplitude mo dulation

We analysea generic displacement estimator, motivated by the actual properties of phase-based
methods. We assumethat a window of arbitrary length producesan unbiased displacement esti-
mate. The shortest possiblewindow covers one RF sample,producing a displacement estimate, ·d.
The estimation variance,¾2

·d
, is inverselyproportional to the local ultrasonic SNR; this assumption

follows the Cramer-Rao lower bound for displacement estimation variance [3].

¾2
·d(t) =

C1

SNR(t)
(43)

We assumea simple model for RF signalsduring a strain imaging ultrasound scan. An underlying
signal, r , is present in both the pre- and post-deformation signals,r 1 and r 2, but theseare recorded
in the presenceof additiv e noise.

r 1(t) = r (t) + n1(t) (44)

r 2(t + d(t)) = r (t) + n2
¡
t + d(t)

¢
(45)

n1 and n2 have zeromean,with power ¾2
n . They are mutually uncorrelated, and both noisesignals

are uncorrelated with r . In generaln1 and n2 consist not only of electronic noise| other sources
of uncorrelated signal components include morphological changesto the speckle pattern [21] and
non-axial scatterer motion. The SNR can be expressedin terms of thesesignal components.

SNR(t) =
r (t)2

1
2

µ
n1(t)2 + n2

¡
t + d(t)

¢2
¶ (46)

The constant of proportionalit y in Equation 43, C1, must be a large number, sincethe short win-
dows produce inaccurate estimates. However, the genericestimator actually useslonger windows,
yielding a weighted averageof the single-sampleestimates.

d̂n =
P n ¢ t + T

t = n ¢ t W (t) ·d(t)
P n ¢ t + T

t = n ¢ t W (t)
(47)

d̂n is the ¯nal displacement estimate at window n, and W (t) is the weighting for estimate ·d(t). If
errors in the single-sampleestimates are mutually uncorrelated, then the variance of the overall
estimate is as follows.

¾2
d̂n

=

P n ¢ t + T
t = n ¢ t W (t)2¾2

·d
(t)

³ P n ¢ t + T
t = n ¢ t W (t)

´ 2 (48)

This can be minimised by choosing W as follows, where C2 is an arbitrary constant.

W (t) =
C2

¾2
·d
(t)

=
C2SNR(t)

C1
(49)

The implications of this result are not immediately obvious, sinceSNR(t) is an unknown quantit y.
However, the expected error is minimised by choosing W according to the expected value of the
local SNR, given the information that is available. We require the statistical expectation of the
RHS in Equation 46.

E
£
SNR(t)

¤
= E

2

6
6
4

r (t)2

1
2

µ
n1(t)2 + n2

¡
t + d(t)

¢2
¶

3

7
7
5 (50)

= E
£
r (t)2¤

£ E

"

2
µ

n1(t)2 + n2
¡
t + d(t)

¢2
¶ ¡ 1

#

(51)
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The expectednoiseterm is assumedconstant (C3). More sophisticatednoiseestimatesare possible
if assumptions can be made about the statistical properties of the noise source, but we restrict
ourselvesto the most generalapproach (note, E

£
x ¡ 1

¤
6= E[x]¡ 1, so C3 6= ¾¡ 2

n ).

E
£
SNR(t)

¤
= C3E

£
r (t)2¤

(52)

Since the noise is uncorrelated and the displacement estimate is assumedto be unbiased, the
expectation of the local crosspower of the recordedsignals is equal to the expected signal power.

E
£
r 1(t)r 2

¡
t + d̂n

¢¤
= E

£
r 1(t)r 2

¡
t + d(t)

¢¤
(53)

= E
£¡

r (t) + n1(t)
¢¡

r (t) + n2
¡
t + d(t)

¢¢¤
(54)

= E
£
r (t)2¤

+ E [r (t)n1(t)] + E
£
r (t)n2

¡
t + d(t)

¢¤
+ E

£
n1(t)n2

¡
t + d(t)

¢¤
(55)

= E
£
r (t)2¤

(56)

The cross power can therefore be taken as an estimate of the signal power. By combining the
results of Equations 49, 52 and 56, it emergesthat the optimal weighting for each single-sample
displacement estimate can be evaluated. In the following expressionC4 is an arbitrary constant.

W (t) = C4r 1(t)r 2
¡
t + d̂n

¢
(57)

Weighting by this formula minimises the expected value of ¾2
d̂
.
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