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Abstract

Ultrasonic strain imaging is usually basedon displacemert estimates computed using nite-
length sections of the RF ultrasound signal. Amplitude variations in the ultrasound are
known to causea perturbation in the location at which the displacemert estimate is valid.
If this goes uncorrected, it is an important source of estimation noise, which is ampli ed
when the displacemert "eld is converted into a strain image. We presert a study of this
e®ect based on theoretical analysis and practical experiments. A correction method based
on the analysis is tested on phase and correlation coezcient strain imaging, and compared
to the log compression technique from an earlier study. The performance is also compared
against adaptiv e strain estimation. Results indicate that the new correction yields a substantial
reduction in estimation noise.

1 Intro duction

Ultrasonic elasticity imaging spansa broad range of techniques that processultrasound signals
to extract information relating to tissue's mechanical properties. A majority of thesetechniques
require high quality displacemen tracking at the “rst stageof signal processing.Examplesinclude
guasistatic compressionimaging [26, 29|, axial shear wave imaging [32] and acoustic radiation
force imaging in both quasistatic/impulsiv e [24] and dynamic [2] forms. The principal alterna-
tive, soncelasticity imaging [18, 27], employs Doppler velocity estimation in medcanically vibrated
tissues. This is a practical technique, although the imagesit yields are relatively ditcult to inter-
pret. Displacemert-based imaging systemshave beeninvestigated for a wide range of diagnostic
purposes,spanning screeningfor soft tissue tumours [7, 9, 28], monitoring of atherosclerosis[6],
assessmemnof skin pathologies[8, 40] and examination of cardiac disease[15 among other appli-
cations. The simplest form of meaningful visualisation is the strain image. This is extended by
someof the more complicated systems,where strain image sequencesre analysedto infer material
property estimatessuc as elastic [12, 32] and viscoelastic [2, 10] moduli.

The cornerstoneof elasticity imaging| displacemen tracking | is easilyunderstood. Consider
a pair of ultrasound framesrecordedconsecuti\ely during a scan: we refer to them asthe pre- and
post-deformation frames. A window is placed around a point of interest in the pre-deformation
frame, and the closestmatch in the post-deformation frame is located. In practice, this is an
optimisation problem, where the peak must be found in somesuitable measureof signal similarity,
such as the correlation coexcient [20, 26], sum of absolute (SAD) or squared (SSD) di®erences
[17, 21, 39] or mutual information [22]. Numerousphase-basedpproatheshave alsobeendeveloped
[5, 25, 29], which exploit a property of the cross-correlationfunction peak, and are advantageous
becauseof relatively low computational cost. Whichewer technique has been usedto match the
windows, it is usually assumedthereafter that the medanical displacemen of tissue at the certre
of the window is equal to the optimal window displacemen [13, 20, 26, 29, 31]. Window-matching
is applied at positions throughout a grid over the acquired frame of ultrasound data, constructing
a ne map of the displacemen “eld.
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Figure 1: (a) B-mode image of RF data from a scan of human arm. The signal is temporally
compressedto simulate a uniform compressie strain of 1%. On a linear scale from black (0%
strain) to white (2%), this should produce a uniform strain image with extremely low estimation
noise, since the signal SNR is higher than could possibly be achieved in a real compressionscan.
Howe\er, (b) the standard correlation coexcient maximiser producesa strain imagethat is sewerely
degraded(and misleading) owing to the AM e®ect,while (c) shows the (near perfect) result from
applying the best of the correction techniquesintroducedin this paper. Strain estimation for both
imagesusedwindows of length 13.5, .

A strain image can be produced by displaying spatial derivativesfrom the estimated displace-
mert “eld. In this paper we considerin detail the problem of axial strain imageformation, although
someof the principles we derive are more generally applicable. Strain estimation may be regarded
as a stochastic process,in which casethe terms \mean squared error”, \estimation noise" and
\estimation variance" may be used interchangeably when referring to the typical discrepancies
between actual deformations and the estimatesthat are recordedand displayed. Errors in strain
images arise mostly from two sources. The rst is displacemen estimation error, which is well
understood. Following Carter [3] and Walker and Trahey [41, 42] it has becomepopular to ap-
ply Cramer-Rao lower bound analyses(and variations thereon) to signalswith known properties,
thereby identifying a lower bound on the displacemen estimation variance that could be achieved
by a maximum likelihood estimator [13, 14, 16, 36, 37, 38, 39.

Comparedto displacemern estimation error, the secondsourceof noisehasreceiwed little atten-
tion in the literature. The problem is estimation location variance: it is not generally true that the
displacemen estimate most closely tracks the actual displacemen at the window certre. It was
noted in an earlier study by C@spedesand Ophir [4] that if there is intra-window compressionand
the signal envelope is not constart, then the actual estimation location is skewed towards higher
amplitude portions of the windowed signal. This causesartefacts at the boundaries between re-
gionsof di®ering echogenicity, asdemonstrated by Figure 1. It is obsenedthat strain estimatesare
corrupted by unwanted modulation from the amplitude, which we call the amplitude modulation
(AM) e®ect. In fact, the AM e®ectalso degradesstrain estimates within regionsthat are isoe-
choic, sincethe signal returned from a ne scatterer distribution doesnot have a constart ernvelope.
Nevertheless,the AM e®ectis most dangerousin anisoecoic regions, where AM noise correlates
strongly with the featuresin B-mode images,and can easily lead to sewere misinterpretations of
strain images.

It will be shawn in the following sectionthat the AM e®ectis often the primary sourceof error
in ultrasonic strain imageswhere it is not corrected. Two correction techniques were proposed
by C@spedesand Ophir [4]. Firstly, log compressionof the signal envelope reducesamplitude
°uctuations, thereby shifting estimation locations towards the window certres. This is an e®ective



means of mitigating the AM e®ect,and has consequetly been reapplied in more recert strain
imaging systems[19, 29]. The secondsuggestionwasadaptive stretching [4], which compensatesfor
intra-window compressionby stretching the signalto enablea closematch to the true displacemen
at all points. This has been shovn in numerous studies to be a good way of reducing strain
estimation noise, although sud techniques are computationally expensivwe [1, 21, 22, 33]. The
estimation location variance can alsobe reducedby using shorter estimation windows [2(], but this
is inevitably accompaniedby reducedaccuracyin the displacemen estimates, since displacemer
estimation variance increasesas the reciprocal of the window length.

The AM e®ectis presert in all displacemen tracking methods that useamplitude information,
including methods basedon the (normalised) correlation coexcient. To eliminate the AM e®ect,
the amplitude must be ertirely suppressedasin one-bit compressionbut this may bring unwanted
side e®ects. The following section examinesthe AM e®ectfrom a theoretical standpoint, leading
to a surprisingly simple AM correction method (AMC 1). Experimerts have been performed using
simulated RF ultrasound data to compare the performance of phase and correlation coetcient
methods, and to evaluate the excacy of correction by AMC, log compressionand one-bit (limiting)
compressionin both cases.All of the corrections are computationally e+cient and suitable for use
in real-time imaging systems. Further experiments are performed using a direct strain estimator
with adaptive stretching, which is slowver but provides an AM suppressionbenchmark by which
the other technigues may be judged.

2 Amplitude modulation theory

This section analysesthe estimation of strain from a set of window displacemen estimates. For
the sake of clarity, we examine the simplest method for converting 1D displacemen estimatesto
1D strains, by taking the di®erencebetweendisplacemens at consecutive windows, and dividing
this by the spacingbetweenthe assumedestimation locations.

- d\zi d\l
i

8 is the strain estimate, d; and d; are the displacemen estimatesfor windows 1 and 2 respectively,
and &, and &, are assumedto be the estimation locations. It is commonly assumedthat Equation
1 contains only two random variables: d, and d;. In this paper we examinethe neglectedvariables,
2, and 2,. New variables D and F are de ned to simplify the strain calculation.
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The sourcesof estimation noise are illustrated in Figure 2. We will assumethat errorsin D and
in F are uncorrelated. This allows the strain estimation variance, %g to be expressedin a simple
form.

B=%%+13% +13% (5)
1 4 is the expectation of B, which for an unbiased estimator is equal to the actual di®erence,D,
betweenthe displacemerts of the two windows. 3/%\ is the variance of O, which is approximately
equalto the sum of the variancesof the individual displacemert estimates, d; and & (it is exactly
equal only if errorsin d, and &, are uncorrelated, which is not the casefor overlapping windows).

! » is the expectation of the reciprocal location spacing estimate, F, which may correspond to
the reciprocal of the spacing between consecutive windows. Finally, 3/% is the mean squarederror

betweenF and the actual reciprocal spacing,F. In general,F is not equalto the reciprocal of the

1AMC is the subject of UK patent application number GB 0606125.3.
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Figure 2: A practical estimate is displayed between two ideal estimates. There are two noise
sourcesin practical displacemern estimation.

window spacing, since the actual estimation locations, ¢, and ¢;, do not generally correspond to
the window certres.

We want to know what impact the terms in Equation 5 have on strain image quality. We
consider a quality measuredenoted SNRe, which has previously beende ned [4, 37] and can be
measuredexperimentally in imageswherethe underlying strain "eld is known to be homogeneous.

Le
SNR, = % (6)
14 is the mean strain estimate and %4 is the standard deviation. The presenceof 126 in the third
term of Equation 5 becomesimportant when SNR; is evaluated. The noise cortribution from the
AM e®ectis therefore proportional to the strain, s, sothe AM e®ectis expected to becomethe
dominant sourceof strain estimation noiseasthe level of strain increases.
|
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Equation 7 is derived by substituting the RHS of Equation 5 into Equation 6. The nal result
incorporates some simplifying assumptions. (1) 14 = s. (2) The assumedvalue of F is usually a
constart, i.e. * a = F=K;. @)!? s = K2s whereK is a constart (the expected shift equalsthe
strain multiplied by the window spacing).

2.1 Examples with pulse train signals

Window matching tracks the displacemen of the enclosedsignal. However, if displacemen varies
within the window, then the actual signal displacemen cannot be matched at all points. The
location at which the actual displacemen of the signal is equal to the displacemen estimate
varies depending on both signal and displacemen “eld properties. In general, the estimation
location comesfrom a random distribution throughout the window. It haslow probability density
at the ends, and in the absenceof additional information its expectation is the window certre.
Where the location cannot be estimated, it is best to assumethat windows sample displacemern
at their certres. Unfortunately this meansthat the AM e®ectintro ducesdisplacemen and strain
estimation noise, asillustrated in Figures 1 and 2.

It is not possibleto devisean estimator that both producesoptimal displacemen estimatesand
samplesdisplacemen at the certre of the window. This is becausesomeportions of the signal may
cortain no information, or the quality of the information may be variable. This is demonstrated by
exampleswith pulsetrain signalsin Figure 3. In the absenceof information betweenthe pulses,an
optimal displacemen estimator tracks the displacemen of the pulse(s) within ead window. The
example medium has beendeformedby a uniform strain "eld, sodisplacemert varieslinearly with
distance. The assumption of estimation at the window certre now leadsto signi cantly di®erer
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Figure 3: Extreme examplesof the AM e®ect:(a) and (b) shaw the output of a perfectdisplacemer
estimator operating on di®erent pulse train signalswith uniform strain. The strain (displacemert
gradient) is (a) underestimated and (b) overestimated.

strain estimates if (a) overlapping windows track the same pulse, or (b) neighbouring windows
track pulsesat their extremities. When a uniform strain, s, is being tracked, and there is no
displacemen estimation error, the AM e®ectnonethelessdistorts the result, such that the strain
estimation lower bound is 0 for overlapping windows, and the upper bound is s £ T;‘ﬂ L. T isthe
window length and ¢ t is the spacing between successie windows. For non-overlapping windows
the lower bound is s£ £{L.T.

Of course, a real ultrasound signal is not a pulse train. Otherwise the AM e®ectcould be
corrected easily, by noting that displacemen estimation occurs at the pulse locations. However,
real ultrasound signalsdo incorporate amplitude variations, which are often large even over small
distances. Lower amplitude sectionsusually have lower SNR, and a good displacemen estimator
should incorporate a medanism for preferertially tracking the most reliable data. Ideally it should
alsobe possibleto estimate the actual displacemen location when this is not equalto the window
certre. The remainder of this section preseris an analytical investigation of the AM e®ectin the
context of somecommon ultrasonic strain estimation techniques.

2.2 Phase-based metho ds

We derive an approximate expressionfor the AM e®ectwhen windows are matched by identifying
the zerocrossingof the complex cross-correlationphase. Phase-basednethods operate on analytic
signals with real and imaginary parts, which are produced by applying the Hilbert transform
(or some approximation thereof). The complex cross-correlationfunction and its phase may be
expressedas follows.

3 ’ nog+ T 3
ha;;ai net;d = aj(t)ay t+d (8)
3 . t=nc¢t 3 ,
Antt;d = \haai nttd 9)

a; and a, are analytic ultrasound signals, ® denotesthe complex conjugate, n¢ t is the location
of the beginning of the analysis window in the pre-deformation signal, T is the window length,
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Figure 4: The signal model is a constart frequencysinusoid with arbitrary signal envelope, subject
to an arbitrary deformation.

and d'is the candidate displacemen applied to the post-deformation window to look for a match.

Evertually the match or displacemen estimate, d,, is found where A has a zero crossing.
3 g

Anctd, =0 (10)

It will be noted that if A is only expressedin the range [j ¥ + ¥} then a zero crossingoccurs on
averageoncefor every wavelength shift in d. It is therefore necessaryto incorporate a system for
guiding the seart to ensurethat the correct zero crossingis always selected. This is analogousto
eliminating \p eak-hopping" errors from correlation coexcient analysis[41]. We do not investigate
this issuehere, but in practice we have found that it is always possibleto eliminate this sort of
outlier error by extending error detection and correction techniques similar to those described in
past studies [19, 43].

To analysethe properties of phase-basednethods, we usea simple signal model with no noise,
wheredecorrelation occursonly asa result of the 1D signal stretching that accompaniesmecanical
strain. Our model of the pre-deformation signal, a;, is a constart frequency sinusoid, scaledby a
positive real signal ervelope, f . This is illustrated in Figure 4.

a(t) = f@)e't (11)

The main limitation of this model is the constart frequencyassumption. Real RF ultrasound signals
are narrowband, although the frequency may be substartially constart over short distances. In
our model the post-deformation signal, a,, is produced by an arbitrary temporal warping of ay,
such that every point, a;(t), undergoesa displacemer, d(t).

8 t+ dt)° = an(t) (12)

This is a simpli cation of the signal transformation that occursin a real compressionscan. Firstly,
it will be noted that a uniform strain in our model givesrise to a changein the frequencycertroid in
the post-deformation signal, which will not usually be re°ected in reality (although local frequency
changesdo occur). Secondly we have assumedthat the only changeto the signal envelope will
be a 1D warping. In reality, changesin the interference patterns of closely spaced scatterers
intro duce unpredictable componerts in the post-deformation signal, resenbling the addition of
an uncorrelated narrowband noise signal. Furthermore, axial compressionin real materials with
“nite compressibility is inevitably accompaniedby additional motions in the lateral and eleational
directions. Nevertheless,we pursueanalysiswith our simpli ed model, and the predictions are later
tested on real and simulated ultrasound data.

We examine the properties of the signals in matched windows. In general, the estimated
displacemen is similar but not equal to the local displacemen at ead position in the window.



We therefore intro duce a new symbol, t,, denoting the pre-deformation location in a;, of the data
with which a;(t) is matched.

to+ d(tz) = t+ dy (13)
The complex cross-correlationfunction at the match is now expressedas follows.
3 - nogt+T 3
hai;ai netd, = ai(t) a; t+ d, (14)
t=n¢t
n%+ T
= aj (1) ay(tz) (15)
t=nc¢t
n%+ T .
= f(O)f (tz) &' 2V (16)
t=nc¢t

In order to satisfy the match criterion (Equation 10), the imaginary part of the complex cross-
correlation function must be zero.,
A, o T !
= f@)f (1) i =0 (17)
t=nc¢t

This leadsto an alternativ e expressionfor the phasezero condition.

nog+ T 3
f(O)Ff (t2)sin ! (t2j 1) =0 (18)

t=n¢t

It isnotedthat t,j t = d\n i d(t2) is the local discrepancybetweenthe displacemen estimate and
its actual value. This is small, so! (toj t) ¢ %/“ at all points in the window for typical window
lengths and operating strains. It follows that Equation 18 may be simpli ed by applying the small
angle approximation.
neg+ T
fOf (t2)! (t2i t)" 0 (19)
t=nc¢t
Equation 19 can be corverted to an expressionwith clearerrelevanceto the physical deformation
by examining the term t, j t. This is performed as follows, employing the relation from Equation
13, and expanding a Maclaurin seriesabout d(t).
n o n o]
tit = did®) i d(tz)i d) (20)
n o n o] n 0
Gidn i Vit 0 iy (21)
n o n ) Y ",
dridt)y i sdidt) i 0 d&idt) (22)

Secondorder terms will be neglected,aswill the term scaledby s (strain), sincethe vast majority
of previously documerted ultrasonic strain imaging systemsoperate with s ¢, 1:0. Now the result
from Equation 22 is substituted into Equation 19.

noeg+ T 3 ’
fOf (t2)! dyi dt)y * 0 (23)

t=nc¢t
Rearrangemern yields a good approximate formula for the displacemern estimate, d..
P
g, _penet 1O (L)d0)

n

t=n¢t f (t)f (tz)
We have shavn that an approximation of the phase-basedlisplacemernt estimate is a weighting of
point displacemerts by the crosspower of the local signal envelope.

(24)




2.3 Amplitude modulation correction

We show that the actual estimation location can be estimated for the important casewhere strain
may be consideredconstart at the scaleof the individual windows. The constart strain condition
is expressedmathematically as follows.

d(t) = ®+ st (25)

We substitute this into Equation 24, and rearrangeto produce a corveniert form for the approxi-
mation.

P
4 _ismer (O (t2)(®+ st) (26)
n T net+T
Caet FOF (t2)
net+T
" @+ Sptznet f(Of (t2)t 27)

el ()

The location estimate, &,, is de ned to be the position at which the displacemen estimate approx-
imation is equal to the actual displacemen, i.e. d,' ®+ s8,. Hence,

P net+T
8, = pl=net f(Of (t2)t o5

Caet FOf (t2)
These location estimates are substituted into Equation 1 to re ne the strain estimates. This
amplitude modulation correction (AMC) also allows a more accurate identi cation of the image
region corresponding to the spacebetweensuccessie displacemen estimates,thereby producing a
more accurate correspondencebetweenthe physical locations of tissue features, and their apparen
locations in strain or displacemen images.

2.4 Correlation coezxcien t metho ds

Correlation coexcient methods have to date beenthe most popular approac for displacemen
tracking, at least within the ultrasonic strain imaging community. The correlation coexcient for
real RF signalsr; and r, at window n with a candidate shift d'is evaluated as follows.

3

, P
Y, 3n¢t'(T =¥ et nlOre ted (29)
fure , I net+T 2Pn¢t+T ’ 2
net rl(t) net r t+d

The displacemen estimate is chosento maximise the correlation coexcient.
3 ,

d, = argmax¥%,,, n¢t; d (30)
e

In common with the analysis of phase-basedmethods, it would be highly desirable to derive a
similar estimation location expression. The starting point is to identify the properties of stationary

points (including the maximum) by di®ereriiating “2,,, with respectto d. However, we have thus
far beenunable to derive an analytic expressionfor 2, in the caseof correlation coetcient methods.
Instead we apply the following heuristic, which is motivated by an assumptionthat the AM e®ect
on correlation coexcient methods is similar to the e®ecton phase-basednethods, for which AMC

has already beenderived.

P v, _

5 = n?:rfctTJrl(t)fz(t*' d\n)jt a
= piznet ) |
LT irrat+ )

Simulation results are included later to investigate whether or not this is a useful technique.




2.5 Benets of amplitude modulation

AMC increaseshe utilit y of displacemen estimatesfrom a spatially varying displacemen “eld by
estimating the actual estimation location. The alternativ e approad for handling the AM e®ectis
to reducethe level of amplitude variation, for example by log compressionof the signal ervelope.
This may be a useful technique in somecircumstances,but it should be recognisedthat the AM
e®ectmay actually be bene cial for high quality displacemen estimation.

Appendix A analysesa simple model of a genericdisplacemen estimator, where short windows
produce unreliable estimates, but the estimation variance can be reducedby using longer windows
to take a weighted moving average. Following reasonableassumptions,it is shovn that an optimal
displacemen estimator weights the importance of di®eren signal sectionsin proportion with the
local crosspower, rq(t)ro(t+ c'i\n). This outcomeis similar in form to the approximation in Equation
24 for phase-basedmethods. It implies that the weighting becomessuboptimal if the amplitude
is compressedthereby reducing the accuracy of the displacemen estimator. We therefore expect
that if location estimation such as AMC is performed accurately, then the lowest strain estimation
noiseis achieved in the absenceof log compression.lIt is lessclear how far these conclusionsapply
to correlation coexcient methods, but the correlation coetcient also incorporates a weighting of
someform, since high amplitude sectionswithin a window have a greater impact on the overall
correlation coexcient value.

2.6 Adaptiv e strain estimators

Adaptiv e strain estimators work on the principle of reversing the deformation that has occurred,
to obtain the best match to the pre-deformation signal. Uniform strain is assumedat the scale
of the individual windows | this is the sameas the assumption applied in Section 2.3 to derive
AMC. In 1D, an adaptive strain estimator uniformly stretchesthe post-deformation window until

its similarity to the pre-deformation window is maximised. Past studies have showvn that strain

estimation error in these systemsis lower than in corventional displacemeint-based methods. A
feature of adaptive strain estimation is an increasein the correlation coexcient. This has been
discussedby Srinivasanet al. [35], whereincreasedcorrelation wasidenti ed asa causeof reduced
strain estimation error. It is appropriate that in this paper we additionally note the likely contri-

bution of the AM e®ect.If the local strain is actually uniform, adaptive strain estimation hasthe
advantage of being able to correctly match the displacemen at every point within the window.
This meansthat for uniform strains the question of estimation location is irrelevant, becausethe
correct displacemen can be found everywhere. Tests of adaptive strain estimation on uniform

strain simulations are therefore expectedto be independert of the AM e®ect. It is for this reason
that we employ an adaptive strain estimator asour AM suppressionbenchmark. It is alsoexpected
that the absenceof the AM e®ect(by cortrast with the other estimators) will result in a markedly
di®erert shape to the SNR¢-strain characteristic.

3 Exp erimental metho ds

3.1 Simulation

Simulated RF ultrasound data hasbeengeneratedusing Field |1 [11]. The simulations have 2£ 10°
scattererspositioned at random accordingto a uniform distribution throughout a 50£ 50£ 6 mm
volume, with random scattering strengths distributed uniformly over the range[0; ° nax]- The probe
parameters model the 5-10 MHz probe of the Dynamic Imaging? Diasus ultrasound machine, for
which the point spread function has been measured experimertally | the pulse has a certre
frequency of 6.0 MHz and bandwidth 2.1 MHz | and the sampling frequencyis 66.7 MHz.

For eadh frame 128 A-lines have been simulated, spanning 40 mm in the lateral direction,
recordedto a depth of 40mm. Simulations have been performed at a range of compressiong(0%,

2http://www.dynamicimaging.co.uk



Figure 5: B-scan of simulated RF data.

0.01%, 0.1% 0.5% 1.0%, 2.0%, 4.0%) by rescaling the axial spacing of the scatterers. This is
important, becausethe relative performance of the strain estimation algorithms we compare is
strain dependert. Five data setshave beengeneratedfor di®eren scatterer elds. This contributes
to the reliabilit y of the results, which record the meanand standard deviation acrossthe v e data
sets.

The Field |1 output hasbeencorverted to the RF ultrasound format of the Stradwin?® freehand
3D ultrasound system. RF samplesare recorded with 16-bit signed integer precision. To ensure
reproducibilit y of the resultant SNR and AM e®ectsthe signalswere normalised beforeconversion,
such that in all casesthe mean power is xed at Vims = 21, corresponding to a mean SNR of 71
dB in the presenceof quantisation noise. Tests have also beenperformed on simulated data with
additive white Gaussian noise, reducing the SNR to 20 dB. Figure 5 shows an example B-scan
from the simulated data.

3.2 In vitr o and in vivo scanning

Scanshave beenperformed using a Dynamic Imaging Diasus ultrasound machine with a 5{10 MHz
probe, sampled at 66.7 MHz by a Gage® CompuScope 14200 analogue-to-digital converter, with
a PC running the Stradwin freehand 3D ultrasound software. As per previous work [19], frames
were acquired at 30 Hz during a freehand scan, and exaggeratedpalpating movemerts were not
necessary The imagesare usedonly for qualitativ e assessmenof the strain estimation algorithms.
Results are shavn for (1) olive/gelatin phantom mimicking a sti® inclusion in soft tissue, (2)
tissue-mimicking phantom with two layers, (3) human male breastin vivo, (4) human calf muscle
in vivo.

3.3 Strain estimators

For comparative purposes,we test phase, correlation coexcient and adaptive strain estimators.
The performanceof phaseand correlation coe+cient estimators is comparedfor seweral variations:
uncorrectedstrain estimation, log compressionJimit log compressionand AMC. Quantitativ e tests
use simulation data, where the performanceis measuredby evaluating SNRg; the strain standard
deviation is calculated from the raw strain estimates, where no smoothing has beenapplied. For
a qualitativ e assessmen we also presert example imagesfrom in vitro and in vivo scans.

Fair comparisonis made possibleby xing the window parametersacrossall of the estimators
in eadt test. It should be noted, that where there is a priori knowledge of a uniform strain
“eld, the processof imaging strain by di®erencingclosely spacedwindows senesonly to introduce
noise; instead, windows separatedby a large distance should be di®erencedin order to achieve an
SNRe that becomesarbitrarily high for large window spacing. Alternativ ely, in practical systems
it is sensibleto match larger numbers of closely spacedwindows, and to combine their estimates

Shttp://mi.eng.cam.ac.uk/~rwp/stradwin/
4http://iwww.gage- applied.com
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by Ttering methods sudh as least squaresor wavelet decomposition. To varying degrees,these
techniquesreduceboth noiseand resolution, although the AM e®ectwill remain important. Since
the ertire purposeof our study is to investigatethe noisethat is introducedby erroneousestimation
location assumptions, and to evaluate the performance of the proposed AMC technique, in our
quartitativ e tests we stick to the method of di®erencingwindows at a xed window-spacing,¢ t =

2:7, (i.e. 0.45%s,0.35mm, 30 RF samplesat 66.7 MHz). The window length, T, is varied between
tests, with the chosenlength stated in ead case.

The remainder of the experimental methods sectionprovidesa full description of ead estimator,
the properties of the simulation data, and the nature of the in vitro and in vivo ultrasound scans.

3.3.1 Ezcien t phase zero search

The excient phasezero seardh (EPZS) is drawn from previous work [19] adapting the concept of
Pesaento et al. [29]. To summarise,a 5{10 MHz Tter is applied to the RF data (rq, r,) before
corverting to analytic signal represertations (az, az), which are modulated to the baseband(ap;,
an) to enhancethe accuracyof linear interpolation. ap, must be estimated at subsamplelocations
by basebandlinear interpolation, to enableaccurate subsampleestimation of d (for a discussionof
interpolation frequency responses,seeProakis and Manolakis [30]). Phase-basedmnethods require
that the displacemen of the analysis window is known already to within ,=2; this is achieved by
initialising ead window with the "nal displacemen estimate from the precedingone; windows at
the top of eath A-line areinitialised with d= 0. Displacemern estimatesare di®erencedo produce
strain estimatesfollowing Equation 1.
The estimation location is usually assumedto be the window certre.

8 = n¢t+£ (32)

The phaseis presened but the amplitude is partially suppressedvhen the signalis log compressed
accordingto the following formula.

apiog(t) = log' 1+ gay(t)j & 9O (33)

c is the compressionfactor. The larger the value of c, the smaller the amount of amplitude
information that is retained, sincethe size of variations in the log compressedamplitude becomes
smaller comparedto the meanvalue. We refer to this algorithm asEPZS_L1. Asc! 1 all of the
amplitude information is discarded, since log compressedamplitude variations becomein nitely
smaller than the mean. Limit log compressionhas a simpler form.

8:jog ('[) - e| arg ap(t) (34)

We refer to limit log compressionas EPZS_L2. For phase-basednethods, EPZS_L2 is the counter-
part of one-bit compressionor zerocrossingtechniquesin correlation coetcient methods [4, 34, 39).
We also presert results for EPZS with AMC, referredto as EPZS_A. In addition to producing an-
alytic signals,we detect the signal envelope, jaj, which is exploited as follows for AMC estimation

of &, (c.f. Equation 28). =
g = pionet Jaiiaa(t+ do)it
= p : . :
net jaa(ijaa(t + )i
EPZS_L2 usesnone of the amplitude information, sothe AMC versionof &, is identical to the win-
dow certre assumption. However, EPZS_L1 still exhibits a degreeof AM susceptibility, so results
are preserted for an algorithm combining EPZS_L1 with AMC (operating on the log compressed
signal envelope), referredto as EPZS_LA.

(35)

3.3.2 Correlation coezxcien t maximiser

The correlation coexcient maximiser (CCM) seartesinitially at integer samplelocations for the
maximum value of the crosscorrelation coexcient (see Equation 29). The estimate is re ned by
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allowing subsamplevalues of d and interpolating r, at subsamplelocations. Again, a complex
basebandrepresenation of r, allows highly accurate subsampleinterpolation, aswith EPZS, but
in CCM it is converted badk to a subsamplereal signal for the correlation coexcient calculation.
This requiresthe following calculation, where! , is the modulation frequencythat wasusedearlier
to shift the analytic signal down to the baseband.

© . a
ra(t) = < ap(t)e'! (36)

2 is again usually assumedto be the window certre (Equation 32). Log compression(CCM _L1)
is tested as a meansof reducing the error in 2, using the following formula, as rst proposedby
Clispedesand Ophir [4].

Mog (t) = Iogi1+ cjr(t)j¢signir(t)¢ (37)

To maximise algorithm performance, the full RF signal is used for subsampleinterpolation of
r,, which is only log compressedat the momert of computing the correlation coetcient. In the
limiting caseasc! 1 variations in the log compressedsignal magnitude becomein nitely smaller
than the mean magnitude, soonly the sign is important. A simpler expressionmay be used.

%

+

w®= T3 Ho%o (38)
Subsampleinterpolation actually still employs the full RF signal, so zero crossingsare identi ed
with high accuracy We call this variation CCM _L2. It has previously beendescribed as one-bit
compression[4] and is equivalent to zerocrossingmethods [34]. AMC is applied to CCM following
Equation 31, which is referred to as CCM_A. AMC is also applied alongside non-limiting log
compressionin CCM _LA.

3.3.3 Adaptiv e strain estimator

Typical adaptive strain estimators from previous studies have two seard dimensions| displace-
ment and stretch | for ead spatial dimension of strain estimation [1, 33]. A typical algorithm has
the following stages: (1) ead post-deformation window is shifted till the best match is located; (2)
the shifted window is stretched to maximise a similarity measure;(3) displacemet is re-estimated
for the stretched window; and (4) the processrepeats iterativ ely until corvergence. Once arrays
of displacemen and stretch have beencalculated, either the displacemen estimatesmay be di®er-
enced(as in displacemert-based methods) to re-estimate strain, or the stretch estimates may be
displayed directly (which is the approacd followed in this study). An estimator of this form was
obsened by the authors to produce signi cantly better strain imagesthan those that are achieved
by the basic displacemen estimation approaces, with the greatestimprovemert for high strains.
SAD was found to outperform the correlation coexcient, so this is the chosensignal similarity
measure. The origin of this di®erencemay lie in the fact that often %;,,, ' 1:0 at the correct
stretch, in which caseSAD is lessprone to quantisation errors.

It hassubsequetly beennoted that a minor modi cation to the adaptive stretching algorithm
yields a further performanceimprovemert. The modi cation concernsthe way that displacemen
is estimated: our adaptive strain estimator (ASE) estimatesthe locations of the windows directly
from the strain estimates,rather than searting over two dimensions. This hasbeenfound to yield
higher SNRe.

The initialisation of EPZS dependson the fact that the displacemen at the top of ead A-line
is zero. Similarly, ASE searhesonly over strain (and not over displacemen) in the top window of
ead A-line. This utilises the prior knowledgethat a seard over displacemen could only degrade
the accuracy of the estimate in the evert that a non-zerodisplacemen were found for the top of
the window. The displacemen at subsequeh windows is estimated accurately by integrating the
estimated strains, where it will be recognisedthat integration is a noise-suppressingoperation.
The o®setof the "rst samplein a succeedingoverlapping window is, of course, not equal to the
displacemen at the end of the "rst window. Rather, the relationship we assumeis illustrated in
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Figure 6: lllustration displacemen o®setdn ASE. The estimated displacemern of window n is xed
at the end displacemen of window nj 1, while §, is the estimated displacemen gradient across
the window. This yields s,; 1 asthe higher resolution strain estimate for the previous window.

Figure 6, where estimated strains are displayed asgradients on a plot of displacemen againsttime.
The window strain estimate multiplied by the window length, T$,; 1, provides the best estimate
for the displacemen di®erencebetweenthe end and the start. The following window is therefore
pinned at this end point, and stretched on either sideto nd the next estimate, §,. This means
that the o®setdisplacemen at the start of window n dependson: the o®setof window nj 1, the
previous window stretch, and the candidate window stretch, s.

dos;n = dos;ni 1+ 61T T ¢t) (39)

This leadsimmediately to a secondresult for increasedresolution with overlapping windows. An
estimate that resolvesstrain changesat the scaleof the shift betweenwindows (thereby matching
the resolution of the displacemen methods) is produced as follows.

a

©
Sni1= SnjaTi &(Ti ¢t) =Ct (40)

This is a consequenc®f the geometryin Figure 6. Increasedresolution comesat a cost of increased
estimation noise. We preser results using s rather than 8, however, sincethe higher resolution of
s makesit the appropriate comparisonwith the displacemen-based methods. Having dealt with

the displacemen o®setand resolution issues,the basic form of the ASE seardt is an optimisation

problem similar to the other methods.

ne+ T — A M 1 ﬂ! —
SAD(n; s) = Ti(t)j rp t+ dosn + 5 t+ i net - (41)
t=nct s
fs is the sampling frequency &, minimises SAD(n;s) .
8, = argmin SAD(n; s) (42)
S

It might be possibleto adapt fast algorithms to this optimisation problem, but for now we usean
exhaustive seard.

4 Results

Quartitativ e results indicate the advantages and disadvantages of ead technique. Important
trends are illustrated by graphs. Where there is spacefor error bars these extend to one standard
deviation either side of the mean. We also presert strain imagesfor qualitativ e assessmen
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Figure 7: SNRe against window length for EPZS and EPZS_A, with both 71 dB and 20 dB data
at 0.5% strain. Uncorrected EPZS with 71 dB data reachesa plateau at T = 10, , which the 20
dB results corverge towards for long windows. When AMC is applied there is no such plateau
and much higher SNR, is achieved | SNRg is initially a linear function of window length, and it
continuesto increasefor long windows, although the gradient becomeslesssteep.

4.1 Windo w length

Results for EPZS, EPZS_A, CCM, CCM_A and ASE with window lengths, T, in the range 2.8{
27.1, indicate a suitable choice of T for the later tests. They also serve asa rst opportunity for
assessinghe AMC technique. Figures 7 and 8 show performanceagainst window length at 0.5%
strain, while Figure 9 shaws the e®ectof window length on EPZS_A and ASE at a higher strain.
13.5 is employed for all other results in this report.

Toillustrate the practical meaningof SNR., Figure 10 shaws strain imagesat 0.5%compression.
The characteristics of the imagescan be comparedwith the corresponding SNR¢ results from the
graphs. The imageshave a linear scalewith 0 (black) represetting zero strain, 127.5(mid-grey) is
the simulated strain of 0.5%and 255 (white) represens 1%. Saturation occursat 0 and 255,and no
smoothing has beenapplied, so eat section betweensuccessie estimation locations has constart
brightness. An ideal estimator would yield a uniform greyscalelevel, but this is unacievable in
practice.

4.2 Compression factor

A justi cation is presened for the choice of log compressionfactor in the algorithms EPZS_L1,
EPZS.LA, CCM_L1 and CCM _LA. The e®ectof log compressionvariesto a large degreedepending
on the strain level, so Figures 11{13 show results at strains represening the smallest, largest, and
mid-range in the simulation data. It is evidert that log compressionis not always desirable, but
the choice of c re°ects a value that is likely to boost SNR, in high strain regions, whilst avoiding
extreme degradation of low strain estimates. ¢ = 10° is employed for all of the remaining results.
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Figure 8: SNRe against window length for CCM and CCM _A, with both 71 dB and 20 dB data
at 0.5% strain. Uncorrected CCM is almost identical to EPZS. However, AMC is obviously less
accurate for CCM, sincethe improvemert with CCM _A is much smaller and the results are erratic
for long windows.
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Figure 9: SNR, against window length for EPZS_A and ASE, with 20 dB data at 4% strain. ASE
performslesswell with short windows, but it reachesa high and fairly constart level of performance
for T > 10, . EPZS_A, by cortrast, performswell with short windows and hasa higher peak SNR.
Howewer, windows with T > 10, have a di®ereriial displacemen of >0.4, betweenthe ends,soin
this range EPZS_A su®erssubstartially increaseddecorrelation and estimation noise.
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(d) SNR. = 2:05

Figure 10: Strain imagesfor a 0.5% compressionwith 20 dB data using T = 135, : (a) EPZS; (b)
CCM; (c) EPZS.A; (d) CCM_A. The performanceof EPZS and CCM is similar, though EPZS_A
performs considerably better than CCM _A.
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Figure 11: SNRe results for EPZS_L1, EPZS_LA, CCM_L1 and CCM _LA with 20dB data at 0.01%
strain asa function of c, the compressionfactor. At low strains, the main e®ectof log compression
is increasednoise. This e®ectis more pronounced with CCM _L1. AMC has almost no e®ectin

theseimages.
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Figure 12: SNR. results for EPZS L1, EPZSLA, CCM_L1 and CCM_LA with 20 dB data at
0.5% strain asa function of ¢, the compressionfactor. At this strain, log compressionsigni cantly
improvesthe performanceof EPZS_L1. CCM_L1 is alsoimproved by slight log compression.Better
performanceis produced by AMC, although this is degradedby log compression,soasc! 1
EPZS_LA and CCM_LA corvergewith the curveswhere AMC has not beenapplied.
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Figure 13: SNRe results for EPZS_L1, EPZS LA, CCM_L1 and CCM_LA with 20 dB data at
4% strain as a function of c, the compressionfactor. At this strain all of the algorithms can
be improved by applying an appropriate level of log compression. The greatest improvemert is
exhibited by EPZS_L1, while the ACM algorithms are still degradedby high compressionfactors,
and they eventually corvergewith the curveswhere AMC has not beenapplied.

4.3 Strain dependence

With parameters T and c selectedas per the preceding sections, Figures 14{16 comparethe per-
formanceof EPZS, EPZS L1, EPZS L2, EPZS LA, EPZS A, CCM, CCM_L1, CCM_L2, CCM _LA,
CCM _A and ASE acrossa range of strains.

4.4 In vitr o and in vivo results

Finally, imagesfrom real ultrasound scansare presenied. For the sake of concision, we restrict
oursehes to EPZS, EPZS L1, EPZS L2 and EPZS A, allowing a qualitative assessmenof log
compressionand AMC whenapplied to real data. The imagesin Figures 17{20 have beensmoothed
slightly by estimating strain with a 1 mm least squares lter along the axial direction; no other
“Ttering has beenapplied and the valuesof parametersT and c are unchanged.

5 Discussion

5.1 Interpretation of results

Window length results in Figure 7 show that AMC is extremely e®ective when applied to EPZS,
which validates the analysisin Sections2.2 and 2.3. Notice that while increasingthe window length
is known to reduce?/%, neverthelessthe uncorrected algorithm quickly reaches a plateau: this is
becausethe primary source of noiseis the AM e®ectwhen long windows are used. Meanwhile,
when AMC is applied the remaining noiseis mainly due to ¥4, so higher SNR, is achieved with
the 71 dB data. It is encouraging,however, that the curve for 20 dB data hasthe sameform asfor
71 dB data. This shows that although AMC was derived consideringnoiselesdata, the technique
has a similar e®ectin the presenceof noise.
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Figure 14: SNR¢-strain characteristics for the EPZS family of algorithms with 20dB data. EPZS_A
hasthe best performanceacrossa wide range of strains, although the SNRq is lower at high strains
and at 4% the best performanceis from EPZS_LA.

SNR
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Figure 15: SNRe-strain characteristics for the CCM family of algorithms with 20 dB data. At
all strains CCM_A signi cantly outperforms the other algorithms. In the absenceof AMC, log
compressionboosts CCM performance at strains above 1.5%, though the best log compression
performance comesfrom the combination algorithm, CCM _LA.
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Figure 16: SNRe-strain characteristics for EPZS_A, CCM _A and ASE with 20 dB data. Theseare
the best algorithms from ead of the three families. EPZS_A performs best acrossmost strains,
though ASE doesslightly better at 4%, where the other algorithms have lower SNRe owing to
signi cant decorrelation.

(@) (b) © « ©)

Figure 17: Olive/gelatin phantom: (a) B-scan, (b) EPZS (white=255=1% strain), (c) EPZS_L1,
(d) EPZS.L2, (e) EPZS A.

Figure 18: Gelatin phantom with two regions: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS_L1,
(d) EPZS L2, (e) EPZS A.
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Figure 19: Human male breast: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS.L1, (d) EPZS_L2,
(e) EPZSA.

(a) (b) (c) (d) (e)

Figure 20: Human male calf: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS_L1, (d) EPZS L2, (e)
EPZS_A.

Note from Figure 8 that the performance of uncorrected CCM is almost identical to EPZS.
Howewver, AMC for CCM is lesssuccessfulwhich probably re°ects the lack of a formal derivation,
rather than implying that it is not possibleto correct the AM e®ectin this case. The formula
in Equation 31 was basedon intuition. The derivation of a superior CCM _A algorithm would be
a valuable cortribution, sinceit is a considerably more challenging mathematical problem than
EPZSA.

Figure 9 con rms that ASE o®ersan alternativ e route to high-performancestrain estimation.
In particular, it is possibleto achieve good performanceusing arbitrarily long windows. This means
that locations of extremely high strain will not be subject to reducedSNRe whenthe window length
hasbeenchosenfor optimal performanceat a range of lower expected strains. It is alsointeresting
to note that EPZS_A actually outperforms ASE for short window lengths, and EPZS_A has the
higher peak performance. Of course,EPZS_A performs lesswell with longer windows, where high
strains causesigni cant decorrelation. The window length chosenfor subsequentests (T = 135,)
was determined by two factors: (1) long windows evertually reduce resolution in practical strain
imaging; and (2) 13:5, is a sensiblebalancefor near-optimal performanceacrossall algorithms at
all strains in the range 0.01{4%.

The log compressionresults in Figures 11{13 demonstrate the behaviour that was predicted
in Section 2.5. ¥4 dominates at the low strain in Figure 11, so the key to noise suppressionis
using all of the amplitude data to maximise the accuracyof the displacemen estimates. Therefore,
log compressionservesonly to degradeperformance. EPZS and EPZS_A have identical ?/zg, while
3/% is lessimportant, so AMC is irrelevant. The sameobsenation appliesto CCM and CCM A,
Howewer, EPZS and EPZS_A are degradedlessseerely by log compression,since the retention
of phaseinformation makesthese algorithms more robust. CCM only usesthe real signal, so %g
increasesrapidly with log compressionas information is discarded.

Howevwer, 0.5% strain in Figure 12 is already suzciently high for the noise cortribution of ¥
to becomeimportant. Log compressionyields a signi cant improvemert in EPZS_L1, and slight
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log compressionalso improves CCM_L1. Better performance is achieved by the AM corrected
algorithms, although theseare still degradedby log compression.EPZS_A and CCM _A eventually

corvergewith the uncorrected curvesasc! 1 . Log compressionis most bene cial at the higher
strain in Figure 13. Estimation noiseherecomesmostly from %g SOEPZS L1 performsmuch better

when a high level of log compressionis applied. CCM _L1 is alsoimproved by high log compression,
although it peaksat arelatively low value of c. The AMC algorithms are alsoimproved by slight log
compression,indicating that the AMC formulae are lessaccurate at high strain, soa combination

of AMC and log compressionyields the lowest location variance. However, the AMC algorithms

have considerably higher peaksthan the uncorrected algorithms, so performance corvergenceas
c! 1 represeits a signi cant reduction in SNRe. The choice of ¢ = 10° for subsequen tests
re°ects a balancebetweenthe EPZS_L1 optima at 0.5% and 4% strain.

The SNRe-strain characteristics in Figures 14{16 further demonstrate the advantage of apply-
ing AMC. It yields the best performancein both EPZS and CCM families of estimators. The
uncorrected EPZS and CCM curves again reach a plateau in the region where 3/% dominates, as
predicted by Equation 7. It is alsointeresting to note that the AMC curvespeak at lower strains
than the other algorithms, which follows from the combined e®ectsof AMC becominglessaccurate
at high strains and ?/% becomingmore important asthe level of signal decorrelation increases.In
the caseof EPZS_A, AMC is precisely accurate for small strains, but it divergesfrom the correct
estimation location at higher strains where errors in the assumptions of the derivation become
increasingly signi cant. The hybrid algorithm, EPZS_LA is the bestat 4% strain, sothe combina-
tion of AMC with moderate log compressionmay be the best noise suppressionstrategy at high
strains.

Figure 16 comparesthe best estimators from ead family of algorithms. EPZS_A hasthe best
performanceat most strains by a large margin. At low strains the worst algorithm is ASE. This
may indicate that the signal stretching technique is inhererntly more noisy, although at higher
strains its advantagesare the absenceof the AM e®ectand lower signal decorrelation. Therefore,
ASE outperforms CCM _A for strain >2%, at 4% it also outperforms EPZS_A, and the gradient
of the curve is still positive, so ASE may o®erfurther performancebenets at yet higher strains.
However, it is likely that the main advantage of ASE is the relative independenceof performance
and window length. On the other hand, we have already seenin Figure 9 that EPZS_A outperforms
ASE by a large margin if the optimal window length is selected.

Imagesfrom real ultrasound scansin Figures 17{20 provide further evidenceof the comparative
properties of thesealgorithms. In general,the EPZS_A imagesare the least noisy, while EPZS_L1
and EPZS_L2 are more or lessnoisy than EPZS depending on the local strain (c.f. Figures 11{12).
Theseimagesalsodemonstrate the importance of AM correction when AM artefacts correlate with
featuresin the B-scans. It is evidert in Figure 17 that the AM e®ecthas distorted the shapes of
features in the EPZS image, particularly in the attenuation shadav below the olive. Figure 18
shows a more extreme example. The specular re°ection is of unknown origin | possibly a cradk
has deweloped in the gelatin matrix. It causessewre distortion of EPZS, where the dark patch in
Figure 18b looks like a low strain planar inclusion. However, EPZS_L2 is provably una®ectedby
the AM e®ect,so real tissue features must also appear in Figure 18d. The dark patch is absen,
proving that it is actually an artefact. A mild artefact is alsoobsened with EPZS_A in Figure 18e,
where the local sparsenes®f estimation locations around the re°ection causesa textural change
in its vicinity.

The in vivo imagesin Figures 19 and 20 demonstrate that AM artefacts often occur in scans
of real human tissue | isoechoicity is rarely a feature of saliert scanplanes. The male breastin
Figure 19 has an appreciably di®erent strain image with EPZS comparedto the other algorithms.
A bright band at the top of the lower section reappearsas a zero-strain band in Figure 19b, but
this is an artefact, absernt from Figures 19c{e. Many similar artefacts are presert in the calf scan
of Figure 20. This is extremely aniscechoic, and comparisonbetweenFigure 20b and Figures 20c{e
shows that all of the main featuresin the EPZS image are artefacts.
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5.2 Conclusion

The AM e®ecthas beentheoretically introduced and empirically investigated. A new technique
called AMC hasbeenderived for the enhancemen of ultrasonic displacemen and strain estimates.
Simulation, in vitro and in vivo results shov a substartial reduction in the level of estimation
noise. Howewer, it is always possibleto reducenoiseby applying TTters, thereby sacri cing spatial
resolution in order to boost SNRe. It is likely in practice, therefore, that the main impact of AMC
will be animprovemernt in spatial resolution, and AMC can be extendedtrivially to enhancestrain
imaging in 2D or 3D if required. The ultimate limiting factor in ultrasonic displacemern and strain
estimation will be the limited bandwidth of RF ultrasound signals,i.e., the point spreadfunction
is not an impulse. This meansthat evenif signal displacemens weretracked perfectly, there would
be a residual error between those displacemens and the actual tissue motion. Developmens in
ultrasound decorvolution for enhancedultrasonic resolution may evertually play an important role
in high quality ultrasonic strain imaging [23)].

It should not be overlooked that the AM e®ectis likely to feature in many displacemen esti-
mation problems where other typesof signalsare used, such as standard video data. In principle,
AMC is a modality independen technique for enhancedtracking of small motions. There are likely
to be applications in a wide range of researt "elds | cosmology for example| although it is
also possiblethat in someof these areasequivalent techniques may already have been dewveloped
independertly .

Regarding immediate dewelopmerts in ultrasonic strain imaging, when AMC is applied with
regularly spacedwindows of a Xed length this leadsto variable spacingof the estimation locations.
It will be necessaryto investigate intelligent algorithms for automatically varying the length and
spacingof the windows to maintain spatial resolution with AMC, or to achieve a balance between
spatial resolution and estimation noise accordingto an appropriate cost function.

Another limitation of AMC aspreserted is the assumptionof locally constart strain. Estimation
noise will increasewhen the secondderivative of displacemen is non-zero within any particular
window. The samelimitation appliesto ASE. These rst order corrections are already very useful,
but it should be possibleto derive superior AMC formulae by exploiting correlations betweenthe
errors in overlapping windows. This is a topic for further investigation. It is alsonoted that AMC
was lessaccurate when applied to CCM, ewven for uniform strains, so the derivation of a superior
AMC for CCM preseris another possibleavenue for future work.

On the other hand, the secondary nding of this study is the relative easewith which correction
techniques can be deweloped for phase-basednethods. Log compressionin both its moderate and
limiting forms has beendemonstratedto be far more useful with phase(EPZS_L1 and EPZS_L2)
than with the correlation coezxcient (CCM _L1 and CCM _L2). The retention of phaseinforma-
tion, regardlessof how far the amplitude is compressedmakes phase-basednethods more robust.
Indeed, in sometests EPZS L2 has been one of the most successfulalgorithms. This appearsto
con®ict with the amplitude modulation bene'ts predicted in Section 2.5, but EPZS_L2 actually
doesexhibit a higher level of displacemen estimation error (3/%). Crucially EPZS_L2 is una®ected
by location errors (3/§). At high strains ¥4 is often the primary sourceof error, so EPZS_L2 out-
performs someof the other estimators. This is especially interesting, sincethere are computational
advantagesif all of the amplitude information can be discarded.

In conclusion,we have revisited log compressionand found that EPZS L2 is a good algorithm for
imaging high strains, potentially at extremely low computational cost. However, it is inferior to the
EPZS_A algorithm incorporating AMC. EPZS_A is marginally more computationally expensiwe,
but it is still suitable for real-time strain imaging. It outperformsall of the other algorithms tested
in this study throughout the typical range of strains encourtered in practical ultrasonic strain
imaging systems.

Ac knowledgemen ts

JamesNg measuredthe point spreadfunction of the Dynamic Imaging Diasus 5{10 MHz probe.
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App endices

A Benets of amplitude modulation

We analyse a generic displacemen estimator, motivated by the actual properties of phase-based
methods. We assumethat a window of arbitrary length producesan unbiased displacemen esti-

mate. The shortest possiblewindow covers one RF sample, producing a displacemen estimate, d.

The estimation variance, 3/§ is inversely proportional to the local ultrasonic SNR; this assumption

follows the Cramer-Rao lower bound for displacemen estimation variance [3].

32(t) = C1
740 = SNR(t)

We assumea simple model for RF signalsduring a strain imaging ultrasound scan. An underlying
signal, r, is present in both the pre- and post-deformation signals,r; and r,, but theseare recorded
in the presenceof additiv e noise.

(43)

n@ = rOFm (44)
|

ra(t + d(t)) r(t) + nz t+d(t) (45)

n; and n, have zeromean, with power %¢. They are mutually uncorrelated, and both noisesignals

are uncorrelated with r. In generaln; and n, consistnot only of electronic noise| other sources

of uncorrelated signal componerts include morphological changesto the spedle pattern [21] and
non-axial scatterer motion. The SNR can be expressedn terms of these signal componerts.

r(t)?

SNR(t) = —i . T
1 ) i 2
5 Nu(t)?+ nz t+ d(t)

! (46)

The constart of proportionality in Equation 43, C;, must be a large number, sincethe short win-
dows produce inaccurate estimates. However, the genericestimator actually useslonger windows,
yielding a weighted averageof the single-sampleestimates.

Phets
4 = _gener WOAO

Fnet+T
t=net W(t)

(47)

d, is the al displacemen estimate at window n, and W (t) is the weighting for estimate d(t). If
errors in the single-sampleestimates are mutually uncorrelated, then the variance of the overall
estimate is as follows.

P T
enet W)

Y (48)
n P 2
Cnet WO
This can be minimised by choosingW as follows, where C, is an arbitrary constart.
C CoSNR(t
w) = <2 = C2SNRO (49)

Z108 C.

The implications of this result are not immediately obvious, since SNR(t) is an unknown quartit y.
Howe\er, the expected error is minimised by choosing W according to the expected value of the
local SNR, given the information that is available. We require the statistical expectation of the
RHS in Equation 46.

2 3
£ 2
E'SNR@D) = E§ " ) : ﬂé (50)
Lony(t)2+ g t+ d(t)
" #
£ Io) H i ¢2ﬂi 1
= Er()2 £E 2 ny(t)2+ ny t+d(t) (51)
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The expectednoiseterm is assumedconstart (C3). More sophisticated noiseestimatesare possible
if assumptionscan be made about the statisticgl prgperties of the noise source, but we restrict
oursehesto the most generalapproad (note, E xi 1 6 E[x]i 1, soC3 6 % 2).

£ o] £ o
E SNR(t) = C3E r(t)? (52)

Since the noise is uncorrelated and the displacemen estimate is assumedto be unbiased, the
expectation of the local crosspower of the recordedsignalsis equalto the expected signal power.

£ i ¢a £ i ¢a
Erityrot+d, =E rl(t)r2¢_t+ dit) . (53)
= Er()+ na(t) r(t)+ ny't+ d(t) _ (54)
= BT+ E[(®ng(t)] + EEr(t)n2|t+ d) E£n1(t)n2|t+ d(t)¢n (55)
= E r(t)zn (56)

The cross power can therefore be taken as an estimate of the signal power. By combining the
results of Equations 49, 52 and 56, it emergesthat the optimal weighting for ead single-sample
displacemen estimate can be evaluated. In the following expressionCy, is an arbitrary constart.

i ¢
W (t) = Cary(t)rp t + dy (57)

Weighting by this formula minimises the expected value of 3/§

References

[1] S. K. Alam, J. Ophir, and E. E. Konofagou. An adaptive strain estimator for elastogra-
phy. IEEE Transactionson Ultrasonics, Ferroelectrics, and FrequencyControl, 45(2):461{472,
March 1998.

[2] J. Berco®,M. Tanter, and M. Fink. Supersonicshearimaging: a new technique for soft tissue
elasticity mapping. IEEE Transactionson Ultrasonics, Ferroelectrics, and FrequencyControl,
51(4):396{409, April 2004.

[3] G. C. Carter. Coherenceand time delay estimation. Proceedings of the IEEE, 75(2):236{255,
1987.

[4] I. C@spedesand J. Ophir. Reduction of image noise in elastograptly. Ultrasonic Imaging,
15:89{102,1993.

[5] X. Chen, M. J. Zohdy, S. Y. Emelianov, and M. O'Donnell. Lateral spedle tracking using
synthetic lateral phase. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 51(5):540{550, May 2004.

[6] C. L. de Korte, A. F. W. van der Steen, E. |. Cspedes,and G. Pasterkamp. Intravascular
ultrasound elastograply in human arteries: experiencein vitro. Ultrasoundin Medicine and
Biology, 24(3):401{408,1998.

[7] B. S. Garra, E. I. C8spedes,J. Ophir, S.R. Spratt, R. A. Zuurbier, C. M. Magnant, and M. F.
Pennanen. Elastography of breast lesions: initial clinical results. Radiology, 202(1):79{86,
January 1997.

[8] J. Gennisson, T. Baldewedk, M. Tanter, S. Catheline, M. Fink, L. Sandrin, C. Cornillon,
and B. Querleux. Assessmeh of elastic parameters of human skin using dynamic elastogra-
phy. IEEE Transactionson Ultrasonics, Ferroelectrics, and FrequencyControl, 51(8):980{989,
August 2004.

[9] T. J. Hall, Y. Zhu, and C. S. Spalding. In vivo real-time freehand palpation imaging. Ultra-
soundin Medicine and Biology, 29(3):427{435,2003.

25



[10] L. Han, J. A. Noble, and M. Burcher. A novel ultrasound indentation system for measuring
biomedanical properties of in vivo soft tissue. Ultrasoundin Medicine and Biology, 29(6):813{
823, 2003.

[11] J. A. Jensen.Field: a program for simulating ultrasound systems. In Proceedings of the 10th
Nordic-Baltic Conference on Biomedical Imaging, volume 4, pages351{353, 1996.

[12] F. Kallel and M. Bertrand. Tissue elasticity reconstruction using linear perturbation method.
IEEE Transactionson Medical Imaging, 15(3):299{313, June 1996.

[13] F. Kallel and J. Ophir. A least-squaresstrain estimator for elastograpty. Ultrasonic Imaging,
19:195{208,1997.

[14] F. Kallel, T. Vargese,J. Ophir, and M. Bilgen. The nonstationary strain Tter in elastograply:
Part ii. lateral and elewational decorrelation. Ultrasoundin Medicine and Biology, 23(9):1357{
1369,1997.

[15] K. Kaluzynski, X. Chen, S. Y. Emelianov, S. R. Skovoroda, and M. O'Donnell. Strain rate
imaging using two-dimensional spedle tracking. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 48(4):1111{1123,July 2001.

[16] E. E Konofagou, T. Varghese,and J. Ophir. Theoretical bounds on the estimation of trans-
versedisplacemer, transversestrain and Poisson'sratio in elastograpty. Ultrasonic Imaging,
22(3):153{177,2000.

[17] S. Langeland, J. d'Hooge, H. Torp, B. Bijnens, and P. Suetens. Comparison of time-domain
displacemen estimators for two-dimensionalRF tracking. Ultrasoundin Medicine and Biology,
29(8):1177{1186,2003.

[18] R. M. Lerner, S. R. Huang, and K. J. Parker. Soncelasticity imagesderived from ultrasound
signals in medhanically vibrated tissues. Ultrasound in Medicine and Biology, 16:231{239,
1990.

[19] J. E. Lindop, G. M. Treece,A. H. Gee,and R. W. Prager. 3D elastograply using freehand
ultrasound. 2006. Ultrasoundin Medicine and Biology, in press.

[20] M. A. Lubinski, S.Y. Emelianov, and M. O'Donnell. Spedle tracking methods for ultrasonic
elasticity imaging using short-time correlation. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 46(1):82{96, January 1999.

[21] R. L. Maurice and M. Bertrand. Lagrangian spedkle model and tissue-motion estimation |
theory. IEEE Transactions on Medical Imaging, 18(7):593{603, July 1999.

[22] M. I. Miga. A new approac to elastograply using mutual information and "nite elemeris.
Physicsin Medicine and Biology, 48(1):467{480, January 2003.

[23] J. K. H. Ng, R. W. Prager, N. G. Kingsbury, G. M. Treece,and A. H. Gee. An iterativ e,
wavelet-based decorvolution algorithm for the restoration of ultrasound imagesin an EM
framework. San Diego, California, February 2006. To appear in Proceedings of SPIE Medical
Imaging 2006,

[24] R. K. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey. On the feasibility of
remote palpation using acoustic radiation force. Journal of the Acoustical Scciety of America,
110(1):625{634,2001.

[25] M. O'Donnell, A. R. Skovoroda, B. M. Shapo, and S. Y. Emelianov. Internal displacemen
and strain imaging using ultrasonic spedle tracking. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 41:314{325,May 1994.

26



[26] J. Ophir, I. C8spedes,H. Ponnelanti, Y. Yazdi, and X. Li. Elastography: a quartitativ e
method for imaging the elasticity of biological tissues. Ultrasonic Imaging, 13:111{134,1991.

[27] K. J. Parker, S. R. Huang, R. A. Musulin, and R. M. Lerner. Tissue responseto mecdanical
vibrations for soncelasticity imaging. Ultrasoundin Medicine and Biology, 16:241{246,1990.

[28] A. Pesarento and A. Lorenz. Real time strain imaging | a new ultrasonic method for cancer
detection: rst study results. In Proceedings of IEEE Ultrasonics Sympsium 2001, pages
1647{1652,0ctober 2001.

[29] A. Pesavento, C. Perrey, M. Krueger, and H. Ermert. A time excient and accurate strain
estimation concept for ultrasonic elastograply using iterativ e phase zero estimation. IEEE
Transactionson Ultr asonics, Ferroelectrics, and FrequencyControl, 46(5):1057{1067,Septem-
ber 1999.

[30] J. G. Proakis and D. G. Manolakis. Digital signal processing: principles, algorithms and
applications. Upper SaddleRiver, third edition, 1996.

[31] R. Righetti, J. Ophir, and P. Ktonas. Axial resolutionin elastograpty. Ultrasoundin Medicine
and Biology, 28(1):101{113,2002.

[32] L. Sandrin, M. Tanter, S. Catheline, and M. Fink. Shear modulus imaging with 2-D tran-
siert elastograpty. IEEE Transactionson Ultrasonics, Ferroelectrics, and FrequencyControl,
49(4):426{435, April 2002.

[33] S. Srinivasan, F. Kallel, R. Soudon, and J. Ophir. Analysis of an adaptive strain estimation
technique in elastograply. Ultrasonic Imaging, 24:109{118,2002.

[34] S. Srinivasanand J. Ophir. A zero-crossingstrain estimator for elastograpty. Ultrasoundin
Medicine and Biology, 29(2):227{238,2003.

[35] S. Srinivasan, J. Ophir, and S. K. Alam. Theoretical derivation of SNR, CNR and spatial
resolution for a local adaptive strain estimator for elastograpty. Ultrasoundin Medicine and
Biology, 30(9):1185{1197,2004.

[36] T. Vargheseand J. Ophir. The nonstationary strain Tter in elastograply: Part i. frequency
dependen attenuation. Ultrasoundin Medicine and Biology, 23(9):1343{1356,1997.

[37] T. Vargheseand J. Ophir. A theoretical framework for performance characterization of elas-
tography: the strain Tter. IEEE Transactionson Ultrasonics, Ferroelectrics, and Frequency
Control, 44(1):164{172,January 1997.

[38] T. Vargheseand J. Ophir. Characterisation of elastographicnoise using the envelope of echo
signals. Ultrasoundin Medicine and Biology, 24(4):543{555,1998.

[39] F. Viola and W. F. Walker. A comparison of the performance of time-delay estimators in
medicalultrasound. IEEE Transactionson Ultrasonics, Ferroelectrics, and FrequencyControl,
50(4):392{401, April 20083.

[40] M. Vogt and H. Ermert. Developmert and evaluation of a high-frequency ultrasound-based
systemfor in vivo strain imaging of the skin. IEEE Transactionson Ultr asonics, Ferroelectrics,
and Freguency Control, 52(3):375{385, March 2005.

[41] W. F. Walker and G. E. Trahey. A fundamertal limit on the performance of correlation
based phase correction and °ow estimation techniques. IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, 41(5):644{654, Septenber 1994.

[42] W. F. Walker and G. E. Trahey. A fundamenal limit on delay estimation using partially
correlated spedle signals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 42(2):301{308, March 1995.

27



[43] Y. Zhu and T. J. Hall. A modi ed block matching method for real-time freehand strain
imaging. Ultrasonic Imaging, 24:161{176,2002.

28



