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Abstract

Ultrasonic strain imaging is usually based on displacement estimates computed using finite-

length sections of the RF ultrasound signal. Amplitude variations in the ultrasound are

known to cause a perturbation in the location at which the displacement estimate is valid.

If this goes uncorrected, it is an important source of estimation noise, which is amplified

when the displacement field is converted into a strain image. We present a study of this

effect based on theoretical analysis and practical experiments. A correction method based

on the analysis is tested on phase and correlation coefficient strain imaging, and compared

to the log compression technique from an earlier study. The performance is also compared

against adaptive strain estimation. Results indicate that the new correction yields a substantial

reduction in estimation noise.

1 Introduction

Ultrasonic elasticity imaging spans a broad range of techniques that process ultrasound signals
to extract information relating to tissue’s mechanical properties. A majority of these techniques
require high quality displacement tracking at the first stage of signal processing. Examples include
quasistatic compression imaging [26, 29], axial shear wave imaging [32] and acoustic radiation
force imaging in both quasistatic/impulsive [24] and dynamic [2] forms. The principal alterna-
tive, sonoelasticity imaging [18, 27], employs Doppler velocity estimation in mechanically vibrated
tissues. This is a practical technique, although the images it yields are relatively difficult to inter-
pret. Displacement-based imaging systems have been investigated for a wide range of diagnostic
purposes, spanning screening for soft tissue tumours [7, 9, 28], monitoring of atherosclerosis [6],
assessment of skin pathologies [8, 40] and examination of cardiac disease [15] among other appli-
cations. The simplest form of meaningful visualisation is the strain image. This is extended by
some of the more complicated systems, where strain image sequences are analysed to infer material
property estimates such as elastic [12, 32] and viscoelastic [2, 10] moduli.

The cornerstone of elasticity imaging — displacement tracking — is easily understood. Consider
a pair of ultrasound frames recorded consecutively during a scan: we refer to them as the pre- and
post-deformation frames. A window is placed around a point of interest in the pre-deformation
frame, and the closest match in the post-deformation frame is located. In practice, this is an
optimisation problem, where the peak must be found in some suitable measure of signal similarity,
such as the correlation coefficient [20, 26], sum of absolute (SAD) or squared (SSD) differences
[17, 21, 39] or mutual information [22]. Numerous phase-based approaches have also been developed
[5, 25, 29], which exploit a property of the cross-correlation function peak, and are advantageous
because of relatively low computational cost. Whichever technique has been used to match the
windows, it is usually assumed thereafter that the mechanical displacement of tissue at the centre
of the window is equal to the optimal window displacement [13, 20, 26, 29, 31]. Window-matching
is applied at positions throughout a grid over the acquired frame of ultrasound data, constructing
a fine map of the displacement field.
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(a) (b) (c)

Figure 1: (a) B-mode image of RF data from a scan of human arm. The signal is temporally
compressed to simulate a uniform compressive strain of 1%. On a linear scale from black (0%
strain) to white (2%), this should produce a uniform strain image with extremely low estimation
noise, since the signal SNR is higher than could possibly be achieved in a real compression scan.
However, (b) the standard correlation coefficient maximiser produces a strain image that is severely
degraded (and misleading) owing to the AM effect, while (c) shows the (near perfect) result from
applying the best of the correction techniques introduced in this paper. Strain estimation for both
images used windows of length 13.5λ.

A strain image can be produced by displaying spatial derivatives from the estimated displace-
ment field. In this paper we consider in detail the problem of axial strain image formation, although
some of the principles we derive are more generally applicable. Strain estimation may be regarded
as a stochastic process, in which case the terms “mean squared error”, “estimation noise” and
“estimation variance” may be used interchangeably when referring to the typical discrepancies
between actual deformations and the estimates that are recorded and displayed. Errors in strain
images arise mostly from two sources. The first is displacement estimation error, which is well
understood. Following Carter [3] and Walker and Trahey [41, 42] it has become popular to ap-
ply Cramer-Rao lower bound analyses (and variations thereon) to signals with known properties,
thereby identifying a lower bound on the displacement estimation variance that could be achieved
by a maximum likelihood estimator [13, 14, 16, 36, 37, 38, 39].

Compared to displacement estimation error, the second source of noise has received little atten-
tion in the literature. The problem is estimation location variance: it is not generally true that the
displacement estimate most closely tracks the actual displacement at the window centre. It was
noted in an earlier study by Céspedes and Ophir [4] that if there is intra-window compression and
the signal envelope is not constant, then the actual estimation location is skewed towards higher
amplitude portions of the windowed signal. This causes artefacts at the boundaries between re-
gions of differing echogenicity, as demonstrated by Figure 1. It is observed that strain estimates are
corrupted by unwanted modulation from the amplitude, which we call the amplitude modulation
(AM) effect. In fact, the AM effect also degrades strain estimates within regions that are isoe-
choic, since the signal returned from a fine scatterer distribution does not have a constant envelope.
Nevertheless, the AM effect is most dangerous in anisoechoic regions, where AM noise correlates
strongly with the features in B-mode images, and can easily lead to severe misinterpretations of
strain images.

It will be shown in the following section that the AM effect is often the primary source of error
in ultrasonic strain images where it is not corrected. Two correction techniques were proposed
by Céspedes and Ophir [4]. Firstly, log compression of the signal envelope reduces amplitude
fluctuations, thereby shifting estimation locations towards the window centres. This is an effective
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means of mitigating the AM effect, and has consequently been reapplied in more recent strain
imaging systems [19, 29]. The second suggestion was adaptive stretching [4], which compensates for
intra-window compression by stretching the signal to enable a close match to the true displacement
at all points. This has been shown in numerous studies to be a good way of reducing strain
estimation noise, although such techniques are computationally expensive [1, 21, 22, 33]. The
estimation location variance can also be reduced by using shorter estimation windows [20], but this
is inevitably accompanied by reduced accuracy in the displacement estimates, since displacement
estimation variance increases as the reciprocal of the window length.

The AM effect is present in all displacement tracking methods that use amplitude information,
including methods based on the (normalised) correlation coefficient. To eliminate the AM effect,
the amplitude must be entirely suppressed, as in one-bit compression, but this may bring unwanted
side effects. The following section examines the AM effect from a theoretical standpoint, leading
to a surprisingly simple AM correction method (AMC1). Experiments have been performed using
simulated RF ultrasound data to compare the performance of phase and correlation coefficient
methods, and to evaluate the efficacy of correction by AMC, log compression and one-bit (limiting)
compression in both cases. All of the corrections are computationally efficient and suitable for use
in real-time imaging systems. Further experiments are performed using a direct strain estimator
with adaptive stretching, which is slower but provides an AM suppression benchmark by which
the other techniques may be judged.

2 Amplitude modulation theory

This section analyses the estimation of strain from a set of window displacement estimates. For
the sake of clarity, we examine the simplest method for converting 1D displacement estimates to
1D strains, by taking the difference between displacements at consecutive windows, and dividing
this by the spacing between the assumed estimation locations.

ŝ =
d̂2 − d̂1

τ̂2 − τ̂1
(1)

ŝ is the strain estimate, d̂1 and d̂2 are the displacement estimates for windows 1 and 2 respectively,
and τ̂1 and τ̂2 are assumed to be the estimation locations. It is commonly assumed that Equation
1 contains only two random variables: d̂1 and d̂2. In this paper we examine the neglected variables,
τ̂2 and τ̂1. New variables D̂ and F̂ are defined to simplify the strain calculation.

D̂ = d̂2 − d̂1 (2)

F̂ =
1

τ̂2 − τ̂1
(3)

ŝ = D̂F̂ (4)

The sources of estimation noise are illustrated in Figure 2. We will assume that errors in D̂ and
in F̂ are uncorrelated. This allows the strain estimation variance, σ2

ŝ , to be expressed in a simple
form.

σ2
ŝ = σ2

D̂
σ2

F̂
+ µ2

F̂
σ2

D̂
+ µ2

D̂
σ2

F̂
(5)

µ
D̂

is the expectation of D̂, which for an unbiased estimator is equal to the actual difference, D,

between the displacements of the two windows. σ2
D̂

is the variance of D̂, which is approximately

equal to the sum of the variances of the individual displacement estimates, d̂1 and d̂2 (it is exactly

equal only if errors in d̂1 and d̂2 are uncorrelated, which is not the case for overlapping windows).
µ

F̂
is the expectation of the reciprocal location spacing estimate, F̂ , which may correspond to

the reciprocal of the spacing between consecutive windows. Finally, σ2
F̂

is the mean squared error

between F̂ and the actual reciprocal spacing, F . In general, F is not equal to the reciprocal of the

1AMC is the subject of UK patent application number GB 0606125.3.
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Figure 2: A practical estimate is displayed between two ideal estimates. There are two noise
sources in practical displacement estimation.

window spacing, since the actual estimation locations, τ2 and τ1, do not generally correspond to
the window centres.

We want to know what impact the terms in Equation 5 have on strain image quality. We
consider a quality measure denoted SNRe, which has previously been defined [4, 37] and can be
measured experimentally in images where the underlying strain field is known to be homogeneous.

SNRe =
µŝ

σŝ

(6)

µŝ is the mean strain estimate and σŝ is the standard deviation. The presence of µ2
D̂

in the third
term of Equation 5 becomes important when SNRe is evaluated. The noise contribution from the
AM effect is therefore proportional to the strain, s, so the AM effect is expected to become the
dominant source of strain estimation noise as the level of strain increases.

SNRe =

(

σ2
D̂

σ2
F̂

+ K2
1σ2

D̂

s2
+ K2

2σ2
F̂

)

−
1

2

(7)

Equation 7 is derived by substituting the RHS of Equation 5 into Equation 6. The final result
incorporates some simplifying assumptions. (1) µŝ = s. (2) The assumed value of F̂ is usually a
constant, i.e. µ

F̂
= F̂ = K1. (3) µ

D̂
= K2s where K2 is a constant (the expected shift equals the

strain multiplied by the window spacing).

2.1 Examples with pulse train signals

Window matching tracks the displacement of the enclosed signal. However, if displacement varies
within the window, then the actual signal displacement cannot be matched at all points. The
location at which the actual displacement of the signal is equal to the displacement estimate
varies depending on both signal and displacement field properties. In general, the estimation
location comes from a random distribution throughout the window. It has low probability density
at the ends, and in the absence of additional information its expectation is the window centre.
Where the location cannot be estimated, it is best to assume that windows sample displacement
at their centres. Unfortunately this means that the AM effect introduces displacement and strain
estimation noise, as illustrated in Figures 1 and 2.

It is not possible to devise an estimator that both produces optimal displacement estimates and
samples displacement at the centre of the window. This is because some portions of the signal may
contain no information, or the quality of the information may be variable. This is demonstrated by
examples with pulse train signals in Figure 3. In the absence of information between the pulses, an
optimal displacement estimator tracks the displacement of the pulse(s) within each window. The
example medium has been deformed by a uniform strain field, so displacement varies linearly with
distance. The assumption of estimation at the window centre now leads to significantly different
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(a) (b)

Figure 3: Extreme examples of the AM effect: (a) and (b) show the output of a perfect displacement
estimator operating on different pulse train signals with uniform strain. The strain (displacement
gradient) is (a) underestimated and (b) overestimated.

strain estimates if (a) overlapping windows track the same pulse, or (b) neighbouring windows
track pulses at their extremities. When a uniform strain, s, is being tracked, and there is no
displacement estimation error, the AM effect nonetheless distorts the result, such that the strain
estimation lower bound is 0 for overlapping windows, and the upper bound is s × T+∆t

∆t
. T is the

window length and ∆t is the spacing between successive windows. For non-overlapping windows
the lower bound is s × ∆t−T

∆t
.

Of course, a real ultrasound signal is not a pulse train. Otherwise the AM effect could be
corrected easily, by noting that displacement estimation occurs at the pulse locations. However,
real ultrasound signals do incorporate amplitude variations, which are often large even over small
distances. Lower amplitude sections usually have lower SNR, and a good displacement estimator
should incorporate a mechanism for preferentially tracking the most reliable data. Ideally it should
also be possible to estimate the actual displacement location when this is not equal to the window
centre. The remainder of this section presents an analytical investigation of the AM effect in the
context of some common ultrasonic strain estimation techniques.

2.2 Phase-based methods

We derive an approximate expression for the AM effect when windows are matched by identifying
the zero crossing of the complex cross-correlation phase. Phase-based methods operate on analytic
signals with real and imaginary parts, which are produced by applying the Hilbert transform
(or some approximation thereof). The complex cross-correlation function and its phase may be
expressed as follows.

〈a1, a2〉
(

n∆t, d̃
)

=

n∆t+T
∑

t=n∆t

a∗

1(t)a2

(

t + d̃
)

(8)

φ
(

n∆t, d̃
)

= ∠〈a1, a2〉
(

n∆t, d̃
)

(9)

a1 and a2 are analytic ultrasound signals, ∗ denotes the complex conjugate, n∆t is the location
of the beginning of the analysis window in the pre-deformation signal, T is the window length,
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Signal real part

Imaginary part

Envelope

Figure 4: The signal model is a constant frequency sinusoid with arbitrary signal envelope, subject
to an arbitrary deformation.

and d̃ is the candidate displacement applied to the post-deformation window to look for a match.
Eventually the match or displacement estimate, d̂n, is found where φ has a zero crossing.

φ
(

n∆t, d̂n

)

= 0 (10)

It will be noted that if φ is only expressed in the range [−π,+π] then a zero crossing occurs on
average once for every wavelength shift in d̃. It is therefore necessary to incorporate a system for
guiding the search to ensure that the correct zero crossing is always selected. This is analogous to
eliminating “peak-hopping” errors from correlation coefficient analysis [41]. We do not investigate
this issue here, but in practice we have found that it is always possible to eliminate this sort of
outlier error by extending error detection and correction techniques similar to those described in
past studies [19, 43].

To analyse the properties of phase-based methods, we use a simple signal model with no noise,
where decorrelation occurs only as a result of the 1D signal stretching that accompanies mechanical
strain. Our model of the pre-deformation signal, a1, is a constant frequency sinusoid, scaled by a
positive real signal envelope, f . This is illustrated in Figure 4.

a1(t) = f(t)ejωt (11)

The main limitation of this model is the constant frequency assumption. Real RF ultrasound signals
are narrowband, although the frequency may be substantially constant over short distances. In
our model the post-deformation signal, a2, is produced by an arbitrary temporal warping of a1,
such that every point, a1(t), undergoes a displacement, d(t).

a2

(

t + d(t)
)

= a1(t) (12)

This is a simplification of the signal transformation that occurs in a real compression scan. Firstly,
it will be noted that a uniform strain in our model gives rise to a change in the frequency centroid in
the post-deformation signal, which will not usually be reflected in reality (although local frequency
changes do occur). Secondly, we have assumed that the only change to the signal envelope will
be a 1D warping. In reality, changes in the interference patterns of closely spaced scatterers
introduce unpredictable components in the post-deformation signal, resembling the addition of
an uncorrelated narrowband noise signal. Furthermore, axial compression in real materials with
finite compressibility is inevitably accompanied by additional motions in the lateral and elevational
directions. Nevertheless, we pursue analysis with our simplified model, and the predictions are later
tested on real and simulated ultrasound data.

We examine the properties of the signals in matched windows. In general, the estimated
displacement is similar but not equal to the local displacement at each position in the window.
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We therefore introduce a new symbol, t2, denoting the pre-deformation location in a1, of the data
with which a1(t) is matched.

t2 + d(t2) = t + d̂n (13)

The complex cross-correlation function at the match is now expressed as follows.

〈a1, a2〉
(

n∆t, d̂n

)

=

n∆t+T
∑

t=n∆t

a∗

1(t) a2

(

t + d̂n

)

(14)

=
n∆t+T
∑

t=n∆t

a∗

1(t) a1(t2) (15)

=

n∆t+T
∑

t=n∆t

f(t)f (t2) ejω(t2−t) (16)

In order to satisfy the match criterion (Equation 10), the imaginary part of the complex cross-
correlation function must be zero.

=

(

n∆t+T
∑

t=n∆t

f(t)f (t2) ejω(t2−t)

)

= 0 (17)

This leads to an alternative expression for the phase zero condition.

n∆t+T
∑

t=n∆t

f(t)f (t2) sin
(

ω (t2 − t)
)

= 0 (18)

It is noted that t2 − t = d̂n − d(t2) is the local discrepancy between the displacement estimate and
its actual value. This is small, so ω (t2 − t) ¿ π

2 at all points in the window for typical window
lengths and operating strains. It follows that Equation 18 may be simplified by applying the small
angle approximation.

n∆t+T
∑

t=n∆t

f(t)f (t2) ω (t2 − t) ' 0 (19)

Equation 19 can be converted to an expression with clearer relevance to the physical deformation
by examining the term t2 − t. This is performed as follows, employing the relation from Equation
13, and expanding a Maclaurin series about d(t).

t2 − t =
{

d̂n − d(t)
}

−
{

d (t2) − d(t)
}

(20)

=
{

d̂n − d(t)
}

−
dd(t)

dt

{

t2 − t
}

−O
{

(t2 − t)2
}

(21)

=
{

d̂n − d(t)
}

− s
{

d̂n − d(t2)
}

−O

{

(

d̂n − d(t2)
)2
}

(22)

Second order terms will be neglected, as will the term scaled by s (strain), since the vast majority
of previously documented ultrasonic strain imaging systems operate with s ¿ 1.0. Now the result
from Equation 22 is substituted into Equation 19.

n∆t+T
∑

t=n∆t

f(t)f (t2) ω
(

d̂n − d(t)
)

' 0 (23)

Rearrangement yields a good approximate formula for the displacement estimate, d̂n.

d̂n '

∑n∆t+T

t=n∆t f(t)f(t2)d(t)
∑n∆t+T

t=n∆t f(t)f(t2)
(24)

We have shown that an approximation of the phase-based displacement estimate is a weighting of
point displacements by the cross power of the local signal envelope.
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2.3 Amplitude modulation correction

We show that the actual estimation location can be estimated for the important case where strain
may be considered constant at the scale of the individual windows. The constant strain condition
is expressed mathematically as follows.

d(t) = α + st (25)

We substitute this into Equation 24, and rearrange to produce a convenient form for the approxi-
mation.

d̂n '

∑n∆t+T

t=n∆t f(t)f(t2)(α + st)
∑n∆t+T

t=n∆t f(t)f(t2)
(26)

' α +
s
∑n∆t+T

t=n∆t f(t)f(t2)t
∑n∆t+T

t=n∆t f(t)f(t2)
(27)

The location estimate, τ̂n, is defined to be the position at which the displacement estimate approx-
imation is equal to the actual displacement, i.e. d̂n ' α + sτ̂n. Hence,

τ̂n =

∑n∆t+T

t=n∆t f(t)f(t2)t
∑n∆t+T

t=n∆t f(t)f(t2)
(28)

These location estimates are substituted into Equation 1 to refine the strain estimates. This
amplitude modulation correction (AMC) also allows a more accurate identification of the image
region corresponding to the space between successive displacement estimates, thereby producing a
more accurate correspondence between the physical locations of tissue features, and their apparent
locations in strain or displacement images.

2.4 Correlation coefficient methods

Correlation coefficient methods have to date been the most popular approach for displacement
tracking, at least within the ultrasonic strain imaging community. The correlation coefficient for
real RF signals r1 and r2 at window n with a candidate shift d̃ is evaluated as follows.

ρr1r2

(

n∆t, d̃
)

=

∑n∆t+T

n∆t r1(t)r2

(

t + d̃
)

√

∑n∆t+T

n∆t r1(t)2
∑n∆t+T

n∆t r2

(

t + d̃
)2

(29)

The displacement estimate is chosen to maximise the correlation coefficient.

d̂n = arg max
d̃

ρr1r2

(

n∆t, d̃
)

(30)

In common with the analysis of phase-based methods, it would be highly desirable to derive a
similar estimation location expression. The starting point is to identify the properties of stationary
points (including the maximum) by differentiating ρr1r2

with respect to d̃. However, we have thus
far been unable to derive an analytic expression for τ̂n in the case of correlation coefficient methods.
Instead we apply the following heuristic, which is motivated by an assumption that the AM effect
on correlation coefficient methods is similar to the effect on phase-based methods, for which AMC
has already been derived.

τ̂n =

∑n∆t+T

t=n∆t |r1(t)r2(t + d̂n)|t
∑n∆t+T

t=n∆t |r1(t)r2(t + d̂n)|
(31)

Simulation results are included later to investigate whether or not this is a useful technique.

8



2.5 Benefits of amplitude modulation

AMC increases the utility of displacement estimates from a spatially varying displacement field by
estimating the actual estimation location. The alternative approach for handling the AM effect is
to reduce the level of amplitude variation, for example by log compression of the signal envelope.
This may be a useful technique in some circumstances, but it should be recognised that the AM
effect may actually be beneficial for high quality displacement estimation.

Appendix A analyses a simple model of a generic displacement estimator, where short windows
produce unreliable estimates, but the estimation variance can be reduced by using longer windows
to take a weighted moving average. Following reasonable assumptions, it is shown that an optimal
displacement estimator weights the importance of different signal sections in proportion with the
local cross power, r1(t)r2(t+d̂n). This outcome is similar in form to the approximation in Equation
24 for phase-based methods. It implies that the weighting becomes suboptimal if the amplitude
is compressed, thereby reducing the accuracy of the displacement estimator. We therefore expect
that if location estimation such as AMC is performed accurately, then the lowest strain estimation
noise is achieved in the absence of log compression. It is less clear how far these conclusions apply
to correlation coefficient methods, but the correlation coefficient also incorporates a weighting of
some form, since high amplitude sections within a window have a greater impact on the overall
correlation coefficient value.

2.6 Adaptive strain estimators

Adaptive strain estimators work on the principle of reversing the deformation that has occurred,
to obtain the best match to the pre-deformation signal. Uniform strain is assumed at the scale
of the individual windows — this is the same as the assumption applied in Section 2.3 to derive
AMC. In 1D, an adaptive strain estimator uniformly stretches the post-deformation window until
its similarity to the pre-deformation window is maximised. Past studies have shown that strain
estimation error in these systems is lower than in conventional displacement-based methods. A
feature of adaptive strain estimation is an increase in the correlation coefficient. This has been
discussed by Srinivasan et al. [35], where increased correlation was identified as a cause of reduced
strain estimation error. It is appropriate that in this paper we additionally note the likely contri-
bution of the AM effect. If the local strain is actually uniform, adaptive strain estimation has the
advantage of being able to correctly match the displacement at every point within the window.
This means that for uniform strains the question of estimation location is irrelevant, because the
correct displacement can be found everywhere. Tests of adaptive strain estimation on uniform
strain simulations are therefore expected to be independent of the AM effect. It is for this reason
that we employ an adaptive strain estimator as our AM suppression benchmark. It is also expected
that the absence of the AM effect (by contrast with the other estimators) will result in a markedly
different shape to the SNRe-strain characteristic.

3 Experimental methods

3.1 Simulation

Simulated RF ultrasound data has been generated using Field II [11]. The simulations have 2×105

scatterers positioned at random according to a uniform distribution throughout a 50× 50× 6 mm
volume, with random scattering strengths distributed uniformly over the range [0, γmax]. The probe
parameters model the 5-10 MHz probe of the Dynamic Imaging2 Diasus ultrasound machine, for
which the point spread function has been measured experimentally — the pulse has a centre
frequency of 6.0 MHz and bandwidth 2.1 MHz — and the sampling frequency is 66.7 MHz.

For each frame 128 A-lines have been simulated, spanning 40 mm in the lateral direction,
recorded to a depth of 40mm. Simulations have been performed at a range of compressions (0%,

2http://www.dynamicimaging.co.uk
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Figure 5: B-scan of simulated RF data.

0.01%, 0.1% 0.5% 1.0%, 2.0%, 4.0%) by rescaling the axial spacing of the scatterers. This is
important, because the relative performance of the strain estimation algorithms we compare is
strain dependent. Five data sets have been generated for different scatterer fields. This contributes
to the reliability of the results, which record the mean and standard deviation across the five data
sets.

The Field II output has been converted to the RF ultrasound format of the Stradwin3 freehand
3D ultrasound system. RF samples are recorded with 16-bit signed integer precision. To ensure
reproducibility of the resultant SNR and AM effects, the signals were normalised before conversion,
such that in all cases the mean power is fixed at Vrms = 210, corresponding to a mean SNR of 71
dB in the presence of quantisation noise. Tests have also been performed on simulated data with
additive white Gaussian noise, reducing the SNR to 20 dB. Figure 5 shows an example B-scan
from the simulated data.

3.2 In vitro and in vivo scanning

Scans have been performed using a Dynamic Imaging Diasus ultrasound machine with a 5–10 MHz
probe, sampled at 66.7 MHz by a Gage4 CompuScope 14200 analogue-to-digital converter, with
a PC running the Stradwin freehand 3D ultrasound software. As per previous work [19], frames
were acquired at 30 Hz during a freehand scan, and exaggerated palpating movements were not
necessary. The images are used only for qualitative assessment of the strain estimation algorithms.
Results are shown for (1) olive/gelatin phantom mimicking a stiff inclusion in soft tissue, (2)
tissue-mimicking phantom with two layers, (3) human male breast in vivo, (4) human calf muscle
in vivo.

3.3 Strain estimators

For comparative purposes, we test phase, correlation coefficient and adaptive strain estimators.
The performance of phase and correlation coefficient estimators is compared for several variations:
uncorrected strain estimation, log compression, limit log compression and AMC. Quantitative tests
use simulation data, where the performance is measured by evaluating SNRe; the strain standard
deviation is calculated from the raw strain estimates, where no smoothing has been applied. For
a qualitative assessment, we also present example images from in vitro and in vivo scans.

Fair comparison is made possible by fixing the window parameters across all of the estimators
in each test. It should be noted, that where there is a priori knowledge of a uniform strain
field, the process of imaging strain by differencing closely spaced windows serves only to introduce
noise; instead, windows separated by a large distance should be differenced in order to achieve an
SNRe that becomes arbitrarily high for large window spacing. Alternatively, in practical systems
it is sensible to match larger numbers of closely spaced windows, and to combine their estimates

3http://mi.eng.cam.ac.uk/~rwp/stradwin/
4http://www.gage-applied.com
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by filtering methods such as least squares or wavelet decomposition. To varying degrees, these
techniques reduce both noise and resolution, although the AM effect will remain important. Since
the entire purpose of our study is to investigate the noise that is introduced by erroneous estimation
location assumptions, and to evaluate the performance of the proposed AMC technique, in our
quantitative tests we stick to the method of differencing windows at a fixed window-spacing, ∆t =
2.7λ (i.e. 0.45 µs, 0.35 mm, 30 RF samples at 66.7 MHz). The window length, T , is varied between
tests, with the chosen length stated in each case.

The remainder of the experimental methods section provides a full description of each estimator,
the properties of the simulation data, and the nature of the in vitro and in vivo ultrasound scans.

3.3.1 Efficient phase zero search

The efficient phase zero search (EPZS) is drawn from previous work [19] adapting the concept of
Pesavento et al. [29]. To summarise, a 5–10 MHz filter is applied to the RF data (r1, r2) before
converting to analytic signal representations (a1, a2), which are modulated to the baseband (ab1,
ab2) to enhance the accuracy of linear interpolation. ab2 must be estimated at subsample locations
by baseband linear interpolation, to enable accurate subsample estimation of d (for a discussion of
interpolation frequency responses, see Proakis and Manolakis [30]). Phase-based methods require
that the displacement of the analysis window is known already to within λ/2; this is achieved by
initialising each window with the final displacement estimate from the preceding one; windows at
the top of each A-line are initialised with d̃ = 0. Displacement estimates are differenced to produce
strain estimates following Equation 1.

The estimation location is usually assumed to be the window centre.

τ̂n = n∆t +
T

2
(32)

The phase is preserved but the amplitude is partially suppressed when the signal is log compressed
according to the following formula.

ab,log(t) = log
(

1 + c|ab(t)|
)

ej arg ab(t) (33)

c is the compression factor. The larger the value of c, the smaller the amount of amplitude
information that is retained, since the size of variations in the log compressed amplitude becomes
smaller compared to the mean value. We refer to this algorithm as EPZS L1. As c → ∞ all of the
amplitude information is discarded, since log compressed amplitude variations become infinitely
smaller than the mean. Limit log compression has a simpler form.

ab,log(t) = ej arg ab(t) (34)

We refer to limit log compression as EPZS L2. For phase-based methods, EPZS L2 is the counter-
part of one-bit compression or zero crossing techniques in correlation coefficient methods [4, 34, 39].
We also present results for EPZS with AMC, referred to as EPZS A. In addition to producing an-
alytic signals, we detect the signal envelope, |a|, which is exploited as follows for AMC estimation
of τ̂n (c.f. Equation 28).

τ̂n =

∑n∆t+T

t=n∆t |a1(t)||a2(t + d̂n)|t
∑n∆t+T

t=n∆t |a1(t)||a2(t + d̂n)|
(35)

EPZS L2 uses none of the amplitude information, so the AMC version of τ̂n is identical to the win-
dow centre assumption. However, EPZS L1 still exhibits a degree of AM susceptibility, so results
are presented for an algorithm combining EPZS L1 with AMC (operating on the log compressed
signal envelope), referred to as EPZS LA.

3.3.2 Correlation coefficient maximiser

The correlation coefficient maximiser (CCM) searches initially at integer sample locations for the
maximum value of the cross correlation coefficient (see Equation 29). The estimate is refined by
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allowing subsample values of d and interpolating r2 at subsample locations. Again, a complex
baseband representation of r2 allows highly accurate subsample interpolation, as with EPZS, but
in CCM it is converted back to a subsample real signal for the correlation coefficient calculation.
This requires the following calculation, where ωm is the modulation frequency that was used earlier
to shift the analytic signal down to the baseband.

r2(t) = <
{

ab2(t)e
jωmt

}

(36)

τ̂ is again usually assumed to be the window centre (Equation 32). Log compression (CCM L1)
is tested as a means of reducing the error in τ̂ , using the following formula, as first proposed by
Céspedes and Ophir [4].

rlog(t) = log
(

1 + c|r(t)|
)

sign
(

r(t)
)

(37)

To maximise algorithm performance, the full RF signal is used for subsample interpolation of
r2, which is only log compressed at the moment of computing the correlation coefficient. In the
limiting case as c → ∞ variations in the log compressed signal magnitude become infinitely smaller
than the mean magnitude, so only the sign is important. A simpler expression may be used.

rlog(t) =

{

+1 r(t) ≥ 0
−1 r(t) < 0

(38)

Subsample interpolation actually still employs the full RF signal, so zero crossings are identified
with high accuracy. We call this variation CCM L2. It has previously been described as one-bit
compression [4] and is equivalent to zero crossing methods [34]. AMC is applied to CCM following
Equation 31, which is referred to as CCM A. AMC is also applied alongside non-limiting log
compression in CCM LA.

3.3.3 Adaptive strain estimator

Typical adaptive strain estimators from previous studies have two search dimensions — displace-
ment and stretch — for each spatial dimension of strain estimation [1, 33]. A typical algorithm has
the following stages: (1) each post-deformation window is shifted till the best match is located; (2)
the shifted window is stretched to maximise a similarity measure; (3) displacement is re-estimated
for the stretched window; and (4) the process repeats iteratively until convergence. Once arrays
of displacement and stretch have been calculated, either the displacement estimates may be differ-
enced (as in displacement-based methods) to re-estimate strain, or the stretch estimates may be
displayed directly (which is the approach followed in this study). An estimator of this form was
observed by the authors to produce significantly better strain images than those that are achieved
by the basic displacement estimation approaches, with the greatest improvement for high strains.
SAD was found to outperform the correlation coefficient, so this is the chosen signal similarity
measure. The origin of this difference may lie in the fact that often ρr1r2

' 1.0 at the correct
stretch, in which case SAD is less prone to quantisation errors.

It has subsequently been noted that a minor modification to the adaptive stretching algorithm
yields a further performance improvement. The modification concerns the way that displacement
is estimated: our adaptive strain estimator (ASE) estimates the locations of the windows directly
from the strain estimates, rather than searching over two dimensions. This has been found to yield
higher SNRe.

The initialisation of EPZS depends on the fact that the displacement at the top of each A-line
is zero. Similarly, ASE searches only over strain (and not over displacement) in the top window of
each A-line. This utilises the prior knowledge that a search over displacement could only degrade
the accuracy of the estimate in the event that a non-zero displacement were found for the top of
the window. The displacement at subsequent windows is estimated accurately by integrating the
estimated strains, where it will be recognised that integration is a noise-suppressing operation.
The offset of the first sample in a succeeding overlapping window is, of course, not equal to the
displacement at the end of the first window. Rather, the relationship we assume is illustrated in
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Figure 6: Illustration displacement offsets in ASE. The estimated displacement of window n is fixed
at the end displacement of window n − 1, while ŝn is the estimated displacement gradient across
the window. This yields šn−1 as the higher resolution strain estimate for the previous window.

Figure 6, where estimated strains are displayed as gradients on a plot of displacement against time.
The window strain estimate multiplied by the window length, T ŝn−1, provides the best estimate
for the displacement difference between the end and the start. The following window is therefore
pinned at this end point, and stretched on either side to find the next estimate, ŝn. This means
that the offset displacement at the start of window n depends on: the offset of window n − 1, the
previous window stretch, and the candidate window stretch, s̃.

dos,n = dos,n−1 + ŝn−1T − s̃(T − ∆t) (39)

This leads immediately to a second result for increased resolution with overlapping windows. An
estimate that resolves strain changes at the scale of the shift between windows (thereby matching
the resolution of the displacement methods) is produced as follows.

šn−1 =
{

ŝn−1T − ŝn(T − ∆t)
}

/∆t (40)

This is a consequence of the geometry in Figure 6. Increased resolution comes at a cost of increased
estimation noise. We present results using š rather than ŝ, however, since the higher resolution of
š makes it the appropriate comparison with the displacement-based methods. Having dealt with
the displacement offset and resolution issues, the basic form of the ASE search is an optimisation
problem similar to the other methods.

SAD(n, s̃) =

n∆t+T
∑

t=n∆t

∣

∣

∣

∣

∣

r1(t) − r2

(

t + dos,n + s̃

(

t +
1

2fs

− n∆t

)

)∣

∣

∣

∣

∣

(41)

fs is the sampling frequency. ŝn minimises SAD(n, s̃) .

ŝn = arg min
s̃

SAD(n, s̃) (42)

It might be possible to adapt fast algorithms to this optimisation problem, but for now we use an
exhaustive search.

4 Results

Quantitative results indicate the advantages and disadvantages of each technique. Important
trends are illustrated by graphs. Where there is space for error bars these extend to one standard
deviation either side of the mean. We also present strain images for qualitative assessment.
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Figure 7: SNRe against window length for EPZS and EPZS A, with both 71 dB and 20 dB data
at 0.5% strain. Uncorrected EPZS with 71 dB data reaches a plateau at T = 10λ, which the 20
dB results converge towards for long windows. When AMC is applied there is no such plateau
and much higher SNRe is achieved — SNRe is initially a linear function of window length, and it
continues to increase for long windows, although the gradient becomes less steep.

4.1 Window length

Results for EPZS, EPZS A, CCM, CCM A and ASE with window lengths, T , in the range 2.8–
27.1λ indicate a suitable choice of T for the later tests. They also serve as a first opportunity for
assessing the AMC technique. Figures 7 and 8 show performance against window length at 0.5%
strain, while Figure 9 shows the effect of window length on EPZS A and ASE at a higher strain.
13.5λ is employed for all other results in this report.

To illustrate the practical meaning of SNRe, Figure 10 shows strain images at 0.5% compression.
The characteristics of the images can be compared with the corresponding SNRe results from the
graphs. The images have a linear scale with 0 (black) representing zero strain, 127.5 (mid-grey) is
the simulated strain of 0.5% and 255 (white) represents 1%. Saturation occurs at 0 and 255, and no
smoothing has been applied, so each section between successive estimation locations has constant
brightness. An ideal estimator would yield a uniform greyscale level, but this is unachievable in
practice.

4.2 Compression factor

A justification is presented for the choice of log compression factor in the algorithms EPZS L1,
EPZS LA, CCM L1 and CCM LA. The effect of log compression varies to a large degree depending
on the strain level, so Figures 11–13 show results at strains representing the smallest, largest, and
mid-range in the simulation data. It is evident that log compression is not always desirable, but
the choice of c reflects a value that is likely to boost SNRe in high strain regions, whilst avoiding
extreme degradation of low strain estimates. c = 103 is employed for all of the remaining results.
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Figure 8: SNRe against window length for CCM and CCM A, with both 71 dB and 20 dB data
at 0.5% strain. Uncorrected CCM is almost identical to EPZS. However, AMC is obviously less
accurate for CCM, since the improvement with CCM A is much smaller and the results are erratic
for long windows.
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Figure 9: SNRe against window length for EPZS A and ASE, with 20 dB data at 4% strain. ASE
performs less well with short windows, but it reaches a high and fairly constant level of performance
for T > 10λ. EPZS A, by contrast, performs well with short windows and has a higher peak SNRe.
However, windows with T > 10λ have a differential displacement of >0.4λ between the ends, so in
this range EPZS A suffers substantially increased decorrelation and estimation noise.
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(a) SNRe = 1.63 (b) SNRe = 1.62

(c) SNRe = 3.86 (d) SNRe = 2.05

Figure 10: Strain images for a 0.5% compression with 20 dB data using T = 13.5λ: (a) EPZS; (b)
CCM; (c) EPZS A; (d) CCM A. The performance of EPZS and CCM is similar, though EPZS A
performs considerably better than CCM A.
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Figure 11: SNRe results for EPZS L1, EPZS LA, CCM L1 and CCM LA with 20 dB data at 0.01%
strain as a function of c, the compression factor. At low strains, the main effect of log compression
is increased noise. This effect is more pronounced with CCM L1. AMC has almost no effect in
these images.
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Figure 12: SNRe results for EPZS L1, EPZS LA, CCM L1 and CCM LA with 20 dB data at
0.5% strain as a function of c, the compression factor. At this strain, log compression significantly
improves the performance of EPZS L1. CCM L1 is also improved by slight log compression. Better
performance is produced by AMC, although this is degraded by log compression, so as c → ∞
EPZS LA and CCM LA converge with the curves where AMC has not been applied.
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Figure 13: SNRe results for EPZS L1, EPZS LA, CCM L1 and CCM LA with 20 dB data at
4% strain as a function of c, the compression factor. At this strain all of the algorithms can
be improved by applying an appropriate level of log compression. The greatest improvement is
exhibited by EPZS L1, while the ACM algorithms are still degraded by high compression factors,
and they eventually converge with the curves where AMC has not been applied.

4.3 Strain dependence

With parameters T and c selected as per the preceding sections, Figures 14–16 compare the per-
formance of EPZS, EPZS L1, EPZS L2, EPZS LA, EPZS A, CCM, CCM L1, CCM L2, CCM LA,
CCM A and ASE across a range of strains.

4.4 In vitro and in vivo results

Finally, images from real ultrasound scans are presented. For the sake of concision, we restrict
ourselves to EPZS, EPZS L1, EPZS L2 and EPZS A, allowing a qualitative assessment of log
compression and AMC when applied to real data. The images in Figures 17–20 have been smoothed
slightly by estimating strain with a 1 mm least squares filter along the axial direction; no other
filtering has been applied and the values of parameters T and c are unchanged.

5 Discussion

5.1 Interpretation of results

Window length results in Figure 7 show that AMC is extremely effective when applied to EPZS,
which validates the analysis in Sections 2.2 and 2.3. Notice that while increasing the window length
is known to reduce σ2

D̂
, nevertheless the uncorrected algorithm quickly reaches a plateau: this is

because the primary source of noise is the AM effect when long windows are used. Meanwhile,
when AMC is applied the remaining noise is mainly due to σ2

D̂
, so higher SNRe is achieved with

the 71 dB data. It is encouraging, however, that the curve for 20 dB data has the same form as for
71 dB data. This shows that although AMC was derived considering noiseless data, the technique
has a similar effect in the presence of noise.
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Figure 14: SNRe-strain characteristics for the EPZS family of algorithms with 20 dB data. EPZS A
has the best performance across a wide range of strains, although the SNRe is lower at high strains
and at 4% the best performance is from EPZS LA.
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Figure 15: SNRe-strain characteristics for the CCM family of algorithms with 20 dB data. At
all strains CCM A significantly outperforms the other algorithms. In the absence of AMC, log
compression boosts CCM performance at strains above 1.5%, though the best log compression
performance comes from the combination algorithm, CCM LA.
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Figure 16: SNRe-strain characteristics for EPZS A, CCM A and ASE with 20 dB data. These are
the best algorithms from each of the three families. EPZS A performs best across most strains,
though ASE does slightly better at 4%, where the other algorithms have lower SNRe owing to
significant decorrelation.

(a) (b) (c) (d) (e)

Figure 17: Olive/gelatin phantom: (a) B-scan, (b) EPZS (white=255=1% strain), (c) EPZS L1,
(d) EPZS L2, (e) EPZS A.

(a) (b) (c) (d) (e)

Figure 18: Gelatin phantom with two regions: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS L1,
(d) EPZS L2, (e) EPZS A.
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(a) (b) (c) (d) (e)

Figure 19: Human male breast: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS L1, (d) EPZS L2,
(e) EPZS A.

(a) (b) (c) (d) (e)

Figure 20: Human male calf: (a) B-scan, (b) EPZS (255=0.8%), (c) EPZS L1, (d) EPZS L2, (e)
EPZS A.

Note from Figure 8 that the performance of uncorrected CCM is almost identical to EPZS.
However, AMC for CCM is less successful, which probably reflects the lack of a formal derivation,
rather than implying that it is not possible to correct the AM effect in this case. The formula
in Equation 31 was based on intuition. The derivation of a superior CCM A algorithm would be
a valuable contribution, since it is a considerably more challenging mathematical problem than
EPZS A.

Figure 9 confirms that ASE offers an alternative route to high-performance strain estimation.
In particular, it is possible to achieve good performance using arbitrarily long windows. This means
that locations of extremely high strain will not be subject to reduced SNRe when the window length
has been chosen for optimal performance at a range of lower expected strains. It is also interesting
to note that EPZS A actually outperforms ASE for short window lengths, and EPZS A has the
higher peak performance. Of course, EPZS A performs less well with longer windows, where high
strains cause significant decorrelation. The window length chosen for subsequent tests (T = 13.5λ)
was determined by two factors: (1) long windows eventually reduce resolution in practical strain
imaging; and (2) 13.5λ is a sensible balance for near-optimal performance across all algorithms at
all strains in the range 0.01–4%.

The log compression results in Figures 11–13 demonstrate the behaviour that was predicted
in Section 2.5. σ2

D̂
dominates at the low strain in Figure 11, so the key to noise suppression is

using all of the amplitude data to maximise the accuracy of the displacement estimates. Therefore,
log compression serves only to degrade performance. EPZS and EPZS A have identical σ2

D̂
, while

σ2
F̂

is less important, so AMC is irrelevant. The same observation applies to CCM and CCM A.
However, EPZS and EPZS A are degraded less severely by log compression, since the retention
of phase information makes these algorithms more robust. CCM only uses the real signal, so σ2

D̂
increases rapidly with log compression as information is discarded.

However, 0.5% strain in Figure 12 is already sufficiently high for the noise contribution of σ2
F̂

to become important. Log compression yields a significant improvement in EPZS L1, and slight
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log compression also improves CCM L1. Better performance is achieved by the AM corrected
algorithms, although these are still degraded by log compression. EPZS A and CCM A eventually
converge with the uncorrected curves as c → ∞. Log compression is most beneficial at the higher
strain in Figure 13. Estimation noise here comes mostly from σ2

F̂
, so EPZS L1 performs much better

when a high level of log compression is applied. CCM L1 is also improved by high log compression,
although it peaks at a relatively low value of c. The AMC algorithms are also improved by slight log
compression, indicating that the AMC formulae are less accurate at high strain, so a combination
of AMC and log compression yields the lowest location variance. However, the AMC algorithms
have considerably higher peaks than the uncorrected algorithms, so performance convergence as
c → ∞ represents a significant reduction in SNRe. The choice of c = 103 for subsequent tests
reflects a balance between the EPZS L1 optima at 0.5% and 4% strain.

The SNRe-strain characteristics in Figures 14–16 further demonstrate the advantage of apply-
ing AMC. It yields the best performance in both EPZS and CCM families of estimators. The
uncorrected EPZS and CCM curves again reach a plateau in the region where σ2

F̂
dominates, as

predicted by Equation 7. It is also interesting to note that the AMC curves peak at lower strains
than the other algorithms, which follows from the combined effects of AMC becoming less accurate
at high strains and σ2

D̂
becoming more important as the level of signal decorrelation increases. In

the case of EPZS A, AMC is precisely accurate for small strains, but it diverges from the correct
estimation location at higher strains where errors in the assumptions of the derivation become
increasingly significant. The hybrid algorithm, EPZS LA is the best at 4% strain, so the combina-
tion of AMC with moderate log compression may be the best noise suppression strategy at high
strains.

Figure 16 compares the best estimators from each family of algorithms. EPZS A has the best
performance at most strains by a large margin. At low strains the worst algorithm is ASE. This
may indicate that the signal stretching technique is inherently more noisy, although at higher
strains its advantages are the absence of the AM effect and lower signal decorrelation. Therefore,
ASE outperforms CCM A for strain >2%, at 4% it also outperforms EPZS A, and the gradient
of the curve is still positive, so ASE may offer further performance benefits at yet higher strains.
However, it is likely that the main advantage of ASE is the relative independence of performance
and window length. On the other hand, we have already seen in Figure 9 that EPZS A outperforms
ASE by a large margin if the optimal window length is selected.

Images from real ultrasound scans in Figures 17–20 provide further evidence of the comparative
properties of these algorithms. In general, the EPZS A images are the least noisy, while EPZS L1
and EPZS L2 are more or less noisy than EPZS depending on the local strain (c.f. Figures 11–12).
These images also demonstrate the importance of AM correction when AM artefacts correlate with
features in the B-scans. It is evident in Figure 17 that the AM effect has distorted the shapes of
features in the EPZS image, particularly in the attenuation shadow below the olive. Figure 18
shows a more extreme example. The specular reflection is of unknown origin — possibly a crack
has developed in the gelatin matrix. It causes severe distortion of EPZS, where the dark patch in
Figure 18b looks like a low strain planar inclusion. However, EPZS L2 is provably unaffected by
the AM effect, so real tissue features must also appear in Figure 18d. The dark patch is absent,
proving that it is actually an artefact. A mild artefact is also observed with EPZS A in Figure 18e,
where the local sparseness of estimation locations around the reflection causes a textural change
in its vicinity.

The in vivo images in Figures 19 and 20 demonstrate that AM artefacts often occur in scans
of real human tissue — isoechoicity is rarely a feature of salient scan planes. The male breast in
Figure 19 has an appreciably different strain image with EPZS compared to the other algorithms.
A bright band at the top of the lower section reappears as a zero-strain band in Figure 19b, but
this is an artefact, absent from Figures 19c–e. Many similar artefacts are present in the calf scan
of Figure 20. This is extremely anisoechoic, and comparison between Figure 20b and Figures 20c–e
shows that all of the main features in the EPZS image are artefacts.
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5.2 Conclusion

The AM effect has been theoretically introduced and empirically investigated. A new technique
called AMC has been derived for the enhancement of ultrasonic displacement and strain estimates.
Simulation, in vitro and in vivo results show a substantial reduction in the level of estimation
noise. However, it is always possible to reduce noise by applying filters, thereby sacrificing spatial
resolution in order to boost SNRe. It is likely in practice, therefore, that the main impact of AMC
will be an improvement in spatial resolution, and AMC can be extended trivially to enhance strain
imaging in 2D or 3D if required. The ultimate limiting factor in ultrasonic displacement and strain
estimation will be the limited bandwidth of RF ultrasound signals, i.e., the point spread function
is not an impulse. This means that even if signal displacements were tracked perfectly, there would
be a residual error between those displacements and the actual tissue motion. Developments in
ultrasound deconvolution for enhanced ultrasonic resolution may eventually play an important role
in high quality ultrasonic strain imaging [23].

It should not be overlooked that the AM effect is likely to feature in many displacement esti-
mation problems where other types of signals are used, such as standard video data. In principle,
AMC is a modality independent technique for enhanced tracking of small motions. There are likely
to be applications in a wide range of research fields — cosmology, for example — although it is
also possible that in some of these areas equivalent techniques may already have been developed
independently.

Regarding immediate developments in ultrasonic strain imaging, when AMC is applied with
regularly spaced windows of a fixed length this leads to variable spacing of the estimation locations.
It will be necessary to investigate intelligent algorithms for automatically varying the length and
spacing of the windows to maintain spatial resolution with AMC, or to achieve a balance between
spatial resolution and estimation noise according to an appropriate cost function.

Another limitation of AMC as presented is the assumption of locally constant strain. Estimation
noise will increase when the second derivative of displacement is non-zero within any particular
window. The same limitation applies to ASE. These first order corrections are already very useful,
but it should be possible to derive superior AMC formulae by exploiting correlations between the
errors in overlapping windows. This is a topic for further investigation. It is also noted that AMC
was less accurate when applied to CCM, even for uniform strains, so the derivation of a superior
AMC for CCM presents another possible avenue for future work.

On the other hand, the secondary finding of this study is the relative ease with which correction
techniques can be developed for phase-based methods. Log compression in both its moderate and
limiting forms has been demonstrated to be far more useful with phase (EPZS L1 and EPZS L2)
than with the correlation coefficient (CCM L1 and CCM L2). The retention of phase informa-
tion, regardless of how far the amplitude is compressed, makes phase-based methods more robust.
Indeed, in some tests EPZS L2 has been one of the most successful algorithms. This appears to
conflict with the amplitude modulation benefits predicted in Section 2.5, but EPZS L2 actually
does exhibit a higher level of displacement estimation error (σ2

D̂
). Crucially EPZS L2 is unaffected

by location errors (σ2
F̂
). At high strains σ2

F̂
is often the primary source of error, so EPZS L2 out-

performs some of the other estimators. This is especially interesting, since there are computational
advantages if all of the amplitude information can be discarded.

In conclusion, we have revisited log compression and found that EPZS L2 is a good algorithm for
imaging high strains, potentially at extremely low computational cost. However, it is inferior to the
EPZS A algorithm incorporating AMC. EPZS A is marginally more computationally expensive,
but it is still suitable for real-time strain imaging. It outperforms all of the other algorithms tested
in this study throughout the typical range of strains encountered in practical ultrasonic strain
imaging systems.
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Appendices

A Benefits of amplitude modulation

We analyse a generic displacement estimator, motivated by the actual properties of phase-based
methods. We assume that a window of arbitrary length produces an unbiased displacement esti-
mate. The shortest possible window covers one RF sample, producing a displacement estimate, ď.
The estimation variance, σ2

ď
, is inversely proportional to the local ultrasonic SNR; this assumption

follows the Cramer-Rao lower bound for displacement estimation variance [3].

σ2
ď
(t) =

C1

SNR(t)
(43)

We assume a simple model for RF signals during a strain imaging ultrasound scan. An underlying
signal, r, is present in both the pre- and post-deformation signals, r1 and r2, but these are recorded
in the presence of additive noise.

r1(t) = r(t) + n1(t) (44)

r2(t + d(t)) = r(t) + n2

(

t + d(t)
)

(45)

n1 and n2 have zero mean, with power σ2
n. They are mutually uncorrelated, and both noise signals

are uncorrelated with r. In general n1 and n2 consist not only of electronic noise — other sources
of uncorrelated signal components include morphological changes to the speckle pattern [21] and
non-axial scatterer motion. The SNR can be expressed in terms of these signal components.

SNR(t) =
r(t)2

1
2

(

n1(t)2 + n2

(

t + d(t)
)2
) (46)

The constant of proportionality in Equation 43, C1, must be a large number, since the short win-
dows produce inaccurate estimates. However, the generic estimator actually uses longer windows,
yielding a weighted average of the single-sample estimates.

d̂n =

∑n∆t+T

t=n∆t W (t)ď(t)
∑n∆t+T

t=n∆t W (t)
(47)

d̂n is the final displacement estimate at window n, and W (t) is the weighting for estimate ď(t). If
errors in the single-sample estimates are mutually uncorrelated, then the variance of the overall
estimate is as follows.

σ2
d̂n

=

∑n∆t+T

t=n∆t W (t)2σ2
ď
(t)

(

∑n∆t+T

t=n∆t W (t)
)2 (48)

This can be minimised by choosing W as follows, where C2 is an arbitrary constant.

W (t) =
C2

σ2
ď
(t)

=
C2SNR(t)

C1
(49)

The implications of this result are not immediately obvious, since SNR(t) is an unknown quantity.
However, the expected error is minimised by choosing W according to the expected value of the
local SNR, given the information that is available. We require the statistical expectation of the
RHS in Equation 46.

E
[

SNR(t)
]

= E









r(t)2

1
2

(

n1(t)2 + n2

(

t + d(t)
)2
)









(50)

= E
[

r(t)2
]

× E

[

2

(

n1(t)
2 + n2

(

t + d(t)
)2
)

−1
]

(51)
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The expected noise term is assumed constant (C3). More sophisticated noise estimates are possible
if assumptions can be made about the statistical properties of the noise source, but we restrict
ourselves to the most general approach (note, E

[

x−1
]

6= E[x]−1, so C3 6= σ−2
n ).

E
[

SNR(t)
]

= C3E
[

r(t)2
]

(52)

Since the noise is uncorrelated and the displacement estimate is assumed to be unbiased, the
expectation of the local cross power of the recorded signals is equal to the expected signal power.

E
[

r1(t)r2

(

t + d̂n

)]

= E
[

r1(t)r2

(

t + d(t)
)]

(53)

= E
[(

r(t) + n1(t)
)(

r(t) + n2

(

t + d(t)
))]

(54)

= E
[

r(t)2
]

+ E [r(t)n1(t)] + E
[

r(t)n2

(

t + d(t)
)]

+ E
[

n1(t)n2

(

t + d(t)
)]

(55)

= E
[

r(t)2
]

(56)

The cross power can therefore be taken as an estimate of the signal power. By combining the
results of Equations 49, 52 and 56, it emerges that the optimal weighting for each single-sample
displacement estimate can be evaluated. In the following expression C4 is an arbitrary constant.

W (t) = C4r1(t)r2

(

t + d̂n

)

(57)

Weighting by this formula minimises the expected value of σ2
d̂
.
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