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Abstract

Deformation estimation is the foundation of emerging techniques that image the mechanical

properties of soft tissues. We present theoretical analysis and experimental results for an inves-

tigation of phase-based ultrasonic deformation estimation. Numerous phase-based algorithm

variants are tested quantitatively on simulated RF data from uniform scatterer fields, subject

to a range of uniform strain deformations. Particular attention is paid to a new algorithm

using Weighted Phase Separation, the performance of which is demonstrated in application

to in vivo freehand strain imaging. The results support the theory that underlies the new

algorithm, and more generally highlight the factors that should be considered in the design of

high performance deformation estimators for practical applications.

1 Introduction

Ultrasonic imaging of tissue mechanical properties is a growing field in which there are many
competing approaches. The majority of schemes require high accuracy estimation of the small
deformations that occur between successive frames in an ultrasound scan, although a smaller set of
alternatives work in conjunction with conventional Doppler motion estimation [7, 11]. Most systems
employ a conventional two-dimensional ultrasound scanner, and the aim of deformation estimation
is to produce an array of one- or two-dimensional displacement estimates, which may be thought
of as noisy samples from the displacement field over a fine grid of locations throughout each frame.
The recorded displacement estimates are sometimes displayed directly as displacement images, but
it is more common to produce strain images by taking spatial derivatives of the displacement. There
also exist more elaborate analyses that aim at displaying quantitative estimates of the mechanical
properties of the underlying tissue. This can be tackled, for example, by solving the inverse
problem for the elasticity field when deformation data has been recorded under a known static
load [6]. Alternatively, elastic moduli can be estimated from a record of wavefront propagation
when low frequency shear waves are transmitted through the region of interest [3].

This paper is not concerned with methods for analysing deformation data: whichever techniques
become clinically important, the quality of the results from high level analysis will depend to a
large degree on the accuracy of the underlying deformation estimation. Moreover, it is desirable
that this estimation be performed at low computational cost. We consider the task of estimating
the deformation between a pair of RF ultrasound frames acquired pre- and post-deformation. “De-
formation estimation” refers to the special case of displacement estimation when displacement is
a continuously varying function of location. At present, it is normal to produce each displacement
estimate by positioning a window over a small section of data in the pre-deformation frame and
identifying the closest matching window in the post-deformation frame. The displacement estimate
is the difference between the pre- and post-deformation window positions. The task of window
matching entails adjusting the post-deformation window position in order to find the optimum in
a measure of signal similarity. The most commonly cited measure is the correlation coefficient,
although near-identical performance has been reported from techniques employing alternative mea-
sures such as the sum of squared differences [13] and the phase of the complex cross-correlation
function [4, 10]. The estimation procedure is repeated throughout a grid of locations, as above,
until the displacement field has been adequately sampled.
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The window matching approach to deformation estimation is sometimes problematic: pre-
and post-deformation windows often match poorly, because deformation may not be negligible on
the scale of the individual windows. Many techniques have been developed whereby the post-
deformation signals are warped to increase the correlation between pre- and post-deformation
windows. These are often termed “adaptive” strain estimators. The simplest adaptive method
is to apply a uniform stretch to the post-deformation signal, aiming to reverse part of the signal
transformation that has actually taken place [1]. Deformation data from adaptive strain estima-
tors are measurably less noisy than standard displacement estimation, but the improvement is
accompanied by a considerable increase in computational cost.

We have recently noted, however, that traditional window matching approaches can be en-
hanced. Since finite length windows are required to produce displacement estimates with low
noise, the accuracy of the data can be improved by estimating the location at which the displace-
ment estimate is valid. Thus, each deformation datum consists of an estimate of the displacement
location in addition to the displacement itself. In past systems, it was implicitly assumed that the
location is the window centre, which results in an “amplitude modulation” artefact with the RF
signal amplitude modulating the strain image. For this reason, our location estimation technique is
termed Amplitude Modulation Correction (AMC). We have demonstrated that AMC yields better
performance at lower computational cost than adaptive strain estimation [9].

AMC can be implemented particularly easily in conjunction with phase-based displacement
estimators. In the light of this result, the paper in hand presents further analysis of phase-based
deformation estimation. Both theoretical and empirical methods are employed for the derivation
and assessment of new phase-based deformation estimators. In particular, we introduce a new fam-
ily of highly versatile algorithms referred to as Weighted Phase Separation (WPS1). It is shown
that the WPS framework can reproduce the performance of conventional phase-based methods,
but WPS can also be adapted when different properties are required. The analysis in this report
considers deformation estimation in the axial direction only, reflecting the fact that axial deforma-
tion is usually most important: the accuracy is superior because RF ultrasound signals have far
lower lateral and elevational bandwidth, and in many elasticity imaging schemes the largest de-
formations actually occur axially. The WPS algorithm is validated by demonstration with in vivo

freehand strain imaging. Furthermore, it has previously been shown that phase-based methods
can be adapted for displacement estimation in other directions [4], so it is likely that the findings
of this study can be developed in the future for multi-dimensional deformation estimation.

2 Theory

This section presents theoretical analysis of phase-based deformation estimators. It begins by
reviewing Amplitude Modulation Correction (AMC): the accuracy of the deformation data is in-
creased by estimating the location at which each displacement estimate is valid (for a full intro-
duction see [9]). We consider the case when AMC is applied to conventional algorithms, where
matching post-deformation windows are found by locating the zero crossings in the phase of the
complex cross-correlation function. Later we introduce Weighted Phase Separation (WPS), which
is partly motivated by the simplicity of adding AMC. In general, WPS is a framework in which the
expected importance of different signal portions can be incorporated in the deformation estimator
by an arbitrary selection of weightings, so as to maximise accuracy. The weighting strategy can
be adjusted to reflect any theoretical or empirical experience. We present analysis to justify sim-
ple weighting strategies linked to signal amplitude and signal phase, which are employed in later
experiments for an initial validation of the WPS concept.

1WPS is the subject of UK patent application GB 0610172.9.
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Throughout this paper we consider a signal model that offers a high level of generality.

a1(t) = ar1(t) + jai1(t) = s1(t)e
jφs1(t) (1a)

= f(t)ejφ(t) + n1(t)e
jφn1(t) (1b)

a2

(

t + d(t)
)

= ar2

(

t + d(t)
)

+ jai2

(

t + d(t)
)

= s2

(

t + d(t)
)

ejφs2

(

t+d(t)
)

(1c)

= f(t)ejφ(t) + n2(t)e
jφn2(t) (1d)

a1(t) and a2(t) are analytic representations of pre- and post-deformation RF signals with real
and imaginary parts as indicated. They can alternatively be expressed in phasor notation with
envelopes s1(t) and s2(t) and phases φs1(t) and φs2(t). Equations 1b and 1d encapsulate the
relationship that is exploited for deformation estimation. Both signals contain a common signal,
f(t)ejφ(t), which undergoes an arbitrary stretch, t → t+d(t), caused by the movement of scatterers
in the underlying tissue. To a varying extent the common signal is masked by noise signals n1(t)
and n2(t) which encompass all signal components not pertaining to the common signal. These
include electrical noise, changes to scatterer interference patterns and decorrelation due to off-axis
movement.

2.1 Location estimation with conventional algorithms

For each window, AMC entails estimating the location at which the displacement estimate is valid.
This is necessary unless the strain is zero, because a range of displacements are present in any finite
length window. One might imagine that windows could be made very small in order to avoid this
ambiguity, effectively measuring point displacements, but the size of errors in the displacement
estimates is inversely related to the window length, so the overall level of estimation noise would
increase.

In general, a suitable implementation of AMC for any particular algorithm is found by analysing
the properties of the displacement estimator to derive the following form of approximation.

d̂n '

∑n∆t+T
t=n∆t W (t)d(t)
∑n∆t+T

t=n∆t W (t)
(2)

The displacement estimate for window n is d̂n; t is axial distance measured in number of samples
(t = 0 is the surface of the probe); ∆t is the shift in starting position between consecutive analysis
windows moving down the pre-deformation A-line; T is the window length; d(t) is the actual
displacement of tissue at pre-deformation position t; and W (t) is approximately the weighting of
data at that position. The distribution of weightings over the length of the window modulates
the location at which d̂n is most likely to correspond to the underlying tissue displacement, i.e.,
amplitude modulation. Note that in general, however, the weightings may depend not only on
amplitude but on all signal properties. It is often reasonable to assume that the strain, s, is
uniform over the length of the window, i.e., d(t) = α + st. In this case, we define τn as the

location at which d̂n is most likely to correspond to the actual common signal displacement, i.e.,
d̂n = α + sτn. An estimate, τ̂n, is produced by substituting these expressions into Equation 2.

τ̂n =

∑n∆t+T
t=n∆t W (t)t

∑n∆t+T
t=n∆t W (t)

(3)

The accuracy of the location estimate depends on (1) the validity of the uniform strain assumption2

and (2) the accuracy of the weighted-sum approximation in Equation 2. The analysis for deter-
mining the weightings depends on the properties of the displacement estimator. Using our signal

2In some cases it is more accurate to approximate the spatial variation of d(t) with a higher order polynomial. A
similar procedure can be applied to estimate the polynomial coefficients from a set of weightings and displacement
estimates from a group of neighbouring windows.
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model from Equation 1, we will review the derivation of weightings for conventional phase-based
displacement estimators [9].

At window n with trial displacement d̃k, the cross-correlation function, 〈a1, a2〉, and its phase,
Φ, are as follows.

〈a1, a2〉
(

n∆t, d̃k

)

=
n∆t+T
∑

t=n∆t

a∗

1(t)a2

(

t + d̃k

)

(4a)

Φ
(

n∆t, d̃k

)

= ∠〈a1, a2〉
(

n∆t, d̃k

)

(4b)

The displacement estimate, d̂n, is the displacement at which Φ is zero.

Φ
(

n∆t, d̂n

)

= 0 (5)

To simplify the following analysis we introduce t2(t, d̃k). This expresses the pre-deformation lo-
cation of the signal component with which data at t is compared under trial displacement d̃k.
The same symbol is also used in conjunction with displacement estimates, i.e., t2(t, d̂n). In other
words, the point in the common signal that was at location t2 before the deformation translates
to t2 + d(t2) in the post-deformation signal, and this is the location that gets compared with t in
the pre-deformation signal.

t2 + d(t2) , t + d̃k (6)

Consider the terms of the cross-correlation function.

〈a1, a2〉
(

n∆t, d̃k

)

=

n∆t+T
∑

t=n∆t

{

f(t)f(t2)e
j(φ(t2)−φ(t)) + f(t)n2(t2)e

j(φn2(t2)−φ(t))

+ n1(t)f(t2)e
j(φ(t2)−φn1(t)) + n1(t)n2(t2)e

j(φn2(t2)−φn1(t))

}

(7)

The terms divide into two categories. ρd contains terms associated with signal stretching and ρs

contains the noise terms.

〈a1, a2〉
(

n∆t, d̃k

)

= ρd

(

n∆t, d̃k

)

+ ρs

(

n∆t, d̃k

)

(8a)

where ρd

(

n∆t, d̃k

)

=

n∆t+T
∑

t=n∆t

f(t)f(t2)e
j(φ(t2)−φ(t)) (8b)

and ρs

(

n∆t, d̃k

)

=

n∆t+T
∑

t=n∆t

{

f(t)n2(t2)e
j(φn2(t2)−φ(t)) + n1(t)f(t2)e

j(φ(t2)−φn1(t))

+ n1(t)n2(t2)e
j(φn2(t2)−φn1(t))

}

(8c)

Every term in ρs is a sum over the product of signals that are generally uncorrelated, so unless
T is very small these tend to cancel out. Thus, unless the common signal is very weak, ρd is
usually the major constituent of the cross-correlation function. For an insight into the mechanism
of displacement estimation by cross-correlation function phase methods, we briefly consider the
case when ρs ¿ ρd, so noise terms are neglected. The phase zero condition from Equation 5
implies that the cross-correlation function has no imaginary part at the match.

=
{

ρd

(

n∆t, d̂n

)}

= 0 ⇒

n∆t+T
∑

t=n∆t

f(t)f(t2) sin
(

φ(t2) − φ(t)
)

= 0 (9)

A further approximation can be made for typical window lengths and strains. The small angle
approximation applies so long as sT ¿ λ (λ denotes the ultrasonic wavelength at the centre
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frequency).

n∆t+T
∑

t=n∆t

f(t)f(t2)
(

φ(t2) − φ(t)
)

' 0 (10)

A more illuminating form is produced when we define the local mean frequency, ω̄(t, t2), and
substitute from Equation 6 for t2 − t [9].

ω̄(t, t2) ,
φ(t2) − φ(t)

t2 − t
(11a)

t2 − t = d̂n − d(t2) ' d̂n − d(t) (11b)

This leads to an alternative expression for the relationship in Equation 10.

n∆t+T
∑

t=n∆t

f(t)f(t2)ω̄(t, t2)
(

d̂n − d(t)
)

' 0 (12)

Rearrangement yields an expression for d̂n.

d̂n '

∑n∆t+T
t=n∆t f(t)f(t2)ω̄(t, t2)d(t)
∑n∆t+T

t=n∆t f(t)f(t2)ω̄(t, t2)
(13)

The approximation in Equation 13 has the required form for AMC, cf., Equation 2. The weight-
ings are W (t) = f(t)f(t2)ω̄(t, t2). These weightings can be evaluated with moderate accuracy. It
is difficult to estimate ω̄(t, t2) because both pre- and post-deformation noise signals have a large
impact on the recorded frequency perturbations, but a reasonable estimate is made simply by
assuming that ω̄(t, t2) is equal to the centre frequency, which is constant at least on the scale of
the window length. In practice, this means that τ̂n is estimated assuming W (t) = f(t)f(t2), where

the signal envelope product, s1(t)s2(t + d̂n), is taken as an estimate for f(t)f(t2).

2.2 Weighted Phase Separation

Following the analysis in Section 2.1, it seems evident that signal phase separation could be con-
sidered as a standalone displacement estimator, without recourse to the cross-correlation function.
Pre- and post-deformation points must be aligned to within λ/2 to avoid phase wrapping ambigu-
ity. When this is the case, the phase separation of the common signal is equal to the local alignment
error scaled by the local frequency, as expressed in Equation 11. At alignment d̃k, a point-wise

displacement estimate d̂
(

t, d̃k

)

can be evaluated by subtracting the estimated alignment error.

d̂
(

t, d̃k

)

= d̃k +
φ̂(t) − φ̂(t2)

ω̂(t, t2)
(14)

φ̂(t) and φ̂(t2) are estimates of the common signal phase at the pre- and post-deformation points,
and ω̂(t, t2) is an estimate of ω̄(t, t2). Again, in this report we will assume a constant value
for ω̂(t, t2), replacing it with the nominal probe centre frequency, ω0. Deviations in the centre
frequency introduce bias in the point-wise estimates, but this bias will be eliminated later in the
analysis. As for estimating the phase separation, φ̂(t)− φ̂(t2), there may be scope for sophisticated
adaptive filtering approaches for removing the noise signals, but in this investigation we simply
record the phase of the overall signal.

φ̂(t) = arg a1(t) = φs1(t) (15a)

φ̂(t2) = arg a2

(

t + d̃k

)

= φs2

(

t + d̃k

)

(15b)
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Recall that the overall phase of an analytic signal can readily be evaluated in the range [−π,+π]
by taking the inverse tangent of the ratio of its real and imaginary parts.

φs(t) = arg a(t) = tan−1

(

ai(t)

ar(t)

)

(16)

Assuming that the signals are aligned to within λ/2, one might envisage detecting the phase
of the RF ultrasound signals and immediately applying Equation 14 to produce a point-wise
displacement estimate at every sample. However, this approach would suffer from extremely high
noise. Firstly, when only a single sample is used there is no chance for noise terms to cancel out, so
the level of estimation noise is inevitably higher than for estimates on a coarser scale. Secondly, the
alignment needs to be iteratively corrected to reduce the level of noise, since the approximation in
Equation 11b is accurate only for closely aligned signals. Furthermore, the size of errors introduced
by frequency perturbations is proportional to the alignment error. Intuitively it seems sensible to
use each point-wise displacement estimate as a new alignment, iteratively refining the estimate.
However, the alignment could actually become poorer if the point-wise estimates are noisy.

A more robust approach refines the alignment across a wider region (a window) by taking a
weighted average of point-wise estimates.

d̂(t, d̃k) = d̃k +
φs1(t) − φs2(t + d̃k)

ω0
(17a)

d̃k+1 =

∑n∆t+T
t=n∆t W (t)d̂(t, d̃k)
∑n∆t+T

t=n∆t W (t)
(17b)

= d̃k +

∑n∆t+T
t=n∆t W (t)

(

φs1(t) − φs2(t + d̃k)
)

ω0

∑n∆t+T
t=n∆t W (t)

(17c)

Each point-wise estimate at alignment d̃k follows Equation 17a. The weighted sum in Equation 17c
is used for iterative realignment. With each iteration the points are better aligned so the estimates
are more accurate. Eventually the alignment will converge on an optimum for the window.

d̃k = d̂n ⇒ d̃k+1 = d̃k (18)

In practice, iterations cease when a convergence criterion is satisfied. Thereafter it may be de-
sirable to refine the point alignments further by proceeding with more stages of analysis using
shorter windows for the weighted averaging. Alternatively, the optimal alignment, d̂n, may itself
be recorded as a robust displacement estimate. This type of algorithm, called Weighted Phase
Separation (WPS), is the principal subject of our investigation.

It should be noted that when convergence occurs, the error in ω0 no longer causes bias, because
the final sum of weighted phase separations is zero. Notice also that by explicitly employing
weightings for displacement estimation, WPS becomes an ideal target for AMC.

The weightings, W (t), can be adjusted to emphasise signal portions that are of special interest.
For example, a weighting of zero is implicitly applied to data outside each window. Within each
window it is simplest to use uniform weightings, W (t) = 1. However, if it is possible to infer the
reliability of different portions of the signals, then the most reliable portions should be weighted
more heavily to reduce the overall estimation error. Section 2.3 examines the factors that need to
be considered in determining a weighting strategy. Section 2.3.2 also details further observations
that improve the accuracy with which effective weightings are estimated when using conventional
phase-based displacement estimators.

2.3 Weighting selection

Here we consider weighting selection in WPS to minimise the expected mean squared error or
variance of the displacement estimates. It can be shown that the overall variance of a weighted
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sum of independent estimates is minimised by choosing weightings proportional to the reciprocal
of the variance for each estimate [9]. Point-wise displacement estimates in a window are not in fact
independent, so ideally the level of new information provided by each point would also affect the
weighting. However, we do not pursue this sophistication in the present investigation. Weightings
will be chosen inversely proportional to the estimated variance.

W (t) = σ̂2
d̂
(t, d̃k)−1 (19)

To estimate the variance we consider the four sources of error in the point-wise estimates
following Equation 17a.

Tissue-signal displacement error. Displacement d(t) of the common signal f(t)ejφ(t) does not
correspond exactly to displacement in the underlying tissue. Ultrasonic resolution is limited,
so a single dominant scatterer is sometimes the primary signal source over an extended region
around its actual location. The displacement in the recorded signal throughout this region is
equal to the displacement of the dominant scatterer, even if the underlying tissue is subject to
a high strain. Similarly, it is not possible to resolve the displacements of multiple scatterers
within a single resolution cell. The effect of these phenomena in reducing the accuracy of
deformation estimation certainly warrants investigation, although it will not be be covered
here. In effect, therefore, our analysis applies to improving the accuracy with which the
signal displacement is estimated.

Frequency estimation error. Clearly, error in the estimation of ω̄(t) introduces displacement
estimation error. We will assume that the scale of these errors is fairly uniform throughout
the data, however, so frequency is not considered in the present weighting strategy.

Alignment error. The location at which displacement is actually being estimated is t2. This
introduces error that depends on the level of inaccuracy in the approximation d(t2) ' d(t) in
Equation 11b. This depends in turn on the level of strain and on the accuracy of the signal
alignment, thus motivating phase deweighting in Section 2.3.2.

Phase estimation error. φs1(t) 6= φ(t) and φs2

(

t + d̃k

)

6= φ(t2) because the recorded signals

are corrupted by noise. The variance of each phase estimate depends on the local ratio
between common and noise signal power, demonstrated as follows. Note that this is different
to the ultrasonic SNR, which only considers electrical noise.

2.3.1 Signal amplitude

We derive a simple approximation for the common signal phase estimation variance, σ2
φ̂
(t). The

phase estimate follows Equation 16, for which we consider the behaviour when the common signal
power is larger than the noise power. It can be shown that an uncorrelated noise signal of known
power but unknown phase (with no further assumptions) when added to the common signal intro-
duces the same variance in the real and imaginary parts of the analytic signal, although the real
and imaginary errors are uncorrelated. Figure 1 shows these two signal components on an Argand
diagram to illustrate the link between noise in the real and imaginary parts and noise in the phase
estimate.

The noise signal contributes an error ∆y to the imaginary part and ∆x to the real part. The
common signal power is several times greater than the noise signal power for most portions of the
signal, so the phase error, ∆φ, may be estimated applying the small angle approximation.

∆φ(t) '
p(t)

f(t)
=

∆x(t) sin φ(t) + ∆y(t) cos φ(t)

f(t)
(20)
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Figure 1: Phase estimation noise: at a moderate ratio of common signal power to noise signal
power, the phase estimation error, ∆φ, is inversely proportional to the common signal envelope,
f . Noise in the real and imaginary parts, ∆x and ∆y, only translates to phase estimation noise
through the component perpendicular to the common signal, p = ∆x sin φ + ∆y cos φ.

We need to estimate the variance for weighting selection.

σ2
φ̂
(t) = E

[

∆φ(t)
2
]

(21a)

' E

[

∆x(t)
2
sin2 φ(t) + 2∆x(t)∆y(t) sin φ(t) cos φ(t) + ∆y(t)

2
cos2 φ(t)

f(t)
2

]

(21b)

'
E[∆x(t)

2
] sin2 φ(t) + E[∆y(t)

2
] cos2 φ(t)

E
[

f(t)
2
] (21c)

'
σ2

n(t) sin2 φ(t) + σ2
n(t) cos2 φ(t)

E
[

f(t)
2
] =

σ2
n(t)

E
[

f(t)
2
] (21d)

The approximate error is taken from Equation 20, and the product of uncorrelated real and imagi-
nary errors in Equation 21b becomes zero under the statistical expectation operator. The expected
squared errors, by contrast, are equal to the noise power, which is not estimated so in Equation 21d
the phase estimation variance is shown to be inversely proportional to the common signal power.

Recall from Equation 19 that the variance we require is of the point-wise displacement estimate.
Inspection of Equation 17a shows that errors in the pre- and post-deformation phase estimates
combine additively in the overall displacement error. Therefore, the overall variance includes the
sum of both phase estimation variances, from which the reciprocal is taken in order to evaluate a
weighting. Since we make no attempt to estimate the noise power it is replaced by unity in the
following expressions.

W (t) =
(

σ2
φ̂
(t) + σ2

φ̂
(t2)

)

−1

=

(

1

f(t)
2 +

1

f(t2)
2

)

−1

=
f(t)

2
f(t2)

2

f(t)
2

+ f(t2)
2 (22a)

=
f(t)f(t2)

c + c−1
(22b)

c in Equation 22b denotes the ratio of the common signal envelopes, f(t2)/f(t), which is likely to
be close to unity — it is unity by definition if the alignment error is zero. Small perturbations
in c are difficult to estimate, so a constant value will be assumed. Of course, the common signal
envelope is not readily accessible, so for the purpose of practical weightings it is replaced with the
full envelope of the recorded signal.

W (t, d̃k) = s1(t)s2(t + d̃k) (23)
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Figure 2: Variation of the phase contribution to weightings, WB(t), against phase separation,
φ(t2) − φ(t), when using cross-correlation function phase.

This derivation includes several assumptions that might be avoidable, so there is scope for in-
troducing adaptive filtering concepts to improve the estimation of the various signal components.
However, it is encouraging to note that the practical weightings in Equation 23 resemble our ap-
proximation in Equation 13 for weightings in the cross-correlation function phase, since this is
already known to have some practical utility.

2.3.2 Signal phase

Now we consider how phase might influence the variance on point-wise displacement estimates,
and how it can be incorporated in WPS weighting strategies. The implications of signal phase
variations are less obvious than signal amplitude. Therefore, we begin by considering how phase
affects effective weightings with the cross-correlation function phase.

The approximation in Equation 13 indicates only amplitude and frequency contributions to the
weightings. However, the small angle approximation leading to Equation 10 may not be accurate in
the case of long windows. A better approximation can be made by interpreting the scaling between
phase and sine value as a phase-dependent weighting. Thus with no loss of accuracy Equation 9 is
rewritten in the form of Equation 24.

n∆t+T
∑

t=n∆t

WA(t)WB(t)
(

φ(t2) − φ(t)
)

= 0 (24a)

where WA(t) = f(t)f(t2) (24b)

and WB(t) =
sin
(

φ(t2) − φ(t)
)

φ(t2) − φ(t)
(24c)

WA is the amplitude-based weighting (as before) while WB is a new phase deweighting. Figure 2
illustrates the size of WB for phase separations in the range [−π,+π]. This is of interest partly
because it may yield a better implementation of AMC for cross-correlation function phase, but
also because we shall consider whether a similar weighting is useful in WPS.

It is possible to implement WPS in such a way as to precisely reproduce the behaviour of
cross-correlation function phase. This requires taking the weighting strategy from Equation 24
and replacing the common signal quantities with the envelope and phase of the recorded signals.
However, our aim is not merely to find an alternative implementation of cross-correlation function
phase, but to investigate possible improvements for more accurate estimation.

There are two arguments for deweighting large phase separations. Firstly, as the phase sep-
aration approaches ±π there is an increased likelihood of phase wrapping errors, where an extra
quantum displacement error of ±λ can arise if the phase separation appears on the wrong side of
the real axis due to noise. It will be appreciated that the WPS framework could be a vehicle for
within-window phase unwrapping strategies, which might solve this problem, hence overcoming
one of the main limitations of cross-correlation function phase. However, phase-unwrapping is not
pursued in this investigation. The output of all phase arithmetic is restricted to the range [−π, π]
unless otherwise specified.
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The second reason for deweighting large phase separations is more fundamental. We note once
more that the point-wise displacement estimates become less accurate at large alignment errors.
This limitation arises from the approximation in Equation 11b. Errors are more likely to be
significant in the case of large phase separations indicating large alignment errors.

A rigorous probabilistic analysis of these two phenomena may be challenging, so in this inves-
tigation we restrict ourselves to heuristics as follows.

WB(t) =

∣

∣

∣

∣

∣

π − |φs2(t + d̃k) − φs1(t)|

π

∣

∣

∣

∣

∣

n

(25)

We test the simple strategy of Equation 25, where n determines the severity of the deweighting.
WPS variants with n in the range 0 (no phase deweighting) up to 3 (severe phase deweighting) are
investigated.

3 Experimental methods

Experiments have been performed using simulated RF data frames from uniform strain fields. The
strain estimation signal-to-noise ratio, SNRe is evaluated as a measure of deformation estimation
performance.

SNRe =
µŝ

σŝ

(26)

µŝ is the mean and σŝ is the standard deviation within any particular set of strain estimates. SNRe

results enable comparisons to be made of a range of deformation estimators based both on WPS
and on cross-correlation function phase.

One of the effects of AMC is variation in the recorded spacing of the location estimates. The
mean spacing (averaged over the image area) is therefore larger than the spacing of the windows,
since a larger gap covers more of the image than does a small gap. This is not important in
comparing uncorrected strain images with corrected ones where the same displacement estimates
(but different location estimates) are employed, since AMC essentially both corrects the location
perturbation and highlights any variability in the resolution, which goes unnoticed when AMC is
not used. However, if a set of algorithms are compared, all of which are corrected with AMC, then
the way that the displacement estimator changes the resolution should be taken into account to
perform a fair comparison.

The spacing of windows is fixed in all the experiments, because it is known that where a strain
estimate is produced by differencing a pair of displacement estimates, the simplest way to reduce
strain estimation noise is by increasing the separation of the estimation locations. This reduces the
extent to which any estimation noise is amplified. It is a typical example of the tradeoff between
noise and resolution. The performance measure SNRe is directly proportional to the spacing.
To avoid resolution effects colouring the performance comparison of AMC-corrected deformation
estimators, a preferred performance measure, SNRβ

e , is introduced for these cases.

SNRβ
e =

µŝ

σŝ

×
mean window spacing

mean spacing of location estimates
(27)

3.1 Algorithms

We test two families of deformation estimators. The first is an example of cross-correlation function
phase: the efficient phase zero search (EPZS) [8] has been adapted from the phase zero seeking
concept of Pesavento et al. [12]. The second family, WPS, has been introduced in this report.
Both families conform to the usual principle of placing a window over a section of pre-deformation
RF ultrasound data and moving another window over the corresponding post-deformation data to
produce a displacement estimate, which is assumed to apply at the centre of the window (by default)
or at the location estimate (if AMC is applied). The spacing between successive windows is 2.7λ,
and displacement is converted to strain by taking the difference between successive displacements
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divided by the difference between their locations. The range of algorithm variants that are tested
is listed in Table 1. The nature of the differences is explained as follows.

WPS and EPZS both perform short-range searches by iterative techniques, and both rely on
iteration seeding so that each search begins within λ/2 of the correct alignment. Typically, each
search is seeded with the displacement estimate from the preceeding window in the same A-line, but
this is sometimes susceptible to error propagation. We have developed superior seeding strategies,
for which the interested reader should refer to Appendix A.

EPZS is outlined in previous work [8]. In addition to the standard algorithm, we also test a
variant in which the signal is selectively amplified so as to have the same envelope at all points.
We call this discarded amplitude (referred to in previous work as limit log compression). Note that
intermediate levels of amplitude compression could be applied to attain any level of intermediate
performance between EPZS and EPZS L. The motivation for discarded amplitude is that, evi-
dently, this is an alternative means of mitigating amplitude modulation effects, which has different
properties to AMC. On the other hand, as listed in Table 1a, discarded amplitude is still amenable
to the new form of AMC. There are variants in terms of the way that AMC is applied. Tests are
variously performed without AMC, with AMC (only considering the envelope, cf., Section 2.1) and
with the new implementation of AMC (considering both phase and envelope, cf., Section 2.3.2).
Note that for efficient operation the variant EPZS A2 is implemented preferably through the WPS
framework, with the correct choice of weightings so as to reproduce the correct behaviour.

The new WPS algorithms require slightly more explanation. The pre-processing is mostly
unchanged from EPZS: matched FIR filters produce 5–10 MHz real and imaginary parts for the
analytic signal. In the case of WPS, this is converted to arrays of phase and envelope data. Phase
is detected following Equation 16, after which demodulation to the baseband is performed by
subtracting ω0t, where ω0 is the nominal probe centre frequency. 2nπ offsets are discarded, so
phase values are stored in the range [−π,+π].

Each iterative search by WPS begins with a rough estimate d̃0. Iterations similar to Equation
17c refine this until the rate of change is small (< 0.001 samples, for example). Phase is recorded
at baseband, however, so the actual iteration formula in terms of baseband phase is as follows,
where point-wise phase separations are expressed in the range [d̃kω0−π, d̃kω0 +π] since this leaves
small risk of point-wise phase wrapping errors.

d̃k+1 =

∑n∆t+T
t=n∆t W (t)

(

φs1(t) − φs2(t + d̃k)
)

ω0

∑n∆t+T
t=n∆t W (t)

(28)

The WPS variants differ in terms of the weighting strategies and whether or not AMC is applied.
Normally amplitude is incorporated through the envelope product, following Equation 23, although
discarded amplitude variants (weightings independent of amplitude) are also tested. Phase weight-
ings are incorporated as well, following Equation 25, where the choice of phase deweighting level,
n, is indicated in Table 1b.

3.2 Simulation

Simulated RF ultrasound data was generated using Field II [5]. The simulations have 2 × 105

scatterers positioned at random according to a uniform distribution throughout a 50 × 50 × 6
mm volume, with random scattering strengths distributed uniformly over the range [0, γmax]. The
probe parameters model the 5-10 MHz probe of the Dynamic Imaging3 Diasus ultrasound machine,
for which the point spread function has been measured experimentally — the pulse has a centre
frequency of 6.0 MHz and bandwidth 2.1 MHz — and the sampling frequency is 66.7 MHz.

For each frame, 128 A-lines were simulated, spanning 40 mm in the lateral direction, recorded
to a depth of 40mm. Simulations were performed at a range of compressions (0%, 0.01%, 0.1%
0.5% 1.0%, 2.0%, 4.0%) by rescaling the axial spacing of the scatterers, so that algorithms can be
tested at a range of net compressions (0.01%, 0.1%, 0.5%, 1.0%, 1.5%, 2.0%, 3.0%, 4.0%). This is

3http://www.dynamicimaging.co.uk
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(a) AMC
Amplitude Off On (envelope) On (envelope & phase)
Normal EPZS EPZS A1 EPZS A2
Discarded EPZS L - EPZS LA

(b) AMC
Amplitude Phase deweighting Off On

0 WPS 0 WPS A0
Normal 1 - WPS A1

2 - WPS A2
3 - WPS A3
0 WPS L0 -

Discarded 1 - WPS LA1
2 - -
3 - -

Table 1: Algorithm variants in (a) EPZS and (b) WPS.

Figure 3: B-scan of simulated RF data.

important, because the performance of the deformation estimators is strain dependent. Five data
sets were generated for different scatterer fields. This contributes to the reliability of the results,
which record the mean across the five data sets.

The Field II output was converted to the RF ultrasound format of the Stradwin4 freehand 3D
ultrasound system. RF samples are recorded with 16-bit signed integer precision. The signals were
normalised before conversion, such that in all cases the mean power is fixed at Vrms = 210. The
data were combined with additive white Gaussian noise, reducing the SNR to 20 dB. Figure 3
shows an example B-scan from the simulated data.

4 Results

Results are presented in graphical form, with plots of performance (SNRe or SNRβ
e ) against either

window length or strain. Recall that the same window parameters are used across all algorithms
to yield comparable data. The use of differencing for strain estimation and the absence of error
removal such as median filtering mean that for basic algorithms the performance may appear poor
— it should be considered that any performance could be boosted at the expense of resolution by
standard filtering techniques.

Figure 4 compares the basic algorithms, EPZS and WPS 0. Performance where AMC is not
applied and amplitude is not discarded is perhaps unimportant. Subsequent Figures 5–7 demon-
strate the need to account for amplitude modulation. Figure 8 illustrates the benefit of phase

4http://mi.eng.cam.ac.uk/~rwp/stradwin/
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deweighting. Results for the heuristic phase deweighting strategies are shown in Figure 9, which is
the first instance where SNRβ

e is the performance measure — it is found that a substantial effect of
phase deweighting is to increase the spacing of the estimation locations, which makes comparisons
based on SNRe unfair.

Leading algorithms from the results so far are compared in Figure 10. The main distinction is
between the performance of discarded amplitude algorithms as opposed to the retained amplitude
algorithms with AMC. The leading algorithms, including the best of the discarded amplitude algo-
rithms, are compared by means of SNRβ

e -strain characteristics in Figure 11. With short windows
these result in typical “strain filters”, but a different pattern emerges when the optimal window
length is chosen at each strain for each algorithm

Confusion could arise in the interpretation of some of these results, especially in the cases of
long windows and high strains. SNRe results do not indicate whether performance degradation is
caused by small numbers of outliers or gradual degradation across the image. This is clarified in
Figure 12 where a median filter has been applied to the strain estimates.

Finally, Figure 13 demonstrates in vivo strain imaging where WPS A1 has been applied to
freehand scanning using the Dynamic Imaging Diasus ultrasound machine with a 5–10 MHz probe.
The raw RF ultrasound signal is sampled at 66.7 MHz by a PC running Stradwin, as described in
[8]. This enables validation of the simulation work, checking that the correct behaviour is observed
under real scan conditions.
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Figure 4: Comparison of the basic algorithms, EPZS and WPS 0 at a range of strains and window
lengths. Performance is (almost) identical at 0.1% strain, while WPS 0 performs slightly better at
1% and 4%, indicating that it is slightly less affected by amplitude modulation.
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Figure 5: Comparison of the AMC variants applied to EPZS at a range of strains and window
lengths. Both implementations of AMC yield far higher performance than the basic algorithm, and
the new correction in EPZS A2 (accounting for phase deweighting) outperforms the old correction
at high strains with long windows.
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Figure 6: EPZS A2 is compared with the discarded amplitude variants at a range of strains and
window lengths. The discarded amplitude algorithms perform less well, but the new AMC correc-
tion applied in EPZS LA improves performance. Note that the discarded amplitude algorithms
show a lesser reduction in performance when the window is longer than optimal.
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Figure 7: Comparison of the WPS variants in the absence of phase weighting at a range of strains
and window lengths. Again, this demonstrates the importance of handling amplitude modulation.
Discarded amplitude performs less well than AMC, but it is once again less badly affected by
excessive window length.
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Figure 8: Comparison of the best EPZS variant with two WPS variants at a range of strains
and window lengths. WPS A0 is found to be less successful than the other algorithms because
it has no phase deweighting, which is especially marked at high strains where the performance
of WPS A0 is hit far earlier by phase wrapping. WPS A1 with moderate phase deweighting
marginally outperforms EPZS A2.
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Figure 9: Comparison of WPS with different levels of phase deweighting (n) at a strain of 0.5%.
(a) SNRe. (b) Mean spacing of location estimates. (c) Performance adjusted for resolution, SNRβ

e .
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Figure 10: Comparison of leading phase based algorithms at a range of strains and window lengths
recording SNRβ

e . At 0.1% strain the performances of WPS A0, WPS A1 and EPZS A2 are (almost)
identical, with lower performance from the three amplitude compression algorithms. At 1.0% strain
the best performance comes from WPS A1 followed by EPZS A2, although discarded amplitude
algorithms WPS LA1 and EPZS LA perform well with long windows. Performance at 4.0% at
most window lengths is best for WPS A0, though only by a small margin. For longer windows
WPS A1 and EPZS A2 are more robust, though still less robust than the discarded amplitude
variants.

5 Discussion

5.1 Interpretation of results

In general, the results indicate that it should be possible to develop high performance strain
estimation systems based on either WPS or EPZS. Following the tests on a range of variants, it is
clear that subtle modifications bring marked changes in performance, both in quantitative terms
(better/worse) and also in qualitative terms (better suited to particular scan conditions).

Before considering the results in detail, it is instructive to consider the meaning of the per-
formance measures, their value for evaluating deformation estimation algorithms, and also their
limitations. SNRe is a good measure because it usually aligns closely with the level of noise that
is perceived subjectively on inspecting a “uniform” image. The main limitation of SNRe is that
it does not adjust for performance changes that are introduced by resolution changes rather than
changed algorithm performance. One determinant of resolution is the spacing of estimation lo-
cations. Since this is modulated by the weighting strategy, for algorithms that use AMC, more
meaningful comparisons can be made by considering SNRβ

e . However, a remaining limitation is
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Figure 11: Comparison SNRβ
e -strain characteristics of leading algorithms at various window

lengths. The left and middle graphs show the shortest and longest window lengths at which
results were recorded over all strains in the range 0.01–4%, while the right-hand graph shows the
results for each algorithm where the optimal window length was employed at each strain. (Note
that the discarded amplitude algorithm could not be tested at its optimum at low strains, be-
cause the range of window lengths permitted in the test software had an upper limit of 108.1λ.
Interpretation is complicated since resolution clearly depends partly on window length.)

(a) (b)

(c) (d)

2 4 6 8 10 12 14 16
5

10

15

20

25

30

window length (λ)

SN
R

eβ

strain = 4.0%

WPS_A0
WPS_A1
WPS_L0
WPS_LA1
EPZS_A2
EPZS_LA

(e)

Figure 12: Effect of outliers. When phase wrapping errors begin to occur, initially there are only a
few large “peak-hopping” errors. Wherever peak-hopping occurs it registers as an extremely large
strain error, sufficiently large to skew the SNRe value of the entire strain image far beyond the
effect it has on subjective image quality. For example, images are shown for EPZS A2 operating
on 4% strain with various window lengths (cf., Figure 5c). (a) 11.8λ ⇒ SNRe = 10.6, (b) 12.7λ ⇒
SNRe = 4.7, (c) 14.5λ ⇒ SNRe = 3.0. (d) 14.5λ with outliers removed by a 3.5mm lateral median
filter ⇒ SNRe = 33.4. (e) Leading algorithms at 4.0% strain are compared in conjunction with
median filtering (cf., Figure 10c).

the effect of window length on resolution, which is still unaccounted for. It would be best if a
new performance measure, SNRγ

e , say, could be introduced to adjust for window length as well.
The relationship between window length and resolution in strain images is difficult to determine,
however, and insofar as this relationship has been investigated, it seems that resolution is affected
less severely by window length than by window spacing [2]. Thus, when inspecting graphs of per-
formance against window length, it should simply be recalled that the resolution is to some extent
reduced: windows of length 30λ that yield ten times higher SNRβ

e than 3λ are probably producing
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Figure 13: Images from a freehand scan of human biceps in vivo. (a) B-scan. (b) Strain image
using WPS A1 (1D windows of length 13.5λ at an axial spacing of 2.7λ) with a 2.0 mm (i.e., 15.5λ)
least squares filter. Black represents zero strain and white represents 1.5% relaxation.

somewhat less than a tenfold increase in performance.
Figure 4 shows the basic algorithms where amplitude is retained without AMC. At each strain

there is an optimal window length that yields the maximum SNRe, which is longest at low strain and
shortest at high strain. The height of the peak is also strain dependent, with better performance at
the highest strain. This is because the deformation signal is then larger, but the small scale of the
increase in the peak SNRe also indicates an increased level of noise. The deformation signal at 4%
strain is 40 times greater than at 0.1% strain, but SNRe increases just 1.5 times. This arises partly
because higher strain leads to increased signal decorrelation, and also partly because amplitude
modulation (estimation location error) becomes increasingly important. WPS 0 performs slightly
better than EPZS at the higher strains, because it has no phase deweighting. Phase deweighting
causes exaggeration of the amplitude modulation effect.

Amplitude modulation is corrected with the algorithms in Figure 5, where AMC is applied to
EPZS. AMC offers considerably better performance at all window lengths and all strains. The
benefit is especially marked at low strains, where decent SNRe is not possible with short windows
though much longer windows offer substantial improvement. The results show that the new AMC
implementation (EPZS A2) is superior to the original implementation (EPZS A1). That said, the
difference only becomes apparent when the largest phase separations in a window are on the scale
of 2π, i.e., when the displacement across the window is on the scale of λ. In these cases, phase
deweighting becomes important. Stark differences between EPZS A1 and EPZS A2 are therefore
observed for long windows at 1.0% and 4.0% strain. On the other hand, phase deweighting is
practically never an issue at low strains such as 0.1%: substantially an entire A-line needs to be
covered by a single window before the displacement over the window even reaches λ/4. Arbitrarily
long windows cannot be used at most strains, however, since the theory underlying both algorithms
breaks down at phase separations in excess of ±π.

Extreme phase separations eventually occur at the edges of long windows at high strains. AMC
is compared with the discarded amplitude variants in Figure 6. Discarded amplitude algorithms
perform less well because the preprocessing is equivalent to selectively amplifying signal portions
where the ultrasonic SNR is poor. The attractive feature of discarded amplitude approaches, on
the other hand, is increased robustness when excessive window lengths are employed.

Discarded amplitude still requires AMC location estimation, owing to the phase deweighting
effect at the edges. It is for this reason that EPZS LA outperforms EPZS L. However, it is
interesting to note that EPZS L has higher SNRe over a small region, which implies that the
present implementation of AMC leaves room for future improvement. Nevertheless, with the
longest windows the behaviour of EPZS LA is eventually preferable to both EPZS A2 and EPZS L.

The patterns of behaviour in the WPS family with AMC and discarded amplitude are strikingly
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similar to EPZS. Figure 7 shows that WPS A0 and WPS L0 both outperform WPS 0, as expected.
WPS A0 offers higher peak performance than WPS L0, although it deteriorates sooner at excessive
window lengths. There is a simple explanation for the relative robustness of discarded amplitude
algorithms in both WPS and EPZS paradigms. The estimation location remains relatively close
to the window centre when there is no amplitude, so phase wrapping at the window edges sets in
later compared to the other algorithms. When amplitude is retained, the displacement estimate
sometimes applies with greatest validity near the end of the window, meaning that the maximum
alignment error at the far end is up to twice what it would be for an estimate at the centre. Phase
wrapping occurs sooner as the greatest phase separations approach ±π. Furthermore, even when
phase wrapping is present with discarded amplitude, if the estimation location is at the centre of
the window, then phase wrapping errors at either end of the window cancel out (by symmetry).
By contrast, if the estimation location has shifted significantly away from the centre, then phase
wrapping errors are highly asymmetric, so the onset of phase wrapping causes abrupt performance
degradation.

Figure 8 compares results of the best algorithms tested so far in addition to WPS with phase
deweighting, revealing that when long windows are used WPS A0 actually performs less well than
EPZS A2. Better performance of the heuristic WPS A1 demonstrates that phase deweighting is
useful, and the phase deweighting in EPZS is clearly suboptimal. Since the phase deweighting
strategy in WPS is entirely heuristic, Figure 9 compares the full set of deweighting options at
0.5% strain. At first glance, it appears that a performance improvement is produced at every step
by incrementing the phase deweighting parameter n from 0 up to 3. However, Figure 9b reveals
that this is caused by changes in the mean spacing of the estimation locations. Therefore, we turn
in Figure 9c to the adjusted performance measure, SNRβ

e . The adjusted characteristics show a
subtler impact from phase deweighting, with best performance at n = 1 or 2. Across a range of
strains n = 1 most often yields the highest SNRβ

e , so this is adopted for the remaining tests.
Leading variants of WPS and EPZS are compared in Figure 10 recording SNRβ

e . There is
actually little difference between WPS A0, WPS A1 and EPZS A2, indeed the performances at
0.1% strain are almost identical. WPS A0 does worse at higher strains when phase deweighting is
needed. The discarded amplitude algorithms perform less well in general, although the robustness
with long windows is demonstrated again. WPS LA1 is the best discarded amplitude algorithm,
marginally outperforming EPZS LA.

It is interesting to consider the use of a fixed window length over a range of strains to compare
SNRβ

e -strain characteristics of the leading algorithms. The form of the characteristics in the left and
middle graphs in Figure 11 are typical of “strain filters” that are often illustrated in the literature.
However, graphs at fixed window lengths neglect one of the striking features of these results as a
whole: at lower strains the highest performance is achieved by using much longer windows. When
optimal window lengths are employed at every strain level, the height of the peak in SNRβ

e is shown
in the right hand graph. Perversely, this indicates that by a small margin WPS A0 may be the
best algorithm if short windows are used, or the worst if arbitrary window lengths can be used.
With optimal window lengths, the best of the algorithms with retained amplitude is WPS A1. The
other feature is that WPS LA1 apparently performs best for low strain estimation with optimal
window lengths. A rigorous investigation of the effect of window length on resolution is required
so that these interesting findings can be properly understood (and exploited, if appropriate).

A caveat is necessary to explain the sharp peaks in the graphs of SNRe and SNRβ
e against

window length for retained amplitude algorithms at 4% strain. It would be easy to assume that
the peak has fundamental significance, enabling the maximum window length to be predicted by
some theoretical means. In fact, the drop in performance occurs wherever large errors first arise,
i.e., the first instances of peak-hopping errors where windows are matched approximately one
wavelength away from the actual displacement. The reality of this effect is illustrated in Figure
12b, where a single large error has dramatically reduced the value of SNRe. However, note that
this is an outlier. It is a disadvantage of SNRe as a performance measure that outliers can have
a large impact. The introduction of a single strain error in the region of 30% has a dramatic
impact when the other strain estimates are all in the range 3.6%–4.4%. A large fraction of the
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noise may be produced by a single estimate. Similarly, in Figure 12c there are basically few large
errors, but the value of SNRe is now very low. If a median filter is applied, these errors can be
removed and the image has a high SNRe. The results in Figure 12e further demonstrate this point
by repeating the test from Figure 10c, with the addition of a lateral median filter spanning 3.5 mm
/ 11 A-lines. With outliers excluded, most algorithms are still performing better at 14.5 λ, with
the best performance from algorithms WPS A1 and EPZS A2.

Simulation results do not necessarily imply that the same behaviour is repeated in the context
of real data. However, WPS is already being tested in conjunction with in vivo freehand ultrasound
data, and the image quality matches expectations following the simulation results. Figure 13 shows
a scan of human biceps, for example, in which the main features in the strain image correspond to
different layers of muscle.

5.2 Conclusion

The tests show that both the WPS and EPZS families of deformation estimators have strong poten-
tial for supplying the first stage processing in ultrasonic elasticity imaging systems. It is relevant to
point out, therefore, that these algorithms generally entail simplicity and low computational cost
compared to most alternatives in the literature. Both families are suitable for real time processing
on current desktop computers. This is already well known for EPZS, while WPS represents a new
paradigm. The main cost in any variant of WPS is signal pre-processing, at which stage signal
envelope and phase must be detected. Thereafter the iterative searches consist mostly of additions
in the case of discarded amplitude, or simple additions and multiplications where the amplitude
is retained. EPZS A2 comes at a slightly higher computational cost, since the sine function is
required to evaluate the weightings.

WPS A1 combines simplicity, versatility and high performance in a framework that can readily
be optimised depending on the particular properties of specific ultrasonic deformation estimation
applications. There is no apparent theoretical reason why it should not also be possible to perform
estimation in the lateral direction when lateral phase is detected, or indeed in three directions
when 3D data is acquired. It may also be possible to adapt WPS for deformation and displacement
estimation applications in other fields altogether.

Appendices

A Robust iteration seeding

A novel iteration seeding strategy was employed for all algorithms in this investigation. The rate
of peak-hopping errors is close to the rate for exhaustive searches, but at a far lower computational
cost. The standard approach to iteration seeding was developed by Pesavento et al. [12]. Each
A-line is processed individually, and the first window at the top of each A-line is seeded with a trial
displacement of zero. This is sensible, since tissue that remains in contact with the probe surface by
definition has zero displacement in the probe reference frame. Each following window is seeded with
the displacement estimate from the preceeding window, since the differential displacement over the
distance between windows is almost invariably well below half a wavelength. This strategy enables
high accuracy tracking, provided that errors in the displacement estimates are much smaller than
λ/2. However, sometimes large errors do occur owing to small regions of extreme decorrelation. If
the following window is then too far from the correct alignment, it produces another error when it
converges on the wrong phase zero, thus some errors propagate. Once a large error has appeared in
an A-line, it is rare and purely a chance event if subsequent estimates return to the correct phase
zero, otherwise the remainder of the A-line consists only of noise.

An example of this type of error propagation is shown in Figure 14b, taking a single strain image
from a freehand scan of an olive/gelatin phantom (this mimics a stiff inclusion in soft tissue). The
probe has rolled slightly about the elevational axis, so contact is best at the right hand edge of the
image, and there is no contact on the left. One of the results is that the strain is higher on the
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right. Despite the limited contact region, there is no problem with the coupling of the ultrasound
beam into the phantom, since the phantom is covered in a fine layer of coupling fluid. However,
the coupling fluid sometimes introduces severe decorrelation because it can flow out of plane. It is
also problematic if the first windows track fluid, and a displacement discontinuity arises with the
first window that tracks the solid part of the phantom. This makes alignment errors in excess of
λ/2 more likely. For example, in Figure 14b large errors have occurred in three A-lines followed
by error propagation.

To avoid tracking errors, we have developed new seeding strategies to support advances in
phase-based deformation estimation. There are three features to the superior iteration seeding.
Note that only the first of the features was required for the algorithms tested in the simulation
study.

Cross-seeding. A-lines are searched in parallel, i.e., a first window displacement is estimated
at the top of every A-line before proceeding to the second row. The correlation coefficient
(or any alternative accuracy indicator) is evaluated for each pair of matched windows. Each
window in the next row working down every A-line is seeded with the displacement estimate
from the nearby window in the previous row which had the highest correlation coefficient,
searching laterally across l A-lines to either side. l = 1 means that the seed is taken from
the current A-line or either immediate neighbour, which immediately eliminates almost all
error propagation, e.g., where it has been applied in Figure 14c. In rare cases when a large
region of the image becomes erroneous, it may be useful to employ a larger value for l. This
could happen if part of the image is produced from tissue with poor mechanical contact at
the probe surface, or where there are large decorrelating features such as major arteries. In
these cases l governs the rate of “correction propagation” (see Figure 15b). Anything up to
and including every A-line in the image may be searched for cross-seeding. However, large
values of l can cause errors if there are high shear strains. In practice, we find that l = 10 is
a good choice for freehand strain imaging.

Multi-pass analysis. Owing to the limited rate of correction propagation, part of the image may
remain erroneous despite cross-seeding. This can be fixed by repeating the process. Multi-
pass analysis requires that the correlation coefficient (or alternative accuracy estimate) is
stored alongside every displacement estimate. A second pass begins with windows at the
bottom of the image, seeding each window with the best estimate from the previous row
(below). This enables continued correction propagation by cross-seeding, and a displacement
estimate from the previous pass is replaced if a higher correlation coefficient is recorded.
Since the processing time for phase-based methods is mainly pre-processing rather than the
actual search, two-pass analysis does not severely reduce the speed of the algorithm. For
l = 10, it almost never arises that errors remain after a second pass, but the example in
Figure 15 used l = 1. This slow rate of correction propagation left a triangle of errors in
the bottom left corner after the second pass. This can be removed by a third pass (top
to bottom). In general, for maximal robustness passes should continue down and up the
image until none of the displacement estimates change. This is still far less computationally
expensive than an exhaustive search. However, with l = 10 it almost never occurs that any
error propagation remains after the second pass, so the best practical solution may be always
to apply a two-pass strategy.

Continuity checking. Regions of data with extremely poor ultrasonic SNR or high levels
of decorrelation sometimes yield a higher correlation coefficient at the wrong phase zero
than near the actual displacement. This means that sometimes (albeit rarely) an analysis
pass tracking one wavelength away from the actual displacement becomes interleaved with
an analysis pass that produced good estimates. When this happens it causes large errors,
because between-window displacements larger than λ may be recorded (cf., Figure 12). To
overcome this, each pass of a multi-pass analysis produces displacement estimates that either
enter the display buffer (if the correlation coefficient is higher) or enter a reserve buffer (if
the correlation coefficient is lower). Before the next pass, continuity checking refines the
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(a) (b) (c)

Figure 14: Example of cross-seeding in scan of olive/gelatin phantom. (a) B-scan. The strain
images employ a linear strain scale with black for 0% and white for 1% extensive strain. (b)
Strain image with error propagation. (c) Strain image where cross-seeding has eliminated error
propagation.

(a) (b) (c) (d)

Figure 15: Example of multi-pass analysis. (a) B-scan. The strain images employ a linear strain
scale with black for 0% and white for 1% compressive strain. (b) Single-pass strain image with
cross-seeding (down). (c) Two-pass strain image (down, up). (d) Three-pass strain image (down,
up, down).

sorting of estimates between the display and reserve buffers: sequentially, working through
the display buffer in any direction, at every point an average is computed of the four adjacent
displacement estimates in the display buffer (above, below, left, right), and the reserve buffer
entry replaces the display buffer entry in the few cases when it is closer to the average value.
A similar effect could be achieved by median filtering, but in that case resolution would be
reduced.

The images in Figure 15 come from the same scan of an olive/gelatin phantom as Figure 14. In
Figure 15 only the corner of the transducer casing was in contact with the phantom surface, so a
large displacement discontinuity is present at every A-line (largest discontinuity on the left of the
image). In this case errors have propagated in every A-line, but as soon as one of the estimates
finds the the correct phase zero a higher correlation coefficient is registered, and the correction
propagates into neighbouring A-lines. The low value l = 1 and the lateness of the correction mean
that three passes are required before error propagation has been eliminated.
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