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Abstract

We present a new, intelligent interface for freehand strain imaging, which has been de-
signed to support clinical trials investigating the potential of ultrasonic strain imaging for
diagnostic purp osesacrossa broad range of target pathologies. The aim with this interface is
to make scanning easier,and to help clinicians learn the necessaryscanning technique quickly,
by providing real time feedbad indicating the quality of the strain data asthey are produced.
The images are also easierto interpret, becausedata at unacceptably low signal-to-noise ra-
tios do not reach the display. Overall, the interface also considerably reducesthe dicult y
in producing volumes of strain data from freehand 3D scans. Its main componernts are novel
normalisation, persistenceand display methods. Thesenot only presert data in a more mean-
ingful format, but the level of noise in the displayed imagesis actually reduced compared to
other methods that usethe samestrain estimates with the samelevel of persistence.

1 Intro duction

Ultrasonic strain imaging is an emergingtechnique, which is likely to have numerousapplications
in the clinical examination of soft tissues. In this paper we are primarily interestedin the subset
of elasticity imaging techniques that are categorisedas \static" or \quasistatic" strain imaging
[19]. In this paradigm, small tissue deformations are causedby varying pressure between the
ultrasound probe and the tissue surface;two or more ultrasound frames are recorded during this
deformation, and someform of tracking is applied to the recorded ultrasound data to estimate
tissue deformations, amourting to displacemen elds that vary with position. Spatial derivatives
of such a displacemen eld are tissue strain, which indicates sti ness; there are sometimesfurther

stagesof analysisto estimate quartitativ e tissue properties directly, such as elastic moduli [10].
Quasistatic strain imaging was rst tested clinically for breast scanning[4] and breast screening
has ever sincebeena key driver for researt [7, 23, 24]. Numerousstudies have beenmotivated by
prostate screening[18, 21]. Detection and staging of deepvein thrombosisalso seemsparticularly

promising [3], and there are many other possibleapplications.

One of the engineering challengesin strain imaging is the developmert of a suitable clinical
interface. Ultrasound clinicians have extensive experiencewith existing scanningmodesincluding
B-mode greyscale, colour Doppler and power Doppler. Given the highly interactive nature of
ultrasound examinations, the establishedmodeshave advantagesin that clinicians are already well
practised in the required scanningtechniques, understand the signi cance of typical images,and
are generally familiar with the uses,bene ts and disadvantagesof ead mode. The likelihood of an
addition to the ultrasound tool-setgaining clinical favour may be boostedif it possessean interface
that is practically helpful: actively fostering the developmert of a successfulscanningtechnique,
by providing either visual or audio feedbad; displaying data in an intuitiv ely meaningful format;
and automatically guarding against the presenation of misleading data.

The aforemernioned issuesconcern how we preser information. We may also consider what
information to presen. This raisesat least two further issues. Qualitativ ely, what type of in-
formation can be provided (sti ness, strain, or an alternative compromise)? Quantitativ ely, how
much data should be amalgamatedto form ead display image? This latter questionis relevant to
many typesof imaging system, particularly those pertaining to time seriesdata (where persistence
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Figure 1: Flowchart illustrating aspects of the interface that will be discussed.

may help, whether to improve a real time display during acquisition or for post-processing)and to
volumetric data (where spatial averaging can be applied to reducethe level of noise).

Regardingthe type of information, we note that ultrasonic strain imaging falls within a broader
set of emergingelasticity imaging techniques. Theseare all essetially concernedwith medanical
properties such astissue sti ness, of which strain is only an indicator. Strain measuremets can be
corverted into sti ness estimatesif the stress eld is known, but it is highly unlikely that this can
be inferred from either static or quasistatic deformation data without reducing the resolution and
imposingcertain limiting assumptions[1]. Furthermore, sud assumptionsare unlikely to hold even
approximately under in vivo scanningconditions, especially not with freehand scanning. On the
other hand, strain imagescan be misleading, becausean interpretation of low strain asindicating
relatively high stiness may be erroneousif the stress eld varies substartially throughout the
tissue[13, 19]. Sometypesof stress eld variation occur repeatedly, and can hencebe adjusted for.
We will discussthe use of strain normalisation that varies both betweenimagesand within every
individual image, so as to reduce the ambiguity of strain. The modi ed data after non-uniform
normalisation are referred to as\pseudo-strain”.

In practice, an often more se\ere obstaclein freehand strain imaging is the basic challenge of
achieving an acceptablestrain estimation signal-to-noiseratio. Although many framesindividually
produce good images, typically a substartial fraction (sometimesa majority) of frames may be
dicult to interpret becauseof high estimation noise. One of the common approadesto noise
reduction amourts to averaging a sequenceof strain images[27]. Rather than crude frame averag-
ing, we presernt a more sophisticated weighting approad, which we usefor persistencein the real
time display, and for spatial averagingin the display of volumetric data [26].

The goal of this report is to describe aspects of a novel interface that we have dewveloped to
support a wide-ranging clinical trial of ultrasonic strain imaging.Y The new interface tackles all
of the issuesmertioned above, to improve the quality of data that clinicians can acquire, and
to improve the interpretabilit y of the display. We presen results basedon example imagesthat
demonstrate the e ects of all aspects of the interface, using recorded RF ultrasound data from
freehand scansof in vitro and in vivo targets.

2 Metho d

The interface that we outline hereis applicable to any static or quasistatic strain imaging system,
almost regardlessof the approac taken in the earlier stagesof signal processing. It is likely to
be particularly valuable in conjunction with freehand scanning. We provide illustrations basedon
an example, in which displacemen tracking is by Weighted Phase Separation [14] with Ampli-
tude Modulation Correction [16], and axial strain estimation is performed by piecewise-lineareast
squaresregression[11]. This o ers a good demonstration, not primarily becauseof its competi-
tive estimation accuracy but more importantly becauseit has already been analysed and tested
rigorously, resulting in a promising method for predicting the strain estimation variance [15, 17].
Nonethelessthe aim of this paper is to describe our interface conceptin general;the reader may
envisagenumerous speci ¢ applications. We now provide an overview of the interface as a whole.
This is followed by a brief discussionof predicting estimation precision, and descriptions of ead of
the three subsequen stagesof processingin the interface| normalisation, persistenceor spatial
averaging, and display (seeFigure 1).

YSeweral aspects of this interface are covered by a recent UK patent application.



Figure 2: Typical images during freehand scanning without the new interface. (a) The strain
display is lled with noise before the probe comesinto cortact with tissue, although (b) the B-
mode image shows that there is obviously nothing to be seen. Howewer, the imagesare actually
moredi cult to interpret whenthe probeisin contact with the tissue. For example,while scanning
a thyroid (c) the strain display cortains a mixture of good estimates alongsideregions of noise,
without an obvious boundary. This is unsurprising given that (d) the B-scan has regionswith a
high signal-to-noiseratio alongsideother regionswhere there is simply no signal, and a region of
sewere decorrelation around the artery causedby blood o w and pulsatile motion.

2.1 Interface concept

Strain image quality varies substartially depending on the sonographer'sscanningtechnique, phys-
iological motion in the tissue, and changesin the analytical parametersfor converting RF ultra-
sounddata into strain data. In order to produce consisterlly meaningful images,these parameters
needto be cortrolled locally soasto adjust for di erent conditions during the scan. [15] and [17]
describe such a system. However, adjustment of parameterscannot alone overcomeall of the di -
culties assaiated with practical strain imaging. For a start, at somestageit becomesimpossible
to produce meaningful deformation data from framesthat are extremely weakly correlated. An
adequateminimum level of correlation may not always arise, depending on the scanningtechnique,
and with a very poor technique it may not even occur often. Evenin the majority of frameswhere
a uniform estimation signal-to-noiseratio can be achieved by adjusting the resolution settings, it
is desirableto improve the quality of the recordedultrasound data, soasto achieve the maximum
resolving power. The bestdata may arise from relatively substartial deformations (i.e., typically a
large fraction of 1%, sometimeslower or higher depending on the target) accompaniedby relatively
low decorrelation. The acquisition of good data therefore dependson the combined properties of
the scanningtechnique and the tissue.

Strain imaging with a typical interface requires a high level of expertise, in terms both of
scanningtechnique and of imageinterpretation. The examplesin Figure 2 illustrate somecommon
di culties. The use of a side-by-side display has beensuggested[6], with the B-scan next to the
strain image, becauseit is then easierto match strain data with features of interest that have
already beenidenti ed in the B-scan. It also meansthat in caseswhere there may be little or
no data, owing to an absenceof coupling to the tissue, as for examplein Figure 2a{b, then the
sonographerknows to ignore the strain display. Image interpretation may nonethelessbe rather
di cult when the coupling is good, as for examplein Figure 2c{d, becausesomescantargets do
not o er signalssuitable for strain imaging throughout the ertire image.

One approadch that to some extent handles this problem is a display in which ead strain
image is overlaid on the B-scan as a \colour wash", where colour indicates strain and brightness
is partly determined by the ultrasound signal amplitude [7, 18]. In so far as ultrasound signal
amplitude correlates with the accuracy of strain estimates, this goes someway to indicating the
quality of the strain data. It only helpsto a limited extent, howewer, since signal amplitude is a
very weak indicator of overall decorrelation. While a complete absenceof signal would certainly
mean that strain estimates were dominated by noise, it is often the casethat strain estimates



from regions with medium signal amplitude are lessnoisy than other estimates where the signal
is stronger. Furthermore, the blend of strain with B-mode data could actually make insightful
imageinterpretation more di cult, by mixing strain data with ne featuresof B-scanssucd asthe
spele pattern, that arein fact not generally related to tissue sti ness.

Therefore, the basisfor our approad is the availabilit y of more accurate indicators of the preci-
sion of eadh strain estimate, which in uences our useof theseestimatesat every stagedownstream
including the display. An appropriate strain normalisation may be calculated by tting a suitably
constrained surfaceto the entire set of displacemen data in ead frame, possibly by the method of
precision-weighted least squares. Normalisation can be applied both to the strain data and alsoto
the assaiated precision data, producing a new array of pseudo-straindata with updated precision
values. Having produced a single frame of pseudo-strain, the signal-to-noiseratio may be boosted
by applying someform of persistenceor spatial averaging, which may again be weighted according
to precision, from which the output is a set of persisted pseudo-strainvaluesand appropriately up-
dated precisions. Finally, the display schememay be tailored to indicate both strain and precision
data on a two-dimensional (2D) scalerepreserted by a 2D colour map.

2.2 Predicting estimation precision

Our systemexploits the availabilit y of useful predictions of strain (and/or displacemen) estimation
precision. The method for achieving these predictions is not critical, although the advantages of
our conceptare likely to be greatestif the precision predictions are highly accurate. The prediction
method employed to produce results in this report is basedon the work reported in [15].

To summarise, precision is the reciprocal of variance or mean squared error. Displacemert
precision can be predicted by ewvaluating Tc1 c), where c is the correlation coe cien t between
pre- and post-deformation data in the displacemen estimation window, and T is the window length.
In ead least squareskernel, the overall strain estimation variance can be predicted by evaluating
an averageof the displacemen variancesweighted by the square of the distance from the kernel
certre, dividing by the sum of squared distances. A more accurate estimate can be produced
by applying a more complicated formula that accouns for the correlations betweennearby errors
[15]. This was not applied in the results that we presert here| although it might bring a slight
improvemen in somecases| becauseit is lessimportant when we only consider xed analytical
parameters,and we only require predictions of relative (rather than absolute) precision. The results
that we presen usethe following approximation for strain estimation precision, Wy :

P y2 2
. - D i Ji
WAV = B 6 )T g) .

where the sums are over displacemen estimation windows in the least squaresregressionkernel
certred on pixel (x;y), andy denotesdistancefrom the certre of the kernelalongthe axial direction
in which strain is being estimated.

2.3 Normalisation

Careful designof the normalisation strategy may cortribute to valuableimprovemeris in the quality
of the strain images, particularly if real time imagesare required or the scanning procedure is
freehand. Various approaces have beenreported in the past [6, 12, 13]. The basic problem of
nding an appropriate strain scalefor ead image can be solved robustly by tting a planeto the
ertire set of displacemen estimates, fd(x; y)g. This is performedin our examplesby the method
of precision-weighted least squares,thereby determining an \average" strain. The equation of the
tted planeis then asfollows:

dxy) = + ¢y 2

The strain estimatescan be scaledso that the dynamic range in the display is from zeroup to a
xed multiple of the averagestrain, $.



In the new interface, we also intro duce extensionsof this approac, by tting other parametric
surfacesto the set of displacemen estimates. For instance, we can adjust for the reducedstressat
greater depths away from the probe, asthe stressspreadsout into the surrounding tissue:

dxy)= o+ 1x+ 1y+ ay? (32)
S(xy)= 1+ 2y (3b)

It is therefore more appropriate to refer to §(x;y) as a \normalisation" strain, rather than an
average,sinceit is a function of image position. Having found the parameters ; and ;| which
we again evaluate in our examplesby precision-weighted least squaresregression| we can divide
through by the local value of §(x; y) in order to normalise eat strain estimate.

A further extensioncan be madeto adjust for the possibility that the probe may rotate about
the eleational axis during the scan, resulting in stressvariation over the lateral direction.

docy)= o+ ix+ 1y@+ YA+ 3x) (4a)
8(x;y) = 1(1+ 2 y)A+ 3x%) (4b)

Again, the parameters 1, 2 and 3 can be found by precision-weighted least squaresregression,
or any suitable alternativ e, thereby de ning the normalisation strain at every position throughout
the image.

Scansusing 3D probes(2D arrays or medchanically-swept 1D arrays) lead to volumesof displace-
ment estimates,fd(X; y;z)g. In thesecaseswe can extend our normalisation further, adjusting for
linear variation in pressureover the elewational direction:

Qi yiz)= o+ ax+ ozt ay(l+ A+ )1+ 42) (5a)
Sxiy;z) = 1(1+2 )2+ x)(1+ 42) (5b)

Strain estimatesin volumetric framesare normalised simply by dividing through by the local value
of &(x; y; z).

Many further extensionsare possible. Howewer, as the number of parameters de ning the
displacemen surfaceincreases,it may be more corveniert to determine the normalisation strain
by tting a surfaceto the pre-normalisation strain estimates, rather than to the displacemers.
This reducesthe computational complexity, although it is sometimeslessaccurate. Whether it
is better to t a displacemen surface or a strain surface depends on the number of available
estimates, their accuracy and the complexity of the parametric hyper-surfacethat is being used.
Normalisation in our later examplesis by tting displacemen surfaces,except where otherwise
speci ed.

It is worth noting that all of our normalisations can be applied both to the strain estimates
and also to the assaiated precision values. Since normalisation applies a scaling of 1=8(x;y)
both to good measuremets and to errors, we correspondingly scale the precision (reciprocal
of mean squared error) by &(x;y)2. If we denote pre-normalisation strain estimates and post-
normalisation pseudo-strainby s, and sg, with W, and Wg respectively denoting the pre- and
post-normalisation precisions,then

Sg (X;y) = sa (X y)=8(x;y) (6a)
Wg (X;y) = Wa(Xy)  8(x;y)? (6b)

The practical e ect of the combined normalisation is to place ead individual strain estimate on
a broad scale of possibleinterpretations, depending on its relative properties in the cortext of
the entire frame of scandata. Depending on the value of §(x; y), the normalisation of any single
strain estimate and its precision value is to place it within a range spanning (1) relatively low
pseudo-strainat relatively high precision, through to (2) relatively high pseudo-strainat relatively
low precision. The form of the normalisation therefore potentially in uences not only the type of
image, but alsoits accuracy
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Figure 3: lllustration of the typesof strain elds that may produce uniform pseudo-strain elds
| indicating homogeneoussti ness | with ead of our normalisation options. Here low strain is
shown by white and high strain is black. The rst option only adjusts for stressvariation on the
level of the whole image, while the secondadjusts for lower stressaway from the probe surface,
and the third also adjusts for uneven probe pressure.

It bears noting that the main computational expenseof normalisation comesfrom tting a
parametric displacemer or strain surface,but this in itself is typically a negligible cost on widely
available GHz processorsn the context of 2D frame rates below 100Hz. Computational e ciency is
oneof the main factors behind the selectionof the particular parametric forms that we provide here
asexamples. However, Equations 3, 4 and 5 imply linear variation with depth in the normalisation
strain. This may usually be a good approximation, but it leavesopen the possibility that the sign
of the normalisation strain could invert at somedepth within the image. If this were a reasonable
form of normalisation, it would imply that at somedepth the direction of the stress eld inverts,
i.e., that a compressionat the surface causesextensionat greater depth within the tissue. This is
unrealistic, but it canbe prevented, for exampleby constraining the tted surfaceto avoid the strain
crossingzero within the image depth (as in the imagespreseried in this report) or alternativ ely
data below the zerocrossingof the normalisation strain can be treated asuninformativ e, by setting
the precisionto zero.

The normalisation surface might ideally re ect exponertial variation with depth, but a least
squares t would then incur much greater computational cost. Our demonstration employs the
normalisation surfacesoutlined above for e ciency, not precluding the possibility that other para-
metric or constrainednon-parametric forms may befound in the future, o ering better performance
at reasonablecost.

Figure 3 illustrates the strain elds that are implied by ead of the normalisation stcheme
examples,or equivalertly the stress elds that might producesuc a eld in homogeneousnaterial.
The key with the normalisation isto t a suitably constrained surface,that with high probability
corrects for artefacts assaiated with the uneven distribution of stresswithin the tissue, without
removing information that has arisen owing to geruine di erences in sti ness.

It ispossible| but unlikely| that there may betissuein which sti ness in fact varieswith the
reciprocal of depth, and the application of a uniform stress eld may alsobe possible,in which case
normalisation using Equation 3 or Equation 4 would remove real sti ness data from the display.
The frequency with which this sort of ambiguity ariseswill depend on the scanningtarget, so it
may be that di erent normalisation surfacesare required for di erent clinical applications.

2.4 Persistence or spatial averaging

Persistencerefersto time-averaging of image data, while in someapplications spatial averaging is
more appropriate. The concept of weighted averaging of multiple framesis not new in ultrasonic
strain imaging [8]. In general,our preferred approad is to perform averaging after normalisation



in the form of a precision-weighted averageon a per-pixel basis. We also sum the precisionvalues,
sinceit can be shown that the overall precision of a correctly precision-weighted average of data
with uncorrelated errors is equal to the sum of precisions.

In the corntext of producing a real time interface for freehandimaging with two spatial image
dimensions,we perform this averaging as a form of persistenceon the arrival of ead new frame,
f. The valuesthat persist in pre-display buers at pixel (x;y) are a precision-weighted sum,
S(x;y;f), and the sum of precisions, ( x;y;f). These buers are updated as ead new frame
arrives, providing new pseudo-straindata, sg (x;y;f ), and new precision data, Wg (x; y; f).

S(x;y:f)= S(xy;f 1)+ Wg(xy;f)se(x;y:f) (78)
(xy:;f)= (xy;f 1)+ Ws(x;y:f) (7b)

Here is a number between 0 and 1 that determines the level of persistence. Each persisted
pseudo-strainis given by S(x;y;f)=( x;y;f), accompaniedby a precision (quality) value for the
display, ( x;y;f). Therefore, we can presert sonographerswith a meaningful display, representing
data quality aswell asstrain | the appearanceof ead image is determined jointly by thesetwo
quarntities.

Our method for spatial averaging is very similar. We apply it to reduce the noise in 3D
data spanning a volume. In general, our spatial averaging involves corvolving the data with a
Iter kernel, spanning time and the three spatial dimensions. Persistenceas described above is
usually suitable for implementing the lter over time | it amourts to a smoothing kernel, with
an in nite impulse response. We treat the spatial dimensionsdi erently, on the other hand, by
explicitly expressingthe kernelin the form K (j xj;j Vij;] zj). Spatially averageddata S(x;y;z)
and ( x;y;z) are similar to the persisted data: spatially averagedpseudo-strainvaluesare again
given by S(x;y;z)=( X;y;z). Thesedata are calculated as follows.

X
S(xiy;z) = K(xi  Xjslyi  visizi o zj))We (i)ss (i) (8a)

X
(xy;z2) = K(xi  Xjijyi iz z))We(i) (8b)

|
This is symmetric smoothing, for which kernel valuesin the range O to 1 expressthe weighting of
normalised pseudo-straindata at (x;;Vi;z) when spatially averageddata are being calculated at
(x;y;z). Generally, setsof normalised pseudo-strainsg (i) and precisionWg (i) data may be either
regularly or irregularly distributed over 3D space. Examples of both situations are preseried in
Section 3. If the location data (X;;Y;;z) are cortinuous, then K (jxi  Xj;jyi Vi;jzi  zj) must
be de ned in a functional form, rather than as a discrete kernel. Ideally, spatial averaging might
be implemented with a smooth kernel, such as a Gaussian, but this is inconveniert to calculate,
especially when the data are irregularly distributed. Instead, in our exampleswe revert to a

rectangular moving average lter,

(
S if i Xj<L\ jyi<L\j zi<lL
K Xj; oz)) = ) 9
( xjsj yisi Z) 0 otherwise )
where L setsthe kernel size. This Iter can be applied very e cien tly to irregularly aswell asto
regularly distributed data. The certral lobe of its spatial frequency responseis essetially a low
pass Iter. Somehigh frequencynoiseremains owing to sidelobes,but this can mostly be removed

simply by explicitly low-pass ltering the pixel data beforethe nal display.

2.5 Display

Returning to Figure 2, an advantage of traditional ultrasound imaging is that signal intensity
displays automatically tend to showv the most data where the signal is strong, and they shaow less
data where the signal is weak (the imageturns black). Similarly, one of our options when imaging
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Figure 4: Two examplesof 2D colour maps. (a) Green through to magena provides the strain
scale, while pixel intensity indicates the data quality within a range from a lower threshold |
below which everything appearsblack | up to a maximum threshold | above which colours are
displayed with the maximum intensity. (b) The strain scaleis basedon intensity variation between
black and white, which blends with dull red when the precisionis low.

pseudo-strainis to cortrol image luminance or intensity basedon the precision data, and to use
changesin colour (preferably independertly of luminance/intensity) to indicate strain. Regarding
the colour scheme, our options include the use of a wide range of saturated colours, producing
the e ect of a cortour display (as for examplein the blue-cyan-green-\ellow-red scale of [7] and
[18]), but for the presert demonstration we favour a dichromatic scale, which is qualitativ ely
closer to traditional intensity-based displays, and which may avoid distorting the features that
are perceived to appear in ead image. Aiming for maximum colour variation acrossour example
scale, we use green and magerta at the extremes, varying from strong green (high strain/soft)

through grey (medium strain/medium sti ness) to magerta (low strain/sti ). Since we perceive
dierent colourswith di erent sensitivity, colour variation at a xed intensity is achieved following
the convertion of holding constart the value of 59 (green pixel value)+ 30 (red pixel value)+

11 (blue pixel value) [9]. The overall colour map, considering both strain and precision, is
illustrated in Figure 4.

There are likely to be both advantages and disadvantages ass@iated with represening strain
with colour instead of intensity, since image features encaled in these two alternative ways are
processedwith dierent accuracy and at dierent speed by the human visual system [2]. We
therefore also test a 2D colour map in which strain is indicated by intensity, and a colour (red in
our example) is introducedto indicate precision. We include this in Figure 4 and in our results to
provide a comparison. In any evert, our aim in relation to displays is simply to demonstrate that
a 2D colour map can be usede ectiv ely to depict strain and precision data simultaneously.

Note that in the results sectionwe demonstrate 2D colour mapsthat are encaded with eight bits
per pixel. This is usually su cien t to produce good images,becausedistinctions within the dark or
red regionsof the colour mapsare lessperceptible, sotheseregionscanbe encaded at low precision.
Howewer, 16-bit encading might be preferableif this type of interface cameinto widespreadclinical
use, sincethe appearanceof the display imageswould then be marginally smoother.

YHigh quality colour printing is required in order to appreciate the full meaning of the remaining gures.
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Figure 5: Thyroid imagesusing the full interface.

3 Results

By applying our full interface scheme| with intelligent normalisation, persistenceand display
| to the scanshawn earlier in Figure 2, we produce a substartially better image in Figure 5.
Precision-weighted persistencegivesrise to good strain estimatesthroughout most of the image,
and the poor precision of estimatesin the shadowved regionsis clearly indicated by both of the 2D
colour maps. This scanwas undertaken freehand using the 5{8 MHz 7L3-V probe of the TerasorY
T3000 laptop-basedultrasound madine, running Stradwin? freehand3D ultrasound software. The
remainder of this section provides further illustrations from scansof phantoms, highlighting the
properties of ead interface componert, and the interactions betweendi erent componerts.

Figure 6 illustrates the e ect of persistence,usingimagesfrom an inhomogeneougelatin phan-
tom with sti inclusions at a depth of 7 cm, scannedusing the corvex 2{5 MHz 4C2-A Terason
probe. Theseimagesare normalised using Equation 4. Individual strain imagesusually produce
someregions of good strain estimates, alongside other regions with lower precision. Unweighted
frame averagingasin Figure 6b might eventually corvergeon a good image, but for short integra-
tion times it is usually lessaccurate than someof the best individual images. The advantage of
persistence,asin Figure 6c¢{d, is that it makese cien t useof the data, sobetter strain imagesare
produced easily, with larger regionsof good data and generally lessnoise. In somescans,asin this
example, the use of an image-wide weighting is su cien t to cut out most of the noise, although
pixel-level weightings often give better results. The other advantage of pixel-level weightings is
that a precision value is retained by ead pixel in the persisted image, so it is still possibleto
indicate the data quality using a 2D colour map. However, we include an image produced using a
lessrobust displacemert tracking algorithm in Figure 6e,in which the best form of persistencehas
beenemployed. The imageis poor, demonstrating that persistenceis far more e ectiv e if the rate
of sewere outliers can be kept to a minimum, becauseestimates of the precision of grossoutlier
errors tend to be too high. Persistenceis highly e ectiv e in conjunction with our phase-based
algorithms, becauseof the implicit continuity constraint that wasintro duced by the advancediter-
ation seedingstrategy described in [14] and [25]. This issuealsoa ects exhaustive searding based
on correlation coe cien t or SAD, where in both casesthe imposition of cortinuity constraints {
whether explicitly [20] or implicitly [14] | substartially reducesthe rate of outlier errors.

The next exampleis from freehandscanningof a breast biopsy phantom (Computerised Imaging
ReferenceSystems, Inc.* Model 052) using the linear array 5{8 MHz Terasonprobe. The data
quality in this caseis lessdependert on maintaining even probe pressure,becausedisplacemen
tracking near to the surfaceis subject to lessmotion decorrelation, even if the probe doesrotate
substartially . Howewer, this meansthat a wider range of motion typesregisterhigh precisionvalues,
which actually makes correct normalisation more important than in the example of Figure 6. A

Y http://www.terason.com
Zhttp://mi.eng.cam.ac.uk/~rwp/stradwin
Xhttp://www.cirsinc.com
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Figure 6: Example of alternative persistencemethods in the strain images. (a) Best individual
image without persistene@: Individual frames produce a mixture of good and bad image regions,
which register di erent levels of precision. (b) Unweighted frame averaging: The unweighted av-
erageof an image sequenceis noisier than many of the individual frames. (c) Precision-weighted
frame averaging: A sequetiial averageweighted by ead frame's mean precision signi cantly re-
ducesthe level of noise. (d) Pixel-level precision-weightal persistene: Performing the average
with a di erent weight for every pixel further reducesthe level of noise, but only slightly in this
example. Its main advantage in this caseis the retention of pixel-level persistencedata, hencethe
remaining poor data can be hidden. (e) Lessrobust displaement tracking: This image has the
samepersistence,but displacemen tracking is by the fragile method of [22]. Persistenceis more
e ectiv e in conjunction with robust displacemen tracking algorithms.
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Figure 7: Comparison of normalisation applied to a single frame (no persistence). The normalisa-
tion surfaceis basedon (a) Equation 2, (b) Equation 3 and (c) Equation 4.

singleframe of strain data with relatively even compressionis illustrated in Figure 7, exhibiting two
noteworthy features. The uniform normalisation in Figure 7a givesthe impression of there being
stier material towards the bottom of the image, where the stressdispersesinto the surrounding
material. The imagesin Figure 7b{c are better becausethe region with lower stress registers
instead as having similar pseudo-strainat a lower signal-to-noiseratio, resulting in larger hidden
regions. It is alsoclear from the imagethat the motion of the probe wasslightly rotational, sothat
greater pressurewas applied on the right hand side. This givesan appearanceof soft material on
the right of the imagein Figure 7a{b, including a particularly soft region with low precision data.
The badground material correctly appears more uniform when we apply the more sophisticated
normalisation in Figure 7c, particularly in the top right of the image, where the data now register
an acceptablelevel of precision.

Rotational movemert of the probe often results in stark di erences depending on the form of
the normalisation. The image in Figure 8 is a relatively extreme example. This demonstrates
the importance of appropriate normalisation for making best use of the recorded data. The in-
homogeneit of pseudo-strain precision in these imagesmeansthat they also highlight the value
of correctly applying weighted persistenceat the pixel-level. Figure 9 shows that in this instance
precision-weighted frame averaging is no better than unweighted frame averaging, whereasan ex-
cellert pseudo-strainimage is produced by applying precision-weighted persistenceat the level of
individual pixels. Our sophisticated normalisation with lateral stresscorrection is advantageous
becauseit both reducesthe level of noise and producesa pseudo-strainimage that corresponds
much more closelyto the sti ness of the phantom material.

Final 2D results are preseried in Figure 10, showing a typical image sequencendicativ e of the
sonographer'sexperiencewhen beginning a freehand scanusing the new interface. The scantarget
in this example is an inhomogeneousagar phantom cortaining half of an olive, which is slightly
sti er than the agar. The screenis initially black (or red) beforeacceptabledata becomeavailable.
It beginsto colour almost immediately on contact with the scantarget, although some parts of
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Figure 8: This image records a frame in which the main motion was rotational, so one side
extended while the other compressed. The label 0 denotesthe use of a black-white colour map
without precisiondata. (a) If auniform normalisation is usedthe resulting pseudo-strainimage has
one half coloured white and the other black about a pivot. Fortunately the precisiondata correctly
register an absenceof useful data, so (al) and (a2) are blank. Howewer, the more sophisticated
normalisation applied in (b) registersmany useful measuremets, with acceptableprecisionat the
edgesof the image, away from a certral pivot, the position of which is clearly visible.
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Figure 9: Examplesof persistencealternativ esapplied to a sequenceof strain imagesfrom the scan
of the breast biopsy phantom, where the scan has been conducted inexpertly, frequertly rolling
the probe about the elevational axis. (a) Unweighted frame averaging still producespoor results.
(b) In this instance, precision-weighted frame averaging is no better than unweighted averaging,
becausethe precision of ead individual estimate correlatespoorly with the meanprecisionin eadh
frame. (c) Precision-weighted persistenceat the pixel level producesa far better image.
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Figure 10: Sequenceof imagesat the start of a freehand scan.

the image colour lessquickly than others, while regionswithout data | sudc asthe shadov on
the right | may remain black/red. Stable imagesare achieved easily, and the dewvelopmert of
a successfulscanning technique is supported by visual feedbad: good technique illuminates the
display, whereaspoor movemerns causeit to darken.

We have also undertaken two forms of freehand 3D strain imaging. Firstly, semi-freehand3D
scanning employs a mechanically-swept array that sweepselewationally within its casing, while
contact pressureis controlled manually. Secondly we use a standard linear array tracked by a
6DOF position sensorfor more traditional freehand3D scanning[5, 13]. Each 3D examplethat we
presert naturally requires many imagesto illustrate dierent planesslicing through ead volume
of data, soto save spacein these gures we only show the secondof our 2D colour maps.

Our medanically-swept system consistsof a GEY RSP 6-12 probe interfaced to a Dynamic
Imaging Diasug ultrasound machine, from which RF ultrasound data are sampled by a Gaget
CompuScope 14200 analogue-to-digital converter, and the data are processedand displayed in
real time on a PC running Stradwin software. The scanning protocol consists of pressingthe
probe against the scan target, and holding fairly still during the rst medanical sweep, then
manually applying slightly more pressure, before again holding still for the secondsweep. Full
3D displacemernt estimation is applied to the resulting volumes of pre- and post-deformation RF
ultrasound data, and axial strain is estimated using 3D least squareskernels, as described in [26].
The volumesof strain data are normalisedto pseudo-straindata by following Equation 5| in this
instance a strain hyper-surfaceis tted directly to nd the parametersin Equation 5b, which is a

Yhttp://www.gehealthcare.com
Zhttp://www.dynamicimaging.co.uk
*http://www.gage- applied.com
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Figure 11: Using the medanically-swept array, freehand 3D scan of half of an olive in agar. The
imagesshaw slicesthrough 3D data volumes. Top row from left to right: axial-lateral planar inten-
sity image(i.e., a converntional B-scan), axial-elevational intensity, lateral-elevational intensity, and
these planeslocated in 3D space. Middle row: corresponding pseudo-strainimageswithout spa-
tial averaging. Bottom row: pseudo-strainimageswith spatial averaging. Fine red lines through
the axial-elevational and lateral-elevational slicesindicate their intersections with the displayed
axial-lateral slice.

reliable method given the large quartit y of data available in the volume. Example imagesfrom a
scan of the olive-agar phantom are shown in Figure 11. The imagesshow that spatial averaging
is not necessarilyrequired in this case,but the 3D results are nonethelessimproved substartially
in the bottom row of Figure 11, in which a weighted moving average has been applied following
Equations 8 and 9 with L=0.8mm.

The spatial averagingincurs minimal lossof resolution, becausemuch of the increasein signal-
to-noiseratio arisesfrom the weighted averaging of pseudo-straindata that are spacedmore closely
than the true resolution of the strain imaging system. This meansthat weighted spatial averag-
ing is in fact more important in traditional freehand 3D strain imaging, where movemen of the
ultrasound array is determined ertirely by manual scanningtechnique. In this case,strain esti-
mates from successie 2D frames often overlap almost precisely in 3D space. This arisesbecause
of the relatively haphazard motion of the probe. The errors in overlapping strain estimates are
in fact only weakly correlated (if at all), becauseead overlapping strain estimate arisesfrom a
dierent deformation of the tissue, making weighted averaging all the more e ective. The form
of normalisation is also very important in this application, becauseevery frame has a di erent
pressuredistribution, sothe e ectiv enessof spatial averaging dependscritically on the useof data
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Figure 12: Freehand scan of an olive-gelatin phantom. Top row: intensity. Middle row: strain.
Bottom row: pseudo-strainwith spatial averaging (L=1mm). In every row, ne red lines through
the middle two slices(axial-elevational and lateral-elevational) indicate their intersectionswith the
axial-lateral slice on the left. Theseimagesmay be comparedwith previous results basedon the
samedata in Fig. 11 of [13].

that have beennormalised suitably to adjust for pressurevariations.

The examplesin Figures 12 and 13 are basedon data acquired again by sampling RF from the
Dynamic Imaging Diasus macdhine, this time using the standard 5{10 MHz probe, tracked during
freehandscanningby a Northern Digital ¥ Polaris optical position sensor. Figure 12 shows an olive-
gelatin phantom, which was scannedas part of our original investigation of freehand 3D strain
imaging [13]. The middle row of Figure 12 shows strain imageswith a uniform normalisation of each
frame, without spatial averaging, so the axial-elevational and lateral-elevational planeshave been
constructed by nearest-neighbour interpolation. This fails to producea useful3D image. Previously
we discussedthe use of frame-level quality measuresfor automatic rejection of frames with poor
strain images[12, 13|, but we now achieve far higher quality overall by applying weighted pixel-
level Itering, i.e., producing pseudo-strainimagesusing our new interface with spatial averaging
and normalisation following Equation 4. One part of the 3D imagein Figure 12 still producespoor
data, becausethe phantom cortained a pocket of trapp ed air, causingthe shadaving shawn in the
axial-elevational slice. Our 2D colour map is useful in this region, becauseit correctly marks the
shadaved region red, where no accurate strain data are available.

We also show a similar freehand 3D scanin Figure 13 of the sameolive-agarphantom that was

Yhttp://www.ndigital.com
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Figure 13: Freehand scan of the olive-agar phantom. Top row: intensity. Middle row: strain.
Bottom row: pseudo-strainwith spatial averaging (L=1mm). In every row, ne red lines through
the middle two slices(axial-elevational and lateral-elevational) indicate their intersectionswith the
axial-lateral slice on the left.

scannedwith the semi-freehandmethod to produce Figure 11. Again, spatially averagedpseudo-
strain in Figure 130 ers a great improvemen over naive strain imaging. The readermay alsonote
the bene ts of experience: the olive-agarphantom corntains half of an olive, upturned to avoid the
formation of the air pockets that were problematic in our previous olive-gelatin phantoms [13].

4 Conclusions

We have preseried an overview of a novel interface for real time freehand strain imaging, with
brief explanations of the underlying theoretical principles. The preferred inputs for the interface
are strain estimates from a robust strain estimator, together with accurate precision estimates.
This meansthat the interface can be incorporated as the front end on a wide range of strain
imaging systems,although the bestresults are likely to be achieved in systemsthat include robust
displacemen estimation that neither relies on exhaustive seardiing nor on tracking methods that
exhibit excessie fragility.

Notable aspects of our interface include a normalisation stage, persistenceor spatial averaging
and a novel display using a 2D colour map. Normalisation reducesthe ambiguity of strain imaging,
and actually reducesthe level of noisein persistedimages. It followsthat good, informativ e pseudo-
strain imagescan be produced by a wide range of probe motions, rather than relying heavily on
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careful, even compressions.In order to exploit thesebene ts fully, persistenceshould be weighted
at the level of individual pixels, rather than at the level of sequetial images.

We have also demonstrated the application of our interface to freehand 3D scanning. With the
new interface, the general robustnessof pseudo-strainimaging meansthat the acquisition of 3D
volumesof pseudo-straindata is essetially no more challenging than the basic problem of reliably
producing good 2D images. This is also made considerably easierby the presenation of persisted
real time pseudo-strainimagesin 2D, while the sonographeracquiresdata acrossthe volume.

In general,this systemnot only improvesthe quality of the results from particular data sets,but
it alsosupports the acquisition of suitable data, by helping the sonographerto develop a successful
scanning technique. Wide-ranging clinical trials will begin mid-2007 in Addenbrooke's Hospital
(Cambridge, UK) to investigate suitable applications for this system. Although the interface
has already beenreceived enthusiastically by our clinical collaborators, it is possiblethat further
modi cations could be made to tailor it further for specic applications as clinical experienceis
accunulated. At the very least, it is probable that the best normalisation and 2D colour scheme
will be application-dependert, so a range of application-speci ¢ settings is likely to be required
within the framework of the existing interface.
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