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ABSTRACT

Designing a large vocabulary speech recognition system is a highly
complex problem. Many techniques affect both the system com-
plexity and recognition performance. Automatic complexity con-
trol criteria are needed to quickly predict the recognition perfor-
mance ranking of systems with varying complexity, in order to se-
lect an optimal model structure with the minimum word error. In
this paper a novel complexity control technique is proposed by us-
ing the marginalization of discriminative growth functions. A two
stage approach is adopted to make the marginalization efficient.
First a lower bound, related to the auxiliary function, is used to
remove the dependence on the latent variables. Second a Laplace
approximation is used for the integration. Experimental results
on a spontaneous speech recognition task show that marginalized
MMI growth function outperforms using held out data likelihood
and standard Bayesian schemes in terms of both recognition per-
formance ranking error and word error.

1. INTRODUCTION

How to choose an optimal model structure with the “appropriate”
complexity is a standard problem for large vocabulary continu-
ous speech recognition (LVCSR) training. State-of-the-art LVCSR
systems are highly complex. A variety of techniques are used
which alter the system complexity, such as state clustering, mix-
ture of Gaussians and dimensionality reduction schemes. It is not
possible to explicitly train all possible systems and obtain their
word error rates (WER) on held out data for all possible structural
configurations. It is therefore useful to find a criterion that pre-
dicts the WER ranking order without requiring all the systems to
be built.

Most existing complexity control schemes can be classified
into two types. In Bayesian techniques model parameters are treated
as random variables and integrated out in the parametric space. In
the information theory approaches the complexity control prob-
lem is viewed as finding an appropriate code length [3]. These two
approaches are closely related to each other, and both asymptot-
ically tend to the Bayesian Information Criterion (BIC) approxi-
mation [2]. There is an inherent assumption in these schemes that
increasing the likelihood on held-out data decreases the WER. In
previous work [15] this correlation has been shown to be quite
weak. It would be preferable to use a cost function that is more
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closely related to WER. Along these lines a discriminative mea-
suring of model confusion over the training data has previously
been used [11].

This paper presents a novel technique using the marginaliza-
tion of a discriminative growth function, rather than the likelihood
in standard Bayesian approaches. The discriminative growth func-
tion presented in this paper is based on the maximum mutual in-
formation (MMI) criterion. The MMI criterion can not be directly
used as it is sensitive to outliers, instead related MMI growth func-
tion is used. A two stage approach is used to make the marginaliza-
tion of the growth function efficient. First a lower bound, related
to the auxiliary function, is used to remove the dependence on the
latent variables. Second a Laplace approximation is used for the
integration.

In this work the type of HMM systems being investigated use
mixture of Gaussians as state output distributions and multiple
Heteroscedastic LDA (HLDA) transforms shared locally among
different parts of the model as a feature space diagonalizing and
dimensionality reduction scheme [13]. An HLDA transform par-
titions the entire feature space into a retained subspace where all
Gaussian means and variances are kept distinct, and a nuisance
subspace where Gaussian means and variances are globally tied.
Two forms of system attribute are examined. The first is the num-
ber of components associated with the states of a model. The sec-
ond is the number of useful dimensions of a multiple HLDA sys-
tem. The problem of examining multiple attributes makes some
commonly used schemes such as BIC inappropriate for complex-
ity control [15].

The next section describes the general framework of Bayesian
complexity control. Section 3 details the derivation of marginal-
izing an MMI criterion growth function for automatic complexity
control. Some implementation issues are discussed in section 4.
Experimental results on a standard LVCSR task are presented in
section 5.

2. BAYESIAN MODEL COMPLEXITY CONTROL

A standard problem in LVCSR training, and machine learning in
general, is how to obtain a model structure that generalizes well
to unseen data with appropriate complexity from a set of candi-
date model structures {M}, given a T length training data set
O = {o1, ...,oT } and the reference transcription W . For speech
recognition this generalization directly relates to the WER per-
formance. The standard approach is to assume that the model
is “close” to the correct model, so that increasing the likelihood
on unseen data decreases the WER. Bayesian complexity control
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techniques make use of the training data, assuming the following
evidence integral is strongly correlated with the held out data like-
lihood.

M̂ = arg max
M

P (M)

∫

FML(Θ,M)p(Θ|M)dΘ (1)

Here Θ denotes a parameterization of M. and the maximum like-
lihood (ML) criterion is given by

FML(Θ,M) = p(O,W|Θ,M) (2)

The language model probability P (W) is normally optimized on
additional text data, so can be ignored in terms of the complex-
ity control considered here. Furthermore, in this work the model
structure priors P (M) and parameters priors p(Θ|M) will be as-
sumed to be uninformative.

It is normally computationally intractable to directly compute
the evidence integral in equation 1. This has led to a variety of
approximation schemes, among which BIC is the most widely
used [2]. This complexity control criterion is simply expressed
in terms of penalized log likelihood evaluated at the ML estimate
of model parameters Θ̂

log p(O|M) ≈ log p(O|Θ̂,M) − ρ ·
k

2
log T (3)

where k denotes the number of free parameters in M and ρ is a pe-
nalization coefficient which may be tuned to the specific task [14].
Schwartz proved that when ρ = 1, BIC is a first order asymptotic
expansion of the evidence integral. Recent research has found a
major limitation of BIC when optimizing the multiple complexity
attributes considered in the paper [15].

Laplace’s approximation provides a second order asymptotic
expansion of the evidence integral [1]. The basic idea is to make a
local Gaussian approximation of likelihood curvature in the para-
metric space. The volume under that Gaussian is computed as an
approximation.

log p(O|M) ≈ log p(O|Θ̂,M) +
k

2
log 2π

−
1

2
log

∣

∣

∣
−∇2

Θ log p(O|Θ̂,M)
∣

∣

∣
(4)

One issue with both of the above schemes is that the log-
likelihood for each configuration is required. One method to avoid
this is to derive a lower bound for the ML criterion in a tractable
form that may be assumed to be applicable for multiple configura-
tions. Using a standard EM approach this may be expressed as

log p(O|Θ,M) ≥ log p(O|Θ̃,M)

+QML(Θ, Θ̃) −QML(Θ̃, Θ̃)

= LML(Θ, Θ̃) (5)

where the standard EM auxiliary function for HMMs is given by

QML(Θ, Θ̃) =
∑

j,τ

γj(τ) log p(oτ |Sj , Θ,M) (6)

and {Sj} is the set of discrete hidden variables allowed by the ref-
erence, γj(τ) = P (Sj,τ |O,W, Θ̃,M), Θ̃ is the current parame-
terization for M and Sj,τ indicates that oτ was generated by state
Sj . Using this form of bound all configurations with the same set

of latent variables and statistics can be efficiently computed. This
now yields a lower bound for the evidence

p(O|M) ≥

∫

exp
(

LML(Θ, Θ̃)
)

p(Θ|M)dΘ (7)

The right hand side of inequality 7 can be efficiently integrated out
using the Laplace approximation.

A special case of this is to simply use the standard ML aux-
iliary function [15], while ignoring the other two terms which are
independent of Θ in equation 5. However when using multiple sets
of statistics they may no longer be ignored. It can be shown that
these two terms are equivalent to an entropy of hidden variable
sequence posteriors. This is related to another popular approx-
imation scheme, variational approximation [4], which can yield
a tighter bound for the evidence integral. Markov Chain Monte
Carlo sampling schemes may also be used to approximate the evi-
dence integral, although in practice this approach is infeasible for
LVCSR tasks given the high dimensionality of the sampling space.

3. DISCRIMINATIVE GROWTH FUNCTIONS

This section initially describes the standard maximum mutual in-
formation training criterion and the issue with using it for model
selection. A suitable growth function is then described and a strict
lower bound with efficient approximation is presented.

3.1. Maximum Mutual Information Criterion

Recently discriminative training criteria, which are more closely
related to WER, have been successfully applied to LVCSR train-
ing [8, 9]. One of the most widely used criteria is the maximum
mutual information (MMI) criterion. This is equivalent to maxi-
mizing the posterior probability of training data over the correct
transcription W .

FMMI(Θ,M) =
p(O,W|Θ,M)

p(O|Θ,M)
(8)

Empirical results on various LVCSR discriminative training tasks
have shown that the Extended Baum-Welch (EBW) reestimation
formula can efficiently optimize the MMI criterion [5, 6, 8, 9].
The auxiliary function for EBW is

QMMI(Θ, Θ̃) =
∑

j,τ

γ
MMI

j (τ) log p(oτ |Sj , Θ,M) (9)

where

γ
MMI

j (τ) = γ
num

j (τ) − γ
den

j (τ) + Djp(O|Sj,τ , Θ̃,M) (10)

γnum

j (τ) is the numerator posterior P (Sj,τ |O,W, Θ̃,M), γden

j (τ)

is the denominator posterior, P (Sj,τ |O, Θ̃,M) and Dj is a posi-
tive constant regularization term to ensure the convergence.

One obvious form of complexity control is to marginalize the
MMI criterion over the parametric space, similar to the Bayesian
evidence integral. This yields

M̂ = arg max
M

∫

FMMI(Θ,M)p(Θ|M)dΘ (11)

However, directly marginalizing the MMI criterion will suffer from
an inherent defect - the MMI criterion computation tends to give
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undue weight to outliers utterances with very low posteriors. In
such a case the recognition performance ranking prediction can be
considerably distorted due to the presence of these outliers. One
method to overcome this problem is to explicitly deweight the pos-
teriors of outliers utterances through a criterion smoothing func-
tion [7]. An alternative method is to transform the MMI criterion
into a growth function, G(Θ,M). This is the approach adopted in
this paper.

3.2. MMI Growth Function

A growth function is required that is related to the standard MMI
criterion, but is not as sensitive to outliers. The form of the growth
function considered in this paper1

G(Θ) = p(O|Θ)
(

CFML(Θ̃) + FMMI(Θ) −FMMI(Θ̃)
)

(12)

The first term acts to remove the sensitivity to outliers, in this case
highly unlikely sequences. The term in the bracket contains in-
formation about the MMI criterion and will thus give information
about the curvature of the criterion surface in the parametric space.
C > 0 is a constant regularization term. The gradient of G(Θ),
when evaluated at the current parameter estimate Θ̃, will be in the
same of direction as the true criterion gradient when C approaches
zero, and p(O|Θ) > 0.

lim
C→0

∂G(Θ)

∂Θ

∣

∣

∣

∣

Θ=Θ̃

∝
∂FMMI(Θ)

∂Θ

∣

∣

∣

∣

Θ=Θ̃

(13)

The aim is to obtain a computationally efficient lower bound for
the marginalized growth function. The growth function given in
equation 12 may be re-written as

G(Θ) = p(O,W|Θ) − P (W|O, Θ̃)p(O|Θ)

+Cp(O,W|Θ̃)p(O|Θ) (14)

In the same fashion as the bound for Bayesian evidence this must
be rewritten in terms of the hidden state sequences {Ψ}. A lower
bound may be expressed using a generalized EM approach [10].

log G(Θ) = log
∑

Ψ

G(Ψ, Θ)

≥
∑

Ψ

P(Ψ, Θ̃) log
G(Ψ, Θ)

P(Ψ, Θ̃)

= LMMI(Θ, Θ̃) (15)

where the hidden variable sequence version of the growth function
is defined as2

G(Ψ, Θ) = p(O, Ψ,W|Θ) − P (W|O, Θ̃)p(O, Ψ|Θ)

+Cp(O,W|Θ̃)p(O, Ψ|Θ) (16)

For this inequality to be valid using Jensen’s inequality the se-
quence posterior distribution P(Ψ, Θ̃) must satisfy the positive
and sum to one constraint. The form of the hidden variable se-
quence “posterior” considered in this paper is

P(Ψ, Θ̃) =
G(Ψ, Θ̃)

∑

Ψ
G(Ψ, Θ̃)

=
γMMI

Ψ (O)
∑

Ψ
γMMI

Ψ
(O)

(17)

1In the following equations M is omitted for a particular model struc-
ture being considered.

2Here the hidden variable sequence consists of both the state sequence
and the component sequence.

When C is big enough, such P(Ψ, Θ̃) is guaranteed to be positive
and satisfy the sum to one constraint required by Jensen’s inequal-
ity. This form of posterior will be shown to yield bounds closely
related to the standard MMI auxiliary function.

Various forms of this growth function will be used in this
work. First at the “current” model parameter value

G(Ψ, Θ̃) = γ
MMI

Ψ (O)p(O,W|Θ̃) (18)

where the MMI hidden variable sequence occupancy γMMI

Ψ (O) is
defined as

γ
MMI

Ψ (O) = P (Ψ|O,W, Θ̃) − P (Ψ|O, Θ̃) + Cp(O, Ψ|Θ̃) (19)

This gives the simple form of posterior in equation 17. It is also
possible to write

G(Ψ, Θ)=
(

CFML(Θ̃)+P (W|Ψ)−FMMI(Θ̃)
)

p(O, Ψ|Θ) (20)

since the observations are conditionally independent of the word
sequence given the hidden state sequence, Ψ.

Using equation 17 and 20, equation 15 can be re-written as

LMMI(Θ, Θ̃) = log G(Θ̃) +
∑

Ψ

P(Ψ, Θ̃) log p(O, Ψ|Θ)

−
∑

Ψ

P(Ψ, Θ̃) log p(O, Ψ|Θ̃) (21)

This lower bound can be re-expressed as

LMMI(Θ, Θ̃) = log G(Θ̃) +
QMMI(Θ, Θ̃) −QMMI(Θ̃, Θ̃)

∑

Ψ
γMMI

Ψ
(O)

(22)

where the auxiliary function is defined as3

QMMI(Θ, Θ̃) =
∑

Ψ

γ
MMI

Ψ (O) log p(O|Ψ, Θ)

=
∑

j,τ

γ
MMI

j (τ) log p(oτ |Sj , Θ) (23)

and the MMI hidden variable occupancy γMMI

j (τ) is,

γ
MMI

j (τ) = γ
num

j (τ) − γ
den

j (τ) + Cp(O,Sj,τ |Θ̃) (24)

The above equation is closely related to the form given in equa-
tion 10, when Dj = Cp(Sj |Θ̃). Previous research on LVCSR
MMI training shows that the selection of Dj considerably affects
the criterion convergence and test set generalization [8, 9]. A com-
monly used form of Dj is associated with the denominator occu-
pancy Dj = E

∑

τ
γden

j (τ), where E > 0. The same form of
smoothing function may be used for the growth function. Now
the value of C in equation 16 will vary depending on the hidden
variable sequence. However this means that the marginalization
of discriminative growth functions is not a parameter free scheme.
For complexity control tasks the appropriate setting of Dj can also
be important. This paper uses the form of Dj as described above.

The form of lower bound defined in equation 22 and the ML
case given in equation 5 have similar forms. Given the current
value of the criterion, the new value is estimated as the old value

3For this definition the likelihood of the hidden variable sequence
P (Ψ|Θ̃), has been ignored. The influence of the component priors and
transition matrices have thus been removed.

3



plus the change in auxiliary function. However the ML case has a
simple closed form for maximizing the auxiliary function, whereas
for the MMI growth function the value selected is sensitive to C.
Note in both cases an increase in the auxiliary function guarantees
an increase in the related ML, or MMI growth function. How-
ever increasing the MMI growth function does not guarantee an
increase in the MMI criterion, as they are simply constrained to
have the same gradient from equation 13.

The following marginalization of the MMI growth function
lower bound is used in this paper for complexity control.

M̂ = arg max
M

∫

exp
(

LMMI(Θ, Θ̃)
)

p(Θ|M)dΘ (25)

In common with the marginalized lower bound for ML this expres-
sion is approximated by using Laplace’s approximation.

4. IMPLEMENTATION ISSUES

There are three main implementation issues associated with the
marginalized growth function complexity control described in the
previous section: obtaining the “complete” dataset; using Laplace’s
approximation; and choice of the value of C (or the hidden vari-
able specific Dj).

As previously described to make the complexity control effi-
cient, a lower bound related to the standard ML and MMI auxiliary
functions, is marginalized over the model parameters. The nature
of the complexity attributes to be controlled determines how com-
plex this process is. For the multiple HLDA case complexity con-
trol is simple, where the number of useful dimensions retained in
an HLDA transform is allowed to vary from transform to trans-
form. Only the retained dimensionality is allowed to vary, there
are no differences in the hidden state sequence for any of the sys-
tems to choose over4. In contrast if the number of components
associated with a state is to be determined, then the hidden state
sequence will vary. In this situation it is necessary to obtain statis-
tics for multiple systems. The approach adopted in this work is to
fix state level posteriors using the current model parameters and
train systems with varying numbers of components per state given
the state posteriors. The discriminative statistics are then accu-
mulated for each of the various systems. By fixing the state level
alignments, again yielding a lower bound, the influence of the state
complexity on the state posterior has been removed.

The second issue is the Laplace approximation. The number
of model parameters in an LVCSR system can be in the millions.
Computing the Fisher Information matrix for this is impractical.
The solution used in this work is the same as that in [15], where
each component is assumed independent of all other components,
and the mean vector and variance vector are additionally assumed
independent.

In common with the EBW training it is necessary to set a value
for the smoothing constant C, or component specific version Dj .
The larger the value of this constant the more stable, and slower,
the MMI optimization. The equivalent for the complexity control
is that at each iteration the change in the system structure will be
smaller.

4As the structural change is too big the correlation between the growth
function and its lower bound may be arguably weak.

5. EXPERIMENTAL RESULTS

Initial evaluation of the complexity control system was based on a
conversational telephone speech task (referred to as SwitchBoard).
The results presented in this paper consist of two distinct parts. In
the first part, various techniques were used to optimize multiple
model complexity attributes on a global level. This allowed all
systems to be trained and evaluated. In the second part, a single
model complexity attribute was optimized on a local level. All
model structures considered were trained using the ML criterion
after the complexity has been determined.

5.1. Complexity evaluation

When a complete set of possible systems are built and evaluated,
for example in the global experiments described here, it is possi-
ble to compare the error rate and rank ordering for the complexity
control criteria being used. A good complexity control criterion
should yield the correct rank ordering for all the systems to be
compared. A measure of the distance between the two rankings is
required.

In this paper, an empirical ranking prediction error metric is
defined as

RankErr% =

∑

i,j
δ(wi,wj) × |wi − wj | × |i − j|

N × maxi,j{|wi − wj |} × maxi,j{|i − j|}

Here {w1, ...,wN} denotes the WER of all N possible systems
according to a ranking order generated by some complexity con-
trol criterion, and the binary function δ(wi,wj) will be true only
if the ranking between wi and wj is incorrect and the difference
in WER is significant, in this case bigger than a given WER thresh-
old. This has a good intuitive feel as penalizing systems that differ
only slightly in error rate is felt inappropriate. Thus differences
of systems whose word error rate is less than a WER threshold
are ignored. Thus, the ranking error is related to the total amount
of position shifts over a minimum threshold, weighted by WER
difference between all mis-ranked pairs of systems. The normal-
ization term guarantees the ranking error will be positive and less
than one.

5.2. Optimizing Global Complexity Attributes

The global complexity control experiments used the same config-
uration as [15]. This used a 68 hour subset of all the available
Switchboard I and Call Home English (CHE) conversation sides.
A continuous density, mixture of Gaussian, cross-word triphone,
gender independent HMM system was trained using the ML cri-
terion, with 6168 physical speech states after decision tree based
tying. All recognition experiments used a trigram language model.
A 3 hour subset of the 2001 development data was used both as
the test and held-out data. For more details see [15]. Two global
complexity attributes of a single transform HLDA system were
optimized: the number of Gaussian components per state from the
range {12, 16, 24}; the number of useful dimensions in the range
{28, ..., 52}. The permutation of these two attributes led to 75
model structures.

In previous work on this set-up the correlation between WER
and held out data likelihood for the 75 systems was examined [15].
Though there was a very general trend that error rate decreased
with increased held-out data likelihood, the precise ordering of
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systems was poor. Noticeably this scheme favors the most com-
plex system, the best model structure predicted has 24 Gaussians
per state and 52 retained dimensions, which is significantly worse
than the actual best system by 0.6% absolute. Previous work also
examined Laplace’s approximation and showed that the Bayesian
evidence (which should be closely related to the held-out data log-
likelihood) may be reasonably approximated and that BIC is a
poor criterion when considering multiple forms of parameters in
the complexity control [15].
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Fig. 1. Held out data MMI criterion vs. WER

Figure 1 shows the held-out data MMI criterion value against
WER. The correlation between the two is quite poor. The outliers
were found to heavily influence the value of the MMI criterion.
This was the motivation for using a marginalized growth function,
rather than the MMI criterion. In an initial plot of the held-out data,
the growth function showed reasonable correlation. However in
contrast to the standard MMI training the value of C was globally
set.
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Fig. 2. Marginalized MMI growth function vs. WER

Figure 2 shows the marginalized MMI growth function against
WER. For these experiments the smoothing constant was set on
a per component basis in the standard MMI fashion. A strong
correlation is observed with the WER. The best system selected is
only 0.2% absolute worse than the actual best one.

A good complexity control scheme should correctly rank all
the systems. Table 1 shows the recognition performance ranking
prediction error computed using the method in section 5.1. The
table consists of three sections. The first is the baseline num-
ber by ranking the systems according to the training data likeli-
hood. This will simply yield an ordering on system complexity
with no penalization. The first section also shows the ranking per-

formance on using the held-out data scores. The poor performance
of the MMI criterion is clearly shown. The likelihood score and
growth function score are quite close. The second section of the
table shows the ranking errors for evidence based approximations.
As described in [15] there are issues with BIC when controlling
multiple attributes. Using both standard BIC and penalized BIC
(ρ = 2), the ranking scores were poor. The ML bound, using
equation 7, yielded good performance. It is interesting that the ap-
proximations for the ML bound gave a slightly lower ranking error
that the held-out likelihood. The best performance was obtained
using the marginalized growth function (GFunc Integral) and is
the score related to figure 2. Part of the performance gain over the
held-out growth function score that it approximates, is because the
global setting of C in equation 12 is not as powerful in terms of
test set generalization and criterion convergence. The local setting
of Dj described in section 3.2, was used in the marginalization
of MMI function over the training data. As expected if the WER
threshold is increased then the ranking error decreases, though the
general ranking of all complexity control schemes remain about
the same.

WER threshold
0.0 0.1 0.2

Training Like 22.08 22.08 21.59
Held-out Like 8.94 8.89 8.19
Held-out MMI 37.40 37.40 35.91

Held-out GFunc 9.03 8.99 8.14

BIC (ρ = 1) 48.43 48.36 47.35
BIC (ρ = 2) 55.68 55.68 55.42
ML Bound 7.40 7.35 6.25

GFunc Integral 4.74 4.64 3.10

Table 1. Complexity control scheme ranking error (%)

5.3. Optimizing Local Complexity Attributes

In these experiments system complexity attributes were optimized
on a “local” level. The complexity attributes to be optimized were:
the number of Gaussians per state for a single transform HLDA
system; the transform class specific number of useful dimensions
of a multiple HLDA system. A larger 76 hour training corpus
he5train03subwas used, which subsumes the h5train00sub
corpus and includes an additional 166 Switchboard II Cellular con-
versation sides. An updated trigram language model was also used
in the following full decoding experiments, while the test set re-
mained the same.

System WER%

12 component 36.1

VarMix 35.8

BIC (ρ = 1) 36.2
BIC (ρ = 2) 36.1
ML Bound 36.0

GFunc Integral 35.8

Table 2. Number of Gaussian components per state

Table 2 shows the word error rate for various complexity con-
trol systems used to determine the number of Gaussian compo-
nents to train on each state. After the number of components was
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determined 4 iterations of Baum-Welch training were used to re-
fine the estimates. The VarMix system is a simple occupancy based
scheme where the number of components in a state is proportional
to the state occupancy raised to a power, in this case 0.2. There
are no restrictions on the number of components that may be as-
signed to a state. Using this system a 0.3% absolute reduction in
error rate was obtained from the baseline 12 components per state
system. All the other schemes for the table had the restriction that
the number of components could only increase, or decrease, by
one. The optional systems for all schemes were generated by fix-
ing the state alignment and using the HTK MU and MD commands
to change the number of components. These systems were then re-
fined, given the fixed state alignment using Baum-Welch training.
Comparing the various schemes the marginalized growth function
gave better performance (though not significantly) than the ML-
based schemes. Though the marginalized growth function perfor-
mance was the same as the VarMix system, there were far more
restrictions on changing the number of components in a state.

WER%
System # Trans AvgDim MLE MPE MLLR

std - 39 37.5 - -

Fixed 1 39 36.1 33.1 31.2
52 36.3 - -

Fixed 65 39 35.5 32.7 30.9
52 35.5 - -

GFunc 65 48.7 35.2 32.4 30.5

Table 3. Number of retained HLDA dimensions

Experiments were performed on a 12 component HLDA sys-
tem with 65 HLDA transforms, with the aim of optimizing trans-
form class specific number of retained dimensions. All the silence
Gaussians were assigned to one transform class while all speech
Gaussians were split into 64 distinct classes. The range of num-
ber of retained dimensions for all classes is in the set {28, ..., 52}.
Table 3 shows the performance of various configurations. The use
of multiple transforms shows significant gains over a single trans-
form. Furthermore the use of marginalized growth function fur-
ther reduced the error rate. More importantly the gain from this
structural optimization process is found additive to MPE criterion
based discriminative training [9] and MLLR based speaker adap-
tation after fixing the model structure. An overall gain of 0.7% ab-
solute WER reduction is obtained over the 39 dimensional global
transform system.

6. CONCLUSION

A complexity control technique was presented using marginalized
discriminative growth functions. The discriminative growth func-
tion investigated is closely related to Maximum Mutual Informa-
tion (MMI) criterion, with a reduced sensitivity to outliers utter-
ances with very low posteriors. Complexity attributes optimized
for a typical LVCSR task were the number of Gaussians per state
and the useful dimensions of an HLDA system. Both attributes
were optimized at global and local level. Initial experiments in-
dicate that this form of discriminative complexity control may be
useful in speech recognition.

As a general model complexity control framework, the dis-

criminative growth functions are not restricted to the MMI crite-
rion. Future work will examine using other discriminative criteria
which are more closely related to WER, such as Minimum Word
Error (MWE) [12] and Minimum Phone Error (MPE) criteria [9].
In addition optimizing the complexity of discriminatively trained
model structures will also be investigated, rather than the current
scheme that uses ML training.
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