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ABSTRACT

State-of-the-art large vocabulary speech recognition systems are
highly complex. Many techniques affect both system complexity
and recognition performance. The need to determine the appropri-
ate complexity without having to build each possible system has
lead to the development of automatic complexity control criteria.
In this paper further experiments are carried out using a recently
proposed criterion based on marginalizing an MMI growth func-
tion. The use of this criterion is much detailed for determining the
appropriate dimensionality in a multiple HLDA system and the
number of components per state. A scheme for also using this cri-
terion for model compression is described. Experimental results
on a spontaneous telephone speech recognition task are described.
Initial system compression experiments are inconclusive. How-
ever, comparing a standard state-of-the-art system with one gen-
erated using complexity control shows a reduction in word error
rate.

1. INTRODUCTION

State-of-the-art large vocabulary speech recognition system are
highly complex. A wide range of techniques for refining such
systems exist. These techniques will affect both system complex-
ity and recognition performance. Automatic criteria are needed
to select the appropriate complexity of system, i.e. one that gen-
eralizes well to unseen data, without having to build all possible
systems. Most complexity control schemes can be classified into
two types. In Bayesian techniques model parameters are treated
as random variables and integrated out in the parametric space. In
the information theory approaches the complexity control prob-
lem is viewed as finding an appropriate code length [2]. These two
approaches are closely related to each other, and both asymptot-
ically tend to the Bayesian Information Criterion (BIC) approxi-
mation [1]. There is an inherent assumption in these schemes that
increasing the likelihood on held-out data decreases the WER. In
previous work [8] this correlation has been shown to be quite weak.
It would be preferable to use a cost function that is more closely
related to WER, for example discriminative criteria. One form of
this is to consider model confusions on the training data [5].

Recently a complexity control criterion based on discrimina-
tive growth functions has been proposed [9]. This is the form con-
sidered in this paper. In particular the criterion based on maximum
mutual information (MMI) will be used. The MMI criterion can
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not be directly used given its known sensitivity to outliers. Instead
a related MMI growth function is considered. In previous work this
criterion was found to predict a good ranking of a variety of sys-
tems, and small gains in performance, using a 76 hour training set.
The forms of complexity considered were the dimensionality of
the nuisance subspace for multiple HLDA projection schemes [7]
and varying the number of components. This paper describes fur-
ther experiments using this form of complexity control criterion.
First various standard complexity control schemes are described.
The MMI growth function theory is then given along with imple-
mentation details and how it may be used for system compression.
Results examining how the components are assigned over states
and initial compression results are given on a small training set.
Finally performance using a standard large training set, Switch-
Board, for both maximum likelihood (ML) and minimum phone
error [4] (MPE) training are given.

2. BAYESIAN MODEL COMPLEXITY CONTROL

A standard problem in machine learning is how to find a model
structure with appropriate complexity that generalizes well to un-
seen data. The system is normally selected from a set of candi-
date model structures {M}, given a T length training data set
O = {o1, ...,oT } and the reference transcription W . For speech
recognition this generalization should relate to the WER perfor-
mance. Standard ML estimation assumes that HMMs are genuine
speech generators. Hence increasing the likelihood on unseen data
decreases the WER. Bayesian complexity control techniques use
this assumption, and that the evidence integral is strongly corre-
lated with the held out data likelihood, to determine the appropri-
ate system. Thus

M̂ = arg max
M

P (M)

∫

FML(Θ,M)p(Θ|M)dΘ (1)

Here Θ denotes a parameterization of M, and

FML(Θ,M) = p(O,W|Θ,M) (2)

As only the acoustic model structural optimization is considered
in this paper, the complexity control of the language model P (W)
is not discussed. Furthermore, in this work the model structure
prior P (M) and parameter prior p(Θ|M) will be assumed to be
uninformative. It is normally computationally intractable to di-
rectly compute the evidence integral in equation 1. This has led
to a variety of approximation schemes, including BIC, a first order
approximation, and the Laplace approximation [1, 8, 9], a second
order technique.



To avoid having to estimate the likelihood for each possible
system, a lower bound of the ML criterion may be derived using a
standard EM approach. Multiple model structures can then share
the same set of sufficient statistics. Hence

logFML(Θ,M) ≥ LML(Θ, Θ̃)

= logFML(Θ̃,M) + QML(Θ, Θ̃) −QML(Θ̃, Θ̃) (3)

where the standard EM auxiliary function for HMMs is given by

QML(Θ, Θ̃) =
∑

j,τ

γj(τ) log p(oτ |Sj , Θ,M) (4)

and {Sj} is the set of discrete hidden variables allowed by the
reference, γj(τ) = P (Sj,τ |O,W, Θ̃,M), Θ̃ is the current pa-
rameterization for M and Sj,τ indicates that oτ was generated by
state Sj . A tractable lower bound of the evidence integral may be
approximately computed using the Laplace approximation [9].

M̂ = arg max
M

∫

exp
(

LML(Θ, Θ̃)
)

p(Θ|M)dΘ (5)

In practical implementations of BIC auxiliary functions also have
to be considered due again to speed considerations. Thus the main
difference between equation 5 and BIC is the use of Laplace ap-
proximation. The use of the Laplace approximation is impor-
tant when multiple forms of parameter are to be optimized [8].
The inherent model correctness assumption of standard Bayesian
schemes make them inappropriate for speech recognition systems
as the correlation between likelihood on unseen data and WER is
weak [8].

3. MMI GROWTH FUNCTION

Discriminative training criteria, which are more closely related to
WER that ML training, have been successfully applied to LVCSR [3,
4]. One of the most widely used criteria is the maximum mutual
information (MMI), which may be expressed as

FMMI(Θ,M) =
p(O,W|Θ,M)

p(O|Θ,M)
(6)

Empirical results on LVCSR discriminative training tasks have
shown that the Extended Baum-Welch (EBW) re-estimation for-
mula can efficiently optimize the MMI criterion [3, 4]. The auxil-
iary function for EBW is

QMMI(Θ, Θ̃) =
∑

j,τ

γ
MMI

j (τ) log p(oτ |Sj , Θ,M) (7)

where

γ
MMI

j (τ) = γ
num

j (τ) − γ
den

j (τ) + Djp(O|Sj,τ , Θ̃,M) (8)

γnum

j (τ) is the numerator posterior P (Sj,τ |O,W, Θ̃,M), γden

j (τ)

is the denominator posterior, P (Sj,τ |O, Θ̃,M) and Dj is a posi-
tive constant regularization term to ensure stability. However, the
MMI criterion is sensitive to outliers, so is not appropriate for com-
plexity control [9].

A growth function is required that is related to the standard
MMI criterion, but is not as sensitive to outliers. The form of the
growth function considered is [9]1

G(Θ) = p(O|Θ)
(

CFML(Θ̃) + FMMI(Θ) −FMMI(Θ̃)
)

(9)
1In the following equations M is omitted for a particular model struc-

ture being considered.

The first term can remove the sensitivity to outliers, in this case
highly unlikely word sequences. The term in the bracket contains
gradient information about the MMI criterion and will thus give
information about the curvature of the criterion surface in the para-
metric space. C > 0 is a constant regularization term. The gra-
dient of G(Θ), when evaluated at the current parameter estimate
Θ̃, is in the same direction as the true criterion gradient when C
approaches zero, and p(O|Θ) > 0.

lim
C→0

∂G(Θ)

∂Θ

∣

∣

∣

∣

Θ=Θ̃

∝
∂FMMI(Θ)

∂Θ

∣

∣

∣

∣

Θ=Θ̃

(10)

Similar to the ML criterion, a lower bound may be expressed using
a generalized EM approach [9].

log G(Θ) ≥ LMMI(Θ, Θ̃)

= log G(Θ̃) +
QMMI(Θ, Θ̃) −QMMI(Θ̃, Θ̃)

∑

j,τ
γMMI

j (τ)
(11)

where the auxiliary function is defined as in equation 7, however
the MMI hidden variable occupancy γMMI

j (τ) is now set as

γ
MMI

j (τ) = γ
num

j (τ) − γ
den

j (τ) + Cp(O,Sj,τ |Θ̃) (12)

The above equation is closely related to the form given in equa-
tion 8, when Dj = Cp(Sj |Θ̃). The choice of Dj affects the cri-
terion convergence and test set generalization [3, 4]. A commonly
used form of Dj is associated with the denominator occupancy
Dj = E

∑

τ
γden

j (τ), where E > 0. The same form of smooth-
ing function is adopted for the growth function in this paper. In
contrast to the ML lower bound, increasing the growth function
lower bound only guarantees an increase in the growth function
given the strict convergence of generalized EM, but not the MMI
criterion. The two are only constrained to have the same gradi-
ent from equation 10. The following marginalization of the MMI
growth function lower bound is used in this paper for complexity
control, and computed via the Laplace approximation.

M̂ = arg max
M

∫

exp
(

LMMI(Θ, Θ̃)
)

p(Θ|M)dΘ

= arg max
M

Ĝ(M) (13)

where Ĝ(M) is the marginalized growth function value for model
M.

4. IMPLEMENTATION ISSUES

The previous sections has described how a marginalized MMI growth
function may be calculated and used to control the complexity of
the system. However, there are a number of implementation is-
sues that affect the performance of this form of complexity control.
These are briefly described below.
1) Sufficient statistics. For LVCSR training the majority of the
time is spent accumulating the sufficient statistics to estimate the
model parameters.Since EM, or the extended Baum-Welch algo-
rithm, are used to train the models they rely on the use of a current
model set to obtain the alignments to gather the statistics. For
the marginalized growth function this yields the form in equa-
tion 11. When varying the number of Gaussian components in
a state it is impractical to obtain new statistics for each number of
components, even if the state alignments are fixed. To overcome



this problem the sufficient statistics are obtained using the current
model. From this model it is only possible to reduce the number
of components associated with each state. This allows the use of
component merging to obtain sufficient statistics. In model merg-
ing a pair of Gaussians are combined together to form a single
component. Thus to join components j and k to yield l,

γ
MMI

l (τ) = γ
MMI

j (τ) + γ
MMI

k (τ) (14)

similarly for the first and second order moments. All possible pairs
of component merging are considered and the one with the largest
marginalized value selected. In the case of determining the number
of retained HLDA dimensions no component merging is required
as the sufficient statistics may be assumed to be the same for all
numbers of retained dimensions.
2) Hessian calculation. The Laplace approximation requires the
storage of a Hessian matrix. The number of model parameters in
an LVCSR system can be in the millions. Computing the Fisher
Information matrix for this is impractical. The solution used in
this work is the same as that in [8], where each component is as-
sumed independent of all other components, and the mean vector
and variance vector are additionally assumed independent.
3) Maximum structure change. When using the MMI growth
function for controlling complexity the value of the growth func-
tion depends on all the competing models. However the sufficient
statistics are accumulated given the current model. If the structure
of the competing models vary dramatically from this then the esti-
mate of the growth function will be poor. To overcome this prob-
lem a maximum change in the model complexity can be imposed.
For the case of altering the number of components, the maximum
number that may be removed from any state is set to 2 in these
experiments. This was found to yield a reasonable compromise
between accuracy and speed.
4) Smoothing constant. For the MMI growth function there is a
smoothing constant Dj . This affects both the stability of the opti-
mization and the rate of convergence. It will therefore change the
marginalized growth function and rate of model structure change.
In practice similar values to those used in MMI training were found
to be a reasonable compromise.
5) Model compression. Equation 11 requires that in order to al-
ter the system structure there must be an increase in the value of
the marginalized growth function. For the case of determining the
number of components where it is only possible to reduce the num-
ber of model parameters, it is possible to use the same approach
for generating discriminatively determined compact systems. To
allow a reduction in the complexity of the system it is required
that

Ĝ(M) − Ĝ(M̂) ≥ −αĜ(M̂0) (15)

where α is the compression factor and M̂0 is the a current model
structure to accumulate sufficient statistics from. α = 0 corre-
sponds to the standard structural optimization problem. α = ∞
is a standard mix-down approach, where the number of compo-
nents are reduced to the value specified in the maximum structure
change.

5. EXPERIMENTAL RESULTS

Two series of experiments were conducted to investigate the per-
formance of the marginalized growth function for complexity con-
trol and compression. Two training sets were used. The first is

a full system using a 296 hour training set h5etrain03, con-
sisting of 4800 Switchboard I, 228 CHE and 418 LDC Cellular
conversation sides. A 76 hour subset of this, h5etrainsub, was
used for initial development. For evaluation a 3 hour subset of
2001 development data, dev01sub, was used. Cepstral features
were extracted and normalized for each conversation side via side
based VTLN, mean and variance normalization. A 52 dimensional
acoustic feature was then generated by appending derivatives to the
third order. This was projected down using one, or more, HLDA
projections to a 39 dimensional feature vector, or a complexity
determined dimensionality. Continuous density, mixture of Gaus-
sian, cross-word triphone, gender independent HMM system were
used. All recognition experiments used a 58k word trigram lan-
guage model.
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Fig. 1. Number of Gaussians vs. state occupancy

A 16 component system was generated on the h5etrain03sub
training data. The components per state was then varied propor-
tionally to the occupancy raised to a power of 0.2. This is the
varmix approach used at CUED. The original 16 component was
then compressed using the discriminative growth function to 13.9.
Figure 1 shows a plot of number of components against state oc-
cupancy for these two systems. The use of components is dra-
matically different in the two systems. The marginalized growth
function is not correlated with the state occupancy.

Compression factor α (×10−4)
— 0 5 10 ∞

#Gauss 24.0 20.7 20.7 17.7 16.0
WER (%) 35.3 35.1 35.2 35.3 35.5

Table 1. WER on dev01sub and system size against α, MLE
training on h5etrain03sub

The 16 component systems was then iteratively split until the
number of components was 24. This was then used as the base-
line model for the complexity control experiments. Table 1 shows
the performance of these systems. The baseline error rate for the
24 component system on dev01sub was 35.3%. Using the “opti-
mal” structure, determined with α = 0 and 4 iterations of structure
optimization the error rate fell to 35.1% and the average number
of components per state was 20.7. The model structure was further
compressed by increasing the value of α. Using α = 1 × 10−3,
the average number of components was 17.7, a parameter reduc-
tion of 26% over the standard 24 component system with the same



error. As a contrast a system with α = ∞ where 2 components
were removed from each state at each iteration is also shown. An
equivalent varmix 16 component system gave an error rate 35.5%.
The compression results on these experiments were disappointing.
This may be partly due to the small performance gain in the range
considered, only 0.2% absolute was gained by going from 16 to 24
components. In contrast using a single HLDA transform with the
h5etrain03 training data the performance gain from 16 to 28
components was 1.5% absolute. This should allow a better assess-
ment of the complexity control.

Previous complexity control experiments in [9] concentrated
on either controlling the number of components, or the dimension-
ality of the HLDA projection, using the h5etrain03sub train-
ing data. In practice state-of-the-art systems use larger amounts of
training data. It would also be preferable to examine the perfor-
mance when both parameters are varied. For these experiments a
28 component system was used as the baseline. Note for complex-
ity control α was set to 0.

Complexity #Gauss #Trans #Dim Training
Control MLE MPE

Std 28 — 39 34.7 —

Fixed 28 1
39 33.4 30.1
52 33.2 —

Fixed 28 65
39 33.3 29.8
52 32.9 —

GFunc 25.6 65 41.5 32.7 29.6

Table 2. WER on dev01sub against number of Gaussians and
retained HLDA dimensions, training on h5etrain03

Table 2 shows the performance of various structural configu-
rations on the h5etrain03 training data using MLE and Min-
imum Phone Error (MPE) [4] criteria. The standard non-HLDA
system used static features with first and second derivatives. Ap-
pending the third derivatives and projecting back to 39 dimensions
decreased the error rate by 1.3% absolute for MLE. If instead of an
HLDA projection, a global semi-tied covariance matrix was used
a slight decrease in error rate was observed. The number of trans-
forms was then increased to 65. The assignment of component
to transform was determined by clustering in the acoustic space,
silence components were assigned to a distinct transform. Both
multiple HLDA projections and semi-tied systems were built. The
use of all 52 dimensions gave better performance than the HLDA
projection to 39 dimensions. For the projection to 39 dimension
configuration an MPE system was built. This gave a 0.3% abso-
lute reduction over the single transform MPE result. Structural op-
timization was then performed in two stages. First the number of
components per state was determined for a standard non-HLDA 28
component system. The projections for each of the 65 transforms
was then determined given this number of components per state.
Compared to the standard MLE single HLDA projection to 39 di-
mensions, as used in the CUED evaluation systems, the error rate
was reduced by 0.7% absolute. Using MPE training a 0.2% gain
over the 65 transform system was observed. This is significantly
less than the 0.6% gained using MLE training. One possible reason
is that the MPE training for all systems in the table use the same set
of word and phone lattices, generated by the standard MLE global
HLDA system. As the underlying model structure becomes more
different from it, these lattices becomes more inappropriate as the

both its word level confusion and model level alignment are also
turning more different. Compared to the standard evaluation set-
up (single transform, 39 dim projection), the complexity control
yielded a 0.5% gain. This performance gain was maintained after
adaptation.

6. CONCLUSION

An efficient model structure compression technique was presented
using marginalized discriminative growth functions. The discrimi-
native growth function investigated is closely related to maximum
mutual information (MMI) criterion, with a reduced sensitivity to
outliers utterances with very low posteriors. Model structure com-
pression on a typical LVCSR task was performed where the num-
ber of Gaussians per state and the useful dimensions of an HLDA
system were reduced. Initial experiments indicate that this form
of discriminative structural optimization may be useful in speech
recognition.

As a general model complexity control framework, the dis-
criminative growth functions are not restricted to the MMI crite-
rion. Future work will examine using other discriminative criteria
which are more closely related to WER, such as minimum word
error (MWE) [6] and MPE criteria [4]. In addition optimizing the
complexity of discriminatively trained model structures will also
be investigated.
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