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Abstract. This paper addresses the problem of motion recovery from image pro-
files, in the important case of turntable sequences. No correspondences between
points or lines are used. Symmetry properties of surfaces of revolution are ex-
ploited to obtain, in a robust and simple way, the image of the rotation axis of
the sequence and the homography relating epipolar lines. These, together with
geometric constraints for images of rotating objects, are used to obtain epipoles
and, consequently, the full epipolar geometry of the camera system. This sequen-
tial approach (image of rotation axis — homography — epipoles) avoids many
of the problems usually found in other algorithms for motion recovery from pro-
files. In particular, the search for the epipoles, by far the most critical step for
the estimation of the epipolar geometry, is carried out as a one-dimensional opti-
mization problem, with a smooth unimodal cost function. The initialization of the
parameters is trivial in all three stages of the algorithm. After the estimation of
the epipolar geometry, the motion is recovered using the fixed intrinsic parame-
ters of the camera, obtained either from a calibration grid or from self-calibration
techniques. Results from real data are presented, demonstrating the efficiency and
practicality of the algorithm.

1 Introduction

Points and lines have long been used for the recovery of structure and motion from
images of 3D objects. Nevertheless, for a smooth surface the predominant feature in the
image is its profile or apparent contour, defined as the projection of a contour generator
of the surface. A contour generator corresponds to the set of points on a surface where
the normal vector to the surface is orthogonal to the rays joining the points in the set and
the camera center (for details, see [3, 4]). If the surface does not have noticeable texture,
the profile may actually be the only source of information available for estimating the
structure of the surface and the motion of the camera.

The problem of motion recovery from image profiles has been tackled in several
works. The concept of frontier point, defined as a point on a surface tangent to any
plane of the pencil of epipolar planes related to a pair of images, was introduced in
[15]. The idea was further developed in [14], where the frontier point was recognized
as a fixed point on a surface, created by the intersection of two contour generators. A
frontier point projects on its associated images as an epipolar tangency. The use of
frontier points and epipolar tangencies for motion recovery was first shown in [2]. A
parallax based technique, using a reference planar contour was shown in [1], where
the images are registered using the reference contour and common tangents are used
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to determine the projections of the frontier point. The techniques described above face
two main difficulties: the likely non-uniqueness of the solution, due to the presence
of local minima, and the unrealistic requirement of having at least 7 corresponding
epipolar tangencies available on each image pair. Better results can be achieved when
an affine approximation is used, as shown in [11]. In this case the problem can be solved
when as few as 4 epipolar tangencies are available, but the application of the method is
constrained to situations where the affine approximation is valid.

In the case of circular motion, the envelope of the profiles exhibits symmetry prop-
erties that greatly simplify this estimation problem. This is an idea well developed for
orthographic projection. In [15] it is shown that, when the image plane is parallel to
the axis of rotation, the image of the axis of rotation will be perpendicular to common
tangents to the images of the profile. The use of bilateral symmetry to obtain the axis
of rotation was first introduced in [13]. The condition of parallelism between the image
plane and the axis of rotation was relaxed in [8], but orthographic projection was still
used.

In this paper we introduce a novel technique for the estimation of the motion pa-
rameters of turntable sequences. It based on symmetry properties of the set of apparent
contours generated by the object that undergoes the rotation. In Section 2, a method
for obtaining the images of the axis of rotation and a special vanishing point is pre-
sented. The algorithm is simple, efficient and robust, and it does not make direct use of
the profiles. Therefore, its use can be extended to non-smooth objects, and the quality
of the results obtained justifies doing so. Section 3 makes use of the previous results
to introduce a parameterization of the fundamental matrix based on the harmonic ho-
mology. This parameterization allows for the estimation of the epipoles to be carried
out as independent one-dimensional searches, avoiding local minima points and greatly
decreasing the computational complexity of the estimation. These results are used in
Section 4, which presents the algorithm for motion estimation. Experimental results are
shown in Section 5, and conclusions and future work are described in Section 6.

2 Theoretical Background

An object rotating about a fixed axis sweeps out a surface of revolution [8]. Symmetry
properties [18, 19] of the image of this surface of revolution can be exploited to estimate
the parameters of the motion of the object in a simple and elegant way, as will be shown
next.

2.1 Symmetry Properties of Images of Surfaces of Revolution

In the definitions that follow, points and lines will be referred to by their representation
as vectors in homogeneous coordinates.

A 2D homography that keeps the pencil of lines through a point u and the set of
points on a line 1 fixed is called a perspective collineation with center u and axis 1. An
homology is a perspective collineation whose center and axis are not incident (otherwise
the perspective homology is called an elation). Let a be a point mapped by an homology
onto a point a’. It is easy to show that the center of the homology u, a and a’ are
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collinear. Let q, be the line passing through these points, and v, the intersection of
q. and the axis 1. If a and a’ are harmonic conjugates with respect to u and v, i.e.,
their cross-ratio is one, the homology is said to be a harmonic homology (see details in
[16,5]). The matrix W representing a harmonic homology with center u and axis 1 in
homogeneous coordinates is given by

ul®

W=I-2—. 1

71 1)

Henceforth a matrix representing a projective transformation in homogeneous coordi-

nates will be used in reference to the transformation itself whenever an ambiguity does
not arise.

An important property of profiles of surfaces of revolution is stated in the next
theorem:

Theorem 1. The profile of a surface of revolution S viewed by a pinhole camera is
invariant to the harmonic homology with axis given by the image of the axis of rotation
of the surface of revolution and center given by the image of the point at infinity in a
direction orthogonal to a plane that contains the axis of rotation and the camera center.

The following lemma will be used in the proof of Theorem 1.

Lemmal. Let T : I' — I' be a harmonic homology with axis 1 and center u on the
plane I',and let H : I" — I'! be a bijective 2D homography. Then, the transformation
W = HTH ! : I'" — I'"is a harmonic homology with axis ' = H~T1 and center
u’ = Hu

Proof. Since H is bijective, H~! exists. Then

T
WoH H_zi)ﬂ—l

uTl
ullIT
=I- 2W7 (2
since uTl = u'TY. O

The following corollary is a trivial consequence of Lemma 1:

Corollary 1. Let T, H and W be defined as in Lemma 1. The transformation H is a
isomorphism between the structures (T, I") and (W, I''),i.e,Vy € ', HTy = WH?~.

An important consequence of Lemma 1 and Corollary 1 is that if a set of points s, e.g.,
the profile of a surface of revolution, is invariant to a harmonic homology T, the set
§ obtained by transforming s by a 2D projective transformation H is invariant to the
harmonic homology W = HTH ™.

Without loss of generality assume that the axis of rotation of the surface of revolu-
tion S is coincident with the y-axis of an right-handed orthogonal coordinate system.
Considering a particular case of Theorem 1 where the pinhole camera P is given by
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P = [I|t], wheret = [0 0 a]7, for any o > 0, symmetry considerations show that the
profile s of S will be bilaterally symmetric with respect to the image of y (a proof is
presented in the Appendix 1), which corresponds to the line g5 = [1 0 0] in (homoge-
neous) image coordinates.

Proof of Theorem 1 (particular case). Since s is bilaterally symmetrical about qg, there
is a transformation T that maps each point of s on its symmetrical counterpart, given

by

~100
T=| 010]. (3)
001

However, as any bilateral symmetry transformation, T is also a harmonic homology,
with axis qs and center v, = [1 0 0]T, since

T
Vz s

T=1-2
Vg‘qs

(4)

The transformation T maps the set s onto itself (although the points of s are not mapped
onto themselves by T, but on their symmetrical counterparts), and thus s is invariant to
the harmonic homology T. Since the camera center lies on the z-axis of the coordinate
system, the plane that contains the camera center and the axis of rotation is in fact the
yz-plane, and the point at infinity orthogonal to the yz-planeis U, = [1 0 0 0]T, whose
image is v. O

Let P be an arbitrary pinhole camera. The camera P can be obtained by rotating P
about its optical center by a rotation R. and transforming the image coordinate system of
P by introducing the intrinsic parameters represented by the matrix K. Let KR = H.
Thus, P = H[I|t], and the point U, in space with the image v, in P will project
as a point u, = Hv, in P. Analogously, the line g5 in P will correspond to a line
1, = H Tq, in P. It is now possible to derive the proof of Theorem 1 in the general
case.

Proof of Theorem 1 (general case). Let § be the profile of the surface of revolution S
obtained from the camera P. Thus, the counter-domain of the bijection H acting on the
profile s is § (or Hs = §), and, using Lemma 1, the transformation W = HTH !
is a harmonic homology with center u, = Hv, and axis I; = H~Tq,. Moreover,
from Corollary 1, WHs = HTs, or W§ = HTs. From the particular case of the
Theorem 1 it is known that the profile s will be invariant to the harmonic homology T,
so Ws =Hs = 3. d

The images of a rotating object are the same as the images of a fixed object taken
by a camera rotating around the same axis, or by multiple cameras along that circular
trajectory. Consider any two of such cameras, denoted by P and P’. If P and P’ point
towards the axis of rotation, their epipoles e and e’ will be symmetrical with respect
to the image of the rotation axis, or ¢’ = Te, according to Figure 2. In a general
situation, the epipoles will simply be related by the transformation e’ = We. It is then
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Fig. 1. Lines joining symmetric points with respect to the image of rotation axis 15 (images are
scaled and translated independently for better observation). (a) The optical axis points directly
towards the rotation axis. (b) The camera is rotated about its optical center by an angle p of 20°
in a plane orthogonal to the rotation axis. (c) p = 40°. (d) p = 60°. (€) Same as (d), but the
vanishing point v, is also shown.

straightforward to show that the corresponding epipolar lines 1 and 1’ are related by
I = W~TL This means that the pair of epipoles can be represented with only two
parameters once W is known. From (2) it can be seen that W has only four degrees
of freedom (dof). Therefore, the fundamental matrix relating views of an object under
circular motion must have only 6 dof, in agreement with [17].

3 Parameterization of the Fundamental Matrix

3.1 Epipolar Geometry under Circular Motion

The fundamental matrix corresponding to a pair of cameras related by a rotation around
a fixed axis has a very special parameterization, as shown in [17, 7]. A simpler deriva-
tion of this result will be shown here.

Consider the pair of camera matrices P and P2, given by

Py =1t] ()
Py =[Ry(9)[t],
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axis of rotation —/—7
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Fig. 2. If the cameras are pointing towards the axis of rotation, the epipoles e and e’ are symmetric
with respect to the image of the axis of rotation.

where
T
t=[001] and (6)
cosf 0 sinf
R,(9) = 010
—sin@ 0 cos

Let F be the fundamental matrix relating P; and P5. From (5) and (6), it is easy to see
that

0 cosd—1 0

F=|cosf-1 0 sin 0 (7
0 —sind 0
1 1 0

=—sinf [0 + (cosf—1) 0OJ[010]+]1|[100]]. (8)
0 0 0

X
Let now Ux, Uy and Uz be the points at infinity in the z, y and = direction, respec-

tively, in world coordinates. Projecting these points using the camera Py, we obtain
ug, u, and u, given by

1 0
u, = |0]|,u,=|1| andu, = [0]. 9)
0 1
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The image of the horizon is the line gy, and the image of the screw axis is the line qs,
where

1 0
;= |0| andqy, = |1]. (10)
0 0

Substituting (9) and (10) in (8), the desired parameterization is obtained:

0
F = —sinf |[u,]x +tan §(q5qg + qhq;r) . (1)

The factor “—sin@” can be eliminated since the fundamental matrix is defined only
up to an arbitrary scale. Assume now that the cameras P; and P, are transformed by a
rotation R about their optical centers and the introduction of a set of intrinsic parameters
represented by the matrix K. The new pair of cameras, P; and Ps, is related to P; and
P, by

131 = HP, and

P, = HP,, (12)
where H = KR. The fundamental matrix F of the new pair of cameras 131 and 152 is
given by

F=HTFH
0
=®wmw4me5m$+nEL (13)

where v, = Hu,, I, = H Tqy and 1, = H Tq;.

3.2 Parameterization via Planar Harmonic Homology

The epipole e’ in the image obtained from the camera P in (5) is given by

e’ =u, —tan Uz (14)

which can be obtained from (5). The planar harmonic homography T relating the sym-
metric elements in the stereo camera system P; and P, (e.g. epipoles and pencils of
epipolar lines) can be parameterized as

T
uw qs

T=1-2
u}qs

(15)

Direct substitution of (14) and (15) in (11) shows that the fundamental matrix can be
parameterized by e’ and T as:

F = [¢/]«T. (16)
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Fig. 3. The harmonic homology is a homography induced by the plane that contains the axis of
rotation and bisects the segment joining the camera centers.

Again, it is easy to show that the result does not depend on the transformation H, and
the general result becomes

N . 0
F = [&']«W,with & =v, —tan Ve 7

Thus, we have proved that the transformation W' corresponds to a plane induced ho-
mography (see [9]). This means that the registration of the images can be done by using
‘W instead of a planar contour as proposed in [1, 6]. It is known that different choices
of the plane that induces the homography in a plane plus parallax parameterization
of the fundamental matrix will result in different homographies, although they will all
generate the same fundamental matrix, since

F =[]« W = [&']x[W + &'aT] Va € R®. (18)

The three parameter family of homographies [W + &'a™] has a one to one correspon-
dence with the set of planes in R3. In particular, the homology W relating the cameras
P, and P, is induced by a plane = that contains the axis of rotation y and bisects the
segment joining the optical centers of the cameras, as shown in Figure 3.

4 Algorithmsfor Motion Recovery

4.1 Estimation of the Harmonic Homology

Consider an object that undergoes a full rotation around a fixed axis. The envelope ¢
of the profiles is found by overlapping the image sequence and applying a Canny edge
detector to the resultant image (Figure 4(b)). The homography W is then found by
sampling N points x; along e and optimizing the cost function

N
fw(va,ls) = dist(e, W(va, 1)x;)?, (19)

=1
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Fig. 4. (a) Image 1, 8, 15 and 22 in the sequence of 36 images of a rotating vase. (b) Envelope of
apparent contours produced by overlapping all images in the sequence. (c) Initial guess (dashed
line) and final estimation (solid line) of the image of the rotation axis.

Algorithm 1 Estimation of the harmonic homology W.
overlap the images in sequence;
extract the envelope e of the profiles using Canny edge detector;
sample N points x; along e;
initialize the axis of symmetry 15 and the vanishing point v;
while not converged do
transfer the points x; using W;
compute the distances between e and the transferred points;
update 15 and v, to minimize the function in (19);
end while

where dist(e, W(v,15)x;) is the distance between the curve € and the transformed
sample point W (v, ly)x;.

The initialization of the line L is trivial, and can be made simply by picking a coarse
approximation for the axis of symmetry of e. This can be done via user intervention or
by automatically locating one or more pairs of corresponding bitangents. In all practi-
cal situations, the camera should be roughly pointing towards the rotation axis, which
means that the point v,, is far (or even at infinity) and at a direction orthogonal to 1.
The estimation of W is summarized in Algorithm 1.
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Fig. 5. Five images from a single camera and circular motion after a rotation of 10°, 20°, 40° and
80° are shown in (b), (e), (h) and (k), and the base image at 0° can be seen in (a), (d), (9), (g). The
epipolar geometry between image pairs is shown. The overlapping of corresponding pairs can be
seen in (c), (f), (i) and (). Corresponding epipolar lines intersect at the image of the rotation axis,
and all epipoles lie on a common horizon.

4.2 Estimation of the Epipoles

After obtaining a good estimation of W, one can then search for epipolar tangencies
between pairs of images in the sequence. Epipolar tangencies are important for motion
estimation from profiles since they are the only correspondences that can be established
between image pairs [2]. To obtain a pair of corresponding epipolar tangencies in two
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Fig. 6. Corresponding pairs of epipolar tangencies near the top and bottom of two images.

Algorithm 2 Estimation of the orientation of the epipolar lines.
extract the profiles of two adjacent images using Canny edge detector;
fit b-splines to the top and the bottom of the profiles;
initialize o;
while not converge do

find 1, 1" and l’“;

compute the distance between 1 and I} ;

update « to minimize the function in (20);
end while

images, it is necessary to find a line tangent to one profile which is transferred by W—T
to a line tangent to the profile in the other image (see Figure 6). The search for corre-
sponding tangent lines may be carried out as a one-dimensional optimization problem.
The single parameter is the angle « that defines the orientation of the epipolar line 1 in
the first image, and the cost function is given by

fa = diSt(W_Tl(Ot), 1| (a))a (20)

where dist(W~T1(a), lfl (a)) is the distance between the transferred line 1’ = W71
and a parallel line lf tangent to the profile in the second image. Typical values of « lie
between -0.5 rad and 0.5 rad, or —30° and 30°.

Given a pair of epipolar lines near the top and the bottom of a profile, the epipole
can be computed as the intersection point of the two epipolar lines, and the fundamental
matrix relating the two cameras follows from (17). Using the camera calibration matrix
obtained either from a calibration grid or from self-calibration techniques, the essential
matrix can be found. The decomposition of the essential matrix gives the relative motion
between two cameras.



12 Paulo R. S. Mendonga, Kwan-Yee K. Wong, Roberto Cipolla

Fig. 7. If the apparent contours are related by the homography W, there will be multiple solutions
for the positions of the epipoles. Both pairs (e1, e1’) and (e2,e2") are valid epipoles, consistent
with the transformation W (and thus with 1) and the contours s and s'.

4.3 Critical Configurations

There is a configuration where the algorithm described in Algorithm 2 fails. Let N
and N be subsets of two adjacent apparent contours, with Ay and A} related by the
homography W found in Algorithm 1. Any value of « in Algorithm 2 such that the
resulting epipolar tangencies are in Ay and A/{ will minimize the cost function in (19).
The proof follows from observing that if « is the orientation of a putative epipolar line
with corresponding epipolar tangency in A in the first contour, the mapping of the
epipolar line tangency via W, as required by Algorithm 2, will result in a line tangent
to the second contour, as shown in Figure 7. To overcome this problem it is enough then
to choose another contour as the first one of the pair where the problem appeared, and
proceed with the algorithm.

The ultimate degenerate configuration occurs when the surface being viewed is a
surface of revolution (if not completely, at least in the neighbourhood of the frontier
points), and the axis of rotation of the turntable is coincident with the axis of rotation
of the surface (or the axis of rotation of the rotationally symmetric neighbourhoods). In
this case, all the contours are the same, since the contour generator is a fixed curve in
space, and the substitution of one contour for another will not make any difference.

5 Implementation and Experimental Results

The algorithms described in the previous session were tested using a set of 36 images
of a vase placed on a turntable (see Figure 4(a)) rotated by an angle of 10° between
successive snapshots. To obtain W, the Algorithm 1 was implemented with 40 evenly
spaced sample points along the envelope (IV = 40). An approximation for the image
of the rotation axis was manually picked by observing the symmetry of the envelope.
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Fig. 8. Plot of the cost function (20) for a pair of images in the sequence. (a)/(b) Cost function for
a pair of corresponding epipolar tangencies near the top/bottom of the profile.

Algorithm 3 Motion estimation.
estimate motion between IMAGE(1) and IMAGE(2);
update the direction of the axis of rotation;
for i=3 TO END do
i=i-1
while motion is bad do
estimate motion between IMAGE(j) and IMAGE(i);
i=i-g
end while
update the direction of the axis of rotation;
end for

This provided an initial guess for 1. The vanishing point v, was initialized at infinity,
at a direction orthogonal to 15. The cost function (19) was minimized using the BFGS
algorithm [10]. The initial and final configurations can be seen in Figure 4(c).

For the estimation of the motion, the Algorithm 2 was applied for pairs of images
to obtain the essential matrix E. The camera calibration matrix was obtained using a
calibration grid. The cost function in (20) was minimized using the Golden Section
method. This optimization problem is rather simple since the cost function is smooth
and unimodal (see Figure 8).

The direction of the axis of rotation was initialized as that obtained from the first pair
of images. The quality of each subsequent estimation was checked by comparing the
direction of the rotation axis computed from the current pair with the average direction
found for all the previous pairs. If the deviation was greater than 10°, the motion was
estimated by using a different combination of images (see Algorithm 3). Such process
of quality control is completely automatic.

The remaining problem was to fix the ratio of the norm of the relative translations.
Since the camera is performing circular motion, it is easy to show that the relative
translations are proportional to sin6/2, where @ is the angle of the relative rotation
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Fig. 9. (a-c) Final configuration of the estimated motion of the cameras. (d) Estimated angles of
rotation.

between the two cameras. The resulting camera configurations are presented in Fig-
ure 9(a-c). The estimated relative angles between adjacent cameras are accurate, as
shown in fig 9(d) and the camera centers are virtually on the same plane and the motion
closely follows a circular path.

6 Conclusionsand Future Work

This paper introduces a new method of motion estimation by using profiles of a rotat-
ing object. No affine approximation has been used and only minimal information (two
epipolar tangencies) is required, as long as the object performs a complete rotation. This
means that the algorithm can be applied in any practical situation involving circular mo-
tion. If more information is available, the estimation problem will be more constrained,
and numerical results can be further improved. By proceeding in a divide-and-conquer
approach, the difficulties due to initialization and presence of local minima are over-
come. The search space in the main loop of the algorithm is one-dimensional, making
the technique highly efficient.

Some ideas can be explored to further improve the results presented in this work.
A promising approach is to make simultaneous use of the parameterizations shown
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in (11) and (17). After estimating the position of the epipoles using Algorithm 2, the
horizon line can be found by fitting a line 1, to the epipoles, such that ITv,, = 0. This
should be done by using a robust method, such as Hough transform or RANSAC. Then,
Algorithm 2 can be run again, now with the constraint that all the epipoles must lie
on the horizon line. This procedure constrains the cameras to exactly follow a circular
path, and integrates information from all images in the estimation of the horizon. This
approach has already been proved to produce more accurate results, allowing for high
quality reconstructions [12].

Appendix A: Bilateral Symmetry of I mages of Surfaces of
Revolution

Let S be the surface of revolution parameterized as

S={S(r,¢) = [f(r)sing g(r) — f(r)cos¢]",(r,¢) € I; x Is},  (21)

where f : R D I, — Ris a differentiable map for which 3a > 0 suchthat 0 < f(7) <
aVTt € I.,and g : R D I, — R is a differentiable map for which 3b, ¢ such that
b < g(r) < eV € L. Also, f2 + ¢ > 0, where f and § are the derivatives of the
maps f and g. The normal vector at the point S(7,¢) is givenby n = S, x S; =
f(r)[—gsing f gcosg]T, where S, is the partial derivative of S with respect to
the variable x. Let P = [I |t ] be the matrix of a pinhole camera, with t = [0 0 o]T and
a > a.

The profile s of S obtained from P is the projection of the set of points of .S where
(S(r, $) +t)-n = 0. This constraint can be expressed as g(7) f — g () +ag cos ¢ = 0,
and for 7 € I such that g(7) # 0 the resulting expression for s € s after removing the
dependence on ¢ is given by

1 IV (@9~ (3F—9f)
s(1) = a?9—1(3f-9) (22)
a?g—f(3f—gf)

vr such that |(§f — gf)/(ag)| < 1. Observe that this condition implies that a®§ —
f(af — gf) # 0, otherwise one would have |(§f — gf)/(ag)| = |a/f| > 1. From
(22), one can see that the profile s is bilaterally symmetric about the line qs = [1 0 0]T
(observe the sign “+”).
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