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Tomographic Estimation of the Point-SpreadFunction of an Ultrasound Imaging Systemfor DeconvolutionJames Ng, Richard Prager, Nick Kingsbury, Graham Treece, Andrew GeeUniversity of Cambridge, Department of Engineering,Trumpington Street, Cambridge CB2 1PZAbstractThe usefulness of ultrasound images in medical diagnostics is limited by inherent blurringand consequent poor image resolution. Algorithms that attempt to correct this blur generallyrequire knowledge of the imaging system's point-spread function (PSF). In this report, weintroduce a method for determining the three-dimensional PSF of an ultrasound imagingsystem by acquiring images of a line target and applying tomographic reconstruction methods.We show that imaging a line target yields the projection of the PSF along the axis of thetarget, and given a su�cient number of projections at di�erent angles, we can reconstructthe PSF tomographically, e.g. by using the �ltered backprojection method. We discuss someof the practical considerations that need to be addressed when preparing a suitable linetarget phantom. Our experimental results show that the PSF estimated in this way has good�delity to its theoretically predicted counterpart. We also include results of frequency-domaindeconvolution with Tikhonov regularisation which show modest improvement in resolution asmeasured by the widths of the corresponding two-dimensional autocorrelation functions.1 IntroductionPulse-echo ultrasound imaging is now a common tool in medical diagnostics. In standard clinicaluse, an ultrasound image is acquired by using a probe to transmit high frequency acoustic wavesinto the subject and to then listen for echoes. The acquired radio-frequency (RF) traces can, afterpostprocessing, be interpreted as an image of the subject's acoustic re�ectivity which is stronglycorrelated with structural features. Compared to other imaging modalities, pulse-echo ultrasoundimaging enjoys several advantages: it does not expose the subject to harmful radiation; acquisitionis fast enough for real-time display; and the required equipment is relatively cheap to obtain. Theseadvantages, however, come at the price of inherent blurring and loss of resolution. Correcting thisrequires proper characterisation of the blurring.It is well-known that, in the case of weak scattering (i.e. when the amplitude of the re�ected echoesis much smaller than the amplitude of the incident waves), the �rst Born approximation holds and2



the imaging process can be modelled as a linear system [1, 2, 3, 4]. Any linear imaging system canbe characterised by a point-spread function (PSF) which models the spatial extent of the blurringof a single point. Accurate knowledge of this PSF is essential for blur removal and resolutionenhancement. If the mechanics and geometry of the probe are accurately known, then this PSFcan be calculated; otherwise, it has to be experimentally determined. A naive experimentalmethod would be to simply image a point target. Physical manipulation of a su�ciently smalltarget, however, is in practice near impossible, and the re�ections obtained are usually too weakand too heavily corrupted by noise to be of any signi�cant use. A more practical approach, whichwe describe in this report, is to image a line target (e.g. a very thin wire) at di�erent orientationsand to use tomographic methods to reconstruct the PSF.The use of line targets in the characterisation of acoustic �elds is not unique to this paper. Raumand O'Brien [5] proposed using re�ections from line targets to determine the spatial and temporalextents of acoustic �elds. A more sophisticated tomographic procedure was described by Li etal. [6] to reconstruct the two-dimensional distribution of acoustic intensity in the focal planeof an ultrasonic pulse-echo system. We extend the work of Li et al. by computing, not just atwo-dimensional distribution at the focal plane, but the entire three-dimensional PSF which canbe used in subsequent image restoration algorithms. We also include some deconvolution resultsobtained with both our tomographically reconstructed PSF and a theoretically calculated PSF.2 TheoryWe adopt a rectangular coordinate system as shown in Figure 1(a), where the z axis is parallel tothe direction of wave propagation. The probe captures a two-dimensional RF image parallel to the
xz plane; a three-dimensional dataset is obtained by translating the probe in the y direction andcapturing multiple parallel two-dimensional RF images. We shall use the terms lateral, elevationaland axial to refer to directions parallel to the x, y and z axes respectively. We shall also use t todenote time.It is explicity shown in [4] that, in such a coordinate system, the PSF is shift-variant only in theaxial direction. We may therefore express the imaging process by the Fredholm integral,

g (x, y, t) =

∫∫∫
h (x − x′, y − y′, z′, t) fm (x′, y′, z′) dx′ dy′ dz′

=

∫∫∫
h (x′, y′, z′, t) fm (x − x′, y − y′, z′) dx′ dy′ dz′ (1)where g (x, y, t) is the three-dimensional RF image, h (x, y, z, t) is the axially shift-variant PSFand fm (x, y, z) is the re�ectivity. The integration is taken over three-dimensional space.We position a line target at an axial depth z0 (i.e. in the plane z = z0) and orient it at an angle

θ to the y axis. The line target e�ectively behaves as a two-dimensional impulse function andcauses the PSF to be integrated along its axis (we shall refer to the result of this integration asthe projection of the PSF). To demonstrate this formally, we introduce in Figure 1(b) a new setof axes labelled xp and yp which are simply the x and y axes rotated anticlockwise through an3



(a) Perspective view. (b) Bird's eye view.Figure 1: Apparatus setup for measurement of the PSF.angle θ; the line target now lies conveniently on the yp axis. The (x, y) coordinates and (xp, yp)coordinates of a point are related via
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] (2)We have h (x, y, z, t) = h (xp cos θ − yp sin θ, xp sin θ + yp cos θ, z, t) and fm (x, y, z) = δ (xp) δ (z − z0).Expressing the Fredholm integral of Equation 1 in terms of xp and yp, we obtain
g (x, y, t) =

∫∫∫
h (x′ cos θ − y′ sin θ, x′ sin θ + y′ cos θ, z, t) δ (xp − x′) δ (z′ − z0) dx′ dy′ dz′ (3)and, after simplifying this integral and writing g (x, y, t) = gz0

(xp, θ, t), we obtain as required
gz0

(xp, θ, t) =

∫
h (xp cos θ − yp sin θ, xp sin θ + yp cos θ, z0, t) dyp =

∫
h (x, y, z0, t) dyp (4)For a �xed value of t, the quantity gz0

(xp, θ, t) is the Radon transform of h (x, y, z0, t), and thereare a number of ways of reconstructing h (x, y, z0, t) from gz0
(xp, θ, t). In our work, we chose touse the well-known �ltered backprojection method [7, chapter 3].The �ltered backprojection method recovers an image from its projections by applying a recon-struction �lter to each projection and then integrating the projections over 180◦. We may expressthis formally by writing

h (x, y, z0, t) =
1

2π

∫
π

0

gz0
(xp, θ, t) ∗ r (xp) dθ (5)4



where r (xp) is the impulse response of a reconstruction �lter with frequency response r̂ (k) = |k|and k is the angular frequency associated with xp. Strictly speaking, the frequency response |k|is divergent and its inverse Fourier transform does not exist. We can overcome this by windowingthe frequency response to bandlimit it [7].3 MethodOur procedure for estimating the PSF at a particular axial depth can thus be summarised asfollows. A line target is �rst positioned at the required axial depth. Three-dimensional RF imagesof the line target, rotated at equal angular increments through a total of 180◦, are then acquired.Each three-dimensional RF image is then averaged along the axis of the line target to obtain agood estimate of gz0
(xp, θ, t). Finally, for each time sample (i.e. each value of t), Equation 5 isapplied to reconstruct h (x, y, z0, t).There are a number of practical considerations that we shall now address. For a valid estimateof the PSF to be obtained, the scattering must be weak. Standard results for acoustic scatteringfrom cylinders [8, chapter 8] suggest that the amplitude of scattered waves is dependent on thecylinder's diameter, and that the scattered wave has much smaller amplitude than the incidentwave if the cylinder's diameter is small compared to the wavelength, irrespective of the cylinder'smaterial properties.Another important factor to consider is the speed of sound of the medium surrounding the linetarget. Most medical ultrasound units assume a constant speed of sound of 1540m/s (the averagespeed of sound in human tissue) for electronic focussing. Andersen and Trahey [9] showed that anerror as small as 5% in the speed of sound can lead to quite signi�cant aberrations in the measuredPSF. It is therefore important to embed the line target in an acoustically homogeneous mediumwith the correct speed of sound.4 ResultsIn our experiments, we used a Dynamic Imaging Diasus ultrasound machine with a 6.5MHz probe.The probe surface consisted of 128 piezoelectric elements, each measuring 0.3mm (lateral) by0.6mm (elevational) with a lateral gap of 0.025mm between elements. The lateral and elevationalfocal lengths were 21mm and 23mm respectively. The RF data was acquired at a sampling rateof 66.6MHz.We constructed a phantom consisting of a tungsten wire with a diameter of 0.01mm embedded ina tissue-mimicking medium consisting mainly of glycerol, water and agar1. The speed of sound inthe medium was measured to be within 1% of the nominal 1540m/s. The line target was placedat the elevational focus. During acquisition, the probe was translated in elevational increments of0.05mm. Projections of the PSF were acquired at angular increments of 5◦. We applied the Shepp-Logan reconstruction �lter to each projection, which has the |k| frequency response multiplied bya rectangular window and weighted by a sine function (this reduces ringing artifacts [7]).1Recipe provided by the Department of Medical Physics, University of Edinburgh.5



For benchmarking purposes, we also computed the theoretical PSF by simulating the response of apoint target under the same conditions using Field II [10]. We present our results in Figure 2, wherewe have displayed cross-sections of the tomographically reconstructed PSF and the theoreticalPSF after envelope detection and normalisation. The cross-sections show the tomographicallyreconstructed PSF to be in good agreement with its theoretical counterpart.
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5 DeconvolutionSubsequently, we used the tomographically reconstructed and theoretical PSFs to deconvolve athree-dimensional dataset of a spherical void, 2mm in diameter, embedded in tissue-mimickingmaterial. To perform this deconvolution, we have assumed that the PSF is approximately shift-invariant (which is reasonable over a small axial distance) and that the the signal is corrupted by6



additive white Gaussian noise n (x, y, t), i.e.
g (x, y, t) = h (x, y, t) ∗ fm (x, y, t) + n (x, y, t) (6)We applied Tikhonov regularisation in the frequency domain, which amounts to �ltering thedataset by a deconvolution �lter with transfer function

T (k) =
H∗ (k)

|H (k)|
2

+ τ
(7)where k is the angular frequency corresponding to (x, y, t), H (k) is the Fourier transform of

h (x, y, t) and τ is a regularisation parameter. This is equivalent to applying a Wiener �lterassuming a constant signal-to-noise ratio (SNR) of 1

τ
.The results of deconvolution with τ = 0.1 and τ = 0.05 are displayed in Figures 3 and 4. Toquantify the degree of deconvolution achieved, we have included plots from the two-dimensionalautocorrelation functions of selected cross-sections from the original and deconvolved datasets.The reductions in the lateral and elevational widths of these autocorrelation functions after de-convolution are tabulated in Table 1.Table 1: Reductions in the widths of the autocorrelation functions after deconvolution.

τ = 0.1 τ = 0.05Lateral reduction (see Figures 3(b) and 4(b))Deconvolution with tomographic PSF 14.6% 13.4%Deconvolution with simulated PSF 7.1% 14.1%Elevational reduction (see Figures 3(d) and 4(d))Deconvolution with tomographic PSF 26.0% 37.0%Deconvolution with simulated PSF 15.91% 17.0%
6 Conclusions and DiscussionIn this report, we have presented a feasible method for estimating the PSF of an ultrasoundimaging system via tomographic reconstruction from acquired re�ections o� a line target. Suchan approach is a viable and accurate alternative when a lack of knowledge of the transducer'smechanical and geometric properties prevents the PSF from being computed theoretically. Anestimate of the PSF is required for blur removal and resolution enhancement and we envisage thepossibility of our PSF estimation procedure being used as an auxiliary tool in image restorationalgorithms. 7



(a) Axial-lateral cross sections.
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(b) Selected lateral pro�le from the 2D autocorrelation functions of (a).
(c) Elevational cross-sections.
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(d) Selected elevational pro�le from the 2D autocorrelation functions of (c).Figure 3: Deconvolution results for τ = 0.1 (equivalent SNR = 10dB). Each cross-section measures5.20µs (4mm) by 4mm. 8
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(b) Selected lateral pro�le from the 2D autocorrelation functions of (a).
(c) Elevational cross-sections.

−15 −10 −5 0 5 10 15
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Elevational lag (number of samples)

Original
Deconvolved with tomographic PSF
Deconvolved with theoretical PSF

(d) Selected elevational pro�le from the 2D autocorrelation functions of (c).Figure 4: Deconvolution results for τ = 0.05 (equivalent SNR = 13dB). Each cross-section mea-sures 5.20µs (4mm) by 4mm. 9
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