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Abstract

Conversational speech exhibits considerable pronunciation variability, which has
been shown to have a detrimental effect on the accuracy of automatic speech
recognition. There have been many attempts to model pronunciation variation,
including the use of decision trees to generate alternate word pronunciations from
phonemic baseforms. Use of pronunciation models during recognition is known to
improve accuracy. This paper describes the incorporation of pronunciation models
into acoustic model training in addition to recognition. Subtle difficulties in the
straightforward use of alternatives to canonical pronunciations are first illustrated:
it is shown that simply improving the accuracy of the phonetic transcription used
for acoustic model training is of little benefit. Acoustic models trained on the most
accurate phonetic transcriptions result in worse recognition than acoustic models
trained on canonical baseforms. Analysis of this counterintuitive result leads to a
new method of accommodating nonstandard pronunciations: rather than allowing
a phoneme in the canonical pronunciation to be realized as one of a fewdistinct
alternate phones, the hidden Markov model (HMM) states of the phoneme’s
model are instead allowed to share Gaussian mixture components with the HMM
states of the model(s) of the alternate realization(s). Qualitatively, this amounts to
making a soft decision about which surface form is realized. Quantitatively,
experiments show that this method is particularly well suited for acoustic model
training for spontaneous speech: a 1.7% (absolute) improvement in recognition
accuracy on the Switchboard corpus is presented.

c© 2000 Academic Press

1. Introduction

Pronunciations in spontaneous, conversational speech tend to be much more variable than
in careful, read speech, where pronunciations of words are more likely to adhere to their
citation forms. Most speech recognition systems, however, rely on pronouncing dictionaries
which contain few alternate pronunciations for most words, both for training and recognition.
This failure to capture an important source of variability is potentially a significant cause for
the relatively poor performance of recognition systems on large vocabulary (spontaneous)
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conversational speech recognition tasks. It is well known that use of a pronunciation model
during recognitionresults in moderate improvements in word error rate (WER). There have
been fewer attempts to incorporate the pronunciation model in the initialtraining of the
acoustic-phonetic models.

Most state-of-the-art automatic speech recognition (ASR) systems estimate acoustic mod-
els under the assumption that words in the training corpus are pronounced in their canonical
form. A word-level transcription of the speech is used along with a standard pronouncing
dictionary to generate phone-level training transcriptions. Intuition suggests that use of a pro-
nunciation model to improve the accuracy of this phone-level training transcription should
lead to sharper acoustic models and better recognition. However, contrary to expectation and
to the best of our knowledge, efforts to incorporate pronunciation modeling in acoustic model
training for spontaneous speech have been unfruitful.

In this paper, we investigate this failure and consequently arrive at a novel method of pro-
nunciation modeling. When used only during recognition and not in acoustic model training,
our method improves accuracy to the same extent as previously used methods for pronunci-
ation modeling. When used for acoustic model training, it improves accuracy even further.

The structure of this paper is as follows. After a brief review of the corpus, task and base-
line system in Section2, empirical evidence is presented in Section3 to motivate the need for
pronunciation modeling for spontaneous speech in general and for this task in particular. A
short summary of directly related work by other researchers follows in Section4 to provide
the backdrop for this research. A specific pronunciation modeling methodology whose details
are relevant to this paper is then reviewed briefly in Section5. The two main contributions of
this paper appear in Sections6 and7.

In Section6, we investigate several ways to improve the accuracy of the phonetic transcrip-
tions used for training acoustic models for spontaneous speech. We find that small improve-
ments in training transcription accuracy lead to little improvement in the recognition WER
of the resulting system. In an apparent paradox, we find that a more significant improvement
in the accuracy of the phonetic transcriptions used for acoustic trainingdegradesrecognition
WER relative to the baseline system! Yet, the phone accuracy of the resulting recognizer
output is actually higher than that of the baseline system. Further analysis of this result mo-
tivates the need for a method of modeling pronunciation variations in whichno additional
homophony is introduced by adding new pronunciations to the recognizer’s dictionary and
yet alternate acoustic realizations are somehow permitted.

In Section7, we present such a method of capturing pronunciation variation in which
HMM states of phonemes share output densities with HMM states of the alternate realiza-
tions. We call this novel methodstate-level pronunciation modelingto contrast it with more
traditionalphone-levelpronunciation models.

Studying the results of Section6 is recommended for a deeper understanding of Section7.
However, the introductory part of Section6 (preceding Subsection6.1) may be adequate for
a reader who wishes to proceed directly to Section7.

2. Corpora, task and system definition

Corpus and task description.Our main interest is modeling the pronunciation variations
in large vocabulary conversational speech. Switchboard, a corpus of spontaneous telephone
conversations between two individuals about loosely specified topics such as AIDS, garden-
ing, or health-care for the elderly, is used in our experiments. [SeeGodfrey, Holliman and
McDaniel (1992) for a detailed corpus description.] A vocabulary of approximately 20 000
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words provides adequate coverage for the corpus. We use 60 hours of speech (about 100 000
utterances or a million words) selected from about 2000 conversations for acoustic model
training purposes. There are 383 different speakers in the training corpus. A speaker-disjoint
set of about 1.5 hours of speech (19 entire conversations, 2427 utterances, 18 100 words) is
set aside for testing ASR systems.

Manual phonetic transcriptions produced byGreenberg (1996) at ICSI are available for a
portion of this speech corpus. This hand labeled portion, henceforth referred to as the ICSI
transcriptions, includes a 3.5 hour subset (3600 utterances, 100 000 phones) of the training
set and a 0.5 hour subset (451 utterances, 18 000 phones) of the test set.

Finally, another speaker-disjoint test set of about half an hour of speech (6 conversations,
882 utterances, 6350 words) is used for a one-time blind evaluation at the end of the paper:
except for computing the WER, no other diagnostics are performed on this set.

Baseline ASR system and recognition experiments.Our baseline acoustic models are
state-clustered cross-word triphone HMMs having 6700 shared states, each with 12 Gaussian
densities per state. The PronLex dictionary (PronLex, 1995), which has a single pronuncia-
tion for approximately 94% of the words in the test vocabulary, two pronunciations for more
than 5% of the words and three or four pronunciations for the remaining (less than 0.5%)
words, is used in the baseline system. Bigram and trigram models trained on 2.2 million
words of transcribed Switchboard conversations are used as language models.

For speech recognition experiments we first generate word lattices using the baseline sys-
tem with a bigram language model. These lattices are then used as a word graph to constrain
a second recognition pass in which a trigram language model is used. We chose to use this
lattice-rescoring paradigm for fast experimentation while allowing a search over a large set
of likely word sequences.

Acoustic model training and lattice rescoring is carried out using the HTK HMM toolkit
developed byYoung, Jansen, Odell, Ollasen and Woodland (1995). The AT&T Weighted
Finite State Transducer tools provided byMohri, Pereira and Riley (2000) are used to ma-
nipulate word and phone lattices.

Performance measures.The most common measure of performance for an ASR system
is WER. State-of-the-art ASR systems achieve 30–35% WER on the Switchboard corpus.
The baseline system described above has comparable performance. The best possible WER
obtainable from hypotheses in the word lattices we use is less than 10%. This is adequate for
experiments within the lattice-rescoring paradigm.

In addition to WER, we use phone error rate (PER) as another measure of transcription
accuracy. PER will be reported later in this paper on the 451 test set utterances (or 1800 of
the 3600 training set utterances) for which the correct phonetic transcription is available.

3. Motivation for pronunciation modeling

Conversational or casual speech differs from formal or read speech in many aspects, a very
remarkable one being the deviation from canonical pronunciation of words. Some causes of
pronunciation variation such as a speaker’s accent or dialect are common to conversational
and read speech. Others are characteristic of casual speech. For example, some deviations
may be attributable to coarticulation of words, e.g.hafto instead ofhave to. Others are
due to commonly acceptable reductions or due to the fast nature of conversational speech,
e.g.wanna instead ofwant to or dijha instead ofdid you.
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A study byBernstein, Baldwin, Cohen, Murveit and Weintraub (1986) reveals that typical
conversational speech, to begin with, is faster than typical read speech in terms of the aver-
age number of words spoken per unit time. However, if one measures the speaking rate in
terms of the number ofphonesper unit time, then spontaneous speech is very comparable
to read speech! This suggests that pronunciations in spontaneous speech are different from
read speech, in that speakers tend to delete phones rather than merely reduce phone durations
during spontaneous speech. Furthermore, deletion of a phone is often accompanied by suit-
able modification in adjacent phones so as to preserve intelligibility. InFosleret al. (1996),
we have compared the ICSI phonetic transcriptions of a portion of the Switchboard corpus
with the citation-form pronunciations of the transcribed words and found that 12.5% of the
phones in the standard (PronLex) pronunciation are deleted; substitutions and insertions of
phones also change pronunciations so that only 67% of the phones in the “prescribed” pro-
nunciations are correctly articulated by an average speaker. This has a significant impact on
the performance of ASR systems which are typically built on the assumption that speakers
only use canonical pronunciations.

3.1. Recognizer degradation with differing speaking style

We performed an extended version of an experiment reported earlier byWeintraub, Taussig,
Hunicke-Smith and Snodgrass (1996) to investigate whether casual speaking styleis indeed
a major factor contributing to the poor recognizer performance on spontaneous speech tasks.
Our experiment used the MULTI-REG corpus collected byWeintraubet al. (1996), which
comprises conversations recorded in different speaking styles. About 15spontaneoustele-
phone conversations between individuals were collected first. These telephone-bandwidth
(narrow-band) recordings were similar to those made when compiling the Switchboard cor-
pus. A simultaneous recording of the speech using wide-band close-talking microphones was
also made. The subjects were later recalled to make two further recordings based on tran-
scripts of their original spontaneous conversations: firstreadinga transcript as if dictating it
to a computer and then re-reading the same transcriptimitatinga conversation. Simultaneous
telephone qualitynarrow-bandand high-qualitywide-bandstereo recordings were made for
these two speaking styles as well. These six renditions of the same conversation, controlled
for two principle axes of variability, speaking style and recording bandwidth, were used in
our experiment.

Two large-scale HTK-based recognizers, one trained on narrow-band Switchboard data
and the other trained on wide-band Wall Street Journal (WSJ) data, were used to recognize
the MULTI-REG spoken utterances which have identical word-level reference transcriptions
across the six conditions. The results are shown in TableI. The first column reconfirms the
result of Weintraubet al. (1996) that narrow-band models trained on spontaneous speech
perform much better on read and imitated-spontaneous speech than on truly spontaneous
speech, despite the mismatch between the speaking styles in training and test data. The table
also shows the same trend when the experiment is repeated with wide-band models and data.
(Note that althoughdegradationin results is comparable between wide- and narrow-band
experiments, the error rate results are not directly comparable due to differences in model
parameterization.)

The decrease in accuracy with increasingly casual speaking style is seen across both band-
widths, whilst the handset and words pronounced in the test data remained unchanged. It
therefore seems likely that the degradation is due to changes in speaking style, and the table
further suggests that training and testing on data with matched speaking styles offers only
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TABLE I. WER degradation with speaking style on the
MULTI-REG test set

Speaking Narrow-band Wide-band
style (SWBD models) (WSJ models)
Reading 26.1% 26.2%
Imitating 29.5% 39.7%
Spontaneous 43.2% 62.4%

partial robustness to style changes. One factor contributing to the degradation is likely to be
the increased variability in pronunciation in fluent speech, providing further motivation for
modeling pronunciation variation.

As an aside, note that the error rate for read speech under WSJ models in TableI is higher
than those typically reported on WSJ test sets. The transcripts of spontaneous conversations
being read here, however, contain many short words and short words have been shown to be
more error-prone (Eide, Gish, Jeanrenaud & Mielke, 1995).

3.2. Cheating experiments

In order to gauge the maximum improvement in recognition accuracy achievable if one could
predict the actual pronunciations that were used by a speaker in the test set, we conducted
some “cheating” experiments. We fixed a set of acoustic phonetic models and performed un-
constrained phone recognition on thetest speech. We then aligned the phone string resulting
from this process with the reference word transcriptions for the test set (hence the cheating)
and extracted theobservedpronunciation of each word in the test set. Many of these pronun-
ciations were different from the canonical pronunciations. Note that since automatic means
were used for phone transcription, the resulting pronunciations of the words are not the same
as those one would infer from a manual phonetic transcription of the same speech.

With these alternative pronunciations at hand, we enhanced the pronunciation dictionary
used during recognition. This procedure had two variants:

• New pronunciations of all words encountered in the entire test set were added to a static
pronunciation dictionary. Except for some coarticulation effects, the best a pronuncia-
tion model can do is predict those and only those new pronunciations of a word which
are actually seen in the test data.
• The pronunciation dictionary was modified individually for each test utterance. This is

almostthe besta pronunciation model can do, including coarticulation effects, because
a majority of words are seen only once in an utterance.

These dictionary enhancements were used to rescore lattices obtained using an ASR sys-
tem1 with a WER of 47%. The static dictionary enhancement reduced the WER to 38% and
the utterance based enhancement of the dictionary to 27%. The paths with the least error rate
in the lattices we used in this experiment (determined by looking at the correct transcription)
had 13% WER.

These experiments therefore provide a very high margin for improvement which is possi-
ble, or at least not ruled out, if one can accurately predict word pronunciations. In addition,

1This ASR system, developed when we started our research, is older than the baseline system used through out the
remainder of the paper and its WER is significantly worse. The relative change in WER in this experiment motivates
pronunciation research. However, comparison of the absolute WER of this ASR system and that of the baseline
system should not be made.
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the enhanced dictionaries used in these experiments did not have probabilities assigned to
each entry. The actual pronunciation models we use do assign probabilities to each alter-
nate pronunciation. Thus, in fact, it is possible to obtain even lower WERs than these “lower
bounds.”

Similar experiments were conducted byMcAllaster, Gillick, Scattone and Newman (1998)
using simulated data. Their results also support the hypothesis that knowing the correct pro-
nunciations can result in large gains.

4. Related work

Elaborate pronunciation modeling for conversational speech recognition has received atten-
tion only in the last few years. Much of the work prior to that has been on read speech tasks
and in the spirit of incremental changes to the permissible pronunciations of select individual
words. We briefly review some work on pronunciation modeling for large vocabulary spon-
taneous speech, specifically focusing on North American English. The reader is referred to
Strik and Cucchiarini (1999) for a more comprehensive review of other work in this field.

Modeling alternate pronunciations of entire words has been attempted on spontaneous
speech tasks.Peskinet al. (1999) andHain and Woodland (1999a) use pronunciation proba-
bilities in their baseform dictionary, which may be considered a weak form of pronunciation
modeling.Sloboda and Waibel (1996) generate alternate pronunciations using an automatic
phone recognizer on a training corpus to obtain frequent alternative pronunciations of fre-
quent words. This approach, besides relying on having a good phone recognizer, cannot pre-
dict unseen pronunciations or pronunciations for words not seen in the acoustic training set
(often referred to asunseen words).

An alternative to modeling pronunciation variation of entire words is to view the new pro-
nunciations as being obtained by local changes in the phonemes of a standard pronunciation
and to model the process of this change, e.g. the pronunciation[h ae f] of the wordhave
is obtained by changing the third phoneme in its baseform[h ae v]. These approaches can
generate pronunciations for all words including the unseen words. Techniques which espouse
this idea may be divided into those which start with hand-crafted rules and those which infer
the rules of pronunciation change from data.

Cohen (1989), Giachin, Rosenberg and Lee (1990) and Tajchman, Fosler and Jurafsky
(1995) have used phonological rules obtained from linguistic studies to generate alternative
pronunciations for read speech tasks.Finke and Waibel (1997) applied these methods to
spontaneous speech, and further extended them by making the pronunciation probabilities
depend on dynamic features such as speaking rate, segment durations and pitch. The main
limitation of these procedures is the need for hand-crafted rules, and the consequent inability
to model observed changes which are not covered by a rule in the inventory.

Lucassen and Mercer (1984), Chen (1990) andRiley (1991) have used statistical decision
trees to generate alternate word pronunciations for read speech tasks. InFosleret al. (1996)
andByrneet al.(1997), we extended this work to spontaneous speech.Fosler-Lussier (1999)
also used these techniques to predict alternate pronunciations of syllables and words instead
of phonemes.

Very recently,Finke, Fritsch, Koll and Waibel (1999) proposed a new technique that at-
tempts to model a phoneme as a feature bundle which can be augmented due to a pronun-
ciation change. In contrast to all the techniques mentioned earlier, which assume acom-
pletechange in the identity of a phonetic segment when a pronunciation change occurs, this
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technique is able to model partial changes. The method presented in this paper shares this
characteristic of modeling partial pronunciation changes.

A technique proposed byWooters and Stolcke (1994) for generating a phone graph for a
word from empirically observed pronunciations has been extended byEide (1999) to gen-
erating a HMM state graph for a context-dependent phoneme.Wakita, Singer and Sagisaka
(1999) also use empirically observed HMM state sequences to infer alternate word pronun-
ciations at the granularity of HMM states instead of phonemes. The method presented in this
paper shares this characteristic of these two methods: modeling pronunciation change at the
level of a HMM state.

All the pronunciation models mentioned above result in a small reduction in WER, com-
pared to using a baseform dictionary, when used during recognition. However, very few at-
tempts to use the pronunciation model in conjunction with acoustic model training have been
reported.Sloboda and Waibel (1996) claim that the use of alternate pronunciations for acous-
tic model training provides improvement beyond the gain from using them during recognition
alone, but their experimental results are inconclusive.Finke and Waibel (1997) use alternate
pronunciations during acoustic model training, but this is done in conjunction with “flexible
transcription alignment.” As a consequence, it is difficult to estimate the part of the overall
gain which may be attributed to the use of pronunciation modeling in acoustic model training.

5. Pronunciation modeling framework

We begin with a review of the decision-tree-based pronunciation modeling methodology
originally developed byRiley and Ljolje (1995). We essentially adapt the techniques they
developed for read speech to our spontaneous speech task. This brief review is included for
the sake of completeness and interested readers are referred toRiley et al. (1999) for details.

The main steps in training and using a pronunciation model for ASR, as shown in the block
diagrams of Figures1, 2 and the example of Figure3, are to:

(1) obtain a canonical (phonemic) transcriptionof some training material. A standard
pronouncing dictionary (in our case, PronLex) is used for this purpose, with Viterbi
alignment when there are multiple pronunciations.

(2) obtain a surface-form (phonetic) transcription of the same material. The portion
of the Switchboard corpus that is phonetically hand labeled by linguists is used (see
Greenberg, 1996).

(3) align the phonemic and phonetic transcriptions. A dynamic programming procedure
based on phonetic feature distances is used for this purpose.

(4) estimate a decision-tree pronunciation model. A decision tree is constructed to pre-
dict the surface form of each phoneme by asking questions about its phonemic context.

(5) perform recognition with this pronunciation model . A dictionary-based phoneme-
level recognition network is first obtained from a word lattice generated by an ini-
tial recognition pass. The pronunciation model is then used to transduce phoneme
sequences in this network to yield a network of surface-form realizations. Figure4
illustrates this expansion for a two-word fragment. Recognition is then performed on
this phone-level network using the baseline acoustic model trained from the phonemic
transcripts.

(6) full training set retranscription . Starting with the canonical transcription of the en-
tire acoustic training set [instead of just the hand-labeled portion in Steps (1)–(2)], the
pronunciation model of Step (4) is used to create pronunciation networks represent-
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Figure 1. Pronunciation model training.

ing possible phonetic realizations of each training utterance. The most likely phone
sequence through each network is chosen via Viterbi alignment using a set ofexisting
acoustic models, giving a “refined” transcription of the entire training set.

We have shown inByrne et al. (1998) andRiley et al. (1999) that if only a small amount
of phonetically labeled data is available in Step (2), the pronunciation model in Step (4)
and the corresponding WER in Step (5) are worse(1.4% absolute) than using canonical
pronunciations. We conjecture that the mismatch between the acoustic models and the hand
transcriptions as well as the high degree of lexical confusion are the main reasons for this
degradation. One way to automatically generate more data for Step (2) is to replace the small
corpus of Step (2) with the larger corpus of Step (6), and then repeat Steps (3)–(5). This leads
to a small but statistically significant (39.4%→ 38.9%,∼0.5% absolute) improvement in
WER on the Switchboard corpus.

Note that in the Switchboard results reported in bothByrneet al. (1998) andRiley et al.
(1999), canonical pronunciations of words were used for estimating acoustic phonetic mod-
els. The automatic phonetic transcription of the acoustic training corpus generated in Step (6)
was used only to estimate a pronunciation model and alternate pronunciations generated by
this model were permitted only during recognition. We show next, in Section6, that the
phonetic transcription of Step (6) is more accurate than a transcription based on canonical
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Figure 2. Recognition using the pronunciation model.

TABLE II. Improved training transcriptions for acoustic model estimation

Transcriptions Phone error rate Deviation from baseforms
Dictionary baseforms 28.3% 0%
Automatic [Step (6)] 26.1% 4.1%

pronunciations, and we investigate acoustic model estimation based on such improved tran-
scriptions.

6. Improving the phonetic transcriptions used in acoustic model training

It is possible to gauge the quality of the phonetic transcription of Step (6) by comparing it
with the manual phonetic transcription which is available for a portion of our Switchboard
training corpus. The metric for this comparison is the string edit distance between the two
phonetic transcriptions for each utterance. Time information about the phonetic segments is
ignored in this alignment. The number of errors in the automatic transcriptions is the total
number of insertions, deletions and substitutions. TableII presents this comparison for 1800
sentences (40 000 phones).
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transcriptions and a decision-tree pronunciation model [Step (4)]. (The “- -” symbol
corresponds to a deletion relative to the phonemic string.)
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Figure 4. Phoneme- and phone-level networks for “HAD YOUR” (!NULL indicates a
deletion). (Reproduced from the WS97 pronunciation modeling group final
presentation by Michael Riley.)

Since the transcription resulting from Step (6) is more accurate, it may be expected to be
better suited for acoustic model training than the canonical transcription. This leads to an
additional step in the pronunciation modeling framework of Section5.

(7) acoustic model reestimation. Newacoustic models are reestimated based on the phone
transcriptions of Step (6).

The retranscription of Step (6) is then repeated with thesenewacoustic models replacing
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TABLE III. Failed attempts to further improve training transcriptions via
adaptation

Adaptation method Phone error rate Deviation from baseforms
None 26.1% 4.1%
VTLN 26.0% 4.2%
MLLR 26.0% 4.0%

theexistingacoustic models used earlier. The resulting phonetic transcription is then used in
Steps (3)–(5) for pronunciation model estimation and recognition2.

However, it was somewhat surprising to find that there was no improvement in recognition
performance (38.9% WER) compared to the acoustic models trained on canonical baseforms!

While it is clear from TableII that the new models are reestimated on more accurate pho-
netic transcriptions than the canonical baseforms, it may be argued that a further improvement
in phonetic accuracy of the training transcriptions is needed in order to improve recognition
performance. We investigated four procedures to improve phonetic accuracy of the training
transcriptions, as described below. The first three (adaptation, simpler models and cross-
transcription) provide small improvements in training transcription accuracy and the fourth
(bootstrapping) provides a significant improvement. We then reestimated the acoustic models
from these improved transcriptions of the acoustic training corpus and used them for recog-
nition in conjunction with a matched pronunciation model. We observedno improvement in
WERfrom slight improvements in phonetic accuracy of the training transcriptions. Acous-
tic models trained on the fourth, significantly improved, training transcription, surprisingly,
degraded recognition WER. These techniques are described in more detail below.

6.1. Speaker and channel adaptation

We first investigate whether standard speaker and channel adaptation techniques can be used
to adjust the acoustic models used in Step (6) to obtain more accurate phonetic transcriptions.
A variation of the Vocal Tract Length Normalization (VTLN) procedure proposed byLee
and Rose (1996) and Maximum Likelihood Linear Regression (MLLR) (Digalakis, Rtischev
& Neumeyer, 1995; Leggetter & Woodland, 1995) are used to adjust the acoustic models
before performing the retranscription in Step (6). The use of adaptation techniques leads to
little change in transcription accuracy relative to the hand-labeled transcriptions (TableIII ).
It also results in little change in transcription content as evidenced by the comparison of the
three automatic transcription techniques in TableIII . The new transcriptions remain fairly
close to the original baseform transcriptions both before and after adaptation.

The results suggest the original hypothesis—that the phone transcription accuracy in
Step (6) can be substantially improved within this framework—is incorrect; we conclude
instead that the highly-parameterized acoustic models used here are well-tuned to match the
acoustics to the PronLex baseforms on which they are trained so that only drastic mispronun-
ciations can be discovered when using these models in the retranscription stage. Adaptation
based on the training transcriptions simply reinforces the problem.

2Redoing Steps (6), (3)–(5) after Step (7) ensures that the final pronunciation model in Step (4) is matched to the
newacoustic models used subsequently in recognition in Step (5).
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TABLE IV. Simpler acoustic models improve phonetic transcription

Acoustic model used in Step (6) Phone error rate Deviation from baseforms
12-Gaussian triphone models 26.1% 4.1%
8-Gaussian triphone models 25.7% 5.0%
1-Gaussian triphone models 25.5% 9.3%

TABLE V. Jack-knifing improves phonetic transcription (8-Gaussian triphone
models)

Transcription technique Phone error rate Deviation from baseforms
Self-transcription 25.7% 5.0%
Cross-transcription 25.3% 8.1%

6.2. Simpler acoustic models

Since we suspect that the accuracy of phonetic transcriptions is being limited by the ability
of the highly-parameterized acoustic models to match the realized acoustics to the canonical
baseforms, we repeat the transcription of Step (6) using simpler acoustic models. In particu-
lar, we replace the 12-Gaussian mixtures in the HMM state output densities of the baseline
system with 8-Gaussian mixtures or 1-Gaussian densities.

As seen in TableIV, the simpler acoustic models do slightly improve the phonetic accuracy
of the training transcriptions.

6.3. Cross-transcription

The automatic transcription procedure of Step (6) may be hampered by the fact that the
acoustic models used for transcription were trained on thesameacoustics together with the
canonical (baseform) transcription. A natural solution is to transcribe the training set using
models trained on different data.

The 60-hour Switchboard training set is partitioned into two speaker disjoint gender-
balanced 30 hour subsets and model sets trained on one half are used to phonetically tran-
scribe the acoustics for the other half of the data [as in Step (6)]. The resulting transcriptions
are then used to train a set of acoustic models [as in Step (7)]. Steps (6), (3), (4) and (5) are
then carried out in that order to estimate and test a matched pronunciation model.

The phone recognition accuracy relative to the hand-labeled transcriptions improves
slightly by the cross-transcription method as shown in TableV. This is not to say that the re-
sulting transcriptions are the same as those described in the preceding section. Indeed, these
transcriptions deviate even more from the baseforms than the transcriptions of TableIV. De-
spite this, the “refined” transcriptions do not lead to any significant change in recognition
performance.

We conclude that it is quite difficult to further improveautomaticphonetic transcriptions
using acoustic models which are trained on canonical baseforms.

6.4. Using acoustic models trained on hand-labeled data

One way to obtain more accurate phonetic transcriptions of the entire acoustic training cor-
pus [Step (6)] is to use acoustic models which are trained directly on only the hand-labeled
portion of the training corpus (ICSI portion of the corpus). We investigate this avenue as well.

Only a small portion (3.5 hours) of the acoustic training data has been transcribed at
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TABLE VI. Using hand-labeled data to train acoustic models for improved phone transcrip-
tion given the word transcription (451-utterance subset of the test set)

Transcription type Models Phone error rate Deviation from baseforms
Dictionary baseforms — 33.6% 0%
Automatic [Step (6)] Standard 31.4% 3.9%
Automatic [Step (6)] ICSI-models 26.6% 20.7%

TABLE VII. Comparison of word and phone error rates of 1-
best recognition hypothesis under different acoustic and pro-

nunciation models

Pronunciation Acoustic model
model used Standard ICSI-bootstrap

in Step (5) (test) PER WER PER WER
None (dictionary) 49.1% 49.1% 49.5% 58.9%
tree pron. model 47.7% 48.7% 43.2% 50.1%

the phone level by human labelers. Due to this limitation, we estimate a set of context-
independent phone models (henceforth calledICSI-models) using the hand-labeled portion
of the training set. The limited amount of hand-labeled data has two unintended benefits. For
one, most of the (60 hours of) speech to be transcribed is not used in model training, yielding
some of the benefits of cross-transcription seen in Section6.3. For another, the use of mono-
phone models instead of triphones is another step in the direction of simpler acoustic models
(for phonetic transcription) described in Section6.2.

The automatic transcription of Step (6) is performed next, using theICSI-modelsdescribed
above. This results in considerably more accurate phonetic training transcription (see Ta-
ble VI). Step (7), training acoustic models on the entire training set, is performed next. The
resulting models are namedICSI-bootstrap models. This is followed by the usual procedure
[Steps (6), (3), (4), and (5)] of estimating and testing a new pronunciation model appropriate
for these acoustic models.

First we present results showing that phone transcription accuracy is improved by models
trained on hand labels. Since these models are bootstrapped from the phonetically labeled
training utterances on which the results of TablesII–V are reported, it is inappropriate to
compare transcription accuracy on that set. We therefore use a 451-utterance subset of our test
set, which also has phonetic labels, to compare the transcription accuracy of theICSI-models
with models trained on canonical pronunciations. The task is the same as Step (6): choose
the best phone sequence given the word transcription and a pronunciation model. The results
of TableVI for the ICSI-modelsindicate that the transcriptions on which theICSI-bootstrap
models are trained are much more accurate than the baseforms or the transcriptions used in
preceding sections.

Next we use theICSI-bootstrapmodels for recognition. While the standard acoustic mod-
els (together with a pronunciation model) have a WER of 38.9%, the WER of theICSI-
bootstrapmodels turns out to be 41.3%! In order to better understand the cause of this degra-
dation, the performance of the model on the 451 phonetically labeled utterances in the test
data is analysed. In addition to the WER performance, the PER is measured against the hand
transcriptions. It turns out (TableVII ) that theICSI-bootstrapmodels improve phone accu-
racy by 4.5% on this subset of the test set, although the WER is worse by 1.4%.

It is clear from these experiments that there is indeed considerable deviation from canon-
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ical pronunciations in spontaneous speech and that theICSI-bootstrapmodels are indeed
better at capturing the actual realized pronunciations than models trained on standard pro-
nunciations. We believe that the inability to translate this (implicit) lower PER into lower
WER is due to lexical confusion: since our decision-tree pronunciation model allows words
to have a large number of pronunciations, many of which overlap with pronunciations of
other words, “recovering” the right word strings from more accurate phone recognition is
difficult. Yet, the model for the acoustic realization of a phoneme must allow for the inherent
variability. This very naturally leads to the quest in Section7 for a modeling methodology in
which the HMM of a phoneme acquires the ability of the HMMs of alternate realizations to
model the observed pronunciation variation, yet does not sacrifice its identity to the alternate
realizations.

7. Modeling pronunciation variability at the level of HMM states

We now present a new pronunciation model which accommodates alternate surface-form re-
alizations of a phoneme by allowing the HMM state of the model of the phoneme to share
output densities with models of the alternate realizations. We call this astate-level pronunci-
ation model(SLPM).

To explain the mechanism of state-level pronunciation modeling we will usetypewriter
fonts to denote pronunciations of words, both canonical and alternate. For example, the word
HAD has a canonical pronunciationhh ae d but it may sometimes be realized ashh eh d,
which happens to be the canonical pronunciation of the word HEAD. The sketch at the top of
Figure5 illustrates how this alternative will be represented at the phone level, and the sketch
in the middle shows how a context-independent HMM system will permit this alternative in
a recognition network.

The SLPM deviates from these methods as illustrated by the sketch at the bottom of Fig-
ure 5. Rather than letting the phonemeae be realized as an alternate phoneeh, the HMM
states of the acoustic model of the phonemeae are instead allowed to mix-in the output
densities of the HMM states of the acoustic model of the alternate realizationeh. Thus the
acoustic model of a phonemeae has the canonical and alternate realizations (ae andeh)
represented by different sets of mixture components in one set of HMM states.

In a system that uses context-dependent phone models, a pronunciation change (ae→eh)
also affects the HMMs selected for the neighboring phones, as illustrated by the sketch in
the middle of Figure6. The mechanism used by the SLPM to accommodate pronunciation
changes in a phoneme’s context is to allow the states of the context-dependent HMM of the
phonemed, namelyae-d+sil, to mix-in the output densities of the states ofeh-d+sil, the
context-dependent HMM for the alternative pronunciation. This is illustrated by the sketch at
the bottom of Figure6.

In our system, we use three-state left-to-right HMMs to model triphones. To reduce model
complexity, all triphone states of a phone are clustered into a manageable number of states
using a top-down decision-tree procedure (Odell, 1995; Younget al., 1995). A separate clus-
tering tree is grown for each of the three states in a HMM. The detailed effect of the SLPM
on such a system is illustrated in Figure7. Each HMM state of the triphonehh-ae+d shares
output densities with the corresponding HMM state of the triphonehh-eh+d to accommo-
date a pronunciation changeae→eh in the phoneme, as illustrated by the sketch on the left in
Figure7. Similarly, each HMM state of the triphoneae-d+sil shares output densities with
the corresponding HMM state of the triphoneeh-d+sil to accommodate a pronunciation
changeae→eh in the left context. This is illustrated by the sketch on the right in Figure7.
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Figure 5. The effect of allowing phonemeae to be realized as phoneeh:
context-independent models.

Note that each HMM state of each triphone, say of phonemex, shares output densities
with two kindsof states: (i) corresponding states of a phonemey, caused by a pronunciation
changex→ y, and (ii) corresponding states of other triphones of the phonemex, caused by
pronunciation changes in the triphone contextC(x) of x. This overall effect of the SLPM on
a HMM state is illustrated in Figure8. The trees in Figures7 and8 are state-clustering trees,
not the pronunciation prediction trees illustrated in Figure3.

7.1. A state-level pronunciation model

Having introduced the philosophy of state-level pronunciation modeling, we now present a
detailed recipe for deriving such a model. We describe a procedure for identifying, for each
HMM state in our system, the set of other HMM states with which it shares output densities.
We then formulate the implementation of this sharing when each individual output density is
a mixture of Gaussians.

alignment. Starting with a canonical phonemic transcription of the acoustic training corpus
[Section5, Step (1)] and its surface-form phonetic transcription [Section5, Step (6)],
we obtain an alignment between the two corresponding sequences of
(context-dependent) HMM states. We have examined two ways of obtaining a state-
to-state alignment: (i) we use the phoneme-to-phone alignment of Section5, Step (3),
to infer a state-to-state alignment; and (ii) we first obtain a Viterbi alignment of each
HMM state sequence with the (common) acoustic signal and use the two resulting sets



152 M. Saraçlaret al.
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Figure 6. The effect of allowing a phonemeae to be realized as a phoneeh:
context-dependent models.

of frame-to-state alignments to infer a state-to-state alignment. While these methods
result in slightly different alignments, the eventual SLPMs obtained by the two meth-
ods were observed to have identical recognition WER. This suggests that our recipe is
insensitive to the details of the alignment procedure. Therefore, we will present exper-
imental results only for the first method of obtaining state-to-state alignment.

counting. Using the state-to-state alignment obtained above, compute the relative frequency
with which a stateb in the sequence of states for the baseform transcription is aligned
to a states in the sequence of states for the surface form transcription.

Freq(s|b) =
Count(s, b)

Count(b)
.

estimation. Estimate the probability,P(s|b), of a stateb being aligned to a states by using
the relative frequency and filtering out infrequent or unlikely alternate realizations. In
particular, we discard all(b, s) pairs with counts less than 10, and ignore all realizations
s of b with frequencies less than 5%.

P(s|b) = 0 if Count(s, b) < threshold1(= 10)
P(s|b) = 0 if Freq(s|b) < threshold2(= 0.05)
P(s|b) ∝ Freq(s|b) otherwise.
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{...,hh-eh+d, ...
...,b-eh+d, ...}

{...,hh-ae+d, ...
...,hh-ae+t, ...}

SLPM : 

{...,ae-d+sil, ...
...,aa-d+sil, ...}

{...,eh-d+sil, ...
...,ih-d+sil, ...}

...,hh-ae+t, ...}

eh ae d

{...,hh-ae+d, ...

SLPM : 

{...,ae-d+sil, ...
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Figure 7. Sharing Gaussian mixtures among different HMM states to accommodate
the pronunciation changeae→eh.

pronunciation change
in phoneme

canonical pronunciation
of phoneme and context

pronunciation change
in context

xy

C(y)=z C(x)=z

C(x)=z′

SLPM : 

Figure 8. Overall effect of sharing Gaussian mixtures among different tree-clustered
HMM states to accommodate pronunciation changesx→ y andz→ z′ wherez and
z′ are contexts ofx.
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modification. Replace the output distribution of each stateb with a mixture of the output
distributions of its alternate realizationss. UseP(s|b) as the mixture weights. Note that
the output distribution of a states in the original system may be a mixture component
in the output distribution of more than one stateb in the new system. However, unlike
a traditionaltied-mixture(Bellegarda & Nahamoo, 1990) or semi-continuous(Huang
& Jack, 1989) system, the tying of mixture components is governed by a pronunciation
model. The new output distribution of stateb is given by

P′(o|b) =
∑

s:P(s|b)>0

P(s|b)P(o|s)

whereP(o|s) is the output distribution of states in the original system.
The state output densities in our system are themselves mixtures of Gaussians

P(o|s) =
∑

i∈G(s)

wi,sN (o;µi , 6i )

wherei indexesall the Gaussian densities used in the system,G(s) is the subset of
densities which are used by the states andwi,s is the mixture weight of the densityi
as used in states. For such a system, this step yields

P′(o|b) =
∑

s:P(s|b)>0

P(s|b)
∑

i∈G(s)

wi,sN (o;µi , 6i )

=

∑
i∈G′(b)

w′i,bN (o;µi , 6i ) (1)

where

w′i,b =
∑

s:P(s|b)>0

wi,sP(s|b),

G′(b) =
⋃

s:P(s|b)>0

G(s).

A further simplification is possible if in the original system each Gaussian is associated
with only one state, i.e.wi,s > 0 for only ones = s(i ). This is true for our system,
which allows for expressing the new mixture weights as

w′i,b = wi,s(i )P(s(i )|b). (2)

reestimation. Further train the resulting “tied-mixture”-like acoustic models. Note that it is
easy to separate the factorsP(s|b) andwi,s in w′i,b of Equation (2). However, treating
w′i,b as a single parameter allows for further training of the models with the Baum–
Welch algorithm without any need for a modification of the training software. We
therefore initializew′i,b as described in Equation (2) but reestimate it as a free variable.
Retaining the factorization is possible and requires a slightly more involved training
algorithm described byLuo (1999) and used recently byHain and Woodland (1999b).

The SLPM developed above is used in a recognition experiment on the Switchboard cor-
pus. TableVIII shows that, just as for the decision-tree pronunciation model, the SLPM
results in a small but significant reduction in WER over the baseline system.

It may be noted from Equation (1) that the Gaussian densities indexed byi are not du-
plicated before reestimation, but are shared among states. The only additional parameters
introduced are the mixture weights,w′i,b. This increases the number of free parameters in the
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TABLE VIII. Recognition performance of the
SLPM

Pronunciation model WER
None (PronLex dictionary) 39.4%
Decision-tree pronunciation model 38.9%
State-level pronunciation model 38.8%

acoustic models by less than 0.5%. The amount of data required to reestimate the system is
therefore comparable to that for the baseline system.

The mechanism of sharing output densities among HMM states is inspired by the doctoral
dissertation ofLuo (1999). Motivated by the desire to obtain more reliable estimates of the
output densities of a collection of HMM states, some of which see plenty of training data
while others see very little, Luo replaces the output density of each state with a mixture of
its original output density and the output densities of a fixed number of “similar” states. The
choice of these sibling states is limited to states within the same triphone-clustering tree and
similarity of states is determined by a statistical distance between the output densities. Luo
calls this proceduresoft clustering.

The motivation for the work here is clearly different, namely accommodating pronuncia-
tion variability. As a consequence, we select a states in the original system for contributing
densities to a stateb in the new system if our pronunciation model suggests thatP(s|b) > 0.
This results in HMM states of triphones of distinct phones sharing output densities. The num-
ber of statess which contribute to the output density of a stateb is also not fixed, it varies
with the pronunciation variability of the (tri)phone of whichb is a state.

The SLPM has the following advantages over the decision-tree pronunciation model of
Riley et al. (1999):

• Canonical (phonemic) transcriptions [Section5, Step (1)] can be used to train HMMs
resulting from the SLPM construction. Since output densities of the alternate realiza-
tions are present in the HMM state of the canonical pronunciation, instances in which
the acoustic realization matches an alternate phone [Section5, Step (6)] better than the
canonical one will be used by the Baum–Welch procedure to update the densities of
the alternate phone instead of the canonical one.
• The dictionary need not be expanded to include alternate pronunciations, an important

consideration for recognition speed. The number of Gaussian computations, however,
increases due to the larger number of Gaussian components associated with each state.
The baseline system has 12 Gaussians per state. The number of Gaussians per state for
the SLPM varies and, on average, there are 14.5 Gaussians per state.

We argued in Section6.4 that the phone-level decision-tree pronunciation model may end
up introducing excessive lexical confusion by, for instance, permitting HAD to have a pro-
nunciationhh eh d, which is the canonical pronunciation of HEAD. The SLPM contains
only the canonical pronunciationhh ae d of HAD, and HMM states of the triphones of
this pronunciation share output densities with the states in the alternate pronunciation, e.g.
hh-ae+d with hh-eh+d. This leads to several differences in the two models. To see the main
difference, assume that HEAD is always pronounced ashh eh d while HAD has two al-
ternate pronunciations,hh ae d andhh eh d. To simplify the illustration, let HAD and
HEAD have identical language model probabilities in some context. In this context, consider
an acoustic realization which has a few acoustic frames with high likelihood under the out-
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put densities ofhh-ae+d and many frames with high likelihood under the output densities of
hh-eh+d. The two pronunciation models handle this realization differently. Under the phone-
level decision-tree pronunciation model, the phone sequencehh ae d obtains a very small
acoustic score relative to the phone sequencehh eh d. Since both HAD and HEAD have a
pronunciationhh eh d, the lexical choice is determined by the pronunciation model to be
HEAD. Under the SLPM, such an acoustic realization may obtains a higher score under the
phone sequencehh ae d thanhh eh d, due to the fact that themodifiedHMM for hh-ae+d
utilizes the output densities ofhh-eh+d but not vice versa. Since HAD only admits the pro-
nunciationhh ae d, and HEADhh eh d, there is no confusion at the lexical level, and the
word HAD is the winner. This is not to say that HAD is the better of the two choices but that
the two pronunciation models make different choices.

7.2. Introducing more accurate densities to model the surface-form realizations

The essential idea of the SLPM described above is to augment the output density of an HMM
state of a phoneme so as to model alternate surface-form realizations. However, all output
densities of the system described above were first estimated from the canonical transcrip-
tions of the acoustic training set. For example, in Figure8, when an HMM stateb needs to
account for a realizations, an output density ofs estimated from canonical transcriptions
is used. An alternative is to augment the output density ofb with the output density of the
state corresponding tos in a HMM systemtrained on the more accurate surface-form tran-
scriptionssuch as the one described in Section6.4. Recall that theICSI-bootstrapmodels of
Section6.4 improve phone accuracy on the test set.

Recall further that phonetic transcriptions which are considerably more accurate than the
canonical baseforms (see TableVI) were used for estimating the ICSI-bootstrap models.
Now, there is a sequence of triphone states,{s′}, from the ICSI-bootstrap models correspond-
ing to this (more accurate) phonetic transcription. Analogous to thealignment step in the
SLPM recipe described in Section7.1, we obtain an alignment of this state sequence with the
state sequence corresponding to the canonical transcription. Analogous to thecounting and
estimationsteps, we then estimate the probabilityQ(s′|b) that a states′ in the ICSI-bootstrap
models aligns with a stateb in the canonical transcription.

The main modification to the SLPM recipe of Section7.1 is in themodification step.

alternate modification. Replace the output distribution of each stateb with a mixture of
the output distributions of its alternate realizationss, with P(s|b) > 0, in the original
acoustic modelsand the output distribution of alternate realizationss′, with Q(s′|b) >
0, in the ICSI-bootstrap acoustic models3. This is illustrated in Figure9.

Further training of the models (cf.reestimation step in Section7.1) is done by first training
the mixture weights and transition probabilities followed by training the whole model.

The results in TableIX indicate that this modified HMM set performs significantly better
than HMMs trained on canonical pronunciations, giving a gain of 1.7% (absolute) in WER.
When two sets of acoustic models are “merged” in this fashion, the number of parameters
is nearly doubled. One way to make a fair comparison is to compare the “merged” SLPM
system with a system that has 24 Gaussians per state. However, data sparseness causes the
24 Gaussians-per-state system to be over trained; its WER on the test set is 39.7%, worse
than the 12 Gaussians-per-state baseline.

In another effort to make a fair comparison by keeping the number of parameters in the
3Note that this does substantially increase the number of acoustic model parameters in the system.
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Figure 9. Sharing Gaussian mixtures in the “merged” SLPM, to be contrasted with the
SLPM in Figure8.

TABLE IX. Recognition performance of the “merged” SLPM

Pronunciation model Acoustic model WER
PronLex (baseline) PronLex based 39.4%
Phone-level PM PronLex based 38.9%
State-level PM Merged, no training 38.2%
State-level PM Merged, further training 37.7%

SLPM comparable to the baseline models, two sets of acoustic models one corresponding
to the baseline system and another corresponding to the ICSI-bootstrap models, each with a
smaller number of mixture components (six per state), are merged. This results in a merged
system with roughly the same number of parameters as our baseline. This system has a WER
of 38.3%, which is still substantially better than the decision-tree pronunciation model.

As a final check, we have validated our results on a different Switchboard test set (WS97
eval set), consisting of 882 utterances. This test set was not used at all until all other experi-
ments described above were completed. The results are given in TableX.

TableX also provides a highly abbreviated summary of the work presented in this paper.
Compared to a system that uses a dictionary with canonical pronunciations, traditional (de-
cision tree) pronunciation models provide modest reductions in WER. The improvement in
performance due to the SLPM described in Section7.1is comparable, if not better. By incor-
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TABLE X. Recognition performance on a blind-test (WS97 eval
set)

Pronunciation model Acoustic model WER
PronLex (baseline) PronLex based 36.7%
Phone-level PM PronLex based 36.5%
State-level PM PronLex based 36.2%
State-level PM Merged, no training 35.8%
State-level PM Merged, further training 35.1%

porating output densities from a system trained on surface-forms, the SLPM of Section7.2
is able to significantly reduce the WER of the system.

8. Conclusion

It has been shown that conversational speech exhibits a high degree of pronunciation varia-
tion. Using models that enhance the pronunciation dictionary to accommodate this variation
gives a moderate improvement in system performance. Although the idea of using a pronunci-
ation model to obtain better phonetic transcriptions for acoustic model training is appealing,
attempts in doing so have not yielded any improvement in recognition performance in the
past.

We have shown here that starting with acoustic models trained directly on a phonetically
labeled corpus together with a very rich pronouncing dictionary is a good way to obtain fairly
accurate phonetic transcriptions of a larger corpus for acoustic HMM training.

We have demonstrated that acoustic models trained on these improved phonetic transcrip-
tions are indeed more accurate phonetic models. However, using such a rich dictionary for
recognition degrades accuracy, possibly due to an undesirable degree of lexical confusion.

It is more fruitful to use the improved training transcriptions and the HMMs estimated
from them in a new method of modeling pronunciation variation implicitly in HMMs for
the phones instead of explicit modeling in the dictionary. This new implicit method (SLPM)
achieves a significant reduction in WER on the Switchboard corpus as seen on two indepen-
dent test sets.
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