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Abstract

In the early 1990s, the availability of the TIMIT read-speech phonetically transcribed corpus led to work at AT&T

on the automatic inference of pronunciation variation. This work, brie¯y summarized here, used stochastic decision

trees trained on phonetic and linguistic features, and was applied to the DARPA North American Business News read-

speech ASR task. More recently, the ICSI spontaneous-speech phonetically transcribed corpus was collected at the

behest of the 1996 and 1997 LVCSR Summer Workshops held at Johns Hopkins University. A 1997 workshop (WS97)

group focused on pronunciation inference from this corpus for application to the DoD Switchboard spontaneous

telephone speech ASR task. We describe several approaches taken there. These include (1) one analogous to the AT&T

approach, (2) one, inspired by work at WS96 and CMU, that involved adding pronunciation variants of a sequence of

one or more words (`multiwords') in the corpus (with corpus-derived probabilities) into the ASR lexicon, and (1� 2) a

hybrid approach in which a decision-tree model was used to automatically phonetically transcribe a much larger speech

corpus than ICSI and then the multiword approach was used to construct an ASR recognition pronunciation lexi-

con. Ó 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Anfang der neunziger Jahre hat die Verf�ugbarkeit des phonetisch umschrifteten TIMIT Korpus f�ur gelesene Sprache

bei AT&T zur Forschung �uber die automatische Inferenz von Aussprachemodellen gef�uhrt. In dieser Arbeit wurden

Decision Trees auf der Basis von phonetischen wie linguistischen Merkmalen trainiert und auf den DARPA North

American Business News Korpus f�ur die automatische Erkennung gelesener Sprache angewendet. In j�ungerer Zeit

wurde f�ur die an der Johns Hopkins Universit�at ausgerichteten LVCSR Summer Workshops 1996 und 1997 der

phonetisch transkribierte ICSI Korpus f�ur spontane Sprache erstellt. Eine Arbeitsgruppe des Workshops 1997 (WS97)

hat sich auf Basis dieses Korpus mit der Inferenz von Aussprachemodellen zur Anwendung auf den DoD Switchboard

Korpus f�ur spontane Telefonsprache befaût. Wir beschreiben im folgenden verschiedene Ans�atze in diese Richtung. Sie

umfassen im einzelnen: ein zu dem AT&T Ansatz (1) analoges Modell, einen Ansatz (2), der auf der Arbeit am WS96
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und an der CMU aufbaut und die automatische Generierung und Aufnahme von Aussprachevarianten f�ur Folgen von

einem oder mehreren Worten (`multiwords') in das ASR Aussprachew�orterbuch (mit aus dem Trainingskorpus

abgeleiteten Wahrscheinlichkeiten) behandelt, und ein hybrides Modell (1� 2), in dem ein Decision Tree basiertes

Modell zur automatischen phonetischen Transkription eines sehr viel gr�oûeren als des ICSI Korpus verwendet wird um

dann mittels des `multiword'-Ansatzes ein ASR Aussprachew�orterbuch zu generieren. Ó 1999 Elsevier Science B.V.

All rights reserved.

R�esum�e

Au d�ebut des ann�ees 90, la disponibilit�e du corpus TIMIT de transcription phon�etique de parole dict�ee conduisit les

chercheurs de AT&T �a travailler sur l'inf�erence automatique des variations de prononciation. Ce travail, bri�evement

r�esum�e ici, utilisa des arbres de d�ecision construit �a partir de traits phon�etiques et linguistiques, et fut appliqu�e �a la

reconaissance de la parole dict�ee dans le domaine du DARPA North American Business News. Plus r�ecemment, le

corpus ICSI de transcription phon�etique de parole spontan�ee fut mis au point �a l'occasion des ateliers de travails d'�et�e �a
l'universit�e Johns Hopkins (WS) en 1996 et 1997. Un groupe de travail du WS97 mit l'accent sur l'inf�erence de la

prononciation �a partir de ce corpus a®n de l'utiliser dans le domaine de la parole spontan�ee t�el�ephonique DoD

Switchboard. Nous d�ecrivons plusieurs approches suivies �a cette occasion. Ces approches incluent (1) une approche

analogue �a celle de AT&T, (2) une autre approche inspir�ee par le travail accompli �a WS96 et �a CMU qui n�ecessite

l'addition de variantes de prononciation d'une s�equence d'un ou plusieurs mots du corpus (`multimots', avec des

probabilit�es extraites de ce corpus) au dictionnaire de prononciation du syst�eme de reconnaissance de la parole, et

(1� 2) une approche hybride o�u un model d'arbres de d�ecision est utilis�e pour d�eterminer automatiquement la tran-

scription phon�etique d'un corpus bien plus long que celui d'ICSI, et o�u l'approche multimots est utilis�ee pour construire

un dictionnaire de prononciation pour la reconnaissance automatique de la parole. Ó 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Most speech recognition systems rely on pro-
nunciation dictionaries that contain few alternate
pronunciations for most words. In natural speech,
however, words seldom adhere to their citation
forms. The failure of ASR systems to capture this
important source of variability is potentially a
signi®cant source for recognition errors, particu-
larly in spontaneous, conversational speech. We
report methods used to address this issue applied
to read speech at AT&T (Riley and Ljolje, 1995)
and to spontaneous speech at and after WS97, the
Fifth LVCSR Summer Workshop, held at Johns
Hopkins University, Baltimore, in July±August
1997 (Byrne et al., 1998). From our perspective,
the primary goal of modelling pronunciation
variation is improving the accuracy of automatic
speech recognition systems and we will judge it
accordingly.

To date, there have been a variety of
approaches to the modelling of pronunciation

variation. Strik and Cucchiarini (1998) give a
taxonomy of these methods. One dimension they
use to distinguish between methods is whether the
information source for the pronunciation models is
data-driven (Byrne et al., 1997, 1998; Chen, 1990;
Cremelie and Martins, 1997; Finke and Waibel,
1997; Fukada and Sagisaka, 1997; Holter, 1997;
Randolph, 1990; Riley and Ljolje, 1995; Wein-
traub et al., 1996; Wooters and Stolcke, 1994) or
knowledge-driven (Downey and Wiseman, 1997;
Kipp et al., 1997; Lamel and Adda, 1996; Tajch-
man et al., 1995). The work from AT&T, in fact,
was among the ®rst to apply the data-driven ap-
proach, in particular, in its use of hand-labelled
phonetic corpora for building statistical pronun-
ciation models. The AT&T work was based on the
TIMIT read-speech phonetic corpus (Fisher et al.,
1987). Applying analogous data-driven methods to
American English spontaneous speech required the
collection of a similarly-sized phonetically-labelled
conversational-speech corpus, since none was
currently available. This was done for the DoD
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Switchboard telephone-speech corpus by the In-
ternational Computer Science Institute (ICSI)
under contract from the LVCSR Summer Work-
shop (Greenberg, 1996). As such, the work
described here is perhaps the ®rst to use a hand-
labelled phonetic corpus for building statistical
pronunciation models of spontaneous American
English speech.

Another dimension Strik and Cucchiarini used
to distinguish between methods is whether the in-
formation representation is formalized (e.g., rules)
or enumerated (e.g., an explicit dictionary). We
explore both methods (and, as we shall later see,
their hybrid). One viewpoint we explore is that
pronunciation variability may be modelled by a
statistical mapping from canonical pronunciations
(baseforms) to symbolic surface forms, and we use
decision trees to capture this mapping. A second
way we exploit the hand transcriptions is by en-
hancing the dictionary using frequently seen pro-
nunciations. While the former has the potential to
generalise to unseen words and pronunciations,
the latter is more conservative and hence poten-
tially more robust.

As many researchers have observed earlier,
simply adding several alternate pronunciations to
the dictionary increases the confusability of words
to the extent that the gains from having them are
often more than nulli®ed. We address this problem
in two ways. We assign costs to alternate pronun-
ciations so that, e.g., if a frequent pronunciation of
`cause' and an infrequent pronunciation of `be-
cause' are identical, a penalty is incurred to attrib-
ute the pronunciation to `because' rather than
`cause'. In addition, we account for context e�ects
so that, e.g., `to' is allowed the pronunciation
[ax], which is a frequent pronunciation of `a', only
if `to' is preceded by `going', as in [g aa n ax].

Our pronunciation modelling e�orts may be
divided into two broad categories. In our tree
based dictionary expansion experiments, we apply
decision tree based pronunciation models to en-
tries in our baseform dictionary to obtain alternate
pronunciations, which are then used in testing. In
our explicit dictionary expansion experiments, we
apply the decision tree based pronunciation mod-
els ®rst to the training corpus, and perform a
forced alignment with the acoustic models to

`choose' amongst the alternatives. The dictionary
is then explicitly augmented with novel pronunci-
ations which occur su�ciently often. The tree
based expansion implicitly adds many more new
pronunciations than the explicit expansion. The
explicit expansion models cross-word coarticula-
tion in a word-speci®c manner by allowing as
dictionary entries a select set (cf. Finke and Wai-
bel, 1997) of multiwords ± word pairs and triples.

We demonstrate in Sections 2 and 3 that the
tree-based method gives a reduction in the word
error rate (WER) for the read-speech North
American Business (NAB) News task while both
methods give reductions for the conversational
telephone speech Switchboard task over baseline
systems using only a citation-form dictionary.
Further, we show in Sections 4 and 5 that reduc-
tions persist when the baseline systems are im-
proved by coarticulation sensitive acoustic
modelling and improved language modelling.

We felt that it was important for completeness
to present here our full set of results. To assist the
reader, however, we have placed auxiliary experi-
ments in Appendix A. The reader may wish to skip
these on ®rst reading.

2. Tree based dictionary expansion

Our tree based pronunciation models were in-
spired by phonological rules in acoustic phonetic
studies (cf. e.g., Ladefoged, 1975) which charac-
terize allophonic variations in certain phonemic
contexts. Fig. 1 illustrates a typical word sequence
along with its phonemic transcription (shown at
the top), based on a pronunciation dictionary,
together with the phonetic (surface form) tran-
scription of an instance of the utterance (shown at
the bottom). The phenomenon of deletion of some
phonemes or their realisation as a di�erent phone
are treated as a probabilistic event and modelled
by decision trees. Similar methods or variations
based on replacing decision trees with rewrite rules
have been successfully used to model pronuncia-
tion variability and constraints by other research-
ers (e.g., Chen, 1990; Randolph, 1990; Finke and
Waibel, 1997; Tajchman et al., 1995; Weintraub
et al., 1989, 1996). Throughout this paper, we will
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use the computer-readable phonetic alphabet
ARPABET (Shoup, 1990) to represent phonemes
and its TIMIT extensions (Fisher et al., 1987) to
represent allophones.

2.1. Decision trees from hand-labelled data

The decision trees built for these tasks drew
from the TIMIT and ICSI corpora, which were
used as the means to bootstrap our pronunciation
models. The TIMIT corpus is read wide-band-
width speech that was phonetically annotated
under contract from DARPA in the 1980s (Fisher
et al., 1987). The ICSI corpus is spontaneous
conversational telephone speech that was phonet-
ically annotated under contract from WS97
(Greenberg, 1996). Approximately three-quarters
(134,000 phones) of the TIMIT corpus and ap-
proximately 3.5 hours (96,000 phones) of 4 hour
ICSI corpus were used as the training sets in our
experiments. The remainder of these corpora were
held out for use as test sets needed in some of the
experiments reported below.

The labels used by the annotators were slightly
richer than the phonetic labels in the pronunciation
dictionary (PronLex LDC, 1995) used for these
experiments. However, since the acoustic models
for the baseline system were trained using the
PronLex set, the hand annotations were mapped
down to this phone set for reasons of consistency. 1

Next, based on the orthographic transcriptions
and the pronunciation dictionary, a phonemic
transcription of the utterances was obtained.
Whenever the dictionary permitted more than one
pronunciation for a word, a choice was made via a
forced alignment 2 of the acoustic signal with the
alternatives using the baseline acoustic models.

The phonemic transcriptions were then lined up
with the phonetic labels, using as the alignment
criterion the minimization of the phonetic feature
distance between the two symbol streams (Riley
and Ljolje, 1995). Table 1 gives an example
alignment from the ICSI corpus. This gave us a
corpus of phoneme-to-phone transformations to-
gether with the phonemic environment or context
for each instance.

Decision tree models were then built to repre-
sent this phoneme to phone mapping. The tree
growing criterion was minimization of the empir-
ical entropy of the surface phone, the stopping
criterion was a minimum sample count at both
parent and child nodes, and the trees were pruned
via internal ®ve-fold cross-validation (Brieman
et al., 1984). A separate tree was grown for each
phoneme. The context for decision making in-
cluded the identity of the phoneme to be mapped
as well as three neighbouring phonemes on either
side, the lexical stress on neighbouring vowels as

Fig. 1. Decision trees as phone predictors.

1 The ICSI labels were ®rst stripped of diacritics. Glottal stops

were then deleted and non-PronLex syllabic consonants were

expanded into schwa plus consonant (e.g., [em] ! [ax m]).

Any remaining non-PronLex labels were mapped to their most

phonetically similar PronLex labels.

2 Note that time-alignment was not a goal of the alignment

process. Since the PronLex dictionary contains a single

pronunciation for an overwhelming majority of the words

and a few (2±3) for most others, we feel that the forced

alignment procedure was not of much signi®cance other than a

sensible means to resolve the few pronunciation ambiguities

that did arise.
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obtained from the pronunciation dictionary, and
the distance of the phoneme from the nearest
segment boundary on either side, where the seg-
ment could be either a syllable, a word or a phrase.
We also investigated the e�ect of leaving out a few
of these features as well as adding a few others,
and the results of this investigation are presented
in subsequent sections.

The identity of each phoneme is speci®ed by an
encoding in terms of its phonetic features, using
the four-element feature vector of (consonant-
manner, consonant-place, vowel-man-

ner, vowel-place) (see Table 2). For exam-
ple, /s/ is encoded as (voiceless

fricative, palatal, n/a, n/a)and /iy/ is
encoded as (n/a, n/a, y-diphthong, high-
front). This encoding was chosen to guide the
decision trees in asking concise, phonetically-rele-
vant questions about phoneme identity (Riley and
Ljolje, 1995). Given that there are forty-odd dis-
tinct English phonemes, some knowledge-based
encoding as we have used or some data-driven
clustering (Chou, 1990) is necessary, since the de-
cision tree cannot entertain all 240 possible binary
partitions of the phoneme set per tree node split
(Brieman et al., 1984).

2.1.1. Predicting surface forms from baseforms
Each leaf in a tree thus assigned probabilities in

some context to more than one surface form

realisation of the phoneme it modelled. A way to
judge the goodness of these trees, therefore, was to
apply them as predictors on a held out portion of
the hand-labelled corpora. Test sets from TIMIT
and ICSI corpora were held out for this purpose.
The results in Table 3 summarize the predictive
ability of the trees on these sets. 3 Relative to the
context independent distribution of surface form
realisations of a phoneme, decision trees built on
the TIMIT portion of the trainig set reduce the
entropy by about 50%, when tested on TIMIT.
Those built on the Switchboard portion of the
training set reduce the entropy by about 30%,
when tested on Switchboard. Trees based on
TIMIT alone are much less e�ective on the
Switchboard test set (20%), but adding them to the
Switchboard training data (ICSI�TIMIT) results
in a small additional gain (32%). These results
suggest there is more variability in pronunciations
in Switchboard, relative to TIMIT, which is not
captured by either the phonemic context cues or
the modelling paradigm we considered.

Several additional experiments were conducted
to compare the relative importance of the features,
e.g., extent of phonetic neighbourhood or lexical

Table 2

Phoneme encoding scheme

�Consonant-manner

voiced stop, unvoiced stop, voiced fricative, unvoiced

fricative, voiced a�ricate, unvoiced a�ricate, nasal, rhotic,

lateral, not±applicable.

�Consonant-place

bilabial, labiodental, dental, alveolar, palatal, velar,

pharyngeal, not±applicable.

�Vowel-manner

monophthong, r±colored vowel, w±diphthong, y±diph-

thong, glide, not±applicable.

�Vowel-place

front±low, front±mid±low, front±high, central±mid±low,

central±mid±high, back±low, back±mid±low, back±mid±

high, back±high, not±applicable.

Table 1

Phoneme-to-phone alignment for an ICSI transcription frag-

ment

Phoneme Phone Word

f f for

ao ao

r ±

dh dh the

ax iy

f f for

ao ±

r ±

dh dh the

ax ax

d jh drug

r r

ah ah

g g

3 So that test observations in contexts unseen in training do

not make entropy ®gures in®nite, the worst 10% of the test data

(i.e., highest log2-prob) is removed from each entropy mea-

surement in this paper.
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stress, that we have used as context in out pro-
nunciation models. Some experiments were also
conducted to quantify the importance of addi-
tional features which have not been used here.
Though these results are of signi®cant interest, we
relegate them to Appendix A.1 for clarity of pre-
sentation.

2.2. Generating automatic phone transcriptions

Using decision trees is a data intensive model-
ling technique. Large quantities of automatic
phonetic transcriptions were generated to augment
the hand-labelled corpora using the 37,000 sen-
tence acoustic training corpus from 284 speakers
for the NAB task at AT&T and using the 60-hour
acoustic training corpus for the Switchboard task
at WS97. Unlike (Weintraub et al., 1996), where
unconstrained phone recognition was used to
generate phone transcriptions, we constrained the
words in our training utterances to assume only
pronunciations generated by application of the

decision trees to their phonemic baseforms: a
forced alignment was performed on the resulting
network of alternate pronunciations in an utter-
ance and the most likely sequence of pronuncia-
tions was chosen to be the phonetic transcription.
Pronunciation probabilities derived from the trees
were used as `language model' weights during
alignment, and since the word transcription was
provided, word level language model weights are
redundant and were not used.

Anecdotal evidence suggests that this method of
obtaining automatic transcriptions is reasonable: it
agrees more with human annotations than the
phonemic baseforms do, though not by much. For
the hand-labelled portion of the ICSI corpus, for
instance, we aligned the baseforms with the hand
labels and found the phone error rate of the cita-
tion form transcription to be about 30%. The error
rate for the automatic transcriptions for the same
portion was 25%.

It is also not clear if total agreement with the
hand labels is desirable. Occasionally, as in the
transcriptions shown in Table 4, a large number of
human listeners preferred the automatic tran-
scriptions to those of the annotators (who matched
the dictionary in this case)! Readers who would
wish to listen to this particular utterance can ®nd it
on the 1997 LVCSR workshop pronunciation
project web page at www.clsp.jhu.edu.

2.2.1. Building decision trees from automatic tran-
scriptions

These transcriptions were used to build new
decision trees. Two options were explored to use
this large amount of training data ± retain the
topology (i.e., the sequence of questions, or
the equivalence classi®cation of the contexts) of
the original phonetically hand-labelled corpus
trees, and only update their leaf distribution by
pouring this new training data down those trees; or

Table 4

Comparing phonemic (dict), manual (icsi) and automatic (auto) phonetic transcriptions

words just because they're grandparents � � �
dict jh ah s t b ax k ah z dh ey r g r ae n p ey r ih n t s

icsi jh ah s t b ax k ah z dh ey r g r ae n p ey r ih n t s

auto jh ax s b ax k ao z er g r ae n p eh r s

Table 3

The entropy (in bits) of predicting the surface-form of a pho-

nemea

Training data Average log2-prob (e�ciency)

ICSI-test TIMIT-test

TIMIT 0.76 !
0.60

(20%)

0.34 ! 0.17 (51%)

ICSI 0.72 !
0.50

(30%)

ICSI�TIMIT 0.71 !
0.48

(32%)

a The number preceding the arrow corresponds to prediction

based on the relative frequency of the surface form and the one

following the arrow corresponds to using a decision tree pro-

nunciation model. Numbers in parentheses indicate relative

reduction in entropy.
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rebuild the trees altogether. When applied to
Switchboard, there is very little di�erence between
the two methods in terms of prediction entropy on
a held out set, as illustrated in Table 5.

It is also not surprising that the prediction en-
tropy of these trees is higher than the
ICSI�TIMIT trees trained on hand labels alone,
because there is an obvious mismatch between the
automatic derivation of the training transcrip-
tions, and the hand-labelling of the test set. The
fully rebuilt trees were named Retrained trees.

Since we now had much more training data, we
also built trees which additionally included in the
context the previously realised surface form so as
to capture some of the dependency in the surface
string. Trees built this way were named Retrained2
trees.

2.3. Dictionary expansion using pronunciation trees

We applied the ICSI�TIMIT trees of Table 3
to successive phonemes of each baseform in the
WS97 baseline dictionary to obtain a weighted
pronunciation network as described in (Riley and
Ljolje, 1995). Fig. 2 illustrates such a network for
the word pretty.

Applied statically, this resulted in an expanded
dictionary which we call the ICSI+TIMIT dictio-
nary.

We also applied the Retrained trees to base-
forms in the baseline dictionary as before, to obtain
a second enhanced dictionary, which we call the
Retrained dictionary. Finally, expanding the base-
forms in the baseline dictionary using the Re-
trained2 trees resulted in the Retrained2 dictionary.

2.4. Testing with tree based dictionaries

At AT&T, both trees built on TIMIT and re-
trained trees built on the automatically transcribed

NAB 284-speaker acoustic training corpus were
used to constuct recognition dictionaries for the
NAB Eval '95 test set. These were compared with a
baseline system whose pronunciations came from
the AT&T TTS text-to-speech system (Coker,
1985). Table 6 shows these recognition results. We
see that the TIMIT-based trees gave a 1.9% WER
reduction over the citation-form TTS dictionary,
while trees retrained on the NAB 284-speaker
acoustic training corpus gave an additional 0.8%
reduction. In this earlier work, the full TIMIT
phone set (minus the stop closures) was used,
which contained 53 phones compared to the TTS
inventory of 41 phonemes. Thus, new acoustic
models had to be built for the larger phone set. In
other words, the acoustic models used for the
TIMIT and Retrained2 entries in Table 6 were
di�erent than the TTS-based test. At WS97, this
was not required, since as mentioned before, the
phone realisations had been forceably mapped to
the PronLex set.

At WS97, bigram lattices for the WS97 devel-
opment-test were rescored using the enhanced
dictionaries described above using the WS97 base-
line acoustic models. 4 Table 7 shows recognition

Table 5

Rebuilding versus retuning the pronunciation trees

Model # Trn tokens log2-prob

ICSI�TIMIT 96,040 0.525

Recount

weights

2.36 million 0.585

Rebuild trees 2.36 million 0.542

Fig. 2. Pronunciation network for pretty.

Table 6

NAB recognition results with enhanced dictionaries

Dictionary WER (%)

TTS 12.7

TIMIT 10.8

Retrained2 10.0

4 The baseline acoustic models were state clustered cross-word

triphones comprising about 7000 states, each with twelve-

component Gaussian mixture output densities, trained on

about sixty hours of Switchboard data.
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performance using the three static but weighted
enhancements to the dictionary based on the
ICSI�TIMIT trees, the Retrained trees and the
Retrained2 trees.

The degradation in performance from the
ICSI�TIMIT dictionary came as a surprise, es-
pecially since the AT&T NAB experiments showed
an apparently opposite e�ect. There were, how-
ever, many di�erences between the two tests in-
cluding (1) a read speech, low error task versus a
spontaneous speech, high error rate task, (2) the
TTS-dictionary versus the PronLex dictionary,
(3) 53 phone set versus a 43 phone set, (4) poten-
tially di�erent phonetic transcription conventions
between the TIMIT and ICSI labellers and
(5) acoustic model retraining in the AT&T exper-
iments but not in the WS97 experiments.

Regarding (2): the TTS dictionary (using the 41
ARPABET phoneme set) has few alternative
pronunciations and favors citation forms (Coker,
1985), while the PronLex dictionary (using the 41
ARPABET phonemes plus syllabic l and n), has
more alternative pronunciations, some containing
(in principle) predictable variants (LDC, 1995). At
AT&T, we used the PronLex dictionary to build
an alternate NAB system and we used the TTS
dictionary to build an alternate Switchboard sys-
tem. We found little di�erence in the baseline
performances (within 0.2% WER) of the alternate
dictionary systems compared to their respective
original dictionary systems. Regarding (5): pre-
liminary attempts at WS97 to retrain acoustic
models using tree-based pronunciation lexicons
lead to signi®cantly worse results (Byrne et al.,
1997).

There were various conjectures made why the
ICSI�TIMIT dictionary gave a worse result and
we launched a series of experiments to investigate
them. Again, while the results of these experiments
are of signi®cant interest, we relegate their

descriptions to Appendix A.2 in order to maintain
clarity of presentation. From Table 7, we also see
that the Retrained and Retrained2 trees yielded
modest but statistically signi®cant improvements
in word error rate over the WS97 baseline
system. 5

2.5. Summary of tree based experiments

· Pronunciation probabilities based on TIMIT
trees for NAB helped performance (+1.9%)
and reestimated trees helped more (+2.7%).

· Pronunciation probabilities based on
ICSI�TIMIT trees for Switchboard hurt per-
formance (ÿ1:5%), but those from reestimated
trees help (+0.9%).

· Reestimated pronunciation probabilities still
don't agree with empirical frequencies in train-
ing (see Appendix A.2). Word level pronuncia-
tion probabilities should be examined.

· Words have variable tendencies to be mispro-
nounced. Perhaps all words in the dictionary
should not be expanded equally (see Appendix
A.2).

3. Explicit dictionary expansion

The degradation in performance due to the
ICSI�TIMIT dictionary admits the possibility
that the ICSI�TIMIT trees either generalise in-
correctly or do a poor job of assigning costs to the
alternate pronunciations. Both of these are crucial
to the success of dictionary enhancement based
methods. An alternate, more conservative

Table 7

Switchboard recognition results with enhanced dictionaries

Dictionary WER (%) DEL (%) SUB (%) INS (%)

PronLex 44.66 10.85 29.47 4.34

ICSI�TIMIT 46.14 11.65 30.39 4.10

Retrained 43.99 10.90 29.08 4.02

Retrained2 43.75 10.87 28.85 4.02

5 The 95% con®dence interval on the word error rate on our

test set of 18,198 words is approximately 0.7% (assuming a

binomial distribution on the word errors).
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approach to dictionary enhancement was therefore
examined at WS97. As such, all experiments from
here on apply to Switchboard.

3.1. ICSI multiword dictionary

The PronLex dictionary is ®rst enhanced with
all the pronunciations for words seen in the
hand-labelled (ICSI) portion of the corpus. A
candidate list of 172 multiwords (cf. Finke and
Waibel, 1997) is also appended to the dictionary
to capture coarticulation, and pronunciations for
these are similarly appended using the hand-la-
belled corpus. The word transcription of the
training corpus is then expanded using these al-
ternate pronunciations and aligned with the
acoustics using our baseline models. New pro-
nunciations which are chosen su�ciently often
(in at least 20% of the tokens for each type) are
deemed bona ®de entries to the ICSI Multiword
dictionary; the others are discarded. Pronuncia-
tions are assigned weights based on their relative
frequency.

3.2. Auto multiword dictionary

Instead of the forced alignment among
alternate pronunciations extracted from the
hand-labelled portion of the corpus as described
above, new pronunciations for words and multi-
words may be chosen from the large automati-
cally transcribed corpus described in Section 2.2.
This alternative approach yields the Auto Multi-
word dictionary. Qualitatively speaking, this
dictionary invokes the decision tree pronuncia-
tion models to generate alternatives, but keeps
only those which occur frequently enough in the
automatic transcription. Again, weights are as-
signed to each pronunciation based on its relative
frequency.

3.3. Recognition results using expanded dictionaries

Bigram lattices for the WS97 dev-test, generat-
ed using the PronLex dictionary, are rescored
using the enhanced dictionaries described above.
The multiwords are incorporated into the lattices
as additional lattice arcs that parallel their corre-
sponding single word arcs. These multiword arcs
are correctly weighted so that sentence hypotheses
receive the same language model score whether or
not a multiword pronunciation is chosen. Table 8
shows recognition performance using the two
dictionaries. The 0.9% improvement due to the
Auto Multiword dictionary is encouraging, par-
ticularly in contrast to the lack of improvement
obtained from the ICSI Multiword dictionary.
This comparison further reinforces the impression
that the hand-labelled data is good for boot-
strapping, but not reliable enough for directly es-
timating pronunciation models. At the least,
incorporation of human expert knowledge into
statistical information processing systems has been
shown again to be a di�cult problem in which
naive approaches do not work as well as the
modelling techniques that match the supplied
knowledge to the capabilities of the system.

4. Coarticulation sensitive clustering

Context dependent acoustic models such as
triphone HMMs are capable of implicitly model-
ling some allophonic variation. However, the
models in our baseline system do not distinguish
between word-internal and cross-word triphones,
and one may hypothesise that the gains above,
especially those from the Multiword experiments,
are due to better modelling of common cross-word
e�ects. To investigate this possibility, the triphone
clustering procedure in our HTK-based system is
enhanced, as described next (Young et al., 1995).

Table 8

Lattice-rescoring with explicitly expanded dictionaries

Dictionary WER (%) DEL (%) SUB (%) INS (%)

PronLex 44.7 10.9 29.5 4.3

ICSI multiword 44.6 10.3 29.7 4.6

Auto multiword 43.8 10.4 29.1 4.3
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The major deviation from the baseline system is
to mark the phones in the the PronLex dictionary to
permit acoustic triphone state clustering routines to
make explicit use of information about word
boundary location. Another important modi®ca-
tion is the use of a speci®c interjection phone set.
This is not so much to model interjections better as
to prevent the very frequent interjections from
overwhelming the clustering and modelling of
phones in noninterjections. Acoustic model train-
ing is carried out in the same manner as the baseline
system, with the di�erence that the question set for
triphone state clustering is augmented with ques-
tions regarding the word boundary tags and inter-
jection phone set. A set of acoustic models, named
the INTWBD models, comparable to the baseline in
terms of the number of states and Gaussian com-
ponents, is thus estimated.

Next, the training data is retranscribed using
these models and the pronunciation networks of
Section 2.2. The Retrained2 dictionary and the
Auto Multiword dictionary of Sections 2.2 and
3.2, respectively, are then regenerated from these
transcriptions.

4.1. Recognition results using improved acoustic
models

Table 9 shows the results 6 of rescoring the
WS97 dev-test set using the INTWBD acoustic

models, and indicates that enabling the state
clustering to take advantage of word boundary
information and separate phones for interjections
result in signi®cant improvement in performance
(1.6%). Observe that the two dictionary enhance-
ment techniques continue to provide added im-
provements (0.7%), though to a slightly smaller
extent now.

5. Language model improvements

In the spirit of investigating whether pronun-
ciation modelling via the two expanded diction-
aries continues to be of bene®t when other
components of the system are improved, lattices
generated by a bigram language model and the
baseline PronLex dictionary are rescored using a
trigram language model and the Retrained2 and
Auto Multiword dictionaries. The results in Ta-
ble 10 are therefore directly comparable with
those in Table 9, which are based on bigram
scores.

Observe that the improvement from the INT-
WBD models over the baseline models is 1.5%,
which matches the 1.6% improvement with the
bigram language model. The additional im-
provement of 0.5% from the Retrained2 dictio-
nary also continues to hold, and the improvement
from the Auto Multiword dictionary over the
PronLex dictionary actually increases from 0.7%
to 0.9%. All these results indicate that our
straightforward pronunciation models and the
coarticulation sensitive acoustic modelling pro-
vide gains which are additive to language model
improvements.

Table 9

Lattice-rescoring with new AMs

Dictionary WER (%) DEL (%) SUB (%) INS (%)

Baseline acoustic models

PronLex 43.4 9.8 29.4 4.1

INTWBD acoustic models

PronLex 41.8 10.1 27.8 3.9

Retrained2 41.3 10.2 27.5 3.7

Auto multiword 41.1 9.7 27.5 4.0

6 Though these results are for the same baseline system and

test set, the baseline performance here di�ers slightly from the

one shown in Tables 7 and 8. This is mostly due to a change in

the acoustic segmentation of the test set between the two

experiments, evidently for the better, and to a smaller extent

due to a small change in the scoring software.

218 M. Riley et al. / Speech Communication 29 (1999) 209±224



5.1. The e�ect of multiwords

The performance of the Auto Multiword
dictionary with the INTWBD acoustic models
given in Table 10 is the best obtained in the ex-
periments we report here. To determine the actual
contribution of the multiword pronunciation
models to this result, we removed the multiwords
from the Auto Multiword dictionary and rescored
the trigram lattices using the INTWBD models.
We found that the 38.5% result did not change.
From this we conclude that while it is possible to
identify and obtain pronunciations for multi-
words using automatic methods, including multi-
words in lattice rescoring experiments neither
helps nor hurts performance. This is an encour-
aging result, in that it suggests the bene®ts we see
are due to newly learned pronunciations and not
merely from additional model complexity. We
note also that this result does not contradict
earlier work which found gains from multiwords
(Finke and Waibel, 1997). Multiwords do make it
possible to selectively incorporate cross-word
acoustic context in single pass recognition sys-
tems.

6. Acoustic model retraining

The baseline as well as the INTWBD acoustic
models are trained on the PronLex dictionary,
prompting the concern that these models are not
appropriate for use with the new dictionaries. In
particular, given the prevalence of reduced vari-
ants in the new dictionaries, the acoustic contexts
upon which the triphone states are clustered in the

baseline system are suspected to be poorly mat-
ched to the new dictionaries. This section describes
a procedure used to retrain models better matched
to the ICSI Multiword dictionary. 7 This work
makes use of the training techniques developed by
the Hidden Pronunciation Mode group at the 1996
LVCSR Workshop.

First, the state clustered triphone INTWBD
models and the regenerated ICSI Multiword
dictionary of Section 4 are used to obtain a pho-
netic transcription of the corpus, which then re-
mains ®xed during training. Untied triphones for
this transcription are then cloned from the
monophone HMMs created during the training of
the baseline system. Finally, the training procedure
for the INTWBD models is mimicked starting with
triphone HMM reestimation, followed by state
clustering, etc. The resulting HMMs, comparable
in the number of states and Gaussian components
to the baseline system, are called MWINTWBD
models.

6.1. Recognition results using retrained acoustic
models

Bigram lattices for the WS97 dev-test, generat-
ed using the baseline acoustic models and the
PronLex dictionary, are rescored using the
MWINTWBD acoustic models and the ICSI

Table 10

Lattice-rescoring with new AMs and a trigram LM

Dictionary WER (%) DEL (%) SUB (%) INS (%)

Baseline acoustic models

PronLex 40.9 8.9 27.8 4.2

INTWBD acoustic models

PronLex 39.4 9.2 26.2 4.0

Retrained2 38.9 9.2 25.9 3.8

Auto multiword 38.5 8.6 25.8 4.2

7 Acoustic retraining was not on our best (Auto Multiword)

dictionary for historical reasons: the ICSI Multiword dictionary

was obtained ®rst, and a retraining e�ort was started before the

superiority of the Auto Multiword dictionary was established.

M. Riley et al. / Speech Communication 29 (1999) 209±224 219



Multiword dictionary. Table 11 shows the results
of the rescoring experiment.

Recall from Table 8 that the ICSI Multiword
dictionary gives essentially no gain by itself, and
thus the gain here (0.4%) may be attributed to the
acoustic retraining. It is expected that substan-
tially higher gains will be attained by acoustic
retraining with better phonetic transcription such
as those obtained using the Auto Multiword
dictionary.

7. Conclusion

This research suggests that signi®cant im-
provement in speech recognition can be made by
suitably modelling systematic pronunciation vari-
ation. Further, our results indicate that while a
hand-labelled corpus is very useful as a boot-
strapping device, estimates of pronunciation
probabilities, context e�ects, etc., are best derived
from larger amounts of automatic transcriptions,
preferably done using the same set of acoustic
models which will eventually be used for recogni-
tion.

On NAB, using pronunciation modelling with
acoustic model retraining, we saw a 2.7% reduc-
tion in WER over a TTS baseline system. On
Switchboard, without acoustic model retraining,
we saw a 0.9% reduction in WER over a PronLex
baseline system, which is demonstrably additive to
improvements in language (2.5%) and acoustic
(1.5%) modelling, and to gains from adaptation
(not reported here). Work is underway to develop
e�ective acoustic model retraining methods for

Switchboard when these statistical pronunciation
lexicons are employed.

While we were heartened by the improvements
seen and the knowledge gained, there are never-
theless many issues and details left unexplored.
Brie¯y, these include:
· E�ective acoustic model retraining when

using pronunciation models for spontaneous
speech;

· Improved cross-word and phone-realisation
dependency modeling with the decision tree
approach;

· Generalisation to unseen contexts with the mul-
tiword approach;

· Dynamic pronunciation modelling ± e.g., e�ec-
tive use of duration/rate;

· Speaker normalization/clustering in pronuncia-
tion modelling;

· Discriminative training of the pronunciation
models to reduce confusability.

We conclude by mentioning that our e�ort at the
WS97 Workshop, which involved individuals from
various locations with a common interest in pro-
nunciation modelling, not only produced some
answers, but raised questions and formed rela-
tionships that will hopefully serve to further our
understanding of pronunciation modelling in the
future.

Acknowledgements

The work of Murat Saraclar and Sanjeev
Khudanpur was partially supported by the Na-
tional Science Foundation under Grant No.
9714169.

Appendix A

A.1. Useful features for predicting pronunciations

The tree based models of Section 2.1.1 were
studied to evaluate the relative merits of the fea-
tures used for predicting alternate pronunciations,
as also to gauge the gain from using additional
features not used in the models described in Sec-
tion 2.1.1.

Table 11

Lattice-rescoring with retrained acoustic models

Model WER

(%)

DEL

(%)

SUB

(%)

INS

(%)

Bigram LM

INTWBD 41.8 10.1 27.8 3.9

MWINTWBD 41.3 9.6 27.5 4.2

Trigram LM

INTWBD 39.4 9.2 26.2 4.0

MWINTWBD 39.0 8.7 26.1 4.2
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A.1.1. The e�ect of leaving out features

In order to investigate the conditional utility of
each of our contextual features given the others,
trees were built at WS97 by leaving features out
from the context one at a time. Table 12 summa-
rizes the results of these experiments. The trees
were trained on all of the Switchboard and TIMIT
data mentioned above, and the test set was the
same as the one used for the Switchboard results of
Table 3.

Note that, at least for this corpus size, there was
little additional predictive power in neighbouring
phonemes more than one position away, when the
triphone context, word boundary, and lexical
stress related information was speci®ed.

It seems reasonable to conclude that most of the
modeling gain for the pronunciation trees comes
from the immediate �=ÿ 1 phonemic context,
lexical stress and segment boundary location in-
formation. The contribution of the other features
is small, and they may be excluded if computa-
tional resources are an issue.

A.1.2. The impact of some additional features

We also experimented at WS97 with adding
new features to the decision trees.
· Based on the number of distinct pronunciations

of a word that were seen in the ICSI-portion of
the corpus, words were categorized into ten

bins: from words having many pronunciations
to words having few pronunciations. The bin
number was then provided to the trees for each
phoneme of the word. It was hoped that know-
ing how stable a word's pronunciation was
would help predict the surface form better.

· It is varyingly conjectured that frequently used
words, function words or low information bear-
ing words often tend to be mispronounced. The
frequency of occurrence of a word in the 60
hour acoustic training corpus was provided to
the trees for each phoneme of the word.

· In the hope of capturing limited phonotactics, as
well as to indirectly model deletion or reduction
of units larger than phonemes, the trees were
provided the surface form realisation of the pre-
vious phoneme.

Table 13 summarizes our results. All the features
used by the ICSI�TIMIT trees of Table 3 are
already present in the context. Note that while we
were unable to successfully exploit the information
about empirical pronunciation variability or fre-
quency of a word, knowing the previous surface
form seems to be of signi®cant value in this mod-
elling paradigm, perhaps because it compensates
for some of our conditional independence as-
sumptions in modelling the phoneme to phone
mapping very locally.

A.2. Diagnosis of models based exclusively on hand-
labelled data

It was noted in Section 2.4 that unlike our ex-
perience on the NAB corpus, where a pronuncia-
tion model constructed from the TIMIT corpus
was helpful in reducing recognition errors, the
model build from the ICSI�TIMIT labelled data
resulted in higher error rates on the Switchboard

Table 12

Leaving out features from the context

Features provided as context log2-prob

All features 0.485

Third phoneme from the left and right

excluded

0.484

Second and third phonemes from the left

and right excluded

0.485

Lexical stress excluded 0.487

Segment boundary cue excluded 0.490

Vowels (manner and place) excluded 0.497

Stress and segment boundary cues ex-

cluded

0.498

Consonants (manner and place) excluded 0.527

Right phonemic context excluded 0.537

Left phonemic context excluded 0.547

Entire phonemic context excluded 0.606

All context excluded (root trees) 0.714

Table 13

Adding new features to the context

Features added to context log2-prob

None 0.485

Word level pronunciation variance (10 bins) 0.481

Word frequency (from 60 hour training) 0.483

Pronunciation variance and word frequency 0.483

Pronunciation variance, word frequency

and previous phone

0.451
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corpus. We investigated several possible causes for
this e�ect and they are reported below.

A.2.1. Are words with many pronunciations being
penalized?

It is conceivable that a word such as and, which
admits many pronunciations, may be unnecessar-
ily penalized relative to a word with few pronun-
ciations such as an. E.g., the phones [ae n] are
the most likely pronunciation for both an and and
in conversational speech. Since they have a much
higher likelihood amongst pronunciations of an
than amongst those of and, other things being
equal, it costs less to map these phones to the
word an.

If Viterbi decoding is employed, many re-
searchers have suggested that this problem is al-
leviated by scaling the pronunciation probabilities
of every word so that the most likely pronuncia-
tion has unit weight. 8 We scaled our enhanced
ICSI�TIMIT dictionary in this manner, and
found an insigni®cant gain (see Table 14), ruling

this out as the major cause of the degradation in
performance.

A.2.2. Do the trees badly need crossword context?

Recall that the enhanced dictionaries were ob-
tained by applying the pronunciation trees to
baseforms in isolation, and thus they could not
utilise crossword context. We wrote additional
software utilities so that the pronunciation model
could be applied to the bigram lattices directly.
However, looking at three neighbouring phonemes
across word boundaries would have resulted in a
drastic expansion of the lattice. We therefore im-
plemented crossword pronunciation trees which
looked at only one neighbouring phoneme in the
context. This, we expected, would not be a severe
limitation in light of the fact (from Table 12) that
the deleted context is of little additional value in
prediction.

The results in Table 15 indicate that this too is
not the reason for the poor performance of the
ICSI�TIMIT dictionary. We conjecture that
crossword pronunciation context is perhaps more
important for some words than others (e.g., and
I, want to).

A.2.3. Are the trees generalising too much?

The motivation for using local decision tree
based models is to be able to observe phoneme to

8 This would perhaps be unnecessary if the likelihoods were

properly summed over all pronunciations of a word, but is a

sensible adjustment for Viterbi decoding, as is the additional

scaling of the pronunciation probabilities by the language

model scale (12) to bring them on par with the acoustic scores.

Table 14

Scaling pronunciation probabilities

Dictionary Weights WER (%) DEL SUB INS

PronLex ± 44.66 1987 5398 796

ICSI�TIMIT
P � 1 46.14 2134 5568 751

ICSI�TIMIT max � 1 46.13 1904 5653 893

Table 15

Word-internal versus cross-word pronunciation modelling

Dictionary Context WER (%) DEL SUB INS

PronLex ± 44.66 1987 5398 796

ICSI�TIMIT None 46.14 2134 5568 751

ICSI�TIMIT 1 Phone 46.09 2112 5590 743
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phone transformations which are universally
applicable. However, it may be argued that
since many words exhibit remarkably stable
pronunciations in the hand-labelled data set, the
pronunciation model when applied to these words
creates confusion without generating useful new
pronunciations. We therefore expanded only the
hundred most frequent words in the corpus using
the ICSI�TIMIT trees, and tested using this in-
stead of the ICSI�TIMIT dictionary.

As the results in Table 16 indicate, this is a
signi®cant improvement over expanding all
dictionary entries, and should be investigated
further. However, the performance continues to be
below that of the baseline system. This suggests
that expanding only the 100 most frequent words
simply brings the system closer to the baseline, and
the recognition performance tracks this regression.

A.2.4. Can the weights in dictionary be improved?

Application of the decision tree model one
phoneme at a time entails a conditional indepen-
dence assumption between the surface forms given
the baseforms, much as in a hidden Markov model
(HMM). Thus the resultant probability of a pro-
nunciation (obtained as a product of the condi-
tional probabilities of the surface phones) is, at
best, as re¯ective of the observed frequency of the
pronunciation as the goodness of this indepen-
dence assumption. To check this, we compared the
probabilities of the pronunciations in the
ICSI�TIMIT dictionary for a few hand-picked
words with their relative frequency in our auto-
matic transcriptions. Table 17 suggests that the
tree probabilities, and perhaps the independence
assumption as well, are very unsatisfactory. Much
room for research and improvement remains here.

Since the Retrained trees were based on much
more data (which also happened to be the same
data from which the empirical probabilities of the

pronunciations were inferred), we conducted a
similar comparison for the Retrained2 dictionary.

The example in Table 18 further reinforces our
conclusion that it is the HMM-like independence
assumption more than the leaf probability esti-
mation which skews the tree based pronunciation
probabilities away from their empirically observed
values. Alternative probability assignments at the
surface string level should be investigated in the
future.

We also conducted an experiment, which clearly
brings out the importance of correct pronuncia-
tion weight estimation even when the HMM-like
independence assumption is made. Since we were

Table 16

Expanding only the most frequent words using trees

Dictionary (# expanded) WER (%) DEL SUB INS

PronLex 44.66 1987 5398 796

ICSI�TIMIT (All words) 46.14 2134 5568 751

ICSI�TIMIT (Top 100) 45.50 2213 5456 666

Table 17

Empirical versus ICSI�TIMIT dictionary probabilities

Pronunciation Probability

ICSI�TIMIT

dictionary

Empirical

WANT TO: [w aa n t t ax]

w aa n ax 0.04 0.34

w aa n t ax 0.20 0.28

w aa t t ax 0.05 ±

WANT TO: [w ah n t t ax]

w ah n ax 0.05 0.37

w ah n t ax 0.26 ±

w ah n t ah 0.06 ±

Table 18

Empirical versus retrained dictionary probabilities

Pronunciation Probability

Retrained2

dictionary

Empirical

WANT TO: [w aa n t t ax]

w aa n ax 0.08 0.34

w aa n t ax 0.49 0.28

w aa n t uw 0.08 ±

WANT TO: [w ah n t t ax]

w ah n ax 0.10 0.37

w ah n t ax 0.61 ±

w ah n t uw 0.10 ±
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not satis®ed with the pronunciation probabilities
of the ICSI�TIMIT trees, we poured the 60 hours
of automatically transcribed data down the trees
and reestimated the leaf distributions, as described
in the context of Table 5. These trees continued to
assign mismatched pronunciation probabilities to
words, much as above, but they had considerably
better recognition performance, as indicated in
Table 19.
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