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Abstract

This reportdescribeghe implementatiorof a discriminatve HMM parametees-
timationtechniqueknown asFrameDiscrimination(FD) for large vocahulary speech
recognition,andreportsimprovementsn accurag over ML-trainedandMMI-trained
models. Featuresof the implementationinclude the useof an algorithm called the
Roadmaglgorithmwhich selectshemostimportantGaussian&r agiveninputframe
without calculatingevery Gaussiarprobabilityin the system,a new distancemeasure
betweerGaussianbasedn overlap(whichis usedin the Roadmaglgorithm),andan
investigatiorof improvementgo the ExtendedBaum-Welchformulae.FrameDiscrim-
inationestimatioris foundto give errorratesatleastasgoodasMMI with considerably
lesscomputationakffort.



1 Intr oduction

Discriminatve HMM parametere-estimatiortechniquesfor exampleMaximum Mu-
tual Information(MMI), have beenwidely reportedin theliteratureto improve recog-
nition results; but there have beenrelatively few reportsof the applicationof these
techniquego large vocahulary speechrecognition. See for example,[5, 8, 9, 10]. A
goodpartof thereasorfor thisis theextracomputationaéffort involvedin MMI train-
ing. In [8, 5], the useof recognitionlatticesasanapproximatiorto MMI trainingwas
reportedwhich resultedn a considerablspeedupelative to amorenaie implemen-
tation, but it still took 15 timeslongerthanconventionalMaximum Likelihood (ML)
training. In this papera relatedobjectve function called FrameDiscrimination(FD)
is appliedto continuousspeechrecognitiontasks,giving fasterrecognitionthanthe
above-mentionedmplementatiorof MMI, andcomparabler betteraccurag.

A discriminative criterion called FrameDiscriminationwas developedin [2]. Its
efficientimplementatiorfor large vocahulary speectrecognition(LVCSR)is reported
here.To implementFD efficiently the Roadmapalgorithmwasdevelopedwhich finds
the Gaussiangn the HMM setwhich bestmatchan input vector (i.e, highestproba-
bility), while only testinga fraction of the Gaussiansn the HMM set (in the region
of 1-10%). This is doneby settingup links, or “roads” betweenGaussiansnd navi-
gatingamongthemusinga hill-climbing algorithm. Thelinks aresetup usinga new
distancemeasurebasedon overlapof Gaussiansin re-estimatinghe HMMs the Ex-
tendedBaum-Welch (EBW) formulaeare used,andimprovementso theseformulae
areproposedandtestedchere.

Therestof thereportis structuredasfollows: Section2 introducegheFD objective
function; Section3 detailsthe optimisationapproachused; Section4 describeshe
Roadmapalgorithm usedto optimise the computations;and Section5 describesan
experimentakvaluationof FD on the speectrecognitiontests.

2 The FD objective function

The FD objectie function is relatedto the MMI objective function, which wasfirst
proposedn [12]. TheMMI objectivefunctionis theposteriomprobability of thespeech
transcriptiongiventhe speecldata:
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wherew, is theword sequenceorrespondingdo training utterancer and MY is the
compositeHMM correspondindgo the word sequencev. P(w) is the probability of
theword sequencey, asgivenby thelanguagenodel,andO is theacousticdata. The
MMI objective functionmayberewrittenin termsof thetranscriptiormodel M ¥~ and
the generaimodelof speeclproductionM ", (which may be the sameasthe model
usedin the speectrecogniser)asfollows:

R
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The model M¥r is known as the numeratormodel, and M8® asthe denominator
model,becausehe subtractiorof logs maybe considereda division.

TheFD objective functionis analteredform of Equation2 wherethe model A18e»
hasbeenreplacedby amodelN, whichallowsasupersetf thestatesequenceallowed



in Me&®, The hopeis that, by allowing theseextra statesequenceghe alignmentof
a given speechframeto the statesof the model M8¢® will be lessdependenbn the
context of the speectframe,andmoretypical of the assignmenof statego thatframe
in thelanguageat large.
R
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In thisreport,andin [2], theparticularform of framediscriminationusedis zeromem-
ory frame discrimination. A is a zero memory Markov chain, whoseoutput PDF
consistof aweightedsumof all the PDFsin theHMM setsothat
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wherex"(t) arethe vectorsof speechdata, T'(r) is the length of utterancer, and
b;(x"(t)) is the output PDF of statei. The notation_, ... indicatessummation
overall thestatesn M&°2, i.e, all statesn theHMM set. P(g;| V) is the prior proba-
bility of observingstateg;. The prior probability of eachstateis setproportionallyto
its occupationcountas calculatedby the forward-backvard algorithmfor a previous
iterationof ML training.

The FrameDiscriminationobjective function may also be viewed as the product
overall framesof theposteriomprobabilityof thecorrectphonegeo.rect giventhespeech
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It is thusa discriminative criterionwhich optimisesthe acousticomodellingbasedonly
ontheindividual speecHramesandtheir assignmento phones.

3 ExtendedBaum-Welch (EBW) re-estimation

3.1 The EBW formulae

To optimisethe parametersf HMMs whenusingdiscriminatie criteriasuchasMMI
or FD, the EBW re-estimatiorformulaecanbe used.The EBW algorithmfor rational
objectivefunctionswasintroducedn [1] andextendedn [4] for thecontinuouglensity
HMMs consideredere.There-estimatiorformulaepresentedbelon have beenfound
to work well in practicealthoughthey canbe only provedto corverge whena very
large valueof the constantD is usedwhich in turn leadsto very smallchangesn the
modelparametersn eachiteration.

In thefollowing, countsandotherfunctionsof thealignmentwill begivenasuper
scriptnum or den, to indicatewhetherthey pertainto the numeratormodelsA1®r or
thedenominatomodel .

Theupdateequationdor the meanvectory;, m of them’th mixture componenbf
statej, andthe corresponding/ariancevector U] m» areasfollows; the updatefor a
singledimensionof thediagonal-arianceGaussians shown.

{8 0) —6§7(O)} + Dptjm

Hjm = num n ) (4)
{ypum — yden} + D

s O RO D@ ),

95m = {,Ynum ,.y'en}_|_D — Hjms ( )
,m J7m



whered; ,(O) representshe sumof the training dataweightedby the probability of
occupying thatmixturecomponenti.e.:

R T

05,m(0) =3 D Vrm(B)2" (1),

r=1t=1

andé; ., (0?) is a similar sumof squarednput values. ¥;.m(t) is the probability of
occupying mixturem of statey attimet, andvy; ,, is thecountof the numberof times
mixture componenin of statej is occupiedj.e.:
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3.2 Mixtur e Weight Updates

The formula usedfor continuousEBW updatesis similar to the updatefor discrete
outputprobabilitiesoriginally put forwardin [1]. Theoriginal (discrete)Jupdatesvere

asfollows:
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wherethederivatives%,(f aregivenby:
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However, thesearenotthevaluescommonlyusedn Equationé whenperformingeBW
re-estimationMerialdo[13] foundwhile performinggradientoptimisationfor disrimi-
nativetrainingof discretetHMM systemghatthegradientsvereexcessvely dominated
by low valuedparametersijueto thedivision by c; ., in Equation?. He thereforeim-
provedcorvergenceby substitutingnto theformulathealternatve expression:
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Thisequatiordiffersconsiderablyrom Equation7. Themostwe cansayis thatthe
sign of the derivativescalculatedboth wayswill probablybe the same,assuminghe
totalnumeratoanddenominatooccupanciefor thestateareroughlyequal.However,
in experimentsreportedin [3], this approximationdramaticallyimproved the rate of
convergencedor discreteHMMs. A look at Equations$s and8 shovswhy theequations
might be effective. The valueof the approximationto the derivative ascalculatedin
Equation8 is normalisedo lie between1 and1; this meanghatthe samevalueof C
will beappropriatdor all mixtures.

A problemencountereth practicewith thesealteredupdateequationss that,dur-
ing training, the objective function startsto decreas@againafterincreasingo nearits
maximum|[3]. Thisis not surprising,sinceeventhe sign of the derivative in the ap-
proximationof Equation8 may differ from the actualvalue: i.e, althoughEquation8
may give goodresults,it is nota goodapproximatiorto thederivative.




3.3 Alter native Mixtur e Weight Updates

An alternatve setof mixture weight updateequationsveredeveloped.Thesemay be
usedinsteadof the standardequationsasdescribedn Section3.2, but arenotessential
for the performancef implementatiordescribechere.

The updateconsistsof choosingthe mixture weightsé,, which maximisethe fol-
lowing expressionsubjectto the sum-to-oneconstraint:
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whereyum, yden 7 ¢, arerespectiely the numeratorand denominatomixture
occupanciesand the old and new mixture weights. The subscriptj, specifyingthe
state is omittedfor brevity. Theoptimisationmaybe performedby startingfrom some
initial setof mixture weights,choosingeachweightin turn, andoptimisingits value
while scalingthe othersto enforcethe sum-to-oneconstraint. The processs repeated
until corvergenceis reached.Eachupdatereducedo a quadraticequation;however,
zero numeratoroccupanciesnustbe handledas a specialcase. Theseupdatesmay
be usedeitherto updatemixture component®r, if MMI trainingis beingperformed,
to updatethe transition matricesaswell. Note thatin the absenceof denominator
occupanciethe updatereducego the standardaum-Welchupdate.

Experimentson the ResourceManagementorpusshaved animprovementin the
optimisationof the FrameDiscriminationcriterion from the use of theseequations,
bothonthetrainingandvalidationdata. Theimprovementwasof the orderof 10-20%
of thetotal changen thecriterion.

Justification

In HMM systemsjncreasingthe value of a mixture weightwill tendto increasethe
correspondingpccupany, anddecreasingt will tendto decreaseahe occupang. If
it wasknown in advancewhat the effect of changingthe mixture weightsc,,, would
be on the occupancieg2*™ andyder, thengradientdescentould be performedef-
ficiently basedon this knowledgewithout actually calculatingthe nev occupancies
usinga methodsuchasthe Forward-Backvard algorithm. Of course this is not pos-
sible becauset cannotbe known exactly whatthe new occupanciesvill be. Butit is
possibleto make non-infinitesimalupdatesby estimatinglimits on the changeof the
occupanciessmixtureweightschangelt wasassumedhat:

Theoccupang v,, of aGaussiarthangedy afactorthatis betweerl and
therelative changen the mixture weight.

Only the variation in the mixture weights of one state are considered,so that
the parameterset A becomesa vector of (for corvenience)logs of mixture weights
(logc; ...logcy). ConsidethefunctionG(A,X) = F(A) — F(X), whereF is the FD
criterionasdefinedis Equation3, X is theinitial setof parameterandj\ is theupdated
set.Notethatif G(A,A) > 0, this correspond$o anincreasén the objective function.
Thevalueof G(A,X) maybe expressedisthe line integral:

G(A,X) = fi 5 VaF(A).dA
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which is the integral alongsomepathfrom the old parameterso the new parameters
of the changem the objective function. We can chooseto integratealongary path
between and alongwhich F() is defined:i.e, ary paththat preseresthe sum-
to-oneconstrainton the mixture weights. For corvenience we will choosethe path
correspondingdo the straightline between(e; .. .¢x) and(é; . .. éar). Of coursethis
is not a straightline asfar as A is concernedsince is a vector of the logs of the
weights.

Thevalues%gc— aregivenby ymum — nden gq;

M
G\, A) =7§ R Z num _ pdeny g(logc,,).

If we assumdor amomentthatthe numeratoioccupanciesemainthe sameasthe
weightsarechangedj.e, ypim = hum andthatthe denominatoroccupancievary

m

with theweightsasyder = Cm f‘y;ine“, giving thefunction
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thenit canbeshavn (andwill beshawn, below) that# (X, X) < G(A,A). Thisis useful
becausé—[(j\, ) is now a known function, it may thereforebe maximisedby varying
the mixture weights,andtheinequalityguaranteethatthe “real” objective functiong
will therebybeincreasedThisis thekind of proof which hasbeenusedin the pastto
provethe BW andEBW updateequationg1, 4].

Thisinequalitycanbeprovedfor eachcomponenof thesummatiorseparatelyThe
pathalongwhich we areintegratingcorrespondso a straightline between(c; . . . )
and(é; ...¢éu), soeachvaluelog c,,, is eitherincreasingor decreasinganddoesnot
alternatebetweerthetwo. In orderto provethat# (A, A) < G(A, A), it is sufficientto
provethat

(v;“m - g—’"ﬁ“) d(logem) < (Y™ = 75") d(log crn). (12)
For thosec,, thatareincreasingtheinequalityof Equationl1is valid sinced(log ¢,,,) >
0, andaccordingto our assumptionsy,™ (the original occupang) < yo™ (the ac-
tual occupanyg, whichis increasing)andyde® < &myden Similar reasonincholdsfor
thosec,, thataredecreasing.

A closedform for 7-[(5\, ) canbe obtainedby integrating. Sinceeachelementof
the summationin Equation10 only dependsn one mixture weightc,,, (X, X) can
bewritten as:

M log ém c
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Integrating over eachof the (loge,,), andnoting thatc,, = exp(logec,,), which is
unchangedby integrationw.r.t. log c,,,, we have:

HOAA) = K + Z FEU |0g &,y — 7308 fm. (12)
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Theoptimisationof Ao maximise?-l(j\, ) will startattheoriginalmixtureweights
X, andH (), ) = 0, sothe optimisationis boundto resultin 2(X,X) > 0, andhence
g(X,X) > 0, which in turn guaranteesn increase(or no change)in the objectve
function F. This of courseis basedon our boundson the occupanciegwhich are
assumedand not proven), and only appliesto the casewherewe are updatingone
setof mixtureweights,whereasve will be updatingall sets.However, in practicethey
seemto work well, andin ary caseheupdatesquationsvhichthey replacewerebased
onevenwealerlogic (seethe previoussection).

3.4 Settingthe constantD

D isthesmoothingconstantn Equationgt and5 for updatingthe Gaussiamparameters.
In [4], wherethe EBW updatedor continuousHMMs wereintroducedandin subse-
guentwork with continuousHMMs, D wassetto twice the minimum positive value
neededo ensurehatall variancesverepositive. Alterationsaremadeto this approach
for the currentwork andtheseare describedbelon. Thesealterationsarereportedin
detail becausdahey were essentiain getting the systemto register an improvement
from FD training.

The value of the constantD is important: too low a figure resultsin slow con-
vergence,andtoo high a figure will resultin instability. Inspectionof Equations4
and5 shaws thatfor reasonableipdatedD musthave aboutthe samemagnitudeasthe
occupanciegor counts)y; .. Thus,avalueof D whichis high enougho smoothafre-
quentlyusedphonemodelmaybetoo large for alessfrequentlyusedmodel. Accord-
ingly, for work with largeHMM systemd hasbeensetat a phonelevel (e.g.,[5, 8]).

A suitablevalueof D is normallyfoundby calculatingthe minimum positive value
whichensureshatall varianceupdatesrepositive,anddoublingit. DoublingD is sup-
posedto provide a maigin which ensureghatthe valuechosenis considerablylarger
thanary valuewhich givesnegative updatesHowever, it wasobsenedthatif the min-
imum valuewhich ensuregositive updateds closeto zero(i.e, considerablysmaller
thanthe occupang countsy; " and*yﬁ'i,ﬂ‘), thendoublingit will havelittle effect. Ex-
tremevaluesof meanandvariancecould still result. An attemptwasmadeto correct
this by introducinga floor on D.

3.5 Flooring D

In experimentsreportedhere,D wasseton a phone-by-phonéasisasin [5], subject
to afloor at the maximumof ;77 or fy;-if;;; for any mixture componenin the phone.
The useof a floor was found to improve both cornvergenceof the FD criterion and
recognitionperformance Figure 1 shows the effect on FD criterion optimisationand
recognitionperformanceof threedifferentfloors on D: zero, the maximumvalue of
ary of y;" or fy;{‘;;‘ for any mixture componentn thephone andthe maximumvalue
of fy;{i,‘; in thephone.Thiswasfor FD trainingof a singleGaussiarsystemontheRM
corpus;the detailsof the experimentarethe sameasfor similar experimentsdescribed
later.

Figure 2 shaws the effect on the FD criterion of settingD per Gaussiarmixture
componenascomparedo perphone pothsubjectto afloor atthelargerof thenumer
atoror denominatoooccupanciesThis is for the 6-mixturecomponenfRM systemas
describedbelon. The Gaussian-teel constantsverefoundto be more effective than
the phone-leel constants The reademay be interestedo know thatthe value of the

constantD the authorsare currentlyusingis seton a perGaussiarbasisto twice the
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minimumvalueneedto give positive varianceupdatedor all dimensionsf the Gaus-
sian,or thedenominatomixture occupang 7;?,‘;“, whicheveris greatest.This appears
to work very well.

3.6 Implementation Considerations

In re-estimatingheparameterg is necessaryo calculatehedenominatopccupancies

7£’f,f“(t) for eachtime frameandeachmixture componentn the HMM set:
N Cjmbj.m (X" (t))P(gi|N
,Y;‘fne (t) — J J ( ( )) ( | ) (13)
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whereb; , (-) is the Gaussiarassociatedvith mixture m of stateyj, ¢;,m, is the mix-
tureweightfor the Gaussian; is the numberof Gaussiangn the mixture for state
j and P(g;|N) is the prior probability for statej. It follows from Equation13 that
b;m(x"(t)) mustbe calculatedfor eachGaussiarin the systemand for every time
frame, and thusthe overall computationis dominatedby calculationof the denomi-
nator occupancies.n the caseof the numeratoroccupanciesheampruning applied
to the forward-backvardalgorithmmay be usedto optimisetheir computationandin
ary casethe numeratormodel (transcriptionmodel) for a given utteranceis unlikely
to containall statesn the HMM set. To make FD practicalfor large HMM systems
(13) shouldbe computedfor just the mostlikely Gaussiansn the system(which to-
gethercontritute nearlyall thelog likelihood per frame)andthe denominatoiof (13)
computedverjustthoseGaussiansThereforethe Roadmagalgorithmwasdeveloped
with the aim of finding the mostlik ely Gaussian# the systenmfor eachspeecHrame.

4 The Roadmapalgorithm

The purposeof this algorithmis to reliably find thoseGaussiandn the systemwhich
bestmatchtheinputfor eachtime frame,while minimisingcomputationlt operate®y
settingup for eachGaussiara list of the mostsimilar Gaussian thesystemforming
a“roadmap”-hencethe name.Searchs local, centeringaroundthoseGaussianshat
have alreadybeenfoundto scorebest.

4.1 DistanceMeasure

A widely usedmeasuref thedistancebetweertwo Gaussianss the divergence How-
ever for currentpurposest wasfound thatthe divergencegivestoo high a valuefor
thedifferencebetweentwo Gaussiansvhenthey have very differentvariancesThere-
fore analternatve distancemeasurevassoughtandonebasedon Gaussiarfoverlap”
developed.

The overlapbetweerntwo univariateGaussianss shavn in Figure3, beingdefined

as.
+oo

0™ (),9?()) = / min(g")(z), 9® (z))de

T=—00

whereg™) (-) andg®)(-) representhe Gaussiariunctions.A suitabledistancemeasure
betweerunivariateGaussianss the negative log of theoverlap. To dealwith multivari-
ate Gaussiansvith diagonalcovariancematricesthe distancebetweencorresponding
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univariateGaussiangs summedver all dimensiongo finally give adistancemeasure:

d

5gM(),g?() =Y ~10g 06" (-),47 (),

i=1

whereg is a multivariate GaussianV (x|u, X) and g;(-) is the univariate Gaussian
N (@|pi, Zid).

Theuseof theoverlap-basedistancaneasurén theRoadmagalgorithmdecreases
the averagereductionin total log probability perframeby afactorof 7 relative to the
casewheredivergenceis usedandthe measuranay have utility in otherapplications
wherea distancemeasurédetweertwo Gaussianss required.

4.2 SettingUp The Similarity Relation

For theroadmapalgorithmto operatefor eachGaussiara list of othersimilar Gaus-
siansis required.Herefollows a descriptionof the algorithmusedin obtainingit.

Thefirst stageis to obtain,for eachGaussian, alist of the closesth Gaussiann
the systemaccordingto the distancemeasuralefinedabove. In experimentseported
here,n = 20. Thealgorithmusedto dothisis describedn Sectior4.3.

The secondstageaddsto the similarity list of Gaussiangloseto a, thoseb such
thata is in thelist of b. This avoidsthe problemcasewherea Gaussiaris not very
closeto ary otherGaussiansandmay never itself appeain ary of thesédlists.

Thethird stageof building thesimilarity listsremovesredundanentries:entriesare
notrequiredif therealreadyexistsanothetindirectroutevia anintermediateéGaussian.
Redundang is definedmore preciselyin termsof the distanceof the indirect route
from a to b via c. The conditionfor the pathbetweer: andb beingredundants:

dc: 6(a, ) <0.96(a, b) A 6(c,b) <0.96(a,b) A &(a,c)+5(c,b)<1.76(a,b). (14)
Theremoval of all theseredundantinks causes modestincreasen the performance

of theRoadmagalgorithm.
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Finally thesimilarity lists for eachGaussiararesortedin orderof distancewith the
closestGaussianérstin thelist.

4.3 Settingup the initial similarity lists

As mentionedabove, thefirst stageof theinitialisation of thelist of similar Gaussians
consistf obtaining,for eachGaussian, alist of the closesth Gaussian#n the sys-
tem. This processdlominategheinitialisation. A naive implementatiorwould involve
finding the distancebetweereachpair of Gaussiansandwould take time proportional
to the squareof the numberof Gaussianin thesystem.This s clearly not suitablefor
verylargeHMM sets.An approximateschemevasthereforeusedwhich nevertheless
foundthe closestn Gaussianslmostwithoutfail. Thealgorithmis iterative, requiring
perhapdgeniterations,indexed by 1, to corverge. In the following description,S;(a)
refersto the approximatiorat the ;' th iterationto thelist of then closestGaussianso
a; it is alist of n or lessGaussiansEachiterationconsistof two stagesasfollows:

Initialisation Initialise S;(a) + Si—1(a) for all a, or to theemptysetif = 0.

Stagel For eachpair of Gaussiang andc which arelinked by roadsvia someother
Gaussiarb, we evaluatethe overlap-basedlistancemeasuré(a, ¢), andadda
to S;(c) andvice versa.lf asaresult|S;(a)| > n, weremovefrom it thefurthest
elementrom a; likewisefor S;(c).

Stage2 For eachGaussiaru we testa number(20 in this case)of randomlychosen
Gaussiansasin Stagel. Thisis to “seed”thealgorithm,andis doneevery time
ratherthanjust atthe startbecausehis wasfoundto improve performance.

Thealgorithmiteratesuntil thepercentagehangen thesummediistance$ , 3-,c 5. (4) 6(a, b)
is small (<0.05%). This usuallyhappensn aboutteniterations. Spotchecksarecar
ried out to testthe accurayg of the algorithm, by finding the closestGaussiando a
smallnumberof Gaussiandy bruteforce andcomparinghemwith the resultsof this
algorithm.Then closestGaussianarefound almostwithoutfail.

The essencef the algorithmis asdescribedabove. But thereare someimpor-
tant detailswhich arerequiredfor sufiiciently fastoperation. Firstly, it is important
not to testthe pair (a, ¢) ary morethannecessaryas calculationof overlapis time-
consuming. Therefore two optimisationsare made. This first is that a hashtableis
usedto storethoseGaussiang for which the pair (a, ¢) hasalreadybeentested for
the currentvalueof a. This avoids calculatingthe distancebetweenra givenpair more
thanonceperiteration. The secondptimisationaimsto avoid calculatingthe distance
betweena given pair mary timeson differentiterations. We storefor eachentry ¢ in
Si(a) theiterationat which it wasaddedto that set. Thesenumberscanbe usedto
work out, for eacha, thosec which we know to have beentestedon a previousiter-
ation, andthesedistancesdo not have to be calculatedagain. This setof previously
testedGaussiangs alsostoredasa hashtable.

Forfurtherspeedupanapproximatiorto theoverlapformulafor asingledimension
of a Gaussiarwasusedin finding the lists of closestGaussiansThe real formulais
tooinefficient, asit involvesworking outthe placeswvherethe Gaussiariik elihoodsare
equalandusinga tableof the Gaussiarintegral to calculatethreeseparatareas.The
alternatve usedwasasfollows. It only applieswheres, < o;; the Gaussiansvere
swappedn theothercase.

12
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This approximationhad very little effect on the lists of closestGaussians.The
real formula for overlap, ratherthan the approximation,was usedwhen testing for
redundantinks usingthe criterionmentionedn Equationl4.

4.4 Finding the BestGaussians

This sectionconcernghe run-time operationof the Roadmapalgorithm. It is a hill-
climbing algorithmwhich for eachspeectHramestartsfrom aninitial setof Gaussians
andaimsto terminatehaving calculateda setof Gaussiansncluding the mostlikely
onesfor theinput speechvector Theinitial setof Gaussiangould eitherbe a single
randomGaussiarr anumberof thebestGaussianfrom thelastspeecHrame.Firstly
thelog likelihoodof eachof theinitial setof Gaussianss evaluated.For the Gaussians
which are mostlik ely the Gaussianglosestto them (asdeterminedby the similarity
lists) areexamined.Theideais thatthealgorithmwill eventuallygotowardstheregion
of Gaussiansvhich aremostlikely giventhe input speechvector

In this algorithm, we do not know whenthe mostlikely Gaussianin the entire
systemhasbeenevaluated,so we useheuristicsto tell uswhento stop. At the end,
all Gaussian$; ,, which have beenevaluatedarereturned,alongwith the calculated
valuesb;, ., (x"(t)). Thesecanthenbeusedto calculatethe occupanciesy; ,,(t) used
in the EBW updateequations.

In thefollowing descriptionof the Roadmapalgorithm,Gaussiarfunctionswill be
denotedw. Therule by which a Gaussians choserto be computeds asfollows: from
amongthoseGaussiansvhich have alreadybeenevaluatedtake the Gaussiam which
givesthehighestik elihoodfor theinput. Thenevaluatethefirst Gaussiarnn a’slist, i.e,
thatclosesto q, if it hasnotalreadybeenevaluated Otherwisecomputethenextin a’s
list. If all Gaussiani a’s list have beenevaluatedthe sameprocedures followedfor
the Gaussiawhich givesthe next bestlik elihoodfor theinput. If all Gaussiané the
lists of all thosewhich have beencomputechave themselesalsobeenevaluatedthen
evaluatea randomGaussian.This situationcanoccurif thereareno links (“roads”)
from anisolatedregion of GaussiansThealgorithmterminatesvhenall the Gaussians
closeto afixednumber(perhaps20) of thebestGaussianbave beentested.

Thesetof Gaussiansvhich s initially examinedmay consistof eithera singlear-
bitrary Gaussiaror thebestM Gaussianfom thelastinputframe.In the experiments
reportechere the best20 from thelastinput framewereused.lt is foundthatin prac-
tice the Roadmagpalgorithmcanreliably find the mostlikely Gaussiangn the system
for eachframewhile only evaluatinga small percentag®f them (typically betweenl
and10%,decreasingvith increasingsystemsize).

4.5 Performance

Theperformancef the Roadmaglgorithmis judgedby the averagenumberof Gaus-
sianscalculatedpertime frameandthe averagedecreasén totallik elihoodof theinput
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pertime frame. This decreasén likelihoodrepresentshe sumof the Gaussiadik eli-
hoodsthatarenot calculatedby the algorithm. In testson a HMM systemwith 9,500
Gaussiamixturesthe Roadmaglgorithmgave only a0.004decreasé log likelihood
perframewhile on averagecalculating3.7%of the Gaussiani the system.

For comparisora numberof differentscheme®f Gaussiarselectiorbasedn vec-
tor quantisation(VQ) techniqueswhich have beenwidely reportedn the literatureto
reducehenumberof Gaussiansomputedn anHMM-basedspeechecognitionwere
alsoexamined.OnesuchVQ schemewith 256 codeboolentriesandusingatwo level
VQ to speedup codebookentry calculationgave anaveragedecreasén log lik elihood
perframeof 0.3while computing4% of the Gaussian thesystem.

It is importantto know whateffect the calculationof only a fairly small subsebf
the Gaussiandiason the performanceof the trainedmodels,i.e., whatlossin total
log likelihoodis acceptable.Experimentsshoved that therewas essentiallyno loss
in recognitionperformancewith a reductionin log likelihoodperframeof upto 0.01
andthe experimentsreportedbelov aimedto keepthe approximationfrom usingthe
Roadmagplgorithmwithin this bound.

5 Experimental Evaluation

Speechrecognitionexperimentgo evaluateFD have beenconductedn boththe 1,000
word ResourceManagementRM) taskandon the North AmericanBusinesgSNAB)
Newstaskusinga65kwordrecognitionsystem.n all casesnitial MLE trainedmodels
wereusedandthensubsequerkD trainingwasperformed.

5.1 Resouice ManagementExperiments

For the RM experiments,a set of decision-treestate-clustere@ross-vord triphones
weretrainedusing MLE on the SI-109 training set (3990 utterancesusing HTK in
the mannerdescribedn [7]. Theinput speechor this systemwas parameteriseds
Mel-frequeng cepstralcoeficients(MFCCs)andthe normalisedog enegy; andthe
first andsecondlifferentialsof thesevalues.

Thefinal RM modelsethad1577clusteredspeectstatesandversionswith asingle
Gaussiarperstateand6 Gaussianger statewerecreated.The modelsweretestedus-
ing the standardvord-pairgrammarmnthe 4 RM spealerindependentestsets(feb89,
oct89,feb91andsep92)which eachcontain300 utterances.

After the MLE modelshad beencreateda numberof iterationsof FD training
were performedon both the single Gaussiarand 6 mixture componensystems.Fig-
ure 4 shaws that the FD objective function increasesas training proceedsand gives
the changesn errorrate. Note thatthe 6-componensystemshaws evidenceof over
training.

| | feb89 | oct89 | feb91 | sep92| overall |

MLE | 6.99 | 7.68 | 7.49 | 11.61| 8.44
FDiter4 | 551 | 6.07 | 6.52 | 8.73 6.73

Tablel: % word errorfor singleGaussiarRM systemwith MLE andFD training.
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Figure4: FD criterionandRM feb9laccurag varyingwith trainingiteration

| | feb89 | oct89 | feb91 | sep92| overall |

MLE || 2.77 | 402 | 3.30 | 6.29 | 4.10
FDiter4 | 281 | 3.39 | 290 | 594 | 3.76

Table2: % word errorfor 6 GaussiarperstateRM systemwith MLE andFD training

Tablel andTable2 show the resultsof FD onthe singleand6 Gaussiarper state
systemsThesingleGaussiarsystenshovsanoveralldecreasen WER of 20.3%after
4 iterationsof FD andthe 6 mixture systeman8.3%reduction.

5.2 NAB Experiments

The HMMs usedin theseexperimentsverebasedn the HMM-1 setdescribedn [6].
This decision-treestate-clusteredross-vord triphonesetof HMMs had6399speech
statesandwastrainedusingMLE ontheWall StreetJournalSI-284trainingset(about
66 hoursof data).Herea versionof thosemodelstrainedon cepstraderivedfrom Mel
frequengy perceptualinearprediction(MF-PLP) analysisvasused.Versionsof these
modelswith 1,2,4and12 mixture componentper statewerecreatedusingMLE, and
thenfor eachof thesed iterationsof FD trainingapplied.

The modelsweretestedon the 1994 DARPA Hub-1 developmentand evaluation
testsetswhicharedenotedtsrnabldt andcsrnablet, usingatrigramlanguagemodel
estimatedrom the 1994 NAB 227 million word text corpus. The sameunderlying
HMM set(but trainedusing MFCCs)wasusedin [5] to evaluatethe performanceof
lattice-basedMMIE sothis senesasa usefulpointof comparison.

Table 3 givesthe performanceof the FD on NAB andshaws thatthe reductionin
WER decreaseasmodelcompleity increasesThesingleandtwo Gaussiarperstate
systemshave a 10% relative word error reductionwhile the 12 mixture component
systemhasa reductionin error of just 2%. However it shouldbe notedthatthe FD
modelsgave improvementsover MLE in all cases.

Table4 compareghe NAB reductionsn word error for the comparabldeststests
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Num mix csrnabldt csrnablet % WER

Comps || MLE | FD MLE | FD reduction
1 1364 | 1195 | 1564 | 1432 | 104
2 1184 | 1058 | 1319 | 1204 | 97
4 1067 | 9.77 | 1125 | 1084 | 60
12 930 | 899 | 996 | 9.85| 22

Table3: % word errorrateson NAB testsets

Num Mix csrnabldt csrnablet
Comps | FD | MMIE | FD | MMIE
2 106 | 8.4 87| 8.8
12 33|06 11]-12

Table4: Comparisorof FD andMMIE systemgiving % word errorreductiongelative
to MLE

reportedin [5]. Theresultsareencouragingwith FD giving moreimprovementthan
MMIE in mostcases.

5.3 Computational Costof FD

For the experimentsabove the computationaktostof FD is very important. As previ-
ously discussedthe mostcomputationallyintensie partof FD trainingis calculating
theoccupatiorprobabilitiesandfinding themostlik ely Gaussiani the system.Using
theRoadmalgorithm,calculationof thethesedenominatooccupanciefor FD took
aboutfive timesaslong asfor the numeratormeaningthatthis implementatiorof FD
is aboutsix timesslawer thancornventionalMLE training. The efficient lattice-based
MMIE training proceduradiscussedn [5] is 15-20timesslower thanMLE (ignoring
thetime to createtheinitial word lattices). Thereforeit appearsghatFD is aboutthree
timesfasterthanthelattice basedMIMIE procedure.

6 Conclusions

The reporthasdescribedan implementationof FD training. FD is a promisingob-
jective function which seemgo give goodresultsfor the tasksreportedhere. It has
describedhe Roadmapalgorithmwhich aimsto find the mostlikely Gaussiangrom
a large setof Gaussianswithout calclulatingall the conditionalprobabilities. A dis-
tancemeasuréasedon overlap(usedin the Roadmagalgorithm)wasintroduced.An
investigationwas madeinto the bestway to setthe smoothingconstantin the EBW
equationsyith substantiaimprovementsn corvergenceandrecognitionperformance
asaresultof the changesnade,anda new setof mixture updateequationswith an
interestingtheoreticabasis wasintroduced.

Resultsreportedhereshav that FD gives considerablaeductionsin word error
for simplemodelsandalsogivesusefulincreasesn accurag for moremorecomplex
speechmodelswith moremixture componentsTheimprovementsfrom FD arecom-
parableor greaterthanthosegiven by MMIE on the tasksreportedhere,and FD as
implementechereis morecomputationallyefficient.
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7 Addendum

As this sectionis beingwritten after mostof this reportwas completedand new evi-
dencehasnow cometo light, the authorswish to mentionthattheresultsfor Resource
Managementeportedherewith FrameDiscriminationhave now beenbetteredby a
lattice-basedrersionof MMI similar in principleto thatreportedin [8], andwhichis
asefficientasthe FD implementatiorreportedhere. FrameDiscrimination,however,
hasbeenshavn by Kapadiain his thesis[2], to give betterresultsthanMMI for digit
recognition,soit is still interestingfrom that point of view. Also, the alterationsto
the EBW re-estimatiorequationpresentedh Section3 have beentransferredo MMI
estimation,wherethey arestill useful. The overlap-basedlistancemeasurenasalso
provedusefulin HMM soft-tying.
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