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ABSTRACT

This paper presents a general form of acoustic model for speech
recognition. The model is based on an extension to factor analysis
where the low dimensional subspace is modelled with a mixture
of Gaussians hidden Markov model (HMM) and the observation
noise by a Gaussian mixture model. Here the HMM output vec-
tors are the latent variables of a general factor analyser. The model
combines shared factor analysis with a dynamic version of inde-
pendent factor analysis. This factor analysed HMM (FAHMM)
provides an alternative, compact, model to handle intra-frame cor-
relation. Furthermore, it allows variable dimension subspaces to
be explored. A variety of model configurations and sharing schemes
are examined, some of which correspond to standard systems. The
training and recognition algorithms for FAHMMs are described
and some initial results with Switchboard are presented.

1. INTRODUCTION

It is hard to find a single transform that decorrelates speech fea-
ture vectors for all states in an HMM system. One solution to this
problem is to use full covariance matrices. However this dramat-
ically increases the number of model parameters. Alternatively
Gaussian mixture models may be used to model each state. This
is the most common approach used in speech recognition. Re-
cently other schemes have been proposed. One such scheme is
semi-tied covariance matrices (STC) [1]. Systems employing STC
generally yield better performance than standard diagonal covari-
ance HMMs without dramatically increasing the number of model
parameters. An alternative approach to improve intra-frame cor-
relation modelling is to use schemes based on extensions to factor
analysis [2, 3] or linear discriminant analysis [4]. The approach
adopted in this paper is based on factor analysis. A separate fac-
tor analyser has been previously used for each of the component
covariance matrices [2]. This gives a large number of model pa-
rameters due to the individual loading matrix attached to every
component in the system. To reduce the number of model param-
eters, the loading matrix can be shared among several observation
noise components as in shared factor analysis (SFA) [3]. How-
ever, SFA still assumes that the factors are distributed according
to a standard normal distribution. A factor analysis model with a
mixture of Gaussians, or more generally an HMM, generating the
factors should provide a more flexible model.
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Factor analysed HMMs (FAHMMs) use a mixture of Gaus-
sians HMM as the state vector (an ordered set of factors) gen-
erating model and a shared factor analyser is used to generate
the observations. Thus, an FAHMM assumes the state vectors
are generated by a standard diagonal covariance mixture of Gaus-
sians HMM, similar to a dynamic version of independent factor
analysis (IFA) [5] without the independent factor (state-vector el-
ement) assumption, combined with SFA. A variety of model con-
figurations will be examined. Some of these configurations cor-
respond to standard systems. This paper presents the theory of
FAHMMs. First, the generative model and the parameter estima-
tion schemes for a FAHMM are described. Implementation and
complexity issues in training and recognition are then considered.
Finally, preliminary experiments on a large vocabulary continuous
speech recognition task are described.

2. FACTOR ANALYSED HIDDEN MARKOV MODELS

A factor analysed hidden Markov model can be viewed as a state-
space model with k dimensional state vectors, xt, and p dimen-
sional observation vectors, ot. The state vectors are assumed to
be generated by a standard mixture of Gaussians HMM with pa-
rameters Mhmm = {aij , c

(x)
jn , µ

(x)
jn ,Σ

(x)
jn } where aij denotes the

probability of moving from state i to state j, j ∈ (1, Ns) is a state
indicator and n ∈ (1, M (x)) is a state-space component indicator.
The observations are generated by a general factor analysis model.
The generative model of FAHMM can be represented as follows

xt ∼ Mhmm (1)

ot = Cxt + vt (2)

where the observation noise vt can be distributed according to a
mixture of Gaussians with parameters c

(o)
jm, µ

(o)
jm and Σ

(o)
jm with

m ∈ (1, M (o)) as an observation noise component indicator and
the p by k observation matrix, C, (traditionally the loading ma-
trix) can be arbitrarily shared in the state level or the model level.
The observation noise covariance matrices are assumed to be di-
agonal. The state-space dimensionality can be chosen individu-
ally depending on the sharing of the observation parameters. By
choosing k = 0 the model reduces to a standard HMM allowing
arbitrary combinations of HMMs and FAHMMs to be employed.

Figure 1 shows the dynamic Bayesian network (DBN) that il-
lustrates the independence assumptions in the model. In the figure,
square nodes denote discrete and round nodes continuous vari-
ables. The nodes representing observable variables are shaded.
The discrete HMM states are denoted by qt and the standard HMM
state conditional independence assumption applies for all other
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Fig. 1. DBN representing a factor analysed HMM.

variables. The mixture indicator variables ωx
t and ωo

t depend on
the current state as does the state distribution and observation pa-
rameters. The state vectors, HMM states and both the mixture
components are all hidden. Thus, expectation maximisation algo-
rithm (EM) may be used in training the model parameters.

2.1. Training FAHMMs

From the DBN in Figure 1, the joint likelihood of an utterance
O = o1, . . . , oT , state vector sequence X = x1, . . . , xT and
HMM state sequence Q = q1, . . . , qT is given by

p(O, X, Q) =
T

Y

t=2

P (qt|qt−1)
T

Y

t=1

p(xt|qt)p(ot|xt, qt) (3)

where P (qt|qt−1) is the normal HMM transition probability often
denoted by aij , p(xt|qt) is the HMM state conditional output like-
lihood associated with state qt and the observation likelihood can
be obtained from the generative model as

p(ot|xt, j) =
M(o)
X

m=1

c
(o)
jmN (ot; Cjxt + µ

(o)
jm,Σ

(o)
jm) (4)

when qt = j and a separate observation matrix, Cj , for every
state is used. Using the above joint likelihood, an auxiliary func-
tion characteristic to standard EM learning schemes can be formed.
Statistics for the HMM state posterior probabilities and state vec-
tor posterior likelihoods are estimated using the old set of model
parameters, M, in the E step. This is based on factoring the
posterior likelihood of the state vector and HMM state sequence,
p(X, Q|O,M) = p(X|O, Q,M)P (Q|O,M), which has pre-
viously been employed in learning the parameters of IFA [5]. The
maximum likelihood estimates of the model parameters, M̂, are
obtained in the M step using the sufficient statistics from the E
step and applying standard optimisation techniques. The E and M
steps are applied iteratively setting the new parameters obtained in
the M step as the old parameters for the E step in the next iteration
until the change in the log-likelihood for the training data becomes
small. A detailed derivation of the EM algorithm for FAHMMs is
presented in [6].

2.2. Sufficient Statistics

The posterior probability of being in state j at time t, γj(t) =
P (j|O,M), being in state j at time t and in state i at time t − 1,
ξij(t) = P (i, j|O,M), and being in state j and in state-space
mixture n at time t, γ

(x)
jn (t) = P (j, n|O,M), can be obtained

using the traditional forward backward algorithm for mixture of
Gaussians HMM [7] with the following posterior likelihood of an
observation given the state j and state-space component n

p(ot|j, n,M) = (5)

M(o)
X

m=1

c
(o)
jmN (ot; Cjµ

(x)
jn + µ

(o)
jm, CjΣ

(x)
jn C

′

j + Σ
(o)
jm)

where a prime, (·)′, denotes transpose. The observation poste-
rior likelihood for the state j can be obtained by marginalising the
above likelihood over the state-space components. The same like-
lihood is also used in recognition algorithms which otherwise are
exactly the same as for HMMs.

The joint posterior probability of being in state j and in ob-
servation noise component m, γ

(o)
jm(t) = P (j, m|O,M), is also

required for the observation parameter estimation. This can be ob-
tained as follows

γ
(o)
jm(t) =

M(x)
X

n=1

P (m|j, n, ot,M)γ
(x)
jn (t) (6)

where the posterior probability of being in observation noise com-
ponent m given the state j and state-space component n can be
written as

P (m|j, n, ot,M) = (7)

c
(o)
jmN (ot; Cjµ

(x)
jn + µ

(o)
jm, CjΣ

(x)
jn C′

j + Σ
(o)
jm)

PM(o)

l=1 c
(o)
jl N (ot; Cjµ

(x)
jn + µ

(o)
jl , CjΣ

(x)
jn C′

j + Σ
(o)
jl )

The estimation of the HMM parameters requires different state
vector posterior statistics than the estimation of the observation pa-
rameters. It can be shown that the state vector posterior distribu-
tion given the state and both the mixture components is a Gaussian.
Thus, only first and second order statistics are needed and they can
be written as

x̂jmn(t) = µ
(x)
jn + Kjmn(ot − Cjµ

(x)
jn − µ

(o)
jm) (8)

R̂jmn(t) = Σ
(x)
jn − KjmnCjΣ

(x)
jn + x̂jmn(t)x̂′

jmn(t) (9)

where

Kjmn = Σ
(x)
jn C

′

j(CjΣ
(x)
jn C

′

j + Σ
(o)
jm)−1 (10)

The sufficient statistics x̂
(o)
jm(t), R̂

(o)

jm(t), x̂
(x)
jn (t) and R̂

(x)

jn (t) can
be obtained by marginalising the above statistics using the compo-
nent prior probabilities c

(o)
jm and c

(x)
jn .

2.3. Re-estimation Formulae

The re-estimation formulae for the HMM parameters are similar to
the standard formulae described in [7]. However, the observations
ot are replaced by the posterior mean estimates x̂

(x)
jn (t) and the
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second moments oto
′

t by R̂
(x)

jn (t). Using the above notation, the
formulae can be written as

âij =

PT

t=2 ξij(t)
PT

t=2 γi(t − 1)
(11)

ĉ
(x)
jn =

PT

t=1 γ
(x)
jn (t)

PT

t=1 γj(t)
(12)

µ̂
(x)
jn =

PT

t=1 γ
(x)
jn (t)x̂

(x)
jn (t)

PT

t=1 γ
(x)
jn (t)

(13)

Σ̂
(x)

jn = diag
“

PT

t=1 γ
(x)
jn (t)R̂

(x)

jn (t)
PT

t=1 γ
(x)
jn (t)

− µ̂
(x)
jn µ̂

(x)′
jn

”

(14)

The new observation matrix has to be estimated row by row as
in SFA [3]. The scheme adopted in this paper follows closely the
maximum likelihood linear regression transform matrix optimisa-
tion [8]. The lth row vector ĉl of the new observation matrix, Ĉj ,
can be written as

ĉl = k
′

lG
−1
l (15)

where the k by k matrices Gl and the k dimensional column vec-
tors kl are defined as follows

Gl =

M(o)
X

m=1

1

σ
(o)2
jml

T
X

t=1

γ
(o)
jm(t)R̂

(o)

jm(t) (16)

kl =

M(o)
X

m=1

1

σ
(o)2
jml

T
X

t=1

γ
(o)
jm(t)(otl − µ

(o)
jml)x̂

(o)
jm(t) (17)

where σ
(o)2
jml is the lth diagonal element of the observation covari-

ance matrix Σ
(o)
jm, otl and µ

(o)
jml are the lth elements of the current

observation and the observation noise mean vectors, respectively.
The observation noise parameters are updated using the fol-

lowing formulae

ĉ
(o)
jm =

PT

t=1 γ
(o)
jm(t)

PT

t=1 γj(t)
(18)

µ̂
(o)
jm =

PT

t=1 γ
(o)
jm(t)(ot − Ĉj x̂

(o)
jm(t))

PT

t=1 γ
(o)
jm(t)

(19)

Σ̂
(o)

jm =
1

PT

t=1 γ
(o)
jm(t)

T
X

t=1

γ
(o)
jm(t)diag

“

oto
′

t (20)

−
h

Ĉj µ̂
(o)
jm

i h

otx̂
(o)′
jm (t) ot

i

′

−
h

otx̂
(o)′
jm (t) ot

i h

Ĉj µ̂
(o)
jm

i

′

+
h

Ĉj µ̂
(o)
jm

i

"

R̂
(o)

jm(t) x̂
(o)
jm(t)

x̂
(o)′
jm (t) 1

#

h

Ĉj µ̂
(o)
jm

i

′
”

2.4. Implementation Issues

The estimation of the sufficient statistics in the EM algorithm for
FAHMMs requires inverting M (o)M (x) full p by p covariance ma-
trices of the form CjΣ

(x)
jn C′

j +Σ
(o)
jm. The inverses are also needed

in the recognition. If the amount of memory is not an issue, the in-
verses and the corresponding determinants can be computed prior

to starting off with the training and recognition. A more memory
efficient implementation requires the computation of the inverses
and determinants on the fly. It should be noted that these can be
efficiently calculated using the following equality for matrix in-
verses

(CjΣ
(x)
jn C

′

j + Σ
(o)
jm)−1 = (21)

Σ
(o)−1
jm −Σ

(o)−1
jm Cj(C

′

jΣ
(o)−1
jm Cj + Σ

(x)−1
jn )−1

C
′

jΣ
(o)−1
jm

where the inverses of the diagonal covariance matrices Σ
(o)
jm and

Σ
(x)
jn are trivial to compute and the full matrix C ′

jΣ
(o)−1
jm Cj +

Σ
(x)−1
jn to be inverted is only a k by k matrix. It is dramatically

faster than inverting a full p by p matrix if k � p. The determi-
nants needed in the likelihood calculations can be obtained using
the following equality

|CjΣ
(x)
jn C

′

j + Σ
(o)
jm| = (22)

|Σ(o)
jm||Σ(x)

jn ||C ′

jΣ
(o)−1
jm Cj + Σ

(x)−1
jn |

where again the determinants of the diagonal covariance matrices
are trivial to compute and provided Cholesky decomposition was
used to invert the full k by k matrix, its determinant is obtained as
a by-product.

The number of Gaussian components in a large vocabulary
speech recogniser is often huge. The new estimate of a particu-
lar component may not be reliable if the number of observation
vectors assigned to the component is small. For this reason some
of the above full covariance matrices may become singular. Since
the first term, CjΣ

(x)
jn C′

j , is generally singular a single zero ob-
servation variance element can make the full matrix non-invertible.
Thus, flooring of the observation variance elements is adopted [6].
The flooring can be performed by using a fraction of the global
variance computed from all the observations as a minimum value
for the corresponding element. This is the way flooring is often
done in HMM based systems [7].

Table 1. Order of number of free parameters using M (x) state-
space components, M (o) observation noise components and no
sharing of individual FAHMM parameters.

System Free Parameters

HMM (M (x) = 0) 2M (o)p

FAHMM (M (x) > 0) 2(M (x) − 1)k + pk + 2M (o)p

Table 1 describes the order of number of free parameters in a
standard diagonal covariance HMM and an FAHMM with a sep-
arate factor analyser per state. HMMs can be viewed as a special
case of FAHMMs when the state-space distributions are discarded,
M (x) = 0. Alternatively, by discarding the observation noise and
using same state and observation space dimensionalities, k = p,
the model reduces to an STC [1] for which a different training
scheme has to be applied. An FAHMM with only one state-space
component can be viewed as SFA [3] whereas a single observation
noise component FAHMM is a dynamic version of IFA [5].

3. RESULTS

The baseline used for the experiments was a gender independent
decision tree clustered tied state cross-word triphone mixture of
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Gaussians HMM system. The setup was the same as the Minitrain
1998 Hub5 HTK system [9]. The number of distinct states was
3091 including three silence states. The 18 hour Minitrain set con-
taining 398 conversation sides of Switchboard-1 corpus defined by
BBN was used as the acoustic training data. The test set used was
the subset of the 1997 Hub5 evaluation set used in [9]. It con-
tains 10 conversation sides of Switchboard-2 data and 10 of Call
Home English. The state output distributions of the baseline mod-
els were mixed up to 12 components running 4 re-estimation iter-
ations prior to every mixture splitting as described in [7]. The test
set word error rates (WER) for different mixture configurations of
the baseline system are shown in Table 2 with the number of free
parameters. The performance began degrading after more than 12
components were used giving WER of 47.8% for a 14 component
system.

Table 2. Number of free parameters (nofp) and word error rates
(wer%) for the baseline HMM systems with M (o) components.

M (o) 1 2 3 5 7 10 12

nofp 78 156 234 390 546 780 936
wer% 56.0 53.4 51.6 49.4 48.4 47.6 47.1

The single component states in the initial baseline model set
were modified to factor analysis models with a state-space dimen-
sionality of 13. The separate observation matrices for every state
were initialised to be 39 by 13 identity matrices, the first 13 ele-
ments of the baseline distributions were set as the HMM state dis-
tribution parameters and the resulting 26 elements were set as the
observation noise parameters leaving their first 13 mean elements
as zeroes and the first 13 variance elements as ones. First, the
state distributions of FAHMMs were mixed up to 7 components
leaving the number of observation components as one. The test
set performance of the single observation component system be-
gan degrading after more than 7 state-space components were used
giving WER of 48.2% for a 10 state-space component system. The
observation noise distributions of the final models following state-
space mixture splitting and 4 re-estimation iterations were mixed
up until no further performance gain was achieved. Using more
than 3 observation noise components degraded performance.

Table 3. Number of free parameters (nofp) and word error rates
(wer%) for different state-space M (x) and observation noise M (o)

component configurations of FAHMMs.
M (o) M (x) 1 2 3 5 7

1
nofp 585 611 637 689 741
wer% 48.0 47.8 48.0 47.8 47.6

2
nofp 663 689 715 767
wer% 47.5 47.4 47.4 47.6

3
nofp 741 767 793
wer% 46.9 46.3 47.3

The test set error rates for all the configurations described
above are depicted in Table 3. The columns of the table cor-
respond to the number of state-space components and the rows
correspond to the number of observation noise components. The
configurations with degrading performance are omitted leaving the
corresponding table cells shaded. As discussed earlier, SFA can
be viewed as an FAHMM with only one state-space component.

Thus, the third column of the table refers to the SFA performance.
The performance of an FAHMM with 3 observation noise and 2
state-space components exceeds the best performance of the base-
line system with considerably fewer parameters. The results of
these preliminary experiments in a rather small task suggest that
there may be advantages in using subspace models. For these ex-
periments no optimisation of the subspace dimensionality was per-
formed.

4. CONCLUSIONS

A general form of acoustic model, the factor analysed HMM, is in-
troduced in this paper. It combines the standard mixture of Gaus-
sians continuous HMM with a shared and independent factor anal-
ysis models. The model should provide better intra-frame correla-
tion modelling than the standard diagonal covariance matrix HMM
which is a special case of the FAHMM. In addition, it allows a va-
riety of linear subspaces to be investigated. HMM training and
recognition algorithms are extended to apply for FAHMMs. Some
preliminary experiments have been conducted and the results indi-
cate that FAHMMs could prove to be useful. Future work will ex-
amine different structures including both the sharing and mixture
configurations. Also, the optimal way to decide the state-space di-
mensionality and more sophisticated initialisation schemes will be
examined.
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