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Abstract

This paper addresses the time-series modelling of high dimensional data. Currently, the
hidden Markov model (HMM) is the most popular and successful model especially in speech
recognition. However, there are well known shortcomings in HMMs particularly in the mod-
elling of the correlation between successive observation vectors; that is, inter-frame correlation.
Standard diagonal covariance matrix HMMs also lack the modelling of the spatial correlation
in the feature vectors; that is, intra-frame correlation. Several other time-series models have
been proposed recently especially in the segment model framework to address the inter-frame
correlation problem such as Gauss-Markov and dynamical system segment models. The lack
of intra-frame correlation has been compensated for with transform schemes such as semi-tied
full covariance matrices (STC). All these models can be regarded as belonging to the broad
class of generalised linear Gaussian models. Linear Gaussian models (LGM) are popular as
many forms may be trained efficiently using the expectation maximisation algorithm. In this
paper, several LGMs and generalised LGMs are reviewed. The models can be roughly cat-
egorised into four combinations according to two different state evolution and two different
observation processes. The state evolution process can be based on a discrete finite state
machine such as in the HMMs or a linear first-order Gauss-Markov process such as in the
traditional linear dynamical systems. The observation process can be represented as a factor
analysis model or a linear discriminant analysis model. General HMMs and schemes proposed
to improve their performance such as STC can be regarded as special cases in this framework.
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1 Introduction

Currently, the most popular and successful time-series model is the hidden Markov model (HMM).
HMMs can be applied in a broad range of areas such as speech recognition, bioinformatics and
stock market analysis. For example HMM based large vocabulary speech recognition systems have
dominated the standard evaluation tasks such as Broadcast News Transcription and Switchboard.
The benefits of using HMMs include efficient training and recognition algorithms in which the
automatic segmentation using Viterbi algorithm [35] is in very significant role. On the other
hand, the state conditional independence assumption in HMMs is a major drawback in case of
strongly correlated feature vectors such as in speech recognition [6]. This correlation between
successive feature vectors is often called inter-frame correlation. To overcome this deficiency of
HMMs, several schemes have been proposed from segmental features to segment models [34]. In
general, the use of segment models is restricted by the complicated algorithms due to additional
duration models.

Another drawback in the standard diagonal covariance matrix HMMs is its weak spatial correla-
tion modelling. Despite the attempts to reduce this intra-frame correlation by front-end transforms
such as discrete cosine transform (DCT) in case of standard Mel-frequency cepstral coefficients
[42] there is always some correlation present due to the fixed basis functions in DCT. An optimal
front-end should employ data dependent transform bases such as in Karhunen-Loève transform
[10] but the complexity of the system becomes equivalent to a full covariance matrix HMMs. Sev-
eral multiple class based transform schemes have been proposed; e.g., semi-tied full covariance
matrices (STC) [11]. Linear discriminant analysis and factor analysis have been also proposed to
overcome this problem [29, 40]. In addition to correlation modelling they address the problem of
high dimensionality of the feature vectors by allowing lower dimensional subspaces to be used.

The machine learning community has been interested in linear Gaussian models (LGM) for
some time now [38] due to the efficiency and applicability of the expectation maximisation (EM)
algorithm [5] which provides a consistent framework in supervised learning. Despite the attempts
to unify the field of LGMs, several interesting models have been omitted; e.g., independent factor
analysis [1], linear discriminant analysis and its extensions [12, 29, 26]. The forms of models
reviewed in this paper generalise some of the currently used techniques in the HMM framework
such as semi-tied full covariance matrices.

Linear Gaussian models are a subset of more general state-space models that consist of state
evolution process and observation process. Strictly speaking linear Gaussian models are state-space
models in which the state evolution and observation equations are linear and the distributions are
Gaussians [38]. Some models presented in this paper deviate from the strict definition in that
mixtures of Gaussians are allowed as the distributions. Therefore they are called generalised
LGMs. This generalisation is important in case of feature vectors which tend to have multi-modal
distributions due to source and environment differences such as in speech recognition.

Linear Gaussian models also allow the investigation of new subspaces of the feature vectors
which often tend to be very high in dimensionality. It is well known that the inclusion of dynamic
features such as first and second-order differences to the vectors of cepstral coefficients increase
the performance of many recognition systems. That is often thought to handle partially the inter-
frame correlation. It is not guaranteed, though, that the standard feature space is optimal [12]
and one might argue that there exists some optimal subspace where the modelling assumptions
hold better. Determining the optimal state-space dimensionality for different models would be an
interesting topic by itself but it is not included in this paper.

This paper is organised as follows. In Section 2, the general modelling framework is described
by introducing the stochastic processes involved. Bayesian networks are briefly introduced as a
way of illustrating the conditional independencies in probabilistic models. Also, the expectation
maximisation algorithm used in estimating the model parameters is outlined. Static models based
on factor analysis and mixtures of factor analysers are described in Section 3. In Section 4,
linear dynamical systems are presented. Various modelling assumptions used to either decrease
the number of model parameters or modify them to better suit the nature of complex signals are
introduces as well. Hidden Markov models and an extension of HMMs combining it with a generic
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factor analyser are introduced in Section 5. Section 6 is devoted to linear discriminant analysis
based observation processes in the both cases of discrete and continuous state evolution processes.
In section 7, implementation issues are discussed. Finally, Section 8 concludes this paper and some
future directions are proposed.

2 Generalised Linear Gaussian Models

State-space models are generally based on a k dimensional state vector1 xt and a p dimensional
observation vector ot which satisfy the following generative model

xt+1 = f(x1, . . . ,xt,wt) (1)

ot = g(xt,vt) (2)

where the function f(·) describes the state evolution process and the function g(·) the observa-
tion process. Random vectors wt and vt are called state evolution noise and observation noise,
respectively. Although the models described by Eqs. 1 and 2 can exhibit any linear or non-linear
functions, the models presented in this paper are restricted to linear ones. In strict definition of
linear Gaussian models the noise sourceswt and vt are distributed according to Gaussian distribu-

tions N (µ
(x)
t ,Σ

(x)
t ) and N (µ

(o)
t ,Σ

(o)
t ). Since many feature vectors generally do not have unimodal

distributions due to source and environment variability, the unimodal assumption is relaxed by
including mixture models in this paper. Often the time dependence of the noise source statistics
is also omitted so that the distributions have static parameters, µ(o) and µ(x). In the same way
the noise vectors can be written without the time indices as v and w.

The state evolution process may be viewed as some underlying phenomenon which may be
inherent for the process to be modelled. Alternatively, it may be viewed only as a compact
representation of the high dimensional observation vectors. For example in speech recognition,
the state vector may be viewed as representing positions of the articulatory organs and the state
evolution process, f(·), describes their movement in time. Although the above generic model fits
into this interpretation, the linear Gaussian models are a crude approximation since the movement
of articulators is rather non-linear [4]. Due to this non-linear nature, the articulatory interpretation
is not often stressed.

The observation equation, g(·), describes the function mapping the current state vector xt
mixed with the observation noise vt onto the current observation ot which is usually higher in
dimensionality; i.e, p > k. For example in speech recognition, the observation process may be
viewed as mapping the positions of the articulatory organs onto the measurable acoustic repre-
sentation where the observation noise vt represents all the noise induced by the environment and
the recording equipment. As in case of state evolution process, this interpretation is only valid for
non-linear models [4]. In this paper, the observation process is only viewed as a scheme to carry
out dimensionality reduction.

2.1 State Evolution Process

Firstly, all the state evolution processes used in the following sections are presented. Although
the dynamic models are more interesting, the static counterparts provide a general framework to

1In this paper, bold capital letters are used to denote matrices e.g. A, bold letters refer to vectors e.g. a and
plain letters represent scalars e.g. c. All vectors are column vectors. Prime is used to denote the transpose of a
matrix or a vector e.g. A′,a′. The determinant of a matrix is denoted by |A|. Gaussian distributed vectors e.g.
x with mean vector µ and covariance matrix Σ are denoted by x ∼ N (µ,Σ). The likelihood of a vector z being
generated by the above Gaussian; i.e., the Gaussian evaluated at the point z, is represented as p(z) = N (z;µ,Σ).
Vectors distributed according to a mixture of Gaussians are denoted shortly by x ∼ P

m cmN (µm,Σm). As
opposed to the lower case letter p used to represent a continuous distribution, a capital letter P is used to denote
a probability mass function of a discrete variables. The probability that a discrete random variable ω equals m is
denoted shortly as P (ω = m) = Pω(m) and the subscript is also omitted if not ambiguous.
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begin with. The relationship between the static models and the traditional covariance modelling
techniques are discussed in the following sections.

The simplest non-trivial stochastic state evolution process is a static multivariate Gaussian
with a mean vector µ(x) and a covariance matrix Σ(x). In the case of static models, the time
index t in the subscript is omitted. The generative model can be represented as follows

x = w, w ∼ N (µ(x),Σ(x)) (3)

It is often possible to make further assumptions about the distribution of the noise depending on
the situation. Especially diagonal covariance matrices can be used if the state evolution noise is
assumed to be spatially uncorrelated.

The mixture of Gaussians state process adds a new discrete hidden layer in the model where
the individual Gaussians are selected by a hidden discrete mixture indicator variable ω. Generally,
mixture of Gaussians model can be represented as follows

x = w, w ∼
∑

n

c(x)
n N (µ(x)

n ,Σ(x)
n ) (4)

where the mixture priors c
(x)
n = Pω(n) must sum to unity to guarantee p(x) being a true distri-

bution. It is also possible to use factorial mixture of Gaussians where individual elements of the
noise vector are drawn from a univariate mixture of Gaussians; e.g., see [1]. The factorial mixture
includes a stronger assumption on the independence of the individual state vector components
but provides more flexible modelling of the component variances. The difference between mixture
and factorial mixture models is the same as between vector quantisation and cooperative vector
quantisation [43] as well as hidden Markov models and factorial hidden Markov models [18].

The simplest dynamic state evolution process is a linear first-order Gauss-Markov random
process. A Markov assumption is made to the general state evolution process in Eq. 1 so that the
current state vector xt depends only on the previous state vector xt−1. The new state vector is
generated by a linear state evolution process from the current state vector as follows

xt+1 = Atxt +wt, wt ∼ N (µ
(x)
t ,Σ

(x)
t ) (5)

where At is a k by k state transition matrix and w the state evolution noise. Since the initial
state vector x1 is assumed to be a Gaussian with a mean vector µ(i) and a covariance matrix Σ(i),
all the subsequent state vectors are Gaussian distributed as follows

p(xt|xt−1) = N (xt;Atxt−1 + µ
(x)
t ,Σ

(x)
t ) (6)

and their joint likelihood is a Gaussian. The state evolution noise is often assumed to be zero
mean and spatially uncorrelated; i.e., Σ(x) is diagonal. Non-zero mean vector corresponds to a
constant drift of the state vector in the direction of µ(x) and diagonality of Σ(x) is often used to
reduce the number of model parameters. If the state evolution noise is distributed as a mixture
of Gaussians, the state vector is also distributed according to a mixture of Gaussians with the
number of components growing exponentially. The implications of this growth are discussed later
in this paper.

A Gauss-Markov random process with parameters

µ(i) =

[
−1
−2

]
, Σ(i) =

[
1.3 0
0 2.5

]
, A =

[
0.9 −0.2
0.6 0.6

]
, µ(x) =

[
1.8
1.3

]
, Σ(x) =

[
0.3 0
0 0.5

]

is illustrated on the left-hand side of Figure 1. At t = 1, the main axes of the k dimensional
ellipsoid (k = 2 in the figure) representing the covariance matrix of the state vector are parallel to
the coordinate axes since a diagonal initial state covariance matrix is used. At every subsequent
time step, the covariance ellipsoid of the preceding state vector is stretched and rotated according
to the state evolution matrix and the resulting ellipsoid is convolved with the ellipsoid representing
the state evolution noise covariance. The state evolution noise mean vector causes the linear drift
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Figure 1: State evolution processes of 6 time steps in length. 1) Linear first-order Gauss-Markov
process. 2) Hidden Markov model.

of the ellipsoid centres (marked by x). In modelling of zero mean signals, state evolution noise
mean can be omitted.

The last type of the state evolution can be assumed to be generated by a discrete state sequence
rather than continuous as above. The most commonly used dynamic discrete state model is the
hidden Markov model (HMM). The hidden Markov models are based on Ns hidden states with
state conditional densities bj(xt) = p(xt|j), a set of transition probabilities aij = Pqt |qt−1

(j|i) and
initial state probabilities πj = Pq1(j). The joint likelihood of the state vector sequence X and the
discrete state sequence Q is

p(X, Q) = πq1bq1(x1)aq1q2bq2(x2)aq2q3bq3(x3) . . . (7)

Since, in practise, the underlying discrete state sequence is unknown (hidden) the likelihood is
estimated by summing over all possible discrete state sequences

p(X) =
∑

{QT }
πq1

T∏

t=2

bqt(xt)aqt−1qt (8)

where {QT } denotes the set of all possible state sequences of length T . In HMMs the output
vectors are generated by one of the Ns discrete states and the transition from one discrete state
to the next is assumed to be abrupt. The hidden Markov model as a generative model for xtis
represented later in this paper as follows

xt ∼ Mhmm (9)

A three state hidden Markov model state evolution process with the following state distribution
parameters

µ
(x)
1 =

[
−1
−2

]
µ

(x)
2 =

[
3
1

]
µ

(x)
3 =

[
7
4

]

Σ
(x)
1 =

[
2.3 0
0 3.5

]
Σ

(x)
2 =

[
3.7 0
0 3.1

]
Σ

(x)
3 =

[
2.7 0
0 2.1

] (10)

is depicted on the right-hand side of Figure 1. Since diagonal state conditional densities are used,
the main axes of the k dimensional ellipsoid (k = 2 in the figure) at a given time are parallel to the
coordinate axes. The figure represents a three state HMM and one possible assignment of the state
vectors into the states in case of a sequence of six output vectors. The HMM performs clustering
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of the state vector space in case of full transition probability matrix but different constraints can
be set for the transition probabilities according to the nature of the signals to be modelled. In case
of causal time-series modelling, so called left to right HMMs are often used so that the discrete
states represent parts of the modelling units that can occur only sequentially.

2.2 Observation Process

Two different observation processes are presented here. Both processes can perform dimension
reduction in that the state-space is lower in dimensionality than the observation space; k < p.
The first observation equation is called factor analysis (FA) since in a static case, the model reduces
to a standard FA model with some additional assumptions about the state and noise distributions.
The factor analysis observation process can be represented as

ot = Ctxt + vt, vt ∼ N (µ
(o)
t ,Σ

(o)
t ) (11)

where C is a p by k observation matrix and v the observation noise. The observation noise is
independent of the state vector and its covariance matrix is often assumed to be diagonal to capture
the correlation into the observation matrix. In case of static data modelling, the time indices in
the observation equation can be omitted. If the current state vector is Gaussian distributed, the
current observation is a Gaussian with the following distribution

p(ot|xt) = N (ot;Ctxt + µ
(o)
t ,Σ

(o)
t ) (12)

and all the possible joint distributions are Gaussians. Factor analysis and different mixture as-
sumptions are described in more detail in Section 3.

The second type of the observation equation is called linear discriminant analysis (LDA) be-
cause in a restricted static case, the model reduces to a standard LDA. The meaningful dimensions
are modelled by the state vector and the nuisance dimensions are modelled by a single Gaussian
distributed observation noise as follows

ot = Ct

[
xt
vt

]
, vt ∼ N (µ

(o)
t ,Σ

(o)
t ) (13)

where Ct is a p by p matrix and v is a p−k dimensional vector. There are several ways to express
the posterior of the observations. The most commonly used is

p(ot|xt) = abs|C−1
t |N (C−1

t ot;

[
xt

µ
(o)
t

]
,

[
0 0

0 Σ
(o)
t

]
) (14)

where the first k columns and k rows of the covariance matrix are filled with zeroes because the
first k elements of the observation vector are deterministic given the current state vector xt. The
first term in the equation is needed to scale the likelihood to be valid and the absolute value is
needed to guarantee non-negative likelihoods. Since the deterministic elements do not have any
influence on the likelihoods, another way of representing the posterior is

p(ot|xt) = N (ot;Ct

[
xt

µ
(o)
t

]
,Ct[p−k]Σ

(o)
t C

′
t[p−k]) (15)

where Ct[p−k] denotes a matrix consisting of the p − k rightmost columns of matrix C t. In this
representation, the covariance matrix is clearly non-singular provided the transformation and the
observation noise covariance are non-singular as well. Linear discriminant analysis is reviewed in
more detail in Section 6.

2.3 Basic Models

Different combinations of the state and observation processes presented in this paper are depicted
in Figures2 2 and 3. Figure 2 depicts models based on static state evolution process. In the top of

2These diagrams do not illustrate all the possible forms of linear Gaussian models. E.g., several combinations
using LDA observation process are not present.
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the diagram is a single static multivariate Gaussian as the basis for all the subsequent models. A
mixture of Gaussians can be regarded as vector quantisation with the Gaussian mean vectors as the
cluster centres. Vector quantisation is often used in the initialisation of, e.g., HMM parameters
[42]. Instead of using only one code-book to assign a vector into a single cluster, cooperative
vector quantisation [43] or factorial mixture of Gaussians uses several independent code-books in
a distributed manner. All the three models above correspond to state-space model with identity
matrix as the observation matrix and zero observation noise.

Gaussian

Factor Analysis
Independent

Mixtured FA
(MFA and SFA)

Factor Analysis

Factorial Mixture
of Gaussians

(CVQ)

Mixture of
Gaussians (VQ) Analysis

Linear Discriminant

Factor Analysis=FA
Linear Discriminant Analysis=LDA
Mixture=MIX
Distributed Representation=DIST

VQ = Vector Quantisation
=CVQ Cooperative VQ

SFA = Shared Factor Analysis
=MFA Mixture of Factor Analysers

MIX

DISTDISTMIX

FA

FA LDA

Figure 2: Diagram of static linear Gaussian models. The arrows represent additional properties
to the model they are attached to.

Factor analysis [20, 26, 39] is based on a static multivariate Gaussian state process and a
factor analysis observation process. In standard factor analysis the state vectors are assumed to
be distributed according to a standard Gaussian density, N (0, I). Independent factor analysis [1],
mixture of factor analysers [15] and shared factor analysis [22] are based on the factor analysis
model with different mixture assumptions. These mixture assumptions are described in a unified
way in Section 3. Linear discriminant analysis [26] is another static data modelling scheme with
linear discriminant analysis observation process.

Linear Discriminant
Analysis Hidden
Markov Model

Linear Discriminant
Dynamical

Analysis
Hidden Markov

Factorial

Model

Hidden Markov
Model

Linear Dynamical
SystemHidden Markov

Model

Factor Analysed

Model

Switching
State−SpaceLinear Dynamical

Mixture of

Systems

Factor Analysis
and Mixtured FA

Mixture of
Gaussians (VQ)

Factorial Mixture
of Gaussians

(CVQ)
Analysis

Linear Discriminant

Continuous State Dynamics=CSD
Discrete State Dynamics=DSD

VQ = Vector Quantisation
=CVQ Cooperative VQ

Mixture=MIX

CSDDSD DSD DSD DSDCSD

MIX CSDDSD

Figure 3: Dynamic linear Gaussian models and how they relate to some of the static models.

Dynamic linear Gaussian models and the corresponding static models are illustrated in Figure
3. Dynamic models with factor analysis observation process include linear dynamical systems
[6, 7, 16, 32, 34, 38], mixture of linear dynamical systems and switching state-space model [17, 33]
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as well as different variations of factor analysed HMMs presented later in this paper and its
restricted version in [40]. The linear discriminant observation process is illustrated in case of
HMM based [12, 21, 29] and linear first-order Gauss-Markov based state evolution processes. The
dynamical linear discriminant analysis is presented later in this paper.

Standard hidden Markov model [35, 42] can be considered as a special case of both the obser-
vation processes by just omitting the observation noise and setting the observation matrix to an
identity matrix; i.e., C = I . Also semi-tied covariance matrix HMMs (STC) [11] can be described
by both observation processes when k = p and v = 0. Factorial hidden Markov models [18] use
distributed representation of the discrete state-space so that several independent HMMs can be
viewed to have produced the observation vectors.

2.4 Bayesian Networks

In this paper, Bayesian networks [14] are used to illustrate the statistical independencies between
different random variables in the probabilistic models. Bayesian networks are directed acyclic
graphs, also known as graphical models. The notation is adopted from [33] where round nodes
were used to denote continuous and squared nodes discrete random variables. The observable
variables are shaded and the lack of an arrow between nodes represents conditional independence.

As an example, consider three continuous random variables z,x and o of which o is observed
and the others are hidden. The joint likelihood can be factored as a product of conditional
likelihoods as follows

p(z,x,o) = p(z)p(x|z)p(o|x, z) (16)

This factorisation is perfectly valid in every case. If no assumptions of conditional independence
can be made, the corresponding Bayesian network must be illustrated as the first network in
Figure 4. There are two arrows pointing the node representing o since in the above factorisation
o depends on both z and x.

z

x

o

z

x

o

t+1qqt

1 2 3

Figure 4: Examples of Bayesian networks representing different assumptions on conditional in-
dependence. 1) Continuous random variables z, x and o (shading denotes observable) are fully
dependent, 2) o is conditionally independent of z given x, 3) discrete random variable qt+1 is
conditionally independent of all its predecessors given qt (discrete Markov chain).

If the random variable o is assumed to be conditionally independent of z given x the joint
likelihood can be rewritten as follows

p(z,x,o) = p(z)p(x|z)p(o|x) (17)

The corresponding Bayesian network is depicted as the second graph in Figure 4. The arrow
between the nodes representing z and o can be deleted.

As another example, consider an ordered set of discrete random variables, Q = q1, . . . , qT ,
which are encountered several times in the following sections. The joint likelihood of the variables
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up to time instant t+ 1 can be written using conditional likelihoods as follows

P (q1, . . . , qt+1) = P (q1)P (q2|q1)P (q3|q1, q2) . . . P (qt+1|q1, . . . , qt) (18)

Often a simplification is achieved by using a Markov assumption which says that the likelihood
of the variable qt+1 is conditionally independent of all the other previous variables given the
immediate predecessor qt; i.e.,

P (qt+1|q1, . . . , qt) = P (qt+1|qt) (19)

This is often called a discrete Markov chain and is illustrated as the third graph of Figure 4.

2.5 The EM Algorithm

Estimation of the parameters in probabilistic models involving latent (hidden) variables is often
carried out using the expectation maximisation (EM) algorithm [5]. To find the maximum like-
lihood (ML) estimates for the model parameters, the joint log-likelihood of the data log p(O)
has to be maximised. This can be done in a single run if there are no hidden variables present.
The hidden variables, often a collection of hidden state vectors X , can be regarded as missing
data. In the EM framework the objective is to maximise the log-likelihood of the complete data,
log p(O,X|M̂), given the new model parameters, M̂, via an iterative two step process of estimat-
ing the ML solution for the hidden state vectors given the observed data, and then maximising
the joint log-likelihood.

By using Jensen’s inequality, the joint log-likelihood of the data given the new model parame-
ters is bound from below as follows

log p(O|M̂) = log

∫
p(O,X|M̂)dX ≥

∫
p◦(X|O) log

p(O,X|M̂)

p◦(X|O)
dX (20)

where p◦(X|O) is an arbitrary conditional distribution and M̂ is the set of new parameters.
The equality in Eq. 20 is attained exactly when the conditional distribution is chosen to be the
posterior of the state sequence given the observation sequence and the set of old model parameters,
p◦(X|O) = p(X|O,M). Since the denominator on the right hand side of Eq. 20 is independent
of the new model parameters, the function to be maximised reduces to the expectation of the
log-likelihood of the complete data given the new model parameters with respect to the sequence
of state vectors given the observation sequence and the old model parameters; i.e.,

Q(M,M̂) = E{log p(O,X|M̂)|O,M} =

∫
p(X|O,M) log p(O,X|M̂)dX (21)

which is often called as an auxiliary function and is denoted by Q(M, M̂). The selection of the
arbitrary conditional distribution guarantees that in any iteration, the likelihood never decreases.

The derivation of the EM algorithm for a given model always starts off with finding the
expected state statistics given the observation sequence and finding the log-likelihood function
for the complete data. With linear Gaussian models the statistics of the posterior needed in the
maximisation of the auxiliary function are just the mean vector and covariance matrix since the
posteriors are also Gaussian. In case of dynamic models based on Gauss-Markov dynamics, the
cross covariance matrix between two successive state vectors has to be obtained but it is easy to
obtain since the state vectors are also jointly Gaussian.

In the appendices, the auxiliary function is written as a function of the new model parameters
marked with caps; e.g. Ĉ. It has to be noted that in the M step, Ĉ is treated as a variable for
which the value that maximises the auxiliary function is determined using standard optimisation
methods.
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3 Factor Analysis

Factor analysis is a statistical method for modelling the covariance structure of high dimensional
static data using a small number of latent (hidden) variables [26]. Traditionally, the latent variables
(state vector), x, are assumed to be distributed according to a standard Gaussian density, N (0, I),
so that the covariance structure would be captured into the factor loading matrix (observation
matrix) C. If the state vectors had a non-zero mean and its covariance matrix was not an identity
matrix, the model would be degenerate since the state vector mean can always be subsumed
to the observation noise mean vector and the covariance structure to the observation matrix
[38]. The observation noise is assumed to be a Gaussian with mean vector µ(o) and diagonal

covariance matrix Σ(o). Diagonality of the observation noise covariance matrix is important since
otherwise the parameter estimation could choose the loading matrix to be zero and estimate the
observation noise by the sample averages. This would be a maximum likelihood estimate but not
very interesting since all the information would be regarded as a p dimensional noise and no gain
would be attained by the covariance model.

x

o

Figure 5: Bayesian network representing factor analysis model.

The generative model of factor analysis can be written as follows

x = w, w ∼ N (0, I) (22)

o = Cx+ v, v ∼ N (µ(o),Σ(o)) (23)

where the state vector x is k dimensional, the observation noise v as well as the observation o are
p dimensional and C is a p by k observation matrix. The generative model of factor analysis can
be represented as the Bayesian network in Figure 5. The likelihood of an observation given the
state is simply

p(oj |x) = N (oj ;Cx+ µ(o),Σ(o)) (24)

since when the state vector x is given, the productCx is a constant vector added to the observation
noise vector v. Furthermore, the joint likelihood of the state and observation is Gaussian with the
following distribution

p(oj ,x) = N (

[
oj
x

]
;

[
µ(o)

0

]
,

[
CC ′ + Σ(o) C

C ′ I

]
) (25)

According to the generative model in Eqs. 22 and 23, the k dimensional factors are distributed
as a standard Gaussian distribution as illustrated on the upper left-hand side of Figure 6 where
k = 1. The covariance matrix of the factors is therefore a k dimensional ball with unit radius.
The k dimensional ball is then stretched and rotated according to the observation matrix C. The
observation noise covariance can be represented as a p dimensional ellipsoid with the main axes
parallel to the coordinate axes due to the diagonal covariance matrix assumption. Since the sum
of two independent random variables is distributed according to the convolution of the individual
distributions, the covariance matrix of the transformed factors is convolved with the ellipsoid

9
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Figure 6: Factor analysis with 1-dimensional state-space and 2-dimensional observation space.
N (0, 1) distributed state vectors, x, are stretched and rotated according to the transform C, and

N (0,Σ(o)) distributed noise vectors are added to form the observation vectors. It should be noted
that a sum of two random variables is distributed according to the convolution of the individual
distributions; in this example N (0,CC ′ + Σ(o)).

representing the observation noise covariance as depicted on the bottom right-hand side of Figure
6.

The number of parameters needed to model the observations as a single p dimensional multi-
variate Gaussian is p(p+ 1)/2 + p where the first term in the sum corresponds to the symmetric
covariance matrix and the second to the mean vector. A factor analysis model requires pk+2p pa-
rameters where the first term of the sum corresponds to the factor loading matrix and the second
to the diagonal covariance matrix and the mean vector of the observation noise. A reduction in the
number of model parameters by using factor analysis can be attained by choosing the state-space
dimensionality according to k < (p− 1)/2.

There are two different approaches in solving the factor analysis problem [26]. The direct
method is computationally very expensive since it requires spectral factorisation of the factor
loading matrix. The maximum likelihood (ML) solution suits better the linear Gaussian model
framework presented here since the efficient EM algorithm can be used.

3.1 EM Algorithm for Factor Analysis

Let O = o1, . . . ,oN be a set of N independent observation vectors. In the case of factor analysis
the auxiliary function can be simplified since the log-likelihood of the complete data depends
only on the observation vectors due to the distribution assumption on the factors. The auxiliary
function can be expressed as follows

Q(M,M̂) = E
{

log p(O|x,M̂)|O,M
}

=
N∑

j=1

∫
p(x|oj ,M) log p(oj |x,M̂)dx (26)

10



where M̂ is the set of new model parameters. Since the observation vectors are independent, the
posterior of the data given the factors becomes a sum after taking the logarithm.

The E step requires estimating the statistics of the posterior of the state vectors. Since the
posterior is also a Gaussian, only the first and second-order statistics are non-zero as follows

x̂(j) = K(oj − µ(o)) (27)

R̂(j) = I −KC + x̂(j)x̂′(j) (28)

where K = C ′(CC ′ + Σ(o))−1 which can be computed in advance for the current model set.
The M step is also very straightforward. However it requires some manipulation to obtain the

new parameters using convenient matrix operations. The new model parameters can be obtained
by the following two re-estimation formulae

[
Ĉ µ̂(o)

]
=
( N∑

j=1

[
ojx̂

′(j) oj
] )( N∑

j=1

[
R̂(j) x̂(j)
x̂′(j) 1

])−1

(29)

Σ̂
(o)

=
1

N

N∑

j=1

diag
(
ojo

′
j −

[
Ĉ µ̂(o)

] [
ojx̂

′(j) oj
]′ )

(30)

where diag(·) denotes setting the elements outside the main diagonal to zeroes. The details of the
derivation are presented in Appendix B.

3.2 Mixture of Factor Analysers

The standard factor analysis model works well for correlated data with Gaussian distribution
provided the number of factors (state-space dimensionality) is chosen well. In reality the data are
not always Gaussian distributed; e.g., speech feature vectors may have bimodal distributions due
to the gender variations. A generic mixture of factor analysers (MFA) is based on three random

indicator variables ωx, ωo and ωc with priors c
(x)
n = Pωn(m), c

(o)
m = Pωo(m) and c

(c)
l = Pωc(l).

The Bayesian network corresponding to this model is illustrated as the first graph in Figure 7.

The state-space indicator, ωx, chooses the state noise parameters (µ
(x)
n ,Σ(x)

n ) from M (x) different

sets, the observation noise indicator, ωo, chooses the state noise parameters (µ
(o)
m ,Σ(o)

m ) from
M (o) different sets and the observation matrix indicator chooses a constant matrix C l from M (c)

alternatives.
It should be noted that in this generic notation, the distribution of the observation matrix

is crucial for the model to be a generalised linear Gaussian model. If the observation matrix is
Gaussian distributed, the observations are not anymore distributed as Gaussians or even mixtures
of Gaussians. To guarantee the observations being Gaussians, the observation matrix is chosen by
the mixture indicator from a set of possible constant matrices. Therefore, the observation matrix is
distributed according to a weighted delta distribution as presented in the generative model below.

Several parameters of MFA can be assumed to depend on the same mixture indicator. For
example, the second graph in Figure 7 represents a model where all the observation parameters

(Cm,µ
(o)
m ,Σ(o)

m ) depend on the same indicator, ωo. The third graph depicts a case where all the

parameters, (µ
(x)
m ,Σ(x)

m ,Cm,µ
(o)
m ,Σ(o)

m ), depend on a single indicator, ω. In this paper only the
latter two cases are considered.

The generative model for the generic case without parameter tying can be written as

x = w, w ∼
∑

n

c(x)
n N (µ(x)

n ,Σ(x)
n ) (31)

o = Cx+ v,

v ∼
∑

m

c(o)m N (µ(o)
m ,Σ(o)

m )

C ∼
∑

l

c
(c)
l δ(C −Cl)

(32)

11
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Figure 7: Bayesian networks representing mixture of factor analysers. 1) Generic MFA with three

mixture indicators. 2) Observation parameters (Cm,µ
(o)
m ,Σ(o)

m ) depend on the same indicator. 3)

All parameters (µ
(x)
m ,Σ(x)

m ,Cm,µ
(o)
m ,Σ(o)

m ) depend on the same indicator.

which can be easily modified to represent any of the other mixture models just by modifying the
corresponding superscripts. Only difference between the training of these models comes with the
posterior estimation. Using the conditional independence assumptions, the joint likelihood of the
observation, state and the mixture components is simply

p(oj ,x,m, n) = c(x)
n p(x|n)c(o)m p(oj |x,m) (33)

In general, learning the model parameters of mixture of factor analysers can be carried out
by the EM algorithm. The normal factor analysis E step has to be modified to take component
posteriors into account. Regardless of the model assumptions, the joint component posteriors can
be represented as follows

γmn(j) = P (m,n|oj ,M) =
c
(o)
m c

(x)
n p(oj |m,n,M)

M(o)∑

l=1

c
(o)
l

M(x)∑

i=1

c
(x)
i p(oj |l, i,M)

(34)

where p(oj |m,n,M) varies according to the choice of the scheme. In the second case of the figure
it can be written as

p(oj |m,n,M) = N (oj ;Cmµ
(x)
n + µ(o)

m ,CmΣ(x)
n Cm + Σ(o)

m ) (35)

The estimation of the first and second-order component dependent expected state statistics,
x̂mn(j) = E{x|oj ,m, n,M} and R̂mn(j) = E{xx′|oj ,m, n,M}, has to be modified accordingly.

The re-estimation of the model parameters in the third case of mixture of factor analysers is
the same as in case of a standard factor analyser in Eqs. 29 and 30 apart from the inclusion of
the mixture posteriors given above. The M steps for the other mixture assumptions are described

in the following two sections. The estimation of the new component priors, ĉ
(o)
m and ĉ

(x)
n , can be

carried out as follows

ĉ(o)m =
1

N

N∑

j=1

γ(o)
m (j) (36)

ĉ(x)
n =

1

N

N∑

j=1

γ(x)
n (j) (37)

The derivation for this is presented in Appendix C.
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3.3 Mixtures of Factors

In this section a mixture of factor analysers with a mixture of Gaussians as the state process
is presented. Similar approach is taken in the independent factor analysis (IFA) [1] apart from
the independence assumption. The main difference is that IFA is based on factorial mixture of
Gaussians where the elements of the state vector (factors) are assumed independent and generated
individually by univariate mixtures of Gaussians. Bayesian networks corresponding to a factor
analyser with mixtures of factors and IFA are depicted in Figure 8.

x

ω

o

1x 2x kx

ω1 ω2 ωk

1o 2o po

...

...

. . .

21

Figure 8: Bayesian networks representing factor analysers with mixtures of factors. 1) One mixture
indicator chooses the factors (state vector). 2) In IFA, every factor has its own mixture indicator.

It should be noted that only (M − 1)(2k+ 1) additional parameters are effectively used in this
model due to the degeneracy mentioned with the standard factor analysis model. The mean vector
and the covariance matrix of one state noise component can always be subsumed to the observation
noise mean vector and the observation matrix, respectively. Also, onlyM−1 parameters are needed
to define the component priors.

Using a mixture of Gaussians as the state evolution noise makes the E step a bit more com-
plicated. The conditioning of multivariate Gaussians presented in Appendix A.2 becomes useful.
Detailed derivation of the E step is presented in Appendix C. The sufficient statistics of the state
posterior given the observation and the mixture component are

x̂(x)
n (j) = µ(x)

n +Kn(oj −Cµ(x)
n − µ(o)) (38)

R̂
(x)

n (j) = Σ(x)
n −KnCΣ(x)

n + x̂(x)
n (j)x̂n(j)′ (39)

where Kn = Σ(x)
n C′(CΣ(x)

n C ′ + Σ(o))−1. Since all the observation parameters are tied over the
mixture indicator, the state posteriors given the observation are needed. They can be obtained
easily as follows

x̂(j) =

M∑

n=1

γ(x)
n (j)x̂(x)

n (j) (40)

R̂(j) =

M∑

n=1

γ(x)
n (j)R̂

(x)

n (j) (41)

where γ
(x)
n (j) corresponds to the posterior of the state-space mixture component. These statistics

can be used in the re-estimation of the observation parameters as in normal factor analysis case;
see Eqs. 29 and 30.
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The re-estimation formulae for the state parameters are

µ̂(x)
n =

N∑

j=1

γ(x)
n (j)x̂(x)

n (j)

N∑

j=1

γ(x)
n (j)

(42)

Σ̂
(x)

n = diag
(

N∑

j=1

γ(x)
n (j)R̂

(x)

n (j)

N∑

j=1

γ(x)
n (j)

− µ̂(x)
n µ̂(x)′

n

)
(43)

assuming all the model parameters are updated in the same run. If only covariance matrices are
to be re-estimated, Eq. 43 will be more complicated since the substitution of the new mean vector
simplifies the formula as seen in Appendix C.

The update formulae for independent factor analysis can be derived in the same way. The
advantage of IFA is to have effectively more different state distributions with fewer underlying
Gaussian mixture components. The usefulness of IFA depends on the validity of the independence
assumption which is not generally true in case of speech feature vectors.

3.4 Mixture of Observation Processes

Mixturing the observation process increases the number of model parameters significantly and
therefore tying becomes important. In [15] the noise covariance matrices were chosen to be tied
so that the state to observation space transforms are distinct to each mixture component. This
model was called mixture of factor analysers (MFA) but it should not be mixed with the generic
mixture model in this paper. In [22] the observation matrices were tied and it is called shared
factor analysis (SFA) in this paper. Both the models can be illustrated by the same Bayesian
network in Figure 9.

xω

o

Figure 9: Bayesian network representing factor analyser with mixture of observation processes.

The MFA model provides more freedom in choosing the number of factors, k, in each analyser
but the number of model parameters is much higher sinceM fullCm matrices have to be estimated.
In SFA framework the observation noise is modelled as a mixture of Gaussians and the observation
matrix is shared so that less model parameters (M2p additional) have to be estimated due to the
diagonal covariance matrix assumption.

The parameters for the mixture of factor analysers can be obtained after finding the component
and state posteriors given the observation and the mixture component. The derivation for the M
step can be found in [15]. The re-estimation formulae for individual parameters of the MFA model
can be represented as follows

[
Ĉm µ̂(o)

m

]
=
( N∑

j=1

γ(o)
m (j)

[
ojx̂

(o)′
m (j) oj

] )( N∑

j=1

γ(o)
m (j)

[
R̂

(o)

m (j) x̂(o)
m (j)

x̂(o)′
m (j) 1

])−1

(44)
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The derivation follows very closely to that of the normal factor analysis since the observation
matrix is shared and cancels nicely during the re-estimation of the other parameters. The re-
estimation of the shared observation noise covariance matrix is simple and can be represented as
follows

Σ̂
(o)

=
1

N

N∑

j=1

M∑

m=1

γ(o)
m (j)diag

(
ojo
′
j −

[
Ĉm µ̂(o)

m

] [
ojx̂

(o)′
m (j) oj

]′ )
(45)

This is easy to verify since the re-estimation formulae for the other parameters are consistent with
the standard factor analysis framework.

Optimisation of the model parameters for the shared factor analysis is more difficult since
the re-estimation formulae for any of the model parameters cannot be represented using only the
sufficient statistics. Therefore the derivation follows generalised EM algorithm where in addition
to the sufficient statistics, the old observation noise parameters are used in updating the obser-
vation matrix. This optimisation strategy is the same as used for the optimisation of maximum
likelihood linear regression [30] transform matrix in HMM based speaker adaptation. To make
the optimisation one row at a time easy, diagonal observation noise covariance matrices have to
be used.

To be able to stick to the notation, let B̂ = Ĉ
′
. The rows of the observation matrix can now

be optimised through the columns of the B̂ matrix. In order to do that, the following statistics
have to be defined

Gl =
M∑

m=1

1

σ
(o)2
ml

N∑

j=1

γ(o)
m (j)R̂

(o)

m (j) (46)

kl =

M∑

m=1

1

σ
(o)2
ml

N∑

j=1

γ(o)
m (j)(ojl − µ(o)

ml)x̂
(o)
m (j) (47)

where σ
(o)2
ml is the lth diagonal element of the observation noise covariance matrix Σ(o)

m , ojl is the

lth element of the observation vector oj and µ
(o)
ml is the lth element of the observation noise mean

vector µ
(o)
m . The columns of the B̂ matrix can be obtained as follows

b̂l = G−1
l kl (48)

over all the p rows and the new observation matrix is Ĉ =
[
b̂1 . . . b̂p

]′
.

The observation noise parameters can be re-estimated in the usual way apart from the simplified
formula for the observation noise covariance matrix. The individual component parameters can
be re-estimated as follows

µ̂(o)
m =

N∑

j=1

γ(o)
m (j)(oj − Ĉx̂(o)

m (j))

N∑

j=1

γ(o)
m (j)

(49)

Σ̂
(o)

m =
1

N∑

j=1

γ(o)
m (j)

N∑

j=1

γ(o)
m (j)diag

(
ojo
′
j −

[
Ĉ µ̂(o)

m

] [
ojx̂

(o)′
m (j) oj

]′

−
[
ojx̂

(o)′
m (j) oj

] [
Ĉ µ̂(o)

m

]′
+
[
Ĉ µ̂(o)

m

] [
R̂

(o)

m (j) x̂(o)
m (j)

x̂(o)′
m (j) 1

] [
Ĉ µ̂(o)

m

]′ )
(50)
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3.5 Decoding Cost

When using any of the factor analysis models presented above, the likelihood of the observation
being generated by a given model can be obtained by using Eq. 35. In case of mixture of
factor analysers it has to be weighted by the corresponding mixture priors and the resulting
joint likelihoods of the observation and the mixture components have to be summed over the
components. The majority of the cost involved in obtaining the likelihood is due to inverting the
corresponding full covariance matrices in the observation space, CmΣ(x)

n Cm + Σ(o)
m . Instead of

inverting a p by p matrix there is a useful result from matrix algebra that converts the problem to
inverting a k by k matrix as discussed later in Section 7. Furthermore, it should be noted that all
the full inverse covariance matrices in the observation space can be pre-computed before starting
off with the decoding.

4 Linear Dynamical Systems

Linear dynamical systems (LDS) are the simplest dynamical models with continuous state vec-
tors. The state evolution process is a linear first-order Gauss-Markov random process and the
observation process is a factor analyser. The benefits of using linear dynamical systems in speech
recognition are the smooth trajectory modelling, improved covariance modelling and it allows
subspace modelling [34].

Linear dynamical systems are based on continuous hidden k dimensional state vectors, xt,
which evolve according to first-order Markov dynamics. A p dimensional observation vector, ot,
is generated from the current state by a linear observation process. LDS can be described by the
following two equations

xt+1 = Axt +w, w ∼ N (µ(x),Σ(x)) (51)

ot = Cxt + v, v ∼ N (µ(o),Σ(o)) (52)

where A is a k by k state transition matrix and C is a p by k observation matrix. Vectors w and
v are called the state evolution noise and observation noise respectively, and they are independent
of each other and of the values xt and ot. Both of these noise sources are Gaussian distributed
and temporally uncorrelated (white) processes; therefore, xt is a first-order Gauss-Markov random
vector process. It should be noted that the observation process is a dynamic version of the factor
analysis. The model parameters are M = {µ(i),Σ(i),A,µ(x),Σ(x),C,µ(o),Σ(o)}. Traditionally,
linear dynamical systems do not contain noise mean vectors but they have been included in the
generic notation. On top of being more general, mean vectors prove to be essential when dealing
with mixture models as already seen in the case of the factor analysis.

tx t+1x

ot ot+1

Figure 10: Dynamic Bayesian network representing a linear dynamical system.

The generative model above can be represented as a dynamic Bayesian network depicted in
Figure 10. Since the noise sources are Gaussian distributed, xt and ot are Gaussian distributed
and their conditional densities are

p(xt|xt−1) = N (xt;Axt−1 + µ(x),Σ(x)) (53)

p(ot|xt) = N (ot;Cxt + µ(o),Σ(o)) (54)
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which is consistent with the conditional independencies illustrated in the figure. By assuming a
Gaussian initial state density, x1 ∼ N (µ(i),Σ(i)), and using the Markov property, the joint density
of an observation sequence, O = o1,o2, . . . ,oT , and state sequence, X = x1,x2, . . . ,xT , can be
represented as

p(X,O) = p(x1)

T∏

t=2

p(xt|xt−1)

T∏

t=1

p(ot|xt) (55)

The number of model parameters is large in the standard LDS and reliable estimation of the
model parameters becomes hard. Noting the same degeneracy regarding the state noise parameters
as with the standard factor analysis, the effective number of parameters is p+p(p+1)/2+pk+k2+
k + k(k + 1)/2 where the first two terms correspond to the observation noise statistics, the next
two to the observation matrix and the state evolution matrix, respectively, and the last two to the
initial state statistics. The generic model can be modified by introducing several restrictions to
the model such as using diagonal noise covariance matrices and tying parameters especially when
using mixture models. These restrictions and mixture models are reviewed after the parameter
estimation has been presented.

4.1 EM Algorithm for LDS

Learning the parameters (system identification) of a linear dynamical system given only a sequence
of observations can be carried out using again the powerful expectation maximisation algorithm
[7]. The auxiliary function to be maximised can be represented as follows

Q(M,M̂) = E
{

log p(X,O|M̂)|O,M
}

=

∫
p(X|O,M) log p(X,O|M̂)dX (56)

Due to the Markov assumption in the state dynamics, the observations are dependent on
the respective states and the state posteriors become dependent on the entire observation se-
quence. Therefore, it is essential in estimating the sufficient statistics for the M step to take the
entire observation sequence into account. This must be done in two passes by first estimating
the state posteriors given the observations up to the current time index; i.e., E{xt|o1, . . . ,ot}
and E{xtx′t|o1, . . . ,ot}. Using these statistics, the state posteriors given the entire observation
sequence can be obtained; i.e., E{xt|O} and E{xtx′t|O}. Since both of these posteriors are Gaus-
sians, it is rather easy to derive the recursions for the estimates using matrix algebra and the
generalised forward-backward algorithm as described in Appendix E.1.

By defining x(τ)(t) = E{xt|o1, . . . ,oτ}, R(τ)(t) = E{xtx′t|o1, . . . ,oτ} and Σ(τ)(t) = R(τ)(t)−
x(τ)(t)x(τ)′(t) the forward recursion can be represented as follows

x(t−1)(t) = Ax(t−1)(t− 1) + µ(x) (57)

Σ(t−1)(t) = AΣ(t−1)(t− 1)A′ + Σ(x) (58)

Σ(e)(t) = CΣ(t−1)(t)C ′ + Σ(o) (59)

K(t) = Σ(t−1)(t)C ′Σ(e)−1(t) (60)

e(t) = ot −Cx(t−1)(t)− µ(o) (61)

x(t)(t) = x(t−1)(t) +K(t)e(t) (62)

Σ(t)(t) = Σ(t−1)(t)−K(t)CΣ(t−1)(t) (63)

where x(0)(1) = µ(i) and Σ(0)(1) = Σ(i). The matrix K(t) is traditionally called the Kalman gain
matrix and the vector e(t) is called the prediction error or the innovation vector [27, 28]. The
innovation vector contains the “new” information that cannot be predicted, hence the name.

The generic scaled forward algorithm allows the likelihood of the observation sequence to be
obtained via the scaling factors. The scaling factors which represent the posterior of the current
observation given all the previous observations, κt = p(ot|o1, . . . ,ot−1), can be obtained by

κt = N (e(t); 0,Σ(e)(t)) (64)
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and the joint likelihood of an observation sequence is simply p(O) =
∏T
t=1 κt.

The parallel backward recursion, also known as Kalman or Rauch-Tung-Streibel smoother
[36, 37], is derived in Appendix E.2. By defining x̂(t) = E{xt|O} and R̂(t) = E{xtx′t|O} the

estimates of the required statistics can now be initialised as x̂(T ) = x(T )(T ), Σ̂(T ) = Σ(T )(T )

and R̂(T ) = Σ̂(T ) + x̂(T )x̂′(T ). The rest of the estimates can be obtained by using the following
Kalman smoother recursions,

J(t− 1) = Σ(t−1)(t− 1)A′(Σ(t−1)(t))−1 (65)

x̂(t− 1) = x(t−1)(t− 1) + J(t− 1)
(
x̂(t)− x(t−1)(t)

)
(66)

Σ̂(t− 1) = Σ(t−1)(t− 1) + J(t− 1)
(
Σ̂(t)−Σ(t−1)(t)

)
J ′(t− 1) (67)

Σ̂
(t−1)

(t) = Σ̂(t)J ′(t− 1) (68)

for time indices t = T, . . . , 2. Then R̂(t) = Σ̂(t)+ x̂(t)x̂′(t) and R̂
(t−1)

(t) = Σ̂
(t−1)

(t)+ x̂(t)x̂′(t−
1). This recursion is considerably more efficient than the traditional recursion presented in [38]

since the estimate of the cross covariance of two consecutive state vectors, Σ̂
(t−1)

(t), can be
obtained via one matrix multiplication in contrast to four in the traditional method. This simpli-
fication follows directly from the joint Gaussianity of the state posteriors [32].

The derivation of the re-estimation formulae for linear dynamical systems is outlined in Ap-
pendix E.3. Same re-estimation formulae can be found in [34] and can be nicely expressed by the
following matrix operations

[
Ĉ µ̂(o)

]
=
( T∑

t=1

[
otx̂

′(t) ot
] )( T∑

t=1

[
R̂(t) x̂(t)
x̂′(t) 1

])−1

(69)

Σ̂
(o)

=
1

T

T∑

t=1

(
oto
′
t −
[
Ĉ µ̂(o)

] [
otx̂

′(t) ot
]′ )

(70)

[
Â µ̂(x)

]
=
( T∑

t=2

[
R̂

(t−1)
(t) x̂(t)

] )( T∑

t=2

[
R̂(t− 1) x̂(t− 1)
x̂′(t− 1) 1

])−1

(71)

Σ̂
(x)

=
1

T − 1

T∑

t=2

(
R̂(t)−

[
Â µ̂(x)

] [
R̂

(t−1)
(t) x̂(t)

]′ )
(72)

µ̂(i) = x̂(1) (73)

Σ̂
(i)

= R̂(1)− µ̂(i)µ̂(i)′ (74)

where the noise covariance matrices are full.

4.2 Diagonal Covariance and State Transition Matrices

To reduce the number of model parameters and to guarantee that the state transition matrix and
observation matrix model the covariance structure of the data, it is possible to restrict the noise
source covariance matrices to be diagonal. The only modifications to the re-estimation formulae
are just taking the main diagonal elements of the re-estimated matrices as follows

Σ̂
(o)

=
1

T

T∑

t=1

diag
(
oto
′
t −
[
Ĉ µ̂(o)

] [
otx̂
′(t) ot

]′ )
(75)

Σ̂
(x)

=
1

T − 1

T∑

t=2

diag
(
R̂(t)−

[
Â µ̂(x)

] [
R̂

(t−1)
(t) x̂(t)

]′ )
(76)

Σ̂
(i)

= diag

(
R̂(1)− µ̂(i)µ̂(i)′

)
(77)

18



In practise, it is, of course, not necessary to calculate the full covariance matrices but just the
diagonal elements. The number of parameters for a diagonal covariance LDS is 2p+ pk+ k2 + 2k.

It is possible to further reduce the number of model parameters by assuming diagonal state
transition matrix which corresponds to an independent state trajectory assumption provided that
the covariance matrices are diagonal as well. The Kalman filter and smoother recursions do not
need any modifications since they give the maximum likelihood estimates for the required statistics
regardless the structure of the matrices. The covariance matrices obtained by Kalman smoother
will be full matrices even if the state transition matrix is diagonal due to the full observation matrix.
Therefore the re-estimation formula for the state transition matrix without state evolution noise
mean vector has to be modified as follows

Â =

(
diag

( T∑

t=2

R̂
(t−1)

(t)
))(

diag
( T∑

t=2

R̂(t− 1)
))−1

(78)

Unfortunately, the state evolution noise mean vector cannot be re-estimated simultaneously
with the diagonal state transition matrix. The simultaneous re-estimation would require major
changes in the notation and an inefficient form of Eq. 71 should be used. The re-estimation has
to be done separately as follows

Â =

(
diag

( T∑

t=2

R̂
(t−1)

(t)− 1

T − 1

T∑

t=2

x̂(t)
T∑

t=2

x̂′(t− 1)
))

(
diag

( T∑

t=2

R̂(t− 1)− 1

T − 1

T∑

t=2

x̂(t− 1)

T∑

t=2

x̂′(t− 1)
))−1

(79)

µ̂(x) =
1

T − 1

T∑

t=2

(
x̂(t)− Âx̂(t− 1)

)
(80)

It is easy to verify that Eq. 76 can be used to re-estimate the state evolution noise covariance
if diagonal covariance matrices are used as well. In case of full covariance matrices, all the terms
in Eq. 255 need to be used.

4.3 Mixture of Linear Dynamical Systems

In linear dynamical systems, the observation vectors are also Gaussian distributed. A Gaussian
density is unimodal whereas often the feature vectors are multi-modal as noted already. Therefore,
mixture models are more interesting. There are three distinct noise models present in the linear
dynamical systems; the initial state, the state evolution noise and the observation noise. If mix-
tures were used in the state evolution noise, there would be exponential growth in the number of
observation components. Propagating M mixture components through the state evolution equa-
tions leads to M2 components after first time instant and in the end of an observation sequence
there are MT components. However, there are several approximate approaches for dealing with
this exponential growth as discussed in [33]. Most of the approximate methods work well only in
the filtering and the smoothing is more prone to errors. Similar exponential growth occurs in the
state posteriors if mixture models are used as the observation noise or the initial state distribution.

The most generic form of a mixture of linear dynamical systems is depicted on the left-hand
side of Figure 11. The observation matrix can be distributed according to a mixture model like in
the case of a mixture of factor analysers in Section 3.2. The same applies for the state transition
matrix for which a mixture indicator ωat is used. The generative model for this model can be
written as
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xt+1 = Axt +w,

w ∼
∑

n

c(x)
n N (µ(x)

n ,Σ(x)
n )

A ∼
∑

i

c
(a)
i δ(A−Ai)

(81)

ot = Cxt + v,

v ∼
∑

m

c(o)m N (µ(o)
m ,Σ(o)

m )

C ∼
∑

l

c
(c)
l δ(C −Cl)

(82)

As discussed above, the filtering and smoothing are not tractable with this model. Nevertheless,
this model is very interesting and some approximate algorithms are mentioned below. Another
interesting intractable model is illustrated on the right-hand side of Figure 11. It is often called
switching Kalman filter model [33] and it combines a hidden Markov model and a LDS. Generally,
the combinations are called switching state-space models [17] since the HMM states can be viewed
as switching variables which choose the active parameters of the LDS. All the parameters of
switching models are time dependent via the discrete state variable qt.

tx t+1x

ot ot+1

oω t

xω t

ωc
t t+1

oω t+1
cω

t+1
xωω t

a
t+1ωa

t+1x

ot ot+1

tx

qt qt+1
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Figure 11: Dynamic Bayesian networks representing mixtures of linear dynamical systems. 1)
Generic mixture of LDSs. 2) Switching Kalman filter.

There is only one way to restrict the model to be tractable but still employ a kind of mixture
distribution. If the HMM states are restricted to choose the parameters from M sets and the
consecutive states are forced to be equal through the entire observation sequence, the learning
becomes tractable. This can be viewed as M independent LDSs working in parallel with prior
likelihoods cm = Pω(m). Since the number of parameters grows with the factor of M , tying
becomes essential to obtain reliable estimates in the re-estimation. If all parameters other than
the observation noise are tied, the observation noise is crudely a mixture model. The difference
to the standard mixture model is due to the mixture indicator having the same value throughout
the observation sequence and therefore not permitting as flexible a model.

To optimise the parameters of mixture of M LDSs with component likelihoods, cm = Pω(m),
the following auxiliary function has to be maximised

Q(M,M̂) = (83)

E
{

log p(O,X|M̂)|O,M
}

=

M∑

m=1

Pω(m|O,M)E
{

log p(O,X|m,M̂)|O,m,M
}

The E step requires M passes of Kalman filter and smoother, and the likelihoods of the observation
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sequence given the model, p(O|Mm), are obtained. The component posteriors are then

γm = Pω(m|O,M1, . . . ,MM ) =
cmp(O|Mm)
M∑

l=1

clp(O|Ml)

(84)

The observation process is very similar to the shared factor analysis discussed in Section 3.2
apart from the component posteriors which are conditioned by the entire observation sequence.
The re-estimation formula for the observation matrix can be derived in the usual fashion by first

defining B̂ = Ĉ
′

and the following statistics

Gl =

M∑

m=1

1

σ
(o)2
ml

γm

T∑

t=1

R̂m(t) (85)

kl =

M∑

m=1

1

σ
(o)2
ml

γm

T∑

t=1

(otl − µ(o)
ml)x̂m(t) (86)

where σ
(o)2
ml is the lth diagonal element of the observation noise covariance matrix Σ(o)

m , otl is the

lth element of the observation vector ot and µ
(o)
ml is the lth element of the observation noise mean

vector µ
(o)
m . Then the columns of the B̂ matrix can be obtained as follows

b̂l = G−1
l kl (87)

over all the p rows and the new observation matrix is Ĉ =
[
b̂1 . . . b̂p

]′
. The component posteriors

are also the maximum likelihood estimates for the new component prior likelihoods, ĉm = γm.
Since the priors are subject to constraint,

∑
m cm = 1, this can be derived using Lagrange multi-

pliers as in Appendix C.2.
The re-estimation formulae for the observation noise parameters can be obtained easily noting

that the component posteriors cancel since they do not depend on the time, t. The formulae can
be represented as follows

µ̂(o)
m =

1

T

T∑

t=1

(ot − Ĉx̂m(t)) (88)

Σ̂
(o)

m =
1

T

T∑

t=1

diag
(
oto
′
t −
[
Ĉ µ̂(o)

m

] [
otx̂
′
m(t) ot

]′

−
[
otx̂
′
m(t) ot

] [
Ĉ µ̂(o)

m

]′
+
[
Ĉ µ̂(o)

m

] [
R̂m(t) x̂m(t)
x̂′m(t) 1

] [
Ĉ µ̂(o)

m

]′ )
(89)

The re-estimation formulae for the state evolution process is simply obtained using the com-
ponent posteriors as weights

[
Â µ̂(x)

]
=
( T∑

t=2

M∑

m=1

γm

[
R̂

(t−1)

m (t) x̂m(t)

] )( T∑

t=2

M∑

m=1

γm

[
R̂m(t− 1) x̂m(t− 1)
x̂′m(t− 1) 1

])−1

(90)

Σ̂
(x)

=
1

T − 1

T∑

t=2

M∑

m=1

γm

(
R̂m(t)−

[
Â µ̂(x)

] [
R̂

(t−1)

m (t) x̂m(t)

]′ )
(91)

µ̂(i) =

M∑

m=1

γmx̂m(1) (92)

Σ̂
(i)

=

M∑

m=1

γmR̂m(1)− µ̂(i)µ̂(i)′ (93)

where the noise covariance matrices are full but can be diagonalised as usual.
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4.4 Sampling Approaches for Mixture Models

As noted above, using mixture models as the noise processes of a linear dynamical system leads
to exponential growth in the state posteriors. Recently, in statistical signal processing [8, 9, 19]
and computer vision [25, 24] Monte Carlo sampling methods have been employed in filtering
problems with non-linear non-Gaussian models. These methods are based on a “particle cloud”
representation in the posterior propagation. A set of N points sampled from the prior distribution
are propagated through the system and the resulting N 2 posterior samples are then re-sampled
and weighted according to importance functions obtained from the model. Particle filtering can
be used instead of Kalman filtering but the smoothing approaches presented in [8, 9] perform
poorly in estimating p(xt|O) when T − t is significant. More stable smoothing estimates have to
be studied and developed.

An alternative way to deal with the mixture models is to propagate the posterior as usual
resulting into M2 mixture components and then apply Gaussian selection [13] to project these
M2 components back to M components. This is also an approximate method but it takes into
account the fact that all the posteriors are always mixtures of Gaussians. Unfortunately, it is not
possible to guarantee that the state posteriors obtained this way would increase the likelihood of
the data after re-estimation of the model parameters but the validity of the approximation should
be evaluated experimentally.

5 Hidden Markov Models

Hidden Markov models are based on a finite Ns state machine with discrete initial state and
transition probabilities, πj and aij respectively, as well as state dependent observation distributions
bj(ot) = p(ot|j). Mixtures of M Gaussians with mixture weights cjm = Pω(m|j) are used as the
generative model for each state in this paper so that a HMM can be described by the set of
parameters M = {∀j, i ∈ (1, Ns),m ∈ (1,M) : πj , aij , cjm,µjm,Σjm}. In speech recognition the
initial state and the transition probabilities are restricted to form so called left to right models
but in this paper a general formulation is used.

One of the main advantages of HMMs is the efficient segmentation which is carried out using
Viterbi algorithm [41]. Training of HMMs is also very efficient using the EM framework and it is
often referred to as the Baum-Welch algorithm [2, 3]. The major drawbacks are discontinuous state
transitions which prevent trajectory interpretation of the feature elements, the state conditional
independence assumption which states that given the state, the subsequent observation vectors
are independent, and rather weak covariance modelling if diagonal covariance matrices are used.

Using mixture models as the state dependent observation distributions has yielded better per-
formance in HMM based systems especially in speech recognition. There are three major reasons
for that. Firstly, mixtures can model multi-modal distributions that might result from source
classes with more than one distinct acoustic characteristics. Secondly, mixtures can model spatial
correlation in the feature vectors and therefore several distributions with diagonal covariance ma-
trices can approximate one distribution with full covariance matrix with fewer parameters. Thirdly,
mixtures can be used to model non-symmetric distributions. In the limit Gaussian mixture models
can represent arbitrary distributions that fulfil certain continuity requirements.

The p dimensional observation vector likelihood bj(ot) is defined as the following mixture of
Gaussians

bj(ot) = p(ot|j) =

M∑

m=1

cjmN (ot;µjm,Σjm) (94)

(95)

where µjm and Σjm are the mean vector and covariance matrix associated with the state qt = j
and the mixture component ω = m. The simplest continuous single mixture HMM is illustrated
as a dynamic Bayesian network on the left-hand side of Figure 12. On the right-hand side is a
mixture of Gaussians HMM.
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Figure 12: Bayesian networks representing hidden Markov models. 1) Single Gaussian continuous
density HMM. 2) Mixture of Gaussians continuous density HMM.

The joint likelihood of an observation sequence,O = o1,o2, . . . ,oT , and a HMM state sequence,
Q = q1, q2, . . . , qT , can be represented as

p(O, Q) = P (q1)

T∏

t=2

P (qt|qt−1)

T∏

t=1

p(ot|qt) (96)

where P (q1) = πq1 are the initial state probabilities and P (qt|qt−1) = aqt−1qt are the state transi-
tion probabilities.

5.1 EM Algorithm for HMM

Learning the model parameters of hidden Markov models given only an observation sequence or
a set of sequences can be carried out using the powerful expectation maximisation algorithm also
known as Baum-Welch algorithm. The auxiliary function to be maximised can be represented as
follows

Q(M,M̂) = E
{

log p(O, Q|M̂)|O,M
}

=
∑

{QT }
P (Q|O,M) log p(O, Q|M̂) (97)

Since the state posteriors depend on discrete state transition probabilities, they are not Gaus-
sians any more. Due to the finite number of possible state sequences, efficient likelihood calcula-
tion requires the use of dynamic programming. The sufficient statistics γj(t) = Pqt(j|O,M) and
ξij(t) = Pqt−1,qt(i, j|O,M) for the M step can be obtained using the familiar forward-backward
algorithm for HMMs [35]. The forward algorithm starts off as follows

αj(1) = πjbj(o1) (98)

where αj(t) = p(j,o1, . . . ,ot). The rest of the forward variables are obtained by the following
recursion

αj(t) = bj(ot)

Ns∑

i=1

aijαi(t− 1) (99)

(100)

The joint likelihood of the observation sequence can be obtained using the forward variables at
time T ; i.e., p(O) =

∑Ns
j=1 αj(T ).

The backward algorithm starts off with βi(T ) = 1 and the rest of the backward variables are
obtained recursively as follows

βi(t− 1) =

Ns∑

j=1

aijbj(ot)βj(t) (101)
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where βi(t) = p(ot+1, . . . ,oT |i).
Now, the sufficient statistics can be obtained easily as

γj(t) =
1

p(O)
αj(t)βj(t) (102)

ξij(t) =
1

p(O)
αi(t− 1)aijbj(ot)βj(t) (103)

To update the mixture components the mixture posteriors γjm(t) = Pqt,ω(j,m|O,M) are needed.
Since the mixture components can be regarded as additional states [31], the joint likelihood of
being in state j and mixture component m is

γjm(t) =
1

p(O)
cjmbjm(ot)

Ns∑

i=1

aijαi(t− 1)βj(t) (104)

where bjm(ot) is the posterior of the observation ot given the state j and the mixture component
m.

The traditional derivation of the Baum-Welch algorithm can be found in [35]. A derivation
more consistent with the notation used in this paper can be found in Appendix F by replacing
the state dependent observation posteriors properly, and using ot and oto

′
t instead of x̂t and R̂t,

respectively. The re-estimation formulae can be represented as follows

π̂j =
γj(1)

Ns∑

i=1

γi(1)

(105)

âij =

T∑

t=2

ξij(t)

T∑

t=2

γi(t− 1)

(106)

ĉjm =

T∑

t=1

γjm(t)

T∑

t=1

γj(t)

(107)

µ̂jm =

T∑

t=1

γjm(t)ot

T∑

t=1

γjm(t)

(108)

Σ̂jm =

T∑

t=1

γjm(t)oto
′
t

T∑

t=1

γjm(t)

− µ̂jµ̂′j (109)

provided all the parameters are update in the same iteration. Otherwise, the update formula 109
for the covariance matrices has to be modified slightly.

To reduce the number of model parameters and the computational complexity, the covariance
matrices can be assumed to be diagonal. The validity of the assumption has been argued since
there is often some spatial correlation between the feature vectors obtained via currently popular
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parameterisation methods. Instead of full covariance matrices the correlation of the feature vectors
can be modelled, e.g., using semi-tied full covariance matrices [12, 11]. The number of parameters
per state in a standard diagonal covariance matrix HMM in speech recognition is (M−1)+M2p+1.
The first term corresponds to the component priors, the second term to the state distribution
parameters and the last to the state transition probability of a left to right HMM.

5.2 Factor Analysed Hidden Markov Models

Factor analysis was combined with HMMs in [40] where all the covariance matrices are factored
according to a standard factor analysis model presented in Section 3. This model and the cor-
responding mixture model can be illustrated as the dynamic Bayesian networks in Figure 13. It
was argued that fewer model parameters than with full covariance systems can be used without
significantly lowering the system performance. Nevertheless, the evaluation was done using simple
alpha-digit and town name tasks. The number of model parameters in this case is huge since a
separate observation matrix is attached to every component in the HMM system.

ot

xt

ot+1

xt+1

t+1qqt

ω t ωt+1

ot ot+1

xt xt+1

t+1qqt
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Figure 13: Bayesian networks representing hidden Markov models with factor analysed covariance
matrices. 1) Single Gaussian continuous density case. 2) Mixture of Gaussians continuous density
case.

Factor analysed HMMs (FAHMM) described in this paper are dynamic versions of the factor
analysers with mixtures of factors and shared factor analysis presented in Sections 3.3 and 3.4.
FAHMM is based on a HMM as a state evolution process and a factor analyser as an observation
process. All the benefits of conventional HMMs are present and a better covariance modelling is
achieved since the assumption of spatially uncorrelated feature vectors is removed. FAHMM allows
also subspace modelling. The drawbacks of FAHMM include virtually the same as HMMs apart
from the weak spatial covariance modelling. The generative model of FAHMM can be represented
as follows

xt ∼ Mhmm, Mhmm = {aij , c(x)
jn ,µ

(x)
jn ,Σ

(x)
jn } (110)

ot = Ctxt + vt,

vt ∼
∑

m

c
(o)
jmN (µ

(o)
jm,Σ

(o)
jm)

Ct ∼
∑

l

c
(c)
jl δ(Ct −Cjl)

(111)

where the observation noise distributions and the observation matrices are state dependent. The
observation matrices are delta distributed to guarantee the model to be a generalised linear Gaus-
sian model as discussed in the case of a mixture of factor analysers in Section 3.2. Only a single
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component observation matrix distribution is used later in this paper. Therefore the observation
matrix prior cancels out in the formulation. The dynamic Bayesian network corresponding to this
model is illustrated in Figure 14.
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Figure 14: Bayesian network representing a generic factor analysed hidden Markov model.

Since there are now two mixtures of Gaussians, the mixture weights for the state vector dis-

tributions are denoted as c
(x)
jn = Pωx|qt(n|j) and for the observation noise distributions as c

(o)
jm =

Pωo|qt(m|j). The model parameters of FAHMM are M = {∀j, i ∈ (1, Ns), n ∈ (1,M (x)),m ∈
(1,M (o)) : πj , aij , c

(x)
jn ,µ

(x)
jn ,Σ

(x)
jn ,Cj , c

(o)
jm,µ

(o)
jm,Σ

(o)
jm}. Since the reliable estimation of all the pa-

rameters requires a lot of data, sharing becomes important. The general model allows arbitrary
sharing of the parameters to be used in many different levels. For example the observation matrix
can be tied between several states, several models or even globally.

The joint likelihood of an observation sequence, O = o1,o2, . . . ,oT , state vector sequence,
X = x1,x2, . . . ,xT , and HMM state sequence, Q = q1, q2, . . . , qT , can be represented as

p(O,X, Q) = P (q1)

T∏

t=2

P (qt|qt−1)

T∏

t=1

p(xt|qt)p(ot|xt) (112)

where P (q1) = πq1 is the initial state probability and P (qt|qt−1) = aqt−1qt are the state transition
probabilities.

5.3 EM Algorithm for FAHMM

In the expectation maximisation algorithm for factor analysed HMM the following auxiliary func-
tion has to be maximised

Q(M,M̂) = E
{

log p(O,X, Q|M̂)|O,M
}

=
∑

{QT }

∫
p(X|O, Q,M)P (Q|O,M) log p(O,X, Q|M̂)dX (113)

where the posteriors for both the state vector and the discrete HMM state are needed.
The posterior probability of being in state j at time t γj(t) = Pqt(j|O,M), and being in state

j at time t and in state i at time t − 1 ξij(t) = Pqt−1,qt(i, j|O,M) for the transition parameter
re-estimation can be obtained using the same forward-backward algorithm as for HMMs presented
in the previous section and using the following posterior of an observation

bj(ot) =

M(o)∑

m=1

c
(o)
jm

M(x)∑

n=1

c
(x)
jn N (ot;Cjµ

(x)
jn + µ

(o)
jm,CjΣ

(x)
jn C

′
j + Σ

(o)
jm) (114)
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The posterior of being in state j, state-space component n and observation space component
m at time t γjmn(t) is needed for the re-estimation of the other parameters. This can be obtained
as in the standard HMMs using the forward and backward variables as follows

γjmn(t) =
1

p(O)
c
(o)
jmc

(x)
jn bjmn(ot)

Ns∑

i=1

aijαi(t− 1)βj(t) (115)

where bjmn(ot) is the posterior of an observation given both the mixture components; i.e., the
Gaussian in Eq. 114.

The first and second order state vector posteriors are needed in the update formulae. The
posteriors given both mixture components can be obtained as follows

x̂jmn(t) = µ
(x)
jn +Kjmn(ot −Cjµ

(x)
jn − µ

(o)
jm) (116)

R̂jmn(t) = Σ
(x)
jn −KjmnCjΣ

(x)
jn + x̂jmn(t)x̂′jmn(t) (117)

where Kjmn = Σ
(x)
jn C

′
j(CjΣ

(x)
jn C

′
j + Σ

(o)
jm)−1. Now, x̂jmn(t) corresponds to the expected state

vector given the state, the mixture components, the observation sequence and the old model
parameters E{xt|j,m, n,O,M}. The similarity to the mixtures of factors in Section 3.3 should
be noted.

Re-estimation formulae are derived in Appendix F. The formulae for the state parameters are
very similar to the normal HMM parameter estimation and can be written as follows

π̂j =
γj(1)

Ns∑

i=1

γi(1)

(118)

âij =

T∑

t=2

ξij(t)

T∑

t=2

γi(t− 1)

(119)

ĉxjn =

T∑

t=1

M(o)∑

m=1

γjmn(t)

T∑

t=1

γj(t)

(120)

µ̂
(x)
jn =

T∑

t=1

M(o)∑

m=1

γjmn(t)x̂jmn(t)

T∑

t=1

M(o)∑

m=1

γjmn(t)

(121)

Σ̂
(x)

jn = diag
(

T∑

t=1

M(o)∑

m=1

γjmn(t)R̂jmn(t)

T∑

t=1

M(o)∑

m=1

γjmn(t)

− µ̂(x)
jn µ̂

(x)′
jn

)
(122)

The observation parameter update formulae are the dynamic version of shared factor analysis and
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a new matrix B̂j = Ĉ
′
j can be obtained defining the following statistics

Gjl =

M(o)∑

m=1

1

σ
(o)2
jml

T∑

t=1

M(x)∑

n=1

γjmn(t)R̂jmn(t) (123)

kjl =
M(o)∑

m=1

1

σ
(o)2
jml

T∑

t=1

M(x)∑

n=1

γjmn(t)(otl − µ(o)
jml)x̂jmn(t) (124)

where σ
(o)2
jml is the lth diagonal element of the observation noise covariance matrix Σ

(o)
jm, otl is the

lth element of the observation vector ot and µ
(o)
jml is the lth elements of the observation noise mean

vector µ
(o)
jm. The columns of the B̂ matrix can be obtained as follows

b̂jl = G−1
jl kjl (125)

over all the p rows and the new observation matrix is Ĉj =
[
b̂j1 . . . b̂jp

]′
.

The re-estimation formulae for the observation noise parameters can be obtained in the usual
way as follows

ĉ
(o)
jm =

T∑

t=1

M(x)∑

n=1

γjmn(t)

T∑

t=1

γj(t)

(126)

µ̂
(o)
jm =

T∑

t=1

M(x)∑

n=1

γjmn(t)(ot − Ĉjx̂jmn(t))

T∑

t=1

M(x)∑

n=1

γjmn(t)

(127)

Σ̂
(o)

jm =
1

T∑

t=1

M(x)∑

n=1

γjmn(t)

T∑

t=1

M(x)∑

n=1

γjmn(t)diag
(
oto
′
t −
[
Ĉj µ̂

(o)
jm

] [
otx̂
′
jmn(t) ot

]′

−
[
otx̂

′
jmn(t) ot

] [
Ĉj µ̂

(o)
jm

]′
+
[
Ĉj µ̂

(o)
jm

] [
R̂jmn(t) x̂jmn(t)
x̂′jmn(t) 1

] [
Ĉj µ̂

(o)
jm

]′ )
(128)

Now, diagonal covariance matrices have to be used to avoid a vast amount of parameters to
be optimised and to make the easy observation parameter update possible. The diagonality of
the HMM state dependent covariance matrices is not such a bad assumption anymore since the
observation matrix is used to model the spatial covariance structure of the observations. The
number of parameters per state in a FAHMM in speech recognition is (M (x) − 1)(1 + 2k) + pk +
(M (o) − 1) +M (o)2p+ 1. The first term correspond to the state-space mixture priors and HMM
state distribution statistics. One state-space distribution component can be again omitted due
to the degeneracy of the factor analysis model as discussed in Section 3.3. The second term
corresponds to the state dependent observation matrix, the third to the observation noise priors
and the fourth for the distribution. The last term corresponds to the transition probability of a
left to right HMM.

5.4 Relationship Between FAHMM and STC

As noted in the section about factor analysis the observation noise spans the p − k nuisance
dimensions making it a significant part of the model when k < p. If the dimensionality of the

28



observation and the state-space are the same, the observation noise can be cancelled without
losing the identifiability of the system. However, in that case the observation equation becomes
deterministic and it does not have any influence on the joint likelihood of the observation and
state sequences. The re-estimation formulae change their form dramatically as well.

Since the observation equation is deterministic, the transform Cj can be subsumed to the
state dependent HMM output covariance matrix and the usual semi-tied full covariance matrix
[11] system results with a transform class for every unique state in the system. This model can
also be regarded as a noiseless independent factor analysis [1] with the factorial mixture model
replaced by a standard mixture of Gaussians. Since arbitrary sharing is possible in the FAHMM
framework, the transform classes can be defined more reasonably. The optimisation and further
characteristics of semi-tied covariance matrices is discussed in the following section dealing with
linear discriminant analysis.

6 Linear Discriminant Analysis

An alternative dimension reduction scheme to factor analysis is linear discriminant analysis [26].
LDA is based on a linear transformation which projects the samples so that the within class
variance is minimised and the between class variance maximised. Provided the classes are separable
in some lower dimensional space, LDA finds the optimal projection and thus can be regarded as a
dimension reduction scheme. However, not much is known about the generalisation of LDA from
two dimensional case and the performance of such a scheme must be evaluated experimentally.

In traditional linear discriminant analysis, the within class covariance matrices are assumed
to be the same. In [29] an extension to LDA was presented in which the restriction of the equal
covariance matrices was removed and it is called heteroscedastic LDA (HLDA). The generative
model for LDA can be represented in the framework of this paper by allowing more general
densities at the state process than a single Gaussian. For example, mixture of Gaussians can
represent multiple classes with mean vectors as the cluster centres.

The traditional linear discriminant analysis is illustrated in Figure 15 where two classes in p
dimensional space (p = 2 in the figure) are not easy to separate along the axis in the original
space. Fortunately, there exists a transformation to lower dimensional space (k = 1 in the figure)
where the classes are easily separable. Dimension x1 in the figure represents the new space and
dimension x2 represents the nuisance dimension where both classes are represented by a single
Gaussian.

The optimisation of a static HLDA model parameters culminates into finding the new trans-

formation matrix Ĉ. Defining B̂ = (Ĉ
−1

)′, the transformation can be optimised by maximising
the following auxiliary function

Qo(M,M̂) =
1

2

∑

j,m

γm(j) log

(
abs(|B̂′|)2

abs(|diag(B̂
′
[k]WmB̂[k])|)abs(|diag(B̂

′
[p−k]Σ̂B̂[p−k])|)

)

−p
2

∑

j,m

γm(j)
(

log(2π) + 1
)

(129)

where γm(j) denotes the posterior of the mixture component m given the jth observation and the

current model set. The sufficient statistics Wm and Σ̂ are defined as follows

Wm =

∑
j γm(j)

(
oj − µ̂m

)(
oj − µ̂m

)′
∑

j γm(j)
(130)

Σ̂ =

∑
j,m γm(j)

(
µ̂m − µ̂

)(
µ̂m − µ̂

)′
∑

j,m γm(j)
+

∑
j,m γm(j)

(
oj − µ̂m

)(
oj − µ̂m

)′
∑

j,m γm(j)
(131)
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Figure 15: Linear discriminant analysis in case of two classes for which the original axes orientation
is not optimal.

where

µ̂m =

∑
j γm(j)oj∑
j γm(j)

(132)

µ̂ =

∑
j,m γm(j)oj∑
j,m γm(j)

(133)

There exists a simple iterative scheme to optimise the columns of the matrix B̂ which was presented
in [11]. The ML solutions for the state density mean vector and covariance matrix are

µ̂(x)
m = B̂

′
[k]µ̂m (134)

Σ̂
(x)

m = diag
(
B̂
′
[k]WmB̂[k]

)
(135)

and the new observation noise parameters are simply

µ̂(o) = µ̂[p−k] (136)

Σ̂
(o)

= Σ̂[p−k] (137)

The benefit of the LDA and HLDA is that the likelihood is calculated only in the useful
subspace and therefore, storage of the observation noise parameters is not needed.

6.1 Linear Discriminant Analysis Hidden Markov Models

Finding a better subspace in HMM framework using linear discriminant analysis and HLDA was
studied in [12, 21, 29]. In [12], the close relationship between semi-tied full covariance matrices
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(STC) and HLDA was presented. STC is based on class specific transformations which are applied
to the state dependent output covariance matrices of a HMM. HMM with HLDA can be viewed
as a STC model when the state-space and observation space have the same dimensionality, k = p,
and there exists only one transform class.

A linear discriminant analysis HMM can be expressed with the following generative equations

xt ∼ Mhmm (138)

ot = C

[
xt
v

]
, v ∼ N (µ(o),Σ(o)) (139)

where a single Gaussian observation noise is used. The generative model above can also be modified
to represent other interesting models. If the observation noise is replaced by another state vector
distributed according to a HMM, the equations define a two stream HMM with a linear mixing
process. Depending on the form of the observation matrix, the model can represent an independent
stream HMM or a factorial HMM [18]. As noted before, many interesting models based on linear
discriminant analysis observation process are omitted in this paper.

The optimisation of the parameters of a HMM with HLDA observation process is the same as
in the static case presented above. Only the observation indices must be replaced by time indices
and the component posterior replaced by the joint likelihood of the current HMM state and the
current mixture component given the observation sequence and the current model parameters.
The posteriors can be obtained using the standard forward-backward recursions by replacing the
posteriors of the observation given the HMM state accordingly.

6.2 Dynamical Linear Discriminant Analysis

Dynamical Linear Discriminant Analysis (DLDA) is based on continuous hidden k dimensional
state variable vectors, xt, which evolve according to linear first-order Markov dynamics. A p
dimensional observation vector, ot is generated from the current state by a linear observation
process. DLDA can be described by the following two equations

xt+1 = Axt +w, w ∼ N (µ(x),Σ(x)) (140)

ot = C

[
xt
v

]
, v ∼ N (µ(o),Σ(o)) (141)

where the relationship between the state vectors and the observation vectors is deterministic.
Again, only a simple observation noise distribution is used. Defining B = (C−1)′ the likelihood
of two consecutive observations can be represented as

p(ot|ot−1) = abs|B′|N (B′[k]ot;AB
′
[k]ot−1 + µ(x),Σ(x))N (B′[p−k]ot;µ

(o),Σ(o)) (142)

whereB[k] denotes the first k columns of the matrixB and an absolute value of the determinant of
the transformation matrix has to be taken to guarantee non-negative likelihoods. The transposition
in the definition of B is needed to stick to our notation in the optimisation below. The likelihood
of an observation sequence, O = o1,o2, . . . ,oT , is simply

p(O) =

T∏

t=2

p(ot|ot−1) (143)

and the auxiliary function to be maximised is therefore defined by

Q(M,M̂) =

T∑

t=2

log p(ot|ot−1) (144)
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Again, in the likelihood calculations the observation noise term can be ignored since it does
not carry any class discriminating information.

6.2.1 Parameter Optimisation

If diagonal state transition and observation noise covariance matrices are used, the parameter
optimisation can be done easily row by row. It is shown in Appendix G that the column vectors

1 ≤ i ≤ k of the matrix B̂ = (Ĉ
−1

)′ are given by

b̂i = kiG
−1
i (ki + δci) (145)

where ci is a vector of the cofactors of the matrix B̂ corresponding to the elements in the vector
b̂i, δ satisfies a usual quadratic expression in Eq. 289 and

Gj =
1

σ
(x)2
j

T∑

t=2

(oto
′
t − ajjoto′t−1 − ajjot−1ot + a2

jjot−1o
′
t−1) (146)

kj =
µ

(x)2
j

σ
(x)2
j

T∑

t=2

(ot − ajjot−1) (147)

where ajj is the jth diagonal element of the state transition matrix A. The rest p− k columns of

the matrix B̂ can be obtained by just replacing the statistics as follows

Gj =
1

σ
(o)2
(j−k)

T∑

t=2

oto
′
t (148)

kj =
µ

(o)2
(j−k)

σ
(o)2
(j−k)

T∑

t=2

ot (149)

The state evolution parameters of DLDA can be obtained as follows

Â =

(
diag

(
B̂
′
[k]

( T∑

t=2

oto
′
t−1

)
B̂[k] −

1

T − 1
B̂
′
[k]

( T∑

t=2

ot
)( T∑

t=2

ot−1

)′
B̂[k]

))

(
diag

(
B̂
′
[k]

( T∑

t=2

ot−1o
′
t−1

)
B̂[k] −

1

T − 1
B̂
′
[k]

( T∑

t=2

ot−1

)( T∑

t=2

ot−1

)′
B̂[k]

))−1

(150)

µ̂(x) =
1

T − 1

T∑

t=2

(
B̂
′
[k]ot − ÂB̂

′
[k]ot−1

)
(151)

Σ̂
(x)

=
1

T − 1

T∑

t=2

diag
(
B̂
′
[k]oto

′
tB̂[k] −

[
Â µ̂(x)

] [
B̂
′
[k]oto

′
t−1B̂[k] B̂

′
[k]ot

]′ )
(152)

and finally the observation noise parameters can be re-estimated as follows

µ̂(o) =
1

T − 1
B̂
′
[p−k]

T∑

t=2

ot (153)

Σ̂
(o)

=
1

T − 1

T∑

t=2

diag
(
B̂
′
[p−k]oto

′
tB̂[p−k] − µ̂(o)µ̂(o)′) (154)
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7 Implementation Issues

In this section, some implementation issues are discussed. Firstly, there exists a nice result from
matrix algebra that can be exploited in the inversion of the large matrices in case of models based
on factor analysis observation process. Secondly, some issues in variance flooring and parameter
tying are presented.

7.1 Efficient E Step Calculation

A p by p matrix of the form R + STU has to be inverted in the E step of factor analysis based
models reviewed in this paper; namely, K = C ′(CC ′ + Σ(o))−1 in case of factor analysis, Km =

Σ(x)C′(CΣ(x)C ′ + Σ(o))−1 in case of mixtures of factors, Kt = Σt−1
t C ′(CΣt−1

t C ′ + Σ(o))−1

in case of linear dynamical systems and Kjmn = Σ
(x)
jn C

′
j(CjΣ

(x)
jn C

′
j + Σ

(o)
jm)−1 in case of factor

analysed HMMs. Since mostly diagonal covariance matrices are used, it is possible to use the
following matrix inversion lemma to implement the inversion efficiently [23]

(R + STU )−1 = R−1 −R−1S(T−1 +UR−1S)−1UR−1 (155)

where R is replaced by a diagonal output noise covariance matrix in all the previous cases and is
therefore easy to invert, and the k by k matrix (T −1 +UR−1S) can be inverted more efficiently
since k < p in case of subspace modelling.

Similar result for the determinants of the matrices of the form R+ STU can be employed in
the likelihood calculations. Since the matrices corresponding to R and T are often diagonal apart
from LDSs where Σt−1

t is unfortunately not diagonal but is still in the subspace, the determinant

|R+ STU | = |R||T ||T−1 +UR−1S| (156)

can be obtained efficiently. The inverse (T−1 +UR−1S)−1 in the subspace can be computed using
Cholesky decomposition since the matrices are symmetric positive definite and the determinant
|T−1 +UR−1S| can be obtained as a by-product.

7.2 Variance Flooring for FAHMMs

The number of Gaussian components in a large system based on FAHMMs is often huge. To
guarantee that the covariance matrices are invertible after re-estimation, flooring of the variance
components has to be considered. In a standard diagonal covariance HMM the global variance of

the training data is first computed. If the ith component of a re-estimated variance, σ
(o)2
jmi , falls

below a certain fraction of the corresponding global variance component, σ2
fi, it is floored to σ2

fi

[42]. The floor is often chosen to be one hundredth of the global variance.
In case of factor analysed HMMs, there are two mixture distributions, one in state level and

the other in observation level. In the experiments carried out so far, flooring was found to be
an issue only with very few observation noise variance elements. The full covariance matrices

CjΣ
(x)
jn C

′
j + Σ

(o)
jm have to be invertible for every combination of observation and state-space

noise components. Since the matrices CjΣ
(x)
jn C

′
j are generally singular, even one zero variance

element in a single observation noise component can make the full covariance matrix singular. This
was found to happen very seldom with a context dependent large vocabulary speech recognition
system when there was not enough training examples assigned to a particular state. The standard
variance flooring scheme of HMM systems on the observation noise variances was found to be
working without any dramatic influence on the training and recognition likelihood scores.

7.3 Parameter Tying

As the number of model parameters is increased, more data is required to obtain reliable estimates
in the re-estimation process. As discussed earlier, tying of the model parameters becomes impor-
tant as the complexity of the models is increased. The parameter tying has only been seen in this
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paper in the re-estimation of the mixture of linear dynamical systems and the factor analysers
with mixtures of observation processes. It is though possible to arbitrarily share any parameters
in different levels of every model presented in this paper.

In general, the parameter tying requires simply accumulation of the sufficient statistics in the
E step of the EM algorithm and the M step equations remain as usual. For example, if the
observation matrices of single FAHMM over all the states are to be tied, the statistics Gl and kl
have to be summed over all the states j ∈ (1, Ns) before updating the parameters in the usual way.
Also, parameters over several models can be tied similarly. For example, entire state parameters
within several models can be tied as is often done in the tied state hidden Markov models in
continuous speech recognition.

8 Conclusion

Several interesting linear Gaussian models have been presented in this paper. The models fall
into category of general state-space models with assumptions on linearity and distributions which
are either Gaussians or mixtures of Gaussians. The state vectors can be regarded as generated
by a single distribution in case of static models or either linear first-order Gauss-Markov random
process or hidden Markov (HMM) model in case of dynamic models.

This paper complements the attempt to unify the set of linear Gaussian models presented in
[38] although both these papers have still not covered all the possible forms. Some variants of
linear discriminant analysis (LDA) [12] have been omitted as well as all the possible combinations
of LDA with different mixture assumptions. Instead, factor analysis models and factor analysed
hidden Markov models were presented in very generic fashion combining the way of representing
mixtures of factors such as used in independent factor analysis [1], and mixtures of factor analysis
observation processes with different parameter sharing schemes such as used in mixtures of factor
analysers [15] and shared factor analysis [22].

Factor analysed hidden Markov model (FAHMM) provides a very generic extension to currently
very popular time-series model, the hidden Markov model. FAHMM is based on state vectors
generated by a HMM and an observation process that performs shared factor analysis using the
state vector elements as factors. FAHMMs provide a flexible framework for time-series modelling
since all the advantages of HMMs are present such as efficient segmentation using Viterbi algorithm
but, in addition, a variety of possible mixturing and tying schemes of the model parameters can be
employed. An important benefit of FAHMMs in comparison to the standard diagonal covariance
HMMs is the modelling of spatial correlation which is often present due to non-ideal feature
extraction algorithms.

Several models suitable in segment model (SM) [34] framework have also been presented. It
has been noted that the major drawback in the segment models using linear dynamical systems
(LDSs) as the models for feature vector dynamics is the unimodal nature of the observations. It is
well known that many feature vectors such as in speech recognition have multi-modal distributions
due to the source and environment variability. In this paper, a form of mixture of LDSs where
the parameters of several independent LDSs other than the observation noise parameters are tied
so representing crudely a LDS with a mixture of Gaussians as the observation noise distribution.
Other forms of LDSs with mixture model noise sources do not have tractable training schemes
and some sort of approximate methods have to be considered such as particle filtering [8]. There
are still many interesting alternatives to extend the class of models for feature dynamics in SM
framework. It will be a worthwhile to investigate these models since all the promises of SMs have
not yet been utilised.
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A Useful Results from Matrix Algebra

This appendix reviews some useful results from the matrix algebra for the derivations in the
following appendices. First, inversion formulae for partitioned matrices are presented and then
conditional density of two multivariate Gaussians is derived.

A.1 Inverting Partitioned Matrices

Let A represent an arbitrary (n+m) by (n+m) matrix with the following partitioning

A =

[
A1 A2

A3 A4

]
(157)

where A1 is an n by n matrix, A2 an n by m matrix, A3 an m by n matrix and A4 an m by
m matrix. Suppose that A1 is non-singular. The matrix A is singular if and only if the n by n
matrix

(A|A4) = A1 −A2A
−1
4 A3 (158)

is non-singular [23]. The matrix (A|A4) is called the Schur complement of A4 in A and the
following two identities apply

[
A1 A2

A3 A4

]−1

=

[
(A|A4)−1 −(A|A4)−1A2A

−1
4

−A−1
4 A3(A|A4)−1 A−1

4 +A−1
4 A3(A|A4)−1A2A

−1
4

]
(159)

=

[
0 0

0 A−1
4

]
+

[
In

−A−1
4 A3

]
(A|A4)−1

[
In

−A2A
−1
4

]′
(160)

A.2 Conditioning Multivariate Gaussians

Let x and y be p and k dimensional Gaussian distributed random vectors with mean vectors, µx
and µy, and covariance matrices, Σx and Σy, respectively. Suppose also that x and y are also
jointly Gaussian with Σyx and Σxy as their cross covariance matrices. The joint distribution can
be represented as follows

p(x,y) = N (

[
x
y

]
;

[
µx
µy

]
,

[
Σx Σxy
Σyx Σy

]
) (161)

It should be noted that Σyx = Σ′xy.
The posterior distribution of x given y is obtained by the definition, p(x|y) = p(x,y)/p(y),

p(x|y) = (2π)−
(p+k)

2

∣∣∣
[

Σx Σxy
Σyx Σy

] ∣∣∣
− 1

2

exp
{
− 1

2

[
x− µx
y − µy

]′ [
Σx Σxy
Σyx Σy

]−1 [
x− µx
y − µy

]}

/(
(2π)−

k
2 |Σy|−

1
2 exp

{
− 1

2
(y − µy)′Σy

−1(y − µy)
})

(162)

= (2π)−
p
2 |Σxx −ΣxyΣ

−1
y Σyx|−

1
2 exp

{
− 1

2
γ
}

(163)

where the last determinant is obtained using the following identity for partitioned matrices [23]

∣∣∣
[

Σx Σxy
Σyx Σy

] ∣∣∣ = |Σy||Σxx −ΣxyΣ−1
y Σyx| (164)

and the definition of the scalar γ is

γ =

[
x− µx
y − µy

]′ [
Σx Σxy
Σyx Σy

]−1 [
x− µx
y − µy

]
− (y − µy)′Σ−1

y (y − µy) (165)
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The partitioned joint covariance matrix, denoted by Σ below, can be inverted by using the
identity in Eq. 160. Obviously, the first term in the right hand side of the identity cancels the
last term in Eq. 165 and therefore it simplifies to the following form

γ =
(

(x− µx)′ − (y − µy)′Σ−1
y Σyx

)
(Σ|Σy)−1

(
(x− µx)−ΣxyΣ

−1
y (y − µy)

)
(166)

which is the Mahalanobis distance between the vectors x and µx|y = µx+ ΣxyΣ−1
y (y−µy) with

covariance matrix Σx|y = (Σ|Σy) = Σx −ΣxyΣ
−1
y Σyx.

Indeed, by substituting γ back into Eq. 163 it is obvious that the posterior distribution of x
given y is Gaussian distributed with mean vector µx|y and covariance matrix Σx|y; i.e.,

p(x|y) = N (x;µx + ΣxyΣ−1
y (y − µy),Σx −ΣxyΣ−1

y Σyx) (167)

B Derivation of the EM Algorithm for Factor Analysis

The expectation maximisation algorithm for factor analysis is presented in this appendix. The
derivation of this standard algorithm was first done in [39]. Here the derivation is presented
to keep the paper self contained and using generic matrix manipulation. In the E step, the
sufficient statistics required in the M step are obtained. The M step is very generic in that only
few modifications are needed in the EM algorithms for the other models with factor analysis
observation process.

B.1 E Step for Factor Analysis

The state posteriors have to be obtained in the E step of the EM algorithm. It is easy to see from
the factor analysis observation equation in Eq. 11 that the likelihood of the observation vector,oj ,
can be obtained as follows

p(oj) = N (oj ;µ
(o),CC ′ + Σ(o)) (168)

and since the observation and the state vector are also jointly Gaussian with the following joint
density

p(oj ,x) = N (

[
oj
x

]
;

[
µ(o)

0

]
,

[
CC ′ + Σ(o) C

C′ I

]
) (169)

and the state posteriors can be obtained using Eq. 167

p(x|oj) = N
(
x;K(oj − µ(o)), I −KC

)
(170)

where K = C ′(CC ′ + Σ(o))−1.
The required first and second-order sufficient statistics can be now represented as follows

x̂(j) = E{x|oj ,M} = K(oj − µ(o)) (171)

R̂(j) = E{xx′|oj ,M} = I −KC + x̂(j)x̂′(j) (172)

where M is added to show explicitly that the old model parameters are used.

B.2 M Step for Factor Analysis

To find the new parameters, M̂ = (Ĉ, µ̂(o), Σ̂
(o)

), for the observation process the following auxil-
iary function has to be maximised

Qo(M,M̂) = (173)

−1

2

N∑

j=1

(
log |Σ̂(o)|+E

{(
oj − Ĉx− µ̂(o))′Σ(o)−1

(
oj − Ĉx− µ̂(o))∣∣∣O,M

})
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Differentiating Eq. 173 with respect to µ̂(o) and equating the resulting expression to zero

∂Qo(M,M̂)

∂µ̂(o)
= Σ̂

(o)−1
N∑

j=1

(
oj − Ĉx̂(j)− µ̂(o)) = 0 (174)

µ̂(o) =
1

N

N∑

j=1

(
oj − Ĉx̂(j)

)
(175)

Differentiating Eq. 173 with respect to Ĉ, substituting the above ML estimate of the obser-
vation noise mean and setting the resulting equation to zero, the new observation matrix can be
solved using only the sufficient statistics from the E step as follows

∂Qo(M,M̂)

∂Ĉ
= Σ̂

(o)−1
N∑

j=1

(
ojx̂

′(j)− µ̂(o)x̂′(j)− ĈR̂(j)
)

= 0 (176)

Ĉ =
( N∑

j=1

ojx̂
′(j)− 1

N

N∑

j=1

ot

N∑

j=1

x̂′(j)
)( N∑

j=1

R̂(j)− 1

N

N∑

j=1

x̂(j)

N∑

j=1

x̂′(j)
)−1

(177)

When re-estimating the model parameters, the observation matrix has to be updated before the
observation noise mean vector or they can be re-estimated simultaneously using matrix notation.
By redefining the following sums of the sufficient statistics

Γ1 =

N∑

j=1

ojx̂
′(j) ,Γ2 =

N∑

j=1

R̂(j)

ζ1 =

N∑

j=1

oj , ζ2 =

N∑

j=1

x̂(j) (178)

it can be checked that the parameters Ĉ and µ̂(o) can be maximised simultaneously as follows

[
Ĉ µ̂(o)

]
=
( N∑

j=1

[
ojx̂

′(j) oj
] )( N∑

j=1

[
R̂(j) x̂(j)
x̂′(j) 1

])−1

=
[
Γ1 ζ1

] [Γ2 ζ2

ζ′2 N

]−1

(179)

Now, the Schur’s complement, (Γ|N), in Eq. 160 for the matrix to be inverted is

(Γ|N) = Γ2 −
1

N
ζ2ζ
′
2 (180)

and the first element of the matrix product in Eq. 179 is

Γ1(Γ|N)−1 − 1

N
ζ1ζ
′
2(Γ|N)−1 =

(
Γ1 −

1

N
ζ1ζ
′
2

)(
Γ2 −

1

N
ζ2ζ
′
2

)−1

(181)

which is exactly the ML estimate for Ĉ. The second element of the matrix product in Eq. 179 is

− 1

N
Γ1(Γ|N)−1ζ2 +

1

N
ζ1 +

1

N2
ζ1ζ
′
2(Γ|N)−1ζ2

=
1

N

(
ζ1 −

(
Γ1(Γ|N)−1 − 1

N
ζ1ζ
′
2(Γ|N)−1

)
ζ2

)
(182)

which is exactly the ML estimate for µ̂(o).
To find the new observation noise covariance matrix, it is easier to differentiate Eq. 173 with

respect to the inverse of Σ̂
(o)

as follows

∂Qo(M,M̂)

∂Σ̂
(o)−1

=
1

2

N∑

j=1

(
Σ̂

(o) −E
{(
oj − Ĉx− µ̂(o))(oj − Ĉx− µ̂(o))′∣∣∣O,M

})
= 0 (183)

Σ̂
(o)

=
1

N

N∑

j=1

diag
(
ojo
′
j −

[
Ĉ µ̂(o)

] [
ojx̂

′(j) oj
]′ )

(184)
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where the ML estimates of the observation matrix and noise mean vector must be used. The last
form is obtained by noting that the terms inside the expectation in Eq. 183 can be reorganised as
follows

ojo
′
j− (185)
[
Ĉ µ̂(o)

] [
ojx̂

′(j) oj
]′ −

[
ojx̂

′(j) oj
] [
Ĉ µ̂(o)

]′
+
[
Ĉ µ̂(o)

] [
R̂(j) x̂(j)
x̂′(j) 1

] [
Ĉ µ̂(o)

]′

and substituting the first term of Eq. 179 in place of
[
Ĉ µ̂(o)

]
.

C Derivation of the EM Algorithm for Mixtures of Factors

Factor Analyser

The expectation maximisation algorithm for factor analysis with mixtures of factors is presented
in this appendix. The E step is a bit more complicated than in general factor analysis. The M
step is very generic and can be applied to the factor analysed hidden Markov models as well.

C.1 E Step for Mixtures of Factors

The joint posterior of the observation and the state vectors given the mixture component can be
written as

p(oj ,x|n) = N (

[
oj
x

]
;

[
Cµ

(x)
n + µ(o)

µ
(x)
n

]
,

[
CΣ(x)

n C ′ + Σ(o) CΣ(x)
n

Σ(x)
n C ′ Σ(x)

n

]
) (186)

Using the conditioning of multivariate Gaussians presented in Appendix A.2 the posterior of the
state vector given the observation and the mixture component is

p(x|oj , n) = N
(
x;µ(x)

n +Kn(oj −Cµ(x)
n − µ(o)),Σ(x)

n −KnCΣ(x)
n

)
(187)

where Kn = Σ(x)
n C ′(CΣ(x)

n C ′ + Σ(o)−1) and the sufficient statistics needed for the E step are

x̂jn = E{x|oj , n} = µ(x)
n +Kn(oj −Cµ(x)

n − µ(o)) (188)

R̂jn = E{xx′|oj , n} = Σ(x)
n −KnCΣ(x)

n + x̂jnx̂
′
jn (189)

In case of fully tied observation process the posteriors of the state vector given the observation
has to be obtained. These are easily obtained using the mixture component posteriors and the
above state posteriors as follows

x̂j = E{x|oj} =

M(x)∑

n=1

P (n|oj)E{x|oj , n} =

M(x)∑

n=1

γjnx̂jn (190)

R̂j = E{xx′|oj} =
M(x)∑

n=1

P (n|oj)E{xx′|oj , n} =
M(x)∑

n=1

γjnR̂jn (191)

C.2 M Step for the Mixture Component Priors

To find the new mixture component priors, ĉ
(x)
n , the following auxiliary function has to be max-

imised

Qω(M,M̂) =
N∑

j=1

M(x)∑

n=1

γjn log ĉ(x)
n (192)
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which is not possible by just setting the first derivative to zero since the logarithm is monotonically

increasing function. The constraint
∑M(x)

n=1 ĉ
(x)
n = 1 can be used to find the maximum using

Lagrange method. By introducing a Lagrange multiplier λ, the maximisation of Eq. 192 is
equivalent to maximising the following function

L(ĉ(x)
n , λ) =

N∑

j=1

M(x)∑

n=1

γjn log ĉ(x)
n − λ(

M(x)∑

n=1

ĉ(x)
n − 1) (193)

Differentiating the above equation with respect to ĉ
(x)
n and λ and setting the derivatives to zeroes

lead to the following pair of equations

N∑

j=1

γjn
1

ĉ
(x)
n

− λ = 0 (194)

M(x)∑

n=1

ĉ(x)
n − 1 = 0 (195)

By eliminating λ, the new component priors can be found as follows

ĉ(x)
n =

1

N

N∑

j=1

γjn (196)

C.3 M Step for Mixtures of Factors

To find the new state parameters, M̂ = (µ̂(x)
n , Σ̂

(x)

n ), the following auxiliary function has to be
maximised

Qs(M,M̂) = −1

2

N∑

j=1

M(x)∑

n=1

γjn

(
log |Σ̂(x)

n |+E
{

(x− µ̂(x)
n )′Σ̂

(x)−1

n (x− µ̂(x)
n )
∣∣∣oj , n,M

})
(197)

Differentiating Eq. 197 with respect to the mixture component mean vector, µ̂(x)
n , and setting

the resulting equation to zero, the new mean vectors can be solved using the sufficient statistics
from the E step as follows

∂Qs(M,M̂)

∂µ̂(x)
n

= Σ̂
(x)−1

n

N∑

j=1

γjn(µ̂(x)
n − x̂jn) = 0 (198)

µ̂(x)
n =

N∑

j=1

γjnx̂jn

N∑

j=1

γjn

(199)

To find the new state noise covariance matrix, it is easier to differentiate Eq. 197 with respect

to the inverse of Σ̂
(x)

n as follows

∂Qs(M,M̂)

∂Σ̂
(x)−1

n

=
1

2

N∑

j=1

γjn

(
Σ̂

(x)

n − (R̂jn − x̂jnµ̂(x)′
n − µ̂(x)

n x̂′jn + µ̂(x)
n µ̂(x)′

n )
)

= 0 (200)

Σ̂
(x)

n =

N∑

j=1

γjnR̂jn

N∑

j=1

γjn

− µ̂(x)
n µ̂(x)′

n (201)
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D Derivation of the EM Algorithm for Shared Factor Anal-

ysis

The expectation maximisation algorithm for shared factor analysis is presented in this appendix.
It was first introduced in [22] but the derivation is in a simple consistent form. The E step is
very similar to the factor analysis but the statistics have to be estimated for each component and
the component posteriors have to be obtained as well. The M step is again very generic and can
be applied to the mixture of linear dynamical systems as well as factor analysed hidden Markov
models.

D.1 E Step for Shared Factor Analysis

In addition to the state posteriors, the component posteriors have to be estimated as follows

γjm = Pω(m|oj ,M) =
c
(o)
m p(oj |m,M)

M(o)∑

l=1

c
(o)
l p(oj |l,M)

(202)

where the component posterior of the observation is simply

p(oj |m,M) = N (oj ;µ
(o)
m ,CC′ + Σ(o)

m ) (203)

The state posteriors can be obtained like in the factor analysis by defining the state posteriors
given the observation and the mixture component as follows

x̂jm = Km(oj − µm) (204)

R̂jm = I −KmC + x̂jmx̂
′
jm (205)

where Km = C ′(CC ′ + Σ(o)
m )−1.

D.2 M Step for Shared Factor Analysis

To find the new parameters, M̂ = (Ĉ, µ̂(o)
m , Σ̂

(o)

m ), for the observation process the following auxil-
iary function has to be maximised

Qo(M,M̂) = (206)

−1

2

N∑

j=1

M(o)∑

m=1

γjm

(
log |Σ̂(o)

m |+E
{(
oj − Ĉx− µ̂(o)

m

)′
Σ̂

(o)−1

m

(
oj − Ĉx− µ̂(o)

m

)∣∣∣O,M
})

The M step in case of mixture models is not as elegant as before since the optimisation of the
observation matrix cannot be done without using the old model parameters. In case of full
covariance matrices the optimisation is a bit difficult. Fortunately, if diagonal covariance matrices
were used, the auxiliary function can be rewritten ignoring all terms independent of the observation

matrix and defining B̂ = Ĉ
′

as follows

Q′o(M,M̂) = −1

2

p∑

l=1

(
b̂
′
lGlb̂l − 2b̂

′
lkl

)
(207)

where b̂l is the lth column of the matrix B̂ and

Gl =
M(o)∑

m=1

1

σ
(o)2
ml

N∑

j=1

γjmR̂jm (208)

kl =
M(o)∑

m=1

1

σ
(o)2
ml

N∑

j=1

γjm(ojl − µ(o)
ml)x̂jm (209)
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where σ
(o)2
ml is the lth diagonal element of the observation noise covariance matrix Σ(o)

m , ojl is the

lth element of the observation vector oj and µ
(o)
ml is the lth element of the observation noise mean

vector µ
(o)
m .

Differentiating the auxiliary function in Eq. 207 with respect to b̂l and equating the resulting
expression to zero, the vectors b̂l can be re-estimated as follows

∂Q′o(M,M̂)

∂b̂l
= kl −Glb̂l = 0 (210)

b̂l = G−1
l kl (211)

which are the row vectors of the new observation matrix Ĉ.
Differentiating Eq. 206 with respect to the component observation mean vectors and equating

the resulting expression to zero, the new estimates for the means can be obtained as follows

∂Qo(M,M̂)

∂µ̂(o)
m

= Σ̂
(o)−1

m

N∑

j=1

γjm(oj − Ĉx̂jm − µ̂(o)
m ) = 0 (212)

µ̂(o)
m =

N∑

j=1

γjm(oj − Ĉx̂jm)

N∑

j=1

γjm

(213)

To find the new component observation noise covariance matrices, it is easier to differentiate
Eq. 206 with respect to the inverse of Σ(o)

m as follows

∂Qo(M,M̂)

∂Σ̂
(o)−1

m

= (214)

1

2

N∑

j=1

γjm

(
Σ̂

(o)

m −E
{(
oj − Ĉx− µ̂(o)

m

)(
oj − Ĉx− µ̂(o)

m

)′∣∣∣O,M
})

= 0

Σ̂
(o)

m =
1

N∑

j=1

γjm

N∑

j=1

γjmdiag
(
ojo
′
j −

[
Ĉ µ̂(o)

m

] [
ojx̂

′
jm oj

]′

−
[
ojx̂

′
jm oj

] [
Ĉ µ̂(o)

m

]′
+
[
Ĉ µ̂(o)

m

] [
R̂jm x̂jm
x̂′jm 1

] [
Ĉ µ̂(o)

m

]′ )
(215)

Unfortunately, this expression cannot be further simplified due to the form of the observation
matrix re-estimation formula.

E Derivation of the EM Algorithm for Linear Dynamical
System

Derivation of the Kalman filter and smoother recursions as well as the M step of the EM algorithm
for a linear dynamical system are presented in this appendix. The Kalman filter and smoother
recursions are derived using the generic forward-backward algorithm and conditioning multivariate
Gaussians as described in App. A.2. The M step is rather straightforward maximisation of
quadratic matrix forms. The derivation presented here is very similar to [16] but more attention
is paid to the matrix notation used in this paper.
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E.1 Kalman Filter

Following the derivation in [32] so called generic scaled forward-backward algorithm is used. Let
the forward variable, αx(t), be defined as follows

αx(t) = p(xt,o1, . . . ,ot) = p(o1, . . . ,ot)p(xt|o1, . . . ,ot) =
( t∏

τ=1

κτ

)
α̂x(t) (216)

where κt = p(ot|o1, . . . ,ot−1) are the scaling factors and α̂x(t) = p(xt|o1, . . . ,ot) are the scaled
forward variables. Both the scaling factors and forward variables are Gaussian distributed due to
the linear Gaussian model assumption. Let x(τ)(t) denote E{xt|o1, . . . ,oτ} and Σ(τ)(t) denote
E{(xt − x(τ)(t))(xt − x(τ)′(t))|o1, . . . ,oτ} then the scaled forward variable is distributed as

α̂x(t) = N
(
xt;x

(t)(t),Σ(t)(t)
)

(217)

Using the first-order Markov property and the state conditional independence of the observa-
tions in Eqs. 51 and 52 the forward variable, αx(t), can be rewritten in the following recursive
form

αx(t) = p(xt,o1, . . . ,ot) = p(ot|xt)p(xt,o1, . . . ,ot−1) (218)

= p(ot|xt)
∫
p(xt,xt−1 = z,o1, . . . ,ot−1)dz (219)

= p(ot|xt)
∫
p(xt|xt−1 = z)p(xt−1 = z,o1, . . . ,ot−1)dz (220)

= p(ot|xt)
∫
p(xt|xt−1 = z)

( t−1∏

τ=1

κτ

)
α̂z(t− 1)dz (221)

κtα̂x(t) = p(ot|xt)
∫
p(xt|xt−1 = z)α̂z(t− 1)dz (222)

which starts off with the initial value α̂x(1) = p(x1|o1). All the terms in Eq. 222 can be expressed
with Gaussians as follows

κtα̂x(t) = (223)

N (ot;Cxt + µ(o),Σ(o))

∫
N
(
xt;Az + µ(x),Σ(x))N (z;x(t−1)(t− 1),Σ(t−1)(t− 1)

)
dz

where the both terms inside the integral are also jointly Gaussian as follows

p(z,xt) = (224)

N
([ z
xt

]
;

[
x(t−1)(t− 1)

Ax(t−1)(t− 1) + µ(x)

]
,

[
Σ(t−1)(t− 1) Σ(t−1)(t− 1)A′

AΣ(t−1)(t− 1) AΣ(t−1)(t− 1)A′ + Σ(x)

])

and since the integration is carried out with respect to z the term on the right hand side reduces
to the probability of xt and by defining x(t−1)(t) = Ax(t−1)(t − 1) + µ(x) and Σ(t−1)(t) =

AΣ(t−1)(t− 1)A′ + Σ(x), Eq. 223 becomes

κtα̂x(t) = N (ot;Cxt + µ(o),Σ(o))N
(
xt;x

(t−1)(t),Σ(t−1)(t)
)

(225)

= p(ot|xt,o1, . . . ,ot−1)p(xt|o1, . . . ,ot−1) (226)

which is not yet in the required form but can be transformed to it by using the Bayes’ formula as
follows

p(ot|xt,o1, . . . ,ot−1)p(xt|o1, . . . ,ot−1) = p(ot|o1, . . . ,ot−1)p(xt|o1, . . . ,ot) (227)
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and noticing that ot and xt are also jointly Gaussian

p(ot,xt) = N
([
xt
ot

]
;

[
x(t−1)(t)

Cx(t−1)(t) + µ(o)

]
,

[
Σ(t−1)(t) Σ(t−1)(t)C ′

CΣ(t−1)(t) CΣ(t−1)(t)C ′ + Σ(o)

])
(228)

The latter form in Eq. 227 can be easily obtained by applying the conditioning of two multi-
variate Gaussians in Eq. 167. Therefore Eq. 225 becomes

κtα̂x(t) = N
(
ot;Cx

(t−1)(t) + µ(o),CΣ(t−1)(t)C ′ + Σ(o)
)

(229)

N
(
xt;x

(t−1)(t) +K(t)(ot −Cx(t−1)(t)− µ(o)),Σ(t−1)(t)−K(t)CΣ(t−1)(t)
)

where K(t) = Σ(t−1)(t)C ′
(
CΣ(t−1)(t)C ′ + Σ(o)

)−1
and which is now the product of the proba-

bility of the current observation given the history up to the time instant t and the scaled forward
variable as defined earlier.

E.2 Kalman Smoother

The backward variable is defined as usual

βx(t) = (230)

p(ot+1, . . . ,oT |xt) = p(ot+1, . . . ,oT |o1, . . . ,ot)
p(ot+1, . . . ,oT |xt)

p(ot+1, . . . ,oT |o1, . . . ,ot)

( T∏

τ=t+1

κτ

)
β̂x(t)

where κt = p(ot|o1, . . . ,ot−1) are the same scaling factors as the ones used with the forward
variables. Using again the first-order Markov property and the state conditional independence
of the observations in Eqs. 51 and 52 the backward variable, βx(t − 1), can be rewritten in the
following recursive form

βx(t− 1) =

∫
p(xt = z,ot, . . . ,oT |xt−1)dz (231)

=

∫
p(xt = z|xt−1)p(ot|xt = z)p(ot+1 . . . ,oT |xt = z)dz (232)

=

∫
p(xt = z|xt−1)p(ot|xt = z)

( T∏

τ=t+1

κτ

)
β̂z(t)dz (233)

β̂x(t− 1) =
1

κt

∫
p(xt = z|xt−1)p(ot|xt = z)β̂z(t)dz (234)

The Kalman smoother estimates, x̂(t) and Σ̂(t), are the mean vector and covariance matrix of
the state vector, xt, given the entire observation sequence, O. Therefore it can be represented as
the product of the scaled forward and backward variables as follows

α̂x(t)β̂x(t) = p(xt|o1, . . . ,ot)
p(ot+1, . . . ,oT |xt)

p(ot+1, . . . ,oT |o1, . . . ,ot)
(235)

= p(xt|O) = N
(
xt; x̂(t), Σ̂(t)

)
(236)

The backward recursion can be derived by substituting 53, 54, 217, 225, 234 and 236 into the
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product of the scaled forward and backward variables and doing some algebra as follows

α̂x(t)β̂x(t) = N
(
xt;x

(t)(t),Σ(t)(t)
) ∫
N (z;Axt + µ(x),Σ(x))N (ot+1;Cz,Σ(o)) (237)

N
(
z; x̂(t+ 1), Σ̂(t+ 1)

)

κt+1α̂z(t+ 1)
dz

=

∫
N
(
xt;x

(t)(t) + J(t)(z −Ax(t)(t)− µ(x)),Σ(t)(t)− J(t)AΣ(t)(t)
)

(238)

N
(
z; x̂(t+ 1), Σ̂(t+ 1)

)
dz

= N
(
xt;x

(t)(t) + J(t)(x̂(t+ 1)− x(t)(t+ 1)), (239)

Σ(t)(t) + J(t)(Σ̂(t+ 1)−Σ(t)(t+ 1))J ′(t)
)

(240)

where J(t) = Σ(t)(t)A′(Σ(t)(t+ 1))−1 and Kalman smoother recursions result obviously.
The cross covariance of two consecutive state vectors is also required. It can be obtained by

the scaled forward and backward variables as follows

p(xt−1,xt|O) =
1

κt
α̂x(t− 1)p(xt|xt−1)p(ot|xt)β̂xt(t) (241)

Since the current state and the previous state are jointly Gaussian it is easy to obtain the cross

covariance matrix Σ̂
(t−1)

(t) = Σ̂(t)J ′(t− 1).

E.3 M Step

To find the new parameters, M̂ = (Ĉ, µ̂(o), Σ̂
(o)

), for the observation process the following auxil-
iary function has to be maximised

Qo(M,M̂) = (242)

−1

2

T∑

t=1

(
log |Σ̂(o)|+E

{(
ot − Ĉxt − µ̂(o))′Σ̂(o)−1(

ot − Ĉxt − µ̂(o))∣∣∣O,M
})

which is exactly the same as Eq. 173 in the M step for the factor analysis except the index is time,
t, rather than a set index, j. So, the derivation follows directly from Appendix B.2 by replacing
N with T and j with t.

To find the new parameters, M̂ = (Â, µ̂(x), Σ̂
(x)

), for the state evolution process the following
auxiliary function has to be maximised

Qx(M,M̂) = (243)

−1

2

T∑

t=2

(
log |Σ̂(x)|+E

{(
xt − Âxt−1 − µ̂(x))′Σ̂(x)−1(

xt − Âxt−1 − µ̂(x))∣∣∣O,M
})

To find the new state evolution noise mean vector the auxiliary function in Eq. 243 can be
differentiated with respect to µ̂(x) as follows

∂Qx(M,M̂)

∂µ̂(x)
= Σ̂

(x)−1
T∑

t=2

(
x̂(t)− Âx̂(t− 1)− µ̂(x)) = 0 (244)

µ̂(x) =
1

T − 1

T∑

t=2

(
x̂(t)− Âx̂(t− 1)

)
(245)
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Differentiating Eq. 243 with respect to Â and setting the resulting equation to zero the new
state transition matrix can be solved using only the sufficient statistics from the E step as follows

∂Qx(M,M̂)

∂Â
= Σ̂

(x)−1
T∑

t=2

(
R̂

(t−1)
(t)− µ̂(x)x̂′(t− 1)− ÂR̂(t− 1)

)
= 0 (246)

Â =
( T∑

t=2

R̂
(t−1)

(t)− 1

T − 1

T∑

t=2

x̂(t)

T∑

t=2

x̂′(t− 1)
)

( T∑

t=2

R̂(t− 1)− 1

T − 1

T∑

t=2

x̂(t− 1)
T∑

t=2

x̂′(t− 1)
)−1

(247)

When re-estimating the model parameters, the state evolution matrix has to be updated before
the state evolution noise mean vector or they can be re-estimated simultaneously using matrix
notation. By defining the following sums of the sufficient statistics

Γ3 =

T∑

t=2

R̂
(t−1)

(t) ,Γ4 =

T∑

t=2

R̂(t− 1)

ζ3 =

T∑

t=2

x̂(t) , ζ4 =

T∑

t=2

x̂(t− 1) (248)

it can can be checked that the parameters Â and µ̂(x) can be estimated simultaneously as follows

[
Â µ̂(x)

]
= (249)

( T∑

t=2

[
R̂

(t−1)
(t) x̂(t)

] )( T∑

t=2

[
R̂(t− 1) x̂(t− 1)
x̂′(t− 1) 1

])−1

=
[
Γ3 ζ3

] [Γ4 ζ4

ζ ′4 T − 1

]−1

Now, the Schur’s complement, (Γ|T − 1), in Eq. 159 for the matrix to be inverted is

(Γ|T − 1) = Γ4 −
1

T − 1
ζ4ζ
′
4 (250)

and the first element of the matrix product in Eq. 249 is

Γ3(Γ|T − 1)−1 − 1

T − 1
ζ3ζ
′
4(Γ|T − 1)−1 =

(
Γ3 −

1

T − 1
ζ3ζ
′
4

)(
Γ4 −

1

T
ζ4ζ
′
4

)−1

(251)

which is exactly the ML estimate for Â. The second element of the matrix product in Eq. 249 is

− 1

T − 1
Γ3(Γ|T − 1)−1ζ4 +

1

T − 1
ζ3 +

1

(T − 1)2
ζ3ζ
′
4(Γ|T − 1)−1ζ4 = (252)

1

T − 1

(
ζ3 −

(
Γ3(Γ|T − 1)−1 − 1

T − 1
ζ3ζ
′
4(Γ|T − 1)−1

)
ζ4

)

which is exactly the ML estimate for µ̂(x).
To find the new state evolution noise covariance matrix, the auxiliary function in Eq. 243 can

be differentiated with respect to the inverse of Σ̂
(x)

as follows

∂Qx(M,M̂)

∂Σ̂
(x)−1

= (253)

1

2

T∑

t=2

(
Σ̂

(x) −E
{(
xt − Âxt−1 − µ̂(x))(xt − Âxt−1 − µ̂(x))′∣∣∣O,M

})
= 0
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Σ̂
(x)

=
1

T − 1

T∑

t=2

(
R̂(t)−

[
Â µ̂(x)

] [
R̂

(t−1)
(t) x̂(t)

]′ )
(254)

where the last form is obtained by noting that the terms inside the expectation in Eq. 254 can be
reorganised as follows

R̂(t)−
[
Â µ̂(x)

] [
R̂

(t−1)
(t) x̂(t)

]′

−
[
R̂

(t−1)
(t) x̂(t)

] [
Â µ̂(x)

]′
+
[
Â µ̂(x)

] [
R̂(t− 1) x̂(t− 1)
x̂′(t− 1) 1

] [
Â µ̂(x)

]′
(255)

and substituting the first term in Eq. 249 into the place of
[
Â µ̂(o)

]
.

To find the new parameters, M̂ = (µ̂(i), Σ̂
(i)

), for the initial state distribution the following
auxiliary function has to be maximised

Qi(M,M̂) = −1

2
log |Σ̂(i)| − 1

2
E
{(
x1 − µ̂(i))′Σ̂(i)−1

(x1 − µ̂(i))∣∣∣O,M
}

(256)

Differentiating 256 with respect to the initial state mean vector µ̂(i) yields

∂Qi(M,M̂)

∂µ̂(i)
= Σ̂

(i)−1
(x̂(1)− µ̂(i)) = 0 (257)

µ̂(i) = x̂(1) (258)

and with respect to the inverse of the initial state covariance matrix Σ̂
(i)

yields

∂Qi(M,M̂)

∂Σ̂
(i)−1

=
1

2
Σ̂

(i) − 1

2
(R̂(1)− x̂(1)µ̂(i)′ − µ̂(i)x̂(1)′ + µ̂(i)µ̂(i)′) = 0 (259)

Σ̂
(i)

= R̂(1)− µ̂(i)µ̂(i)′ (260)

F Derivation of the EM Algorithm for FAHMM

The expectation maximisation algorithm for factor analysed hidden Markov models is presented
in this appendix. The E step is very similar to the hidden Markov models except for the different
observation posteriors given the current state. The M step is also a combination of the hidden
Markov model, the mixtures of factors and shared factor analysis provided the correct statistics
are used.

F.1 E Step

The state posterior p(xt|j, n) and the observation posterior p(ot|xt, j,m) are defined as the fol-
lowing two Gaussians

p(xt|j, n) = N (xt;µ
(x)
jn ,Σ

(x)
jn ) (261)

p(ot|xt, j,m) = N (ot;Cjxt + µ
(o)
jm,Σ

(o)
jm) (262)

where µ
(x)
jn and Σ

(x)
jn are the mean vector and covariance matrix associated with the state j and

mixture component n. Cj is a p by k observation matrix and µ
(o)
jm, Σ

(o)
jm are the observation

noise mean vector and covariance matrix. Since the state vectors and observations are also jointly
Gaussian given the state and the mixture components it is easy to obtain the posterior distribution
of an observation ot using again the conditioning of multivariate Gaussians as follows

p(ot|j,m, n) = N (ot;Cjµ
(x)
jn + µ

(o)
jm,CjΣ

(x)
jn C

′
j + Σ

(o)
jm) (263)
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It should be noted that various independence assumptions have been applied. Now, the likelihood
of the observation given only the state can be marginalised by using the mixture priors and
summing over the mixture components as follows

bj(ot) =
M(o)∑

m=1

c
(o)
jm

M(x)∑

n=1

c
(x)
jn p(ot|j,m, n) (264)

The state posteriors, γj(t) and ξij(t), can be obtained using the forward-backward algorithm in
the usual way. To find the joint likelihood of the state and the state and observation mixture
components, γjmn(t), the forward and backward variables are used as usual

γjmn(t) =
1

p(O)
c
(o)
jmc

(x)
jn bjmn(ot)

Ns∑

i=1

aijαi(t− 1)βj(t) (265)

where bjmn(ot) = p(ot|j,m, n).

The first and second-order sufficient statistics x̂jmn(t) = E{xt|j,m, n,O} and R̂jmn(t) =
E{xtx′t|j,m, n,O} for the M step can be obtained by using the independence assumption of
HMMs as follows

p(xt|j,m, n,O) = (266)

p(ot,xt|j,m, n)

p(ot|j,m, n)
= N

(
xt;µ

(x)
jn +Kjmn(ot −Cjµ

(x)
jn − µ

(o)
jm),Σ

(x)
jn −KjmnCjΣ

(x)
jn

)

where Kjmn = Σ
(x)
jn C

′
j(CjΣ

(x)
jn C

′
j + Σ

(o)
jm)−1. Again, the joint Gaussianity of the observations

and the state vectors were used as well as the conditioning of multivariate Gaussians as described
in Appendix A.2. The statistics are then

x̂jmn(t) = µ
(x)
jn +Kjmn(ot −Cjµ

(x)
jn − µ

(o)
jm) (267)

R̂jmn(t) = Σ
(x)
jn −KjmnCjΣ

(x)
jn + x̂jmn(t)x̂′jmn(t) (268)

F.2 M Step

To find the new parameters, M̂ = (π̂j , âij), for the HMM state transition matrix the following
auxiliary function has to be maximised

Qs(M,M̂) =

Ns∑

j=1

Pq1(j|O,M) log π̂j +

T∑

t=2

Ns∑

i=1

Ns∑

j=1

Pqt−1,qt(i, j|O,M) log âij (269)

It is not possible to maximise the above expression by setting its first derivative with respect
to the parameters to zero but Lagrange multipliers can be used since π̂j and âij are subject to

constraints
∑Ns
j=1 π̂j = 1 and ∀i :

∑Ns
j=1 âij = 1, respectively. The derivation follows closely to the

derivation of the new mixture priors in a mixture of factor analysers presented in Appendix C.2.
Defining γj(t) = Pqt(j|O,M) and ξij(t) = Pqt−1,qt(i, j|O,M) the ML estimates for π̂j and âij are

π̂j =
γj(1)

Ns∑

i=1

γi(1)

(270)

âij =

T∑

t=2

ξij(t)

T∑

t=2

γi(t− 1)

(271)
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To find the new parameters, M̂ = (µ̂
(x)
jn , Σ̂

(x)

jn ), for the HMM state vector distributions the
following auxiliary function has to be maximised

Qx(M,M̂) = (272)

−1

2

T∑

t=1

Ns∑

j=1

M(o)∑

m=1

M(x)∑

n=1

γjmn(t)
(

log |Σ̂(x)

jn |+E
{

(xt − µ̂(x)
jn )′Σ̂

(x)−1

jn (xt − µ̂(x)
jn )
∣∣∣O, j,m, n,M

})

where γjmn(t) = Pqt ,ωo,ωx(j,m, n|O,M).
Differentiating the auxiliary function with respect to the state mean vectors yields

∂Qx(M,M̂)

∂µ̂
(x)
jn

= Σ̂
(x)−1

jn

T∑

t=1

M(o)∑

m=1

γjmn(t)
(
µ̂

(x)
jn − x̂jmn(t)

)
= 0 (273)

µ̂
(x)
jn =

T∑

t=1

M(o)∑

m=1

γjmn(t)x̂jmn(t)

T∑

t=1

M(o)∑

m=1

γjmn(t)

(274)

and with respect to the inverse covariance matrices yields

∂Qx(M,M̂)

∂Σ̂
(x)−1

jn

= (275)

1

2

T∑

t=1

M(o)∑

m=1

γjmn(t)
(
Σ̂

(x)

jn −
(
R̂jmn(t)− x̂jmn(t)µ̂

(x)′
jn − µ̂

(x)
jn x̂

′
jmn(t) + µ̂

(x)
jn µ̂

(x)′
jn

))
= 0

Σ̂
(x)

jn =

T∑

t=1

M(o)∑

m=1

γjmn(t)R̂jmn(t)

T∑

t=1

M(o)∑

m=1

γjmn(t)

− µ̂(x)
jn µ̂

(x)′
jn (276)

To find the new parameters, M̂ = (Ĉj , µ̂
(o)
jm, Σ̂

(o)

jm), for the observation process, exactly the
same auxiliary function as in case of shared factor analysis in Eq. 206 has to be maximised provided
the sufficient statistics are replaced accordingly and the state-space component is marginalised by
summing over n.

G Optimisation of Dynamical Linear Discriminant Analysis

The algorithm for the optimisation of the parameters of a dynamical linear discriminant analysis
is presented in this appendix. The algorithm differs from the expectation maximisation algorithm
presented in previous chapters in that there are no latent variables present.

G.1 Observation Matrix Optimisation

To find the new transformation matrix, Ĉ, the following auxiliary function has to be maximised

Qo(M,M̂) = (277)

1

2

T∑

t=2

(
log(|B̂′|2)− (B̂

′
[k]ot −AB̂

′
[k]ot−1 − µ(x))′Σ(x)−1(B̂

′
[k]ot −AB̂

′
[k]ot−1 − µ(x))

−(B̂
′
[p−k]ot − µ(o))′Σ(o)−1(B̂

′
[p−k]ot − µ(o))

)
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where B̂ = (Ĉ
−1

)′. The optimisation can now be done one column of B̂ at a time easily if diagonal
transition matrix is used. The auxiliary function can be then rewritten as follows

Qo(M,M̂) = (278)

(T − 1) log(b̂
′
ici)−

1

2

k∑

j=1

(b̂
′
jG

(x)
j b̂j − 2b̂

′
jk

(x)
j )− 1

2

p∑

j=k+1

(b̂
′
jG

(o)
j b̂j − 2b̂

′
jk

(o)
j )

where ci is a vector of the cofactors of the matrix B̂ corresponding to the elements in the vector
b̂i and

G
(x)
j =

1

σ
(x)2
j

T∑

t=2

(oto
′
t − ajjoto′t−1 − ajjot−1ot + a2

jjot−1o
′
t−1) (279)

k
(x)
j =

µ
(x)2
j

σ
(x)2
j

T∑

t=2

(ot − ajjot−1) (280)

G
(o)
j =

1

σ
(o)2
(j−k)

T∑

t=2

oto
′
t (281)

k
(o)
j =

µ
(o)2
(j−k)

σ
(o)2
(j−k)

T∑

t=2

ot (282)

where µ
(x)2
j and µ

(o)2
j are the jth elements of the observation and state evolution noise mean vectors

µ(x) and µ(o), respectively, σ
(x)2
j , σ

(o)2
j and ajj are the jth diagonal elements of the observation

and state evolution noise covariance, and the state transition matrices, respectively.
For the rows 1 ≤ i ≤ k, differentiating the auxiliary function with respect to b̂i yields

∂Qo(M,M̂)

∂b̂i
= (T − 1)

ci

b̂
′
ici
−G(x)

i b̂i + k
(x)
i = 0 (283)

and after rearranging yields

b̂ib̂
′
ici = G

(x)−1
i k

(x)
i b̂

′
ici + (T − 1)G

(x)−1
i ci (284)

Since b̂
′
ici is a scalar and considering the direction of the vector b̂i, it can be represented as follows

b̂i = δG
(x)−1
i (λk

(x)
i + ci) (285)

and the values for δ and λ have to be found. Substituting this expression into Eq. 284, multiplying

by G
(x)
i from the left and rearranging yields

δ(λδ − 1)(λk
(x)′
i + c′i)G

(x)−1
i cik

(x)
i =

(
(T − 1)− δ2(λk

(x)′
i + c′i)G

(x)−1
i ci

)
ci (286)

which holds always if and only if

λδ = 1 (287)

(T − 1) = δ2(λk
(x)′
i + c′i)G

(x)−1
i ci (288)

and these can be expressed as one simple quadratic equation

δ2c′iG
(x)−1
i ci + δk

(x)′
i G

(x)−1
i ci − (T − 1) = 0 (289)
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It can be shown that both roots of this equation are maxima. Now that knowing δ and λ, the
vector b̂i can be expressed as

b̂i = k
(x)
i G

(x)−1
i (k

(x)
i + δci) (290)

and the auxiliary function for the ith row ignoring all the terms independent of δ can be represented
as follows

Q(i)
o (M,M̂) = (T − 1) log(|δε1 + ε2|)−

1

2
δ2ε1 (291)

where ε1 = c′iG
(x)−1
i ci and ε2 = k

(x)′
i G

(x)−1
i ci. Since it is not possible to ensure that ε2 > 0, the

value of δ is selected that maximises Q(i)
o (M,M̂).

For the rows k + 1 ≤ i ≤ p, the optimisation is exactly the same as above except for using the

values G
(o)
i and k

(o)
i instead of G

(x)
i and k

(x)
i .

G.2 Observation Noise Parameter Optimisation

To find the new parameters, M̂ = (Σ̂
(o)
, µ̂(o)), for the observation noise, the following auxiliary

function has to be maximised

Qv(M,M̂) = −1

2

T∑

t=2

(
log |Σ̂(o)|+

(
B̂
′
[p−k]ot − µ̂(o))′Σ̂(o)−1(

B̂
′
[p−k]ot − µ̂(o))) (292)

To find the new observation noise mean vector the auxiliary function in Eq. 292 has to be
differentiated with respect to µ̂(o) as follows

∂Qv(M,M̂)

∂µ̂(o)
= Σ̂

(o)−1
T∑

t=2

(
B̂
′
[p−k]ot − µ̂(o)) = 0 (293)

µ̂(o) =
1

T − 1
B̂
′
[p−k]

T∑

t=2

ot (294)

To find the new observation noise covariance matrix, the auxiliary function in Eq. 292 has to

be differentiated with respect to the inverse of Σ̂
(o)

as follows

∂Qv(M,M̂)

∂Σ̂
(o)−1

= (295)

1

2

T∑

t=2

(
Σ̂

(o) −
(
B̂
′
[p−k]oto

′
tB̂[p−k] − µ̂(o)o′tB̂[p−k] − B̂

′
[p−k]otµ̂

(o)′ + µ̂(o)µ̂(o)′)) = 0

Σ̂
(o)

=
1

T − 1

T∑

t=2

diag
(
B̂
′
[p−k]oto

′
tB̂[p−k] − µ(o)µ(o)′) (296)

G.3 State Evolution Process Parameter Optimisation

To find the new parameters, M̂ = (Â, Σ̂
(x)
, µ̂(x)), for the state evolution process the following

auxiliary function has to be maximised

Qs(M,M̂) = (297)

−1

2

T∑

t=2

(
log |Σ̂(x)|+

(
B̂
′
[k]ot − ÂB̂

′
[k]ot−1 − µ̂(x))′Σ̂(o)−1(

B̂
′
[k]ot − ÂB̂

′
[k]ot−1 − µ̂(x)))
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To find the new state evolution noise mean vector, the auxiliary function in Eq. 297 can be
differentiated with respect to µ̂(x) as follows

∂Qx(M,M̂)

∂µ̂(x)
= Σ̂

(x)−1
T∑

t=2

(
B̂
′
[k]ot − ÂB̂

′
[k]ot−1 − µ̂(x)) = 0 (298)

µ̂(x) =
1

T − 1

T∑

t=2

(
B̂
′
[k]ot − ÂB̂

′
[k]ot−1

)
(299)

Differentiating Eq. 297 with respect to Â and setting the resulting equation to zero, the new
state transition matrix can be solved remembering the diagonality assumption

∂Qx(M,M̂)

∂Â
= Σ̂

(x)−1
T∑

t=2

(
B̂
′
[k]oto

′
t−1B̂[k] − µ̂(x)o′t−1B̂[k] − ÂB̂

′
[k]ot−1o

′
t−1B̂[k]

)
= 0(300)

Â =

(
diag

(
B̂
′
[k]

( T∑

t=2

oto
′
t−1

)
B̂[k] −

1

T − 1
B̂
′
[k]

( T∑

t=2

ot
)( T∑

t=2

ot−1

)′
B̂[k]

))

(
diag

(
B̂
′
[k]

( T∑

t=2

ot−1o
′
t−1

)
B̂[k] −

1

T − 1
B̂
′
[k]

( T∑

t=2

ot−1

)( T∑

t=2

ot−1

)′
B̂[k]

))−1

(301)

which follows like the state transition matrix in case of linear dynamical systems in Appendix E.3.
To find the new state evolution noise covariance matrix, the auxiliary function in Eq. 297 can

be differentiated with respect to the inverse of Σ̂
(x)

as follows

∂Qx(M,M̂)

∂Σ̂
(x)−1

= (302)

1

2

T∑

t=2

(
Σ̂

(x) −
(
B̂
′
[k]ot − ÂB̂

′
[k]ot−1 − µ̂(x))(B̂′[k]ot − ÂB̂

′
[k]ot−1 − µ̂(x))′) = 0

Σ̂
(x)

=
1

T − 1

T∑

t=2

diag
(
B̂
′
[k]oto

′
tB̂[k] −

[
Â µ̂(x)

] [
B̂
′
[k]oto

′
t−1B̂[k] B̂

′
[k]ot

]′ )
(303)

which of course holds only if diagonal covariance matrices are used.
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