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ABSTRACT
Recently, structured precision matrix models were found to outper-
form the conventional diagonal covariance matrix models. Min-
imum phone error discriminative training of these models gave
very good unadapted performance on large vocabulary continu-
ous speech recognition systems. To obtain state-of-the-art perfor-
mance, it is important to apply adaptation techniques efficiently to
these models. In this paper, simple row-by-row iterative formulae
are described for both MLLR mean and constrained MLLR trans-
form estimations of these models. These update formulae are de-
rived within the standard expectation maximisation framework and
are guaranteed to increase the likelihood of the adaptation data.
Efficient approximate schemes for these adaptation methods are
also investigated to further reduce the computation. Experimental
results are presented based on the MPE trained Subspace for Pre-
cision and Mean models, evaluated on both broadcast news and
conversational telephone speech English tasks.

1. INTRODUCTION

The Hidden Markov Model (HMM) is the most popular acous-
tic model for continuous speech recognition tasks. The output
probability distribution associated to each state is typically repre-
sented by a multivariate Gaussian Mixture Model (GMM). An is-
sue when using multivariate Gaussians is how to model correlation
efficiently in the feature in that increasing the feature dimension
dramatically increases the number of model parameters and com-
putational cost (curse of dimensionality). Typically, a diagonal
covariance matrix approximation is employed to circumvent this
problem. Gaussian components are used to model the correlation
implicitly. Recently, efficient forms of explicit correlation mod-
elling have been achieved using structured precision matrix ap-
proximations. For examples, the Semi-tied Covariance (STC) [1],
Extended Maximum Likelihood Linear Transform (EMLLT) [2]
and Subspace for Precision and Mean (SPAM) [3] models have
been found to yield good performance gains on LVCSR systems
using both Maximum Likelihood (ML) [4, 5, 6] and Minimum
Phone Error (MPE) [6] training criteria. In general, these struc-
tured precision matrix models can be expressed in a general form
of basis superposition:

P m =

n∑
i=1

λ
(m)
ii Si =
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i=1
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ii
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′
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whereSi is the ith basis matrix andλ(m)
ii is the corresponding

basis coefficient.Si is a symmetric matrix with an arbitrary rank,
R, which can be further decomposed into a superposition ofR
basis vectors,air. P m is constrained to be positive-definite. If,
Si is rank-1 (R = 1), equation 1 becomes a STC model when
n = d and an EMLLT model whend < n ≤ d

2
(d+1). Removing

the rank-1 constraint gives the SPAM model (with unconstrained
mean), which gave the best performance on LVCSR systems [6].

Previously, MLLR speaker adaptation and Speaker Adaptive
Training (SAT) techniques have been applied to EMLLT [4] and
SPAM models [5]. However, the estimation of the adaptation trans-
forms proposed in the papers does not have an efficient closed-
form solution and was achieved using standard numerical optimi-
sation techniques. This paper presents efficient forms of speaker
adaptation and adaptive training of these precision matrix mod-
els, focusing primarily on the MPE discriminatively trained SPAM
models. Iterative row-by-row update formulae are derived within
the Expectation Maximisation (EM) framework for both MLLR
mean and constrained MLLR adaptations. Efficient approximate
schemes to further reduce computational cost are also discussed.

The rest of this paper is organised as follows. Section 2 de-
scribes a general form of row-by-row iterative update approach,
which forms the basic foundation for the EM-based transform esti-
mation formulae for both the MLLR mean and constrained MLLR
adaptations. The derivation of these update formulae are given in
Sections 3 and 4 respectively. Section 5 then presents a more com-
pact statistics required for SPAM models by exploiting the preci-
sion matrix structure. Finally, experimental results on Broadcast
News (BN) and Conversational Telephone Speech (CTS) English
tasks are given in Section 6.

2. ADAPTATION OF PRECISION MATRIX MODELS

An important aspect of any form of improved acoustic models is
the applicability of adaptation techniques to these models. This pa-
per considers the Maximum Likelihood Linear Regression (MLLR)
mean [7] and constrained (CMLLR) [8] adaptation schemes for
the structured precision matrix models. Estimating the MLLR
mean transforms for full covariance matrix systems using the di-
rect closed-form solution [9] is computationally expensive and in
some cases results in numerical stability issues. In this paper, an
efficient row-by-row iterative update approach is presented. Diag-
onal precision matrix approximation is used to initialise the trans-
forms. The results given later shows that such initialisation scheme
provides a very good approximation that subsequent iterative up-
dates may be safely omitted. Also, previous work on SAT training
of EMLLT [4] and SPAM [5] models was realised based on nu-
merical optimisation techniques. Again, an efficient row-by-row
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iterative closed-form solution is derived in this paper.
The row-by-row iterative update formulae for MLLR mean

and CMLLR transformation matrices are derived within the stan-
dard Expectation Maximisation (EM) framework. The general
form of the auxiliary function to be maximised is given by

Q(W r) = K + ηβ log |W r| − 1

2

Mr∑
m=1

Tr(P mX(mr)) (2)

whereW r is the transformation matrix,K subsumes terms inde-
pendent ofW r, η is a selector variable that is set to 0 and 1 for
MLLR mean and CMLLR respectively,β =

∑Mr
m=1

∑T
t=1 γm(t),

Mr is the number of component in regression classr, γm(t) is the
posterior of componentm at timet and

X(mr) =

T∑
t=1

γm(t)(xmt −W rymt)(xmt −W rymt)
′

xmt and ymt can either be the observation vector or the mean
vector depending on the adaptation scheme.ymt is the vector to
be adapted. Differentiating equation (2) with respect towr

i , theith
row of W r, yields

∂Q(W r)

∂wr
i

= ηβ
ci

ciwr′
i

−wr′
i G(rii) + k(ri) (3)

whereci is the cofactors of theith row ofW r and

G(rij) =

Mr∑
m=1

pm(i, j)Gm (4)

k(ri) =

Mr∑
m=1

pm(i)Km −
d∑

j=1,j 6=i

wr
j G(rij) (5)

pm(i, j) and pm(i) denotes the(i, j)th element andith row of
P m respectively. The component level statistics are given by

Gm =

T∑
t=1

γm(t)ymty
′
mt and Km =

T∑
t=1

γm(t)xmty
′
mt

Next, row-by-row estimation formulae for MLLR mean and CM-
LLR adaptations are derived in Section 3 and 4 respectively.

3. MLLR MEAN ADAPTATION

MLLR adaptation of the mean vector [7] can be written as

µ̂m = Arµm + br = W rξm (6)

whereAr andbr are thed × d linear transformation matrix and
the bias vector respectively associated to the regression class,r
(m ∈ r). µm and µ̂m denote the original and adapted mean
vectors respectively for componentm. W r = [Ar | br] and
ξm = [µ′m 1]′ are the augmented transformation matrix and mean
vector respectively. These parameters can be estimated by solving
equation (3) withxmt = ot andymt = ξm. Thus,

Gm = βmξmξ′m and Km = umξ′m

where the sufficient statistics are given by

βm =

T∑
t=1

γm(t) um =

T∑
t=1

γm(t)ot

With η = 0, equating (3) to zero and solve forwr
i gives the ML

update as

wr
i = G(rii)−1k(ri)

This update formula is dependent on the other rows through the
term k(ri) in equation (5). Hence, an initial estimate ofW r is
required and an iterative approach used. AlthoughW r can be
initialised as an identity matrix, a better starting value may be
found by using a diagonal precision matrix approximation, where
pm(i, j) = 0 for j 6= i. Equation (5) simplifies to that of a di-
agonal covariance matrix system [7]. In fact, the results presented
later indicates that subsequent row-by-row iterations yield very lit-
tle gain in terms of likelihood and the diagonal precision matrix
approximation itself gives good estimates.

4. CONSTRAINED MLLR ADAPTATION

A simple way to achieve variance adaptation for structured pre-
cision matrix models is to train speaker-dependent basis matri-
ces. The efficiency of this kind of variance adaptation depends
on the computational cost of the basis matrix update of the pre-
cision matrix model. This approach is computationally inefficient
for EMLLT and SPAM models. Alternatively, feature space CM-
LLR transforms may be used, where a single transformation ma-
trix is estimation for both the mean vector and the covariance ma-
trix. This can also be viewed as a feature-based speaker normal-
isation [10] technique where speaker-dependent feature transform
is estimated. In CMLLR, a linear feature transformation matrix,
W r = [Ar | br], is estimated for each regression class,r such
that

ζ̂t = Arot + br = W rζt (7)

whereζt and ζ̂t are the augmented vectors of the original and
adapted observation respectively. Again, equation (2) is maximised
to obtain the ML estimate ofW r, but now withxmt = µm and
ymt = ζt. Thus,

Gm =

T∑
t=1

γm(t)ζtζ
′
t and Km = µmu′

The sufficient statistics areβ, Gm andum =
∑T

t=1 γm(t)ζt. Set-
ting equation (3) to zero withη = 1 yields the ML update for each
row of W r as

wr
i = α

(
ci + λk(ri)

)
G(rii)−1 (8)

Equation (8) is similar to the update formula derived for the case of
diagonal covariance matrix [10], differed by the termk(ri), which
also depends on other rows in this case.α is found by solving
a quadratic equation as described in [10]. It is easy to see that
whenpm(i, j) = 0 for j 6= i, equation (8) simplifies to the case of
diagonal covariance matrix systems.

Unlike the case of MLLR mean, diagonal precision matrix
approximation does not work for constrained MLLR because the
estimated transforms operates on both the mean vectors and the
precision matrices. However, the CMLLR transforms estimation
process for SPAM models can be approximated using a diagonal
covariance matrix model. For good approximation, this model
should be the starting point used to train the SPAM model.
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5. SUFFICIENT STATISTICS FOR SPAM MODELS

The required statistics associated to each regression classr for
both MLLR mean and CMLLR adaptations areGrij for 1 ≤ i ≤
d; 1 ≤ j ≤ i andkri for 1 ≤ i ≤ d, as given by equations (4) and
(5) respectively. The number of parameters to be stored for these
statistics are[ d

2
(d + 1)]2 + d2, which is dominated byG(rij). For

structured precision matrix models, the memory requirement can
be reduced by exploiting the basis superposition structure. Substi-
tuting equation (1) into equation (4) yields

G(rij) =

n∑

b=1

sb(i, j)G
(rb) and G(rb) =

Mr∑
m=1

λ
(m)
bb Gm

wheresb(i, j) denotes the(i, j)th element of thebth basis matrix,
Sb and1 ≤ b ≤ n. So, instead of storingd

2
(d+1) terms ofG(rij),

only n terms ofG(rb) are needed. Thus, the required memory
is reduced from the orderO(d4) to O(nd2). These statistics are
directly related to those presented in [5] whereGk

1 andGk
4 are the

same asG(rb) for MLLR mean and CMLLR cases respectively.
The notationk used in [5] has the same meaning asb used in this
paper. Also,Gk

3 relates toK(rb) =
∑Mr

m=1 λ
(m)
bb Km.

6. EXPERIMENTAL RESULTS

Experimental results are presented based on two LVCSR English
tasks: Broadcast News (BN) and Conversational Telephone Speech
(CTS). 12 PLP coefficients were used with theC0 energy term,
first, second and third derivatives to form a 52-dimensional feature
vector. Side-based vocal tract length, cepstral mean and cepstral
variance normalisations were only used in the CTS task. Systems
were built using triphone models with approximately 6000 distinct
states, within the 39-dimensional HLDA subspace. CMLLR trans-
forms were used for building SAT models. Instead of training the
SAT+SPAM system from the SPAM system, the training approach
described in [5] was adopted, where a speaker adaptively trained
diagonal covariance matrix system (SAT+DIAGC) was used as the
starting point. In other words, the SPAM precision matrix mod-
elling was performed within the SAT feature space. In testing,
MLLR mean transforms for the SPAM models were estimated us-
ing two row-by-row iterations as described in Section 3 (mllr ) or
simply approximated using the diagonal precision matrix assump-
tion (mllr+ ). Similarly, the CMLLR transforms were estimated
either using the exact method (cmllr ) as described in Section 4
or approximated using a SAT+DIAGC system (cmllr+ ).

Figure 1 illustrates the change in the average log likelihood of
one speaker with increasing number of iterations for both MLLR
mean and CMLLR adaptations. On each iteration, the component
alignment was recomputed based on the transforms estimated in
the previous iteration. The average log likelihood was found to in-
crease upon every iteration. In Figure 1(a), there is very little dif-
ference between themllr andmllr+ methods for MLLR mean
transform estimation. For CMLLR, the log likelihood gain from
using thecmllr method is about twice that of the approximated
method,cmllr+ , as depicted in Figure 1(b).

Word Error Rate (WER) performance was also examined. For
BN task, 16-component models were trained using 374 hours of
bnetrain04sub training data. This consists of 143 hours of
carefully annotated data and 231 hours of lightly supervised data.
Adaptation experiments were conducted based on three 3-hour test
sets: eval03 , dev04 and dev04f . 4-gram rescoring lattices

0 5 10
−54.7

−54.65

−54.6

−54.55

−54.5

−54.45

−54.4

−54.35

−54.3
(a)

iterations

A
ve

ra
ge

 lo
g 

lik
el

ih
oo

d

mllr+
mllr

0 5 10
−59

−58

−57

−56

−55

−54

−53
(b)

iterations

A
ve

ra
ge

 lo
g 

lik
el

ih
oo

d

cmllr+
cmllr

Fig. 1. Change in average log likelihood of one speaker on CTS
with increasing number of MLLR iterations for (a) MLLR mean
and (b) CMLLR, for 28-component SPAM model

were generated using an adapted HLDA system1. Rescoring re-
sults are summarised in Table 1. For MLLR mean adaptation, a

System
Adapt Test Set WER (%)
Config eval03 dev04 dev04f

DIAGC mllr 10.7 13.2 20.0

SPAM
mllr+ 10.6 13.1 19.5
mllr 10.6 13.1 19.5

SAT+DIAGC cmllr 10.6 13.1 19.5

SAT+SPAM
cmllr+ 10.2 12.7 18.6
cmllr 10.2 12.8 18.8

Table 1. Comparisons of MLLR mean and CMLLR adaptations
for 16-comp DIAGC and SPAM models on BN system

gender dependent (GD) DIAGC system was chosen as the base-
line. This system gave WERs of 10.7%, 13.2% and 20.0% on the
three test sets. The exceptionally poor performance ondev04f
is due to the large mismatch between the training and the test
data. Bothmllr+ and mllr configurations yielded the same
performance, which is 0.1% absolute better than the baseline on
eval03 anddev04 . The gain ondev04f is larger, 0.5% abso-
lute. This shows that MLLR mean adaptation can be efficiently ap-
proximated with the diagonal precision matrix assumption for the
SPAM models and other forms of precision matrix models such as
EMLLT.

Also, two forms of CMLLR adaptation for SAT+SPAM mod-
els were compared using the SAT+DIAGC system as the baseline.
This system has the same WER performance as the MLLR mean
adapted SPAM system. Thecmllr+ configurations gained 0.4%
absolute on the first two test sets and 0.9% ondev04f . Again,
there is a large gain from the adapted SPAM models due to the mis-
match between the training and test sets. Similar performance was
obtained oneval03 using the exactcmllr configuration. Sur-
prisingly, 0.1% and 0.2% degradations were observed ondev04
anddev04f although the likelihood of the test data given these
transforms was higher than those approximated usingcmllr+ .
Apart from the gains from themllr+ andmllr SPAM models on

1Similar to theP2 stage of the CU-HTK evaluation system
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eval03 anddev04 , all the gains shown in Table 1 were found
to be statistically significant2.

Similar comparisons were made on the CTS task. 28-component
models were trained using 400 hours of Fisher data (fsh2004sub )
and evaluated on two test sets.eval03 consists of two parts,
Switchboard (s25 ) and Fisher (fsh ), 3 hours each.dev04 , on
the other hand, is a 3 hours test set, containing only Fisher data.
Table 2 summarises the results of various adaptation configura-

System
Adapt eval03 dev04
Config s25 fsh Avg Avg

DIAGC mllr 26.1 18.1 22.3 18.4

SPAM
mllr+ 25.5 17.9 21.9 17.9
mllr 25.5 18.0 21.9 18.0

SAT+DIAGC cmllr 25.8 17.8 21.9 17.9

SAT+SPAM
cmllr+ 25.0 17.6 21.4 17.6
cmllr 24.9 17.5 21.3 17.5

Table 2. Comparisons of MLLR mean and CMLLR adaptations
for 28-comp DIAGC and SPAM models on CTS system

tions on CTS. The WERs of the baseline DIAGC system after
MLLR adaptation were 22.3% and 18.4% oneval03 anddev04
respectively. SPAM model with diagonal precision matrix approx-
imated MLLR adaptation gave 0.4-0.5% gains, although a large
proportion of the gain oneval03 came froms25 (0.6%). Per-
forming two additional row-by-row iterations, although improved
the likelihood, degraded the WER performance by 0.1% on the
fsh part of eval03 anddev04 . The SAT+DIAGC system is
about 0.3%-0.5% absolute better than the non-SAT baseline on
both test sets. Using this model to estimate the CMLLR trans-
forms for the SAT+SPAM system (cmllr+ ) improved the WERs
by 0.5% and 0.3% absolute oneval03 anddev04 respectively.
Again, the gain ons25 dominated for theeval03 test set. Exact
implementation using thecmllr method gave a consistent im-
provement of 0.1% on all test sets.

Finally, a state-of-the-art SAT+SPAM system was trained us-
ing the 2180 hoursfsh2004h5etrain03b training data. This
training data comprises both Fisher (1820 hoursfsh2004 ) and
Switchboard (360 hoursh5etrain03b ) data. This system was
evaluated on botheval03 and dev04 test sets and compared
with the SAT+DIAGC system.

System
Adapt eval03 dev04
Config s25 fsh Avg Avg

SAT+DIAGC cmllr 22.7 15.5 19.2 16.1

SAT+SPAM
cmllr+ 22.1 15.0 18.6 15.7
cmllr 22.1 15.0 18.7 15.5

Table 3. Comparisons of CMLLR adapted 36-comp SAT+DIAGC
and SAT+SPAM models on state-of-the-art CTS

In Table 3, the WER performance of the baseline SAT+DIAGC
system was 19.2% and 16.1% oneval03 and dev04 respec-
tively. As before, the difference betweencmllr andcmllr+ for
SAT+SPAM is small. Comparing to SAT+DIAGC, the SAT+SPAM
system gained about 0.5-0.6% and 0.4-0.6% absolute oneval03
anddev04 respectively. These gains were found to be statisti-

2Significance tests were carried out using the NIST Scoring Toolkit.

cally significant. Similar gains were also found with more com-
plex adaptation techniques [11].

7. CONCLUSIONS

This paper has examined the linear adaptation of structured preci-
sion matrix models combining the speaker adaptive training, SPAM
precision matrix modelling and MPE discriminative training in
state-of-the-art large vocabulary continuous speech recognition sys-
tems. In contrast to the previous work, this paper presented simple
iterative row-by-row update formulae for both MLLR mean and
constrained MLLR adaptation of structured precision matrix mod-
els which guanratees to increase the likelihood of the adaptation
data. Further approximations of these adaptation schemes to re-
duce computational cost were found to yield similar performance.
Experimental results were presented based on MPE discrimina-
tively trained SPAM models for broadcast news and conversational
telephone speech English tasks. The SAT+SPAM system gave the
best performance gain of approximately 0.5% absolute over the
SAT+DIAGC system.
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