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Abstract

Within this paper a new framewvork for Bayesiartradking is
presentedwhich approximaesthe posteriordistribution at
multiple resolutions.We proposea tree-basedepresenta-
tion of thedistribution,wheretheleavedefnea partition of
the statespacewith piecaviseconstamn density Theadvan-
tage of thisrepresentatioris that regions with low probalil-
ity masscanbe rapidly discaidedin a hierarchical seach,
andthe distribution can be approximaedto arbitrary pre-
cision.We demostratetheeffectivenessf thetechniqueby
usingit for tracking 3D articulated and non+igid motion
in front of cluttered badkground. More specifically we are
interestedn estimatinghejoint angles positionandorien-
tation of a 3D hard modé in orderto drive an avatar

1. Intr oduction

Oneof the fundamentalprablemsin vision is thatof track-
ing objectsthroudh sequenesof images.Within this paper
we presenta geneit Bayesianalgorithm for trackingthe
3D positionandorientatio of rigid or non-rigid objects(in

ourapplicatiorhand)in monaularvideo sequencesareat
strideshave beenmadein thetheay andpracticeof track-
ing, e.g. the developmentof particlefilters recoqizedthat
a key aspectin trackingwasa betterrepresentgon of the
posteror distribution of model paraméers[10, 12]. Parti-

clefilters go beyond the uni-madal Gaussiarassumptia of

the Kalmanfilter by apprximating arbitray distributions
with a setof randbm samples. The advartageis that the
filter candealwith clutter and ambigioussituationsmore

effectively, by not placingits bet on just one hypothesis.
However, a major concen is that the numter of particles
requred increasesexporentially with the dimersion of the
statespace[6, 13]. Worsestill, evenfor low dimensioml

spaceghereis atendenyg for particlesto becane concen-
tratedin a singlemodeof the distribution [7]. Within this
paper we considertracking anarticulatedhard in cluttered
images, withoutthe useof markers,with the aim of driving

an avatar In generalthis motion has27 degrees of free-
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dom(DOF), 21 DOF for thejoint anglesand6 for orienta-
tion andlocation[15]. However, by repaameterizatiorthe
statespacecanberedwced. Wu etal. [22] showv thatdueto
the correlationof joint anglesthe statespacefor the joints
canbe reducedto 7 DOF by applying PCA, with loss of
only 5 percent of information,however trackirg is demm-
stratedor afixedview with noclutterandno hard rotation.
We demorstrate8 DOF trackirg in clutterwith substantial
self-occlsion.

There are several possiblestratgies for estimationin
high dimersional spaces.Oneway is to usea sequetial
search,in which someparaméers are estimatedirst, and
then others,assumingthat the initial setof parametes is
correctly estimatedThis stratgly may seemsuitablefor ar
ticulatedobjects. For example Gavrila andDavis [9] sug-
gest,in the contet of human body tracking, first locating
the torsoandthenusingthis informationto searchfor the
limbs. Unfortunately this appoachis in gereralnotrohust
to differentview points and self-ocdusion. MacCormick
andlsard[13] proposeaparticlefiltering framework for this
typeof methd in thecontext of handtrackirg, factorirg the
posterio into a product of condtionally indepeidentvari-
ables. This assumptioris essentiallythe sameas that of
Gavrila andDavis, andtrackinghasbeendemastratednly
for asingleview pointwith no self-ocdusion.

The developmen of particlefilters was primarily moti-
vatedby theneedto overcomeambigiousframesin avideo
sequenesothatthetrackeris ableto recover. Anothe way
to overcomethe prablem of losinglock is to treattracking
asobjectdetectiomteachframe. Thusif thetargetis lostin
oneframe, this doesnot affectary subsequet frame.Tem-
platebasedmethod have yieldedgoad resultsfor locating
defamableobjectsin ascenewith no prior knowledge,e.g.
for hand or pedestriag[1, 8, 16. Thesemethod aremade
robust andefficient by the useof distancetransfoms such
asthechamferor Hausdoff distancebetweertemplateand
image[2, 11], andwereoriginally devdlopedfor matching
asingletemplate.A key suggestiorwasthatmultiple tem-
platescould be dealtwith efficiently by building a tree of



templaes[8, 14]. Given the succesof thesemethod, it
is naturalto considemwhetheror not tracking might not be
besteffeced by templatematchirg usingexhatstive search
at eachframe. The answerto this questionis generally
no, becausedynanic information is neeed, firstly to re-
solve ambiguwus situations,and secondly to smodh the
motion. One apprachto embedtemplatematchirg in a
probabilistic trackirg framework was proposedby Toyama
and Blake [21]. However, it is acknavledgedthat “one
problemwith exempar setsis thatthey cangrow exponen-
tially with objectcompexity. Treestructuresappearto be
an effective way to dealwith this prodem, andwe would
like to find effective waysof usingthemin a probabilistic
setting”[21]. Within this paperwe addessthis prodem.
The next sectionreviews work on tree-laseddetection
and describe how a tree can be usedto partition a state
space.A shortreview of Bayesiarfiltering is givenin sec-
tion 3. In section4 we shav how the tree-baedpartition
of the statespacecanbe embedledin a Bayesiarfiltering
framework. Thelikelihoodandstatetransitiondistributions
for theapplicdion of handtrackingarederivedin section5.
Section6 shavs trackirg resultson videosequence

2. Tree-Basedetection

Whenmatchingmary similar templatego animage,a sig-
nificart speed-p can be achiezed by forming a template
hierachy and using a coarseto fine search[8, 14]. The
ideais to groupsimilar templatesandrepresenthemwith
asinglepratotypetemplatetogetter with anestimateof the
vatianceof the errorwithin the cluster whichis usedto de-
fine amatchingthreshd¢d. The prototypeis first compared
totheimage only if theerroris below thethresholdarethe
templaeswithin the clustercomparedto the image. This
clusterirg is dore at various levels,resultingin a hierachy,
with thetemplatesat theleaf level covering the spaceof all
possibleemplatesGavrila [8] suggest$orming thehierar
chy by recusive (off-line) clustering resultingin efficient
ondine evaluation. Whenthe exemgar templatesareclus-
teredusinga costfunction basedon chamferdistance the
objective beingnot to missobjectswhenpruring sub-tees
duiing the search.However, it is not straightbrward how
to give suchguaanteesvhenincorpaatinga prior for each
templae. In sectiond we shav how atree-basealgorithm
canbe formulatedin a Bayesiansetting,usingboth likeli-
hoad andprior information.

If aparanetric objectmodelis availablg another option
to build thetreeis by partitionng the statespace.Let this
treehave L levels,eachlevel [ definesa partitionP; of the
statespaceinto N; distinctsets! = 1,..., L, suchthat
Py = {S" :i = 1,...,N;}. Theleavesof the treede-
fine the finest partition of the statespaceP; = {S :
i = 1,...,Np}. Suchatreeis depictedschematicallyin

figure 1(a) for a singlerotation paraneter This treerep-
resentatiorhasthe advartagethat prior informationis en-
codel efficiently, astemplatesvith largedistancen param-
eterspacearelikely to bein differentsub-trees. In our
particlar case a paranetric threedimensiomal handmodé

is used,shavn in figure 3. Themodelhas6 DOF for rigid

body motion and21 DOF for fingerarticulation[18].

Detection as Optimal Estimation It is possible,after
reacling the leaf level in a searchtree, to usea gradien

descenmethodto obtainthe globally optimal paraneters.
This presentsa tradeoff betweenthe numbe of function

evaluationsrequiredfor tree-baseéstimatiorandthenum-

ber required for gradien descent,i.e. how mary levels

shouldtherebe in the tree before optimizdion is started?
Furthemorewe would like to guarateethat optimization,

whenstartedrom oneof thenodcesattheleaflevel, yieldsa

global optimum It maybearmguedthatthereis no needfor

a paramé&ric model and that an exempar-basedapprach

couldbefollowed. However, for mocelswith mary degrees
of freecbm the storagespacefor templatedecanesexces-
sive. Theuseof aparanetricmodelallowsthecombiration

of an on-line andoff-line apprachin the tree-basedlgo-

rithm. Oncetheleafleve is reachedit is possiblethatwe

arestill not nearto the global minimum, andfurther child

templatesanbegeneated.

Hierarchicaldetectiorworks well for locatinga handin
images[20] , andyet oftenthereare ambigwussituations
thatcouldbe resohed by usingtempaoal information. The
next sectiondescribesheBayesiarframework for filtering.
Filteringis the prodem of estimatinghe state(hiddenvari-
ables)of a systemgiven a history of obsevations.

3. BayesianFiltering

Define,attime ¢, the stateparanetervectoras@,, andthe
data(obsenations)asD;, with Dy.;—1, beingthesetof data
from time O to ¢t — 1; andthe dataD,; are conditianally
independen at eachtime stepgiventhe 6. In our specific
application 8, is the stateof the hand(setof joint angles,
locationandoriertation)andD is theimageat time ¢ (or
someset of feature extracted from thatimage). Thus at
time ¢ the posteriordistribution of the statevectoris given
by thefollowing recursverelation

p(D¢]6:)p(0¢|Do:;—1)

0,(Do.) = ,
p(0:[Dox) p(D¢|Do:¢—1)

1)

wherethe nomalizing corstantis

p(Di[Dou_1) = / p(D1]0,)p(8:Dos_1)d6;.  (2)
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Figure 1: Tree-basedestimation of the posterior density. (a) Associatedvith thenodes at each levelis a nornroverlappng
setin the statespace defining a partition of the statespace(here rotationangle). Theposteriorfor eat noce is evaluaed
usingthe centerof ead set, depictedby a hard rotatedby a specificande. Subtreesof nodes with low posterior are
not further evaluaed. (b) Corresponéhg posterior density(cortinuous)and the piecevise constantapproximationusing
tree-b@edestimation. Themodesf thedistribution are approximatedwith higher precisionat ead level.

The term p(8¢|Do.t—1) in (1) is obtaired from the
Chapnan-Kolmaogoror equation

p(0¢|Do.t—1) = /P(9t|9t—1)P(9t—1|D0:t—1)d9t—1 (3)

with theinitial prior distributionp(84|Dg) assumednown.
It canbe seenthat (1) and(3) both involve integrals. Ex-
ceptfor certainsimple distributions theseintegrals arein-
tractalbe andso apgoximation method mustbe used. As
hasbeenmentiored, Monte Carlo methals representone
way of evaluatirg theseintegrals. However, as hasbeen
pointed out, thereare mary prablemswith particle filters
in high dimensioml spaces.In contrasthierachical detec-
tion providesa very efficient way to samplethelikelihood
p(D¢|8:) in a deterministicmanner even whenthe state
spacss highdimensimal; asthenunberof templatesn the
treeincreasesxponentiallywith thenumbe of levelsin the
tree.Thisleadsusto considetheseminalappoachof Bucy
andSennd5], whichis to divide up the statespacento N
non-overlappirg sets(acoven, {S: : i = 1,...,N,}, just
asthetemplatesn the tree cover the regions of parameter
space.Typically this methoalogy hasbeenappliedusing
aneverly spacedyrid andis thusexponentiallyexpensie as
the dimersion of the statespaceincrease®.g.[3]. Within
this paperwe considercombiring the trackingprocessand
the empiically successfuprocessof tree-basedietection
aslaid outin section2 resultingin anefficientdeterninistic
filter.

4. Tree-Basedilterin g

Ouraimis to designanalgaithm thatcantake advartageof
the efficiency of the tree-basedearchwhilst alsoyielding
agoa appraimationto Bayesiarfiltering. Sorensa [17]
identifiesthreequestiongo be answeredvhendesigninga
‘grid-basedfilter, thequestion{andour answershpre:

1. Aninitial partitionmustbe definedon the statespace.
In our casea natural multi-resolutio partition is pro-
videdby the treeas givenin Section2. Thuswe will
conside a grid definecbythelowestieavesof thetreg
PrL.

2. A procedire mustbe given for updatirg the partition
astime progesses. Becausehe distribution is char-
acterizedby beingalmostzeo in large regions of the
state spacewith someisolated peaks, many of the
grid regions can be discaided as possessingegligi-
ble probablity mass. Thetree-basedearch provides
an efficiert wayto rapidly conceatrate computdion on
significant regions

3. Giventhepartitionamethal for appraimatingthedis-
tributionneeddo bedefined At thelowestlevel of the
tree the distribution will be assumedo be piecavise
constam, which will beseerto allow for somereason-
ableappoximationsto be madeto the Bayesia filter-
ing equdions.



The planis to encod the posteria distribution usinga
piecavise constantdistribution over the leaves of the tree.
Thisdistributionwill bemostlyzerofor mary of theleaves.
Toformalizethis asadiscreteproblem,define® # asthepa-
rameer valuesin the statespaceintegratedover theregion
S attimet, i.e.

wel)= [ poas. @

For eachlayer of thetreewe corsiderthe distribution over
the S andrecastthe equaions of Bayesiarfiltering, (1)-
(3), to upcatethesedistributions. Theinitial prior distribu-
tion for the discretestatesp(©i|Dy) canbe obtaired by
integrationfrom p(8¢|Dy), as

p(65"D =/ P
(65" Do) B,cS'

Next thediscreterecusive relatiors aredefined againthese
areobtairedfrom the contiruouscaseby integration.

Given the distribution over the leaves of the tree,
p(©iL Do 1), at the previoustime stept — 1, equation
(3) now becones a transitionbetweendiscreteregions in
statespace:

(60| Do)dBo. (5)

Ny
p(0f'|Doy 1) =) p(0'16i",) p(0}*|Do:1)- (6)
=1
Assuming the conditinal distribution, p(0¢|6:_1), is
known, then

@il \ —
p(0110:71) /OteS” /0,_168“ p(6:]6;1)d6,dO; .
(7)
Although this is somevhat intractable,it canbe approi-
matedusing numeical integration method and storedin
a look up table aheadof time. (An alternatve apprach
is to acqure large amourts of training dataandlearnthe
statetransitionprobabilities.) This is not the casefor the
posteior p(0©7'|Dy.¢). Given thatthe distribution of 8 is
piecavise constan within eachS?, thenfor 8; € S7-:
p(0¢|Do:_1) = p(@il|D0:t—1)/’Yﬂa wherey7 is the vol-
umeof S?'. With this key assumptiorthe posterior(1) be-
comes

p(D;07") p(87'|Do.4—1)

04 Dy.;) = il 8
PO Do) = B, D) 1 ®
whee
P(Dt|@§l) =/ lp(Dt|0t)d0t- 9)
0.cS
Thenormadization constants
p(D¢|Do:;1) Zp pjef) XOBes) (1)

it

Thelikelihod in (8) andnomalizing constani{10) canna
becompuedoff-line asthey degendonthedata,D;, attime
t. Theintegralin (9) is oftenintractalle hencetheapprach
we adoptis to apprximateit by usingtherectangleule or
Riemanrsumwith onesubdiision persetS?!, basednthe
height (likelihoad) estimatedat 87!, the centerof S%*:

p(Dy|0]") ~ ~+/'p(D,|67). (11)

As the number of partitiors increaesthis beconesanin-
creasinty closeapprximationto thetruedistribution.

Having laid outBayesiarfiltering overdiscretestateghe
guestionariseshow do we combire the theorywith the ef-
ficient tree-lasedalgorithm previously described Using a
breadh first searctof thetree,the posterioa maybeappro-
imatedby using(6)-(11) at eacheachlevel. At eachlevel
the regions with high posteriorareidentifiedandexplored
in finerdetailin thenext level (Figurelb). Of courseit is to
beexpectedthatthehigherlevelswill notyield accuateap-
praximationsto the posterior However, just asfor the case
of detectiontheupperlevelsof thetreeareusedto discard
inadeqiatehypothesesfor which the negative log posterior
of the setexceedsathreshdd (whichis adaptedo thelevel
of thetree),andverily efficiengy is assuredThethreshold
atthehigherlevelsof thetreearesetconsevatively soasto
not discardgoad hypothese$oo soon An overview of the
algotithm is given in Algorithm 1.

Algorit hm 1 Tree-BasedFiltering
1. Initialization,t =0

At thefirst level of thetree,l = 1
p(0}'Do) = £p(Do|0F")

At higherlevelsof thetree,l > 1
(07! Do)= L p(Do|0F) if p(®(k)(l 1)|D )>pi—1
(G(k)(l YD,) otherwise
2. Attimet >0

At thefirst level of thetree,l = 1
p(87' Do) = 7 p(D:[07") p(©}' [Do:t-1)

At higherlevelsof thetree,! >1
%P(Dt|®gl)p(@§l|D0:t71)

it p(O§ "™ Do) >pi—1
p(@§’°>“*” |Do.¢) otherwise

p(0'|Dg.4)=

where

. N _ )
p(®§l|D02t_1) =24 p(G)ilI@%’il) P(®%£1|D0:t—1)
K isthenormdization constanin eachequatio

k is the paren noce at the previouslevel of thetree

pi is thethresholdvalueatlevel [ of thetree




5. Formulating Lik elihood and Tran-
sition Distrib ution

This sectionexplains thelik elihoad andstatetransitiondis-
tribution which areusedfor tracking ahand.

5.1 Formulating the Lik elihood

Thelikelihoodfunction relatesthe obsevationsD; to the
unknown state@;. For handtracking color andedge fea-
tureshave beenusedfrequentlyin the past[1, 13, 15, 22].
Thus the datais taken to be comppsedof two setsof ob-
senations, thosefrom edgedataD ¢*?¢ andfrom color data
D{°!. Thelikelihoad function usedis

log p(D;|0;) = log p(D*°|0;) + Alog p(D§!16;), (12)

where A is a weighting paraméer. The term for edge
cortours, p(D£%¢|@,), is basedon the chamferdistance
function [2, 4]. Giventhe setof prgectedmodel contaur
points, U = {u;}? ,, andthe setof Canry edgepoirts,
V = {v,}[X,, a quadatic chamer distancefunction is
given by

1 n
diham (ua V) = E z d2 (ia V): (13)
i=1

wherd(i, V) = max(min,, ey ||u; — vj||, 7) is thethresh-
olded distancebetweenthe point, u; € U, andits closest
poirt in V. Using a threshdd value = malkes the match-
ing morerohustto outliers andmissingedges.Thechamfer
distancebetweentwo shapescan be computed efficiently
usinga distanceransfom, wherethe templateedgepoints
arecorrelatedwith thedistancdransfom of theimageedge
map Edgeorientatio is included by compuing the dis-
tanceonly for edgeswith similar orientation in order to
male the distancefunction morerohust[14]. We alsoex-
ploit the fact that part of an edgenormal on the interior
of the contaur shoud be skin-cdored, andonly take those
edgesintoaccoum[13]. In constretingthecolorlikelihood
function p(D$°|6;), we seekto explain all theimagepixel
datagiventheproposedstate.Givenastate thepixelsin the
imageZ arepartitioredinto a setof objed pixds O, anda
setof backgoundpixels B. Assumingpixel-wiseindegen-
derce,thelikelihoad canbefactoedas

p(D;*16,) = [[ p(1:(0)18) [ p(1(6)16:), (14)

o€ beB

whee I;(k) is the intensity normalized rg-color vecta at
pixe locationk attime t. The objectcolor distribution is
moceledasa Gaussiardistribution in the normalizel color
spacg23], for backgourd pixels a uniform distribution is
assumed For efficieng, we evaluate only the edgelike-
lihood term while traversingthe tree, andincorpaate the
color likelihoad only attheleaflevel.

() (b)

Figure2: Negaive Log-Lik elihood surface with single
global minimum. (a) Surfacedescribedby the negative
log-likelihood function whenseaching the scaleandangle
space matding a templatewith the input image shownin
(b). Thesuperimpsedtemplatecorrespond to the globd
minimumin (a), but there are manylocal minima.

Figure2 shavs a plot of the negative log-ik elihoodsur
face geneatedby varying two paraneters,angleandscale,
arowndthe bestmatchingmodel for a particdarimage.The
global minimum is at the correct location but there are
mary localminima.

5.2 Formulating the Transition Distrib ution

Naturalhandarticulationis constrainedandWu etal. [22]
have shavn that the vectos of valid joint angleslie on a
lower dimersionalmanifdd, which is apprximatedasthe
union of linearmanifdds. We usedatafrom marker-based
motion captureexpetimentsto obtain pointsin the state
spaceFigure3 shavstheprojectian of pointsinto thespace
of the threejoint anglesof the index fingerduring its flex-
ion andextensio. This non-linearmanifdd is paraneter
ized by appraimatingit with a piecevise linear function.
This paraneterizationis usedto generge templatedor ar
ticulatedmotion correspondig to avalid setof joint angle
values. The statetransitiondistribution is assumedo be
Gaussian

p(9t|9t_1) ~ N(gt_l, E), (15)

whereX. is adiagoral covariancematrix. This is a simpli-
fiedmodel,but adynanical modelfor handmotion, learned
from trainingdata,canbeintegratedin this step[19].

Oneof the advantagsof usinga parametic 3D modé
is thatthetransitionprobabilitieshave anintrinsic physical
meanimg, e.g. therateof chang of ajoint angle. Thisis in
contiastto 2D shapebasedmethod which requre a large
amount of trainingdatabefae they canbefully specified.



Figure 3: Manifold in state spacedescribedby joint an-
gles Threejoint anglesof index finger during flexion and
extension Each datapoint correspond to one particuar
poseof thefinger.

6. Results

We demorstratetheeffectivenesof ourtechniqe by track-
ing both hand motion and finger articulationin cluttered
sceneausing a single camera. The resultsreved the abil-
ity of thetree-basedlter to handleambiguty arisingfrom
self-oclusionand3D motion

6.1 3D Hand Tracking Experiments

In the handtrackirg expeimentstemplatesare gererated
by projectirg a 3D handmodeldescribedn [18]. In two
video sequeneswe trackthe global3D motionof the hand
withou finger articulation. The 3D rotatiors are limited
to a hemisphee. A three-level treeis built which hasthe
following resolutiors at the leaf level: 15 degreesin two
3D rotations, 10 degreesin imagerotationand5 differert
scalesresultingin atotal of 13 x 13 x 19 x 5 = 16055
templaes. The resoluion of the translationparametes is
20pixelsonthefirst level, 5 pixelsonthesecondevel, and
2 pixelsontheleaflevel. Figures4 and5 shaw resultsfrom
tracking a pointing andanopenhand respectiely, through
theirglobalmotiors.

In thethird sequencéfigure 6) trackingis demastrated
for global handmotiontogethemwith fingerarticulation A
piecavise linear appraimation to the manifolds described
in section5.2 is usedto modelfingerarticulation Thear
ticulationparameéersfor thethunb andfingers areapproi-
matedusing7 and5 subdvisionsin thevalid range, respec-
tively. For this sequene the rangeof global handmotion
is restrictedto a smallerregion, but it still hasé DOF. In
total 350 templatesareusedat theleaflevel. Theresolu-
tion of thetranslationparametesis the sameasin thefirst
experiments.

The computation takes approximately two second per
frame on a 1GHz PentiumlV. Note thatin all threecases,
the handmodelwas autonatically initialized by searching
thetreein thefirst frameof thesequene.

7. Summary and Conclusion

This paperendevorsto narow the gapbetweendetection
andtracking in orderto enjoy the benefitsof bothworlds.
Reliabledetectionhelpsin dealingwith difficult problens
suchasself-occlision. Trackingembedsetectim in afil-
tering framavork, makirg useof dynamic information. It
alsomakesdetectionmore efficientby eliminating a signif-
icantnumter of hypotheses.

To malke this mariage, we castthe prodem in a praba-
bilistic framavork. Bayesiarmethod areattractve asthey
provide a principledway of encodng uncetainty andmul-
tiple hypothesesibou parameteestimatesThis s particu-
larly necessarfor theprodem of trackingin clutterasthere
is muchambiguity, resultingin multi-modal distributions.
Oneof the key issuesin Bayesiarfiltering is how to rep-
resentthesedistributions. Previously grid-basedmethod,
involving partitioring the statespacehave provenverysuc-
cessfulfor propagatiry distributions in tracking However,
they suffer from the majordraw backthatthey arecompu-
tationallyinfeasiblein high dimersionalspacesin orderto
copewith thiswe proposeatree-lasedepiesentationvhich
canbeusedto selectgrid poirts (leavesor partitionsof the
statespace)with high probability masgo representhedis-
tribution.

We have testedthe new tracking methodon sequenes
involving clutterin the baclgrourd togethe with non-iigid
handmotion. Furthernore within thesesequenesthehand
unckergoeslarge rotationsleadingto significanttopolagical
chargesin the projectedcontous. The tracker produces
very goodresultsevenin thesecircumstanes. Finally we
obsenre thatthe methal of partitioning the statespaceand
using a tree-baed searchto propagatedistributions is a
geneic methodthat canbe appliedto othertrackng prob-
lems.
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Figure5: Tracking aflat handrotating in clutter. In this sequenethehandundegoesrotationandtranslatian. Theframes
showingthe hard with significant self-occlsion do not provide mud data andtemplatematding becoms unreliable. By
including prior information thesesituationscanberesolved.Theprojectedcontous are superimpsedon theimages,and
thecorresponling 3D avata model,which is estimatedisingthetree-baedfilter, is shownbelowead frame

Figure 6: Tracking a hand opening and closing with rigid body motion in front of a cluttered background. This
sequeneis chalengingbecaisethe handundegoestranslationandrotationwhile opering and closingthefingers. 6 DOF
for rigid bodymotionplus2 DOF usingmanifolds for finger flexion andextensionare tracked successfully



