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Abstract

This paper sets out a tracking framework, which is applied tothe recovery of three-
dimensional hand motion from an image sequence. The method handles the issues of ini-
tialization, tracking, and recovery in a unified way. In a single input image with no prior
information of the hand pose, the algorithm is equivalent toa hierarchical detection scheme,
where unlikely pose candidates are rapidly discarded. In image sequences a dynamic model
is used to guide the search and approximate the optimal filtering equations. A dynamic model
is given by transition probabilities between regions in parameter space and is learned from
training data obtained by capturing articulated motion. The algorithm is evaluated on a num-
ber of image sequences, which include hand motion with self-occlusion in front of a cluttered
background.

Keywords: Probabilistic algorithms, video analysis, tracking.

1 Introduction

One of the fundamental problems in vision is that of trackingobjects through sequences of im-
ages. Within this paper we present a Bayesian algorithm for tracking the 3D position and orienta-
tion of rigid or non-rigid objects. The application considered here is tracking hands in monocular
video sequences, but the method is equally applicable to full body tracking [28, 29]. Great
strides have been made in the theory and practice of tracking, for example the development of
particle filters recognized that a key aspect in tracking wasa better representation of the posterior
distribution of model parameters [11, 17, 20, 36, 37]. Particle filters go beyond the uni-modal
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Gaussian assumption of the Kalman filter by approximating arbitrary distributions with a set of
random samples. The advantage is that the filter can deal withclutter and ambiguous situa-
tions more effectively, by not placing its bet on just one hypothesis. However, a major concern
is that the number of particles required increases exponentially with the dimension of the state
space [10, 27]. In addition, even for low dimensional spacesthere is a tendency for particles to
become concentrated in a single mode of the distribution [12] and the tracker’s stability mostly
relies on the quality of the importance sampler.

Within this paper we consider tracking an articulated hand in cluttered images, without the use
of markers. In general this motion has 27 degrees of freedom (DOF), 21 DOF for the joint angles
and 6 for orientation and location [13, 32]. This state spacecan be reduced by reparameterization.
Wu et al. [45] show that due to the correlation of joint angles, the state space for the joints can
be approximated with 7 DOF by applying PCA, however the tracker has difficulties dealing with
out-of-plane rotations and scale changes.

There are several possible strategies for estimation in high dimensional spaces. One way
is to use a sequential search, in which some parameters are estimated first, and then others,
assuming that the initial set of parameters is correctly estimated. This strategy may seem suitable
for articulated objects. For example, Gavrila and Davis [16] suggest, in the context of human
body tracking, first locating the torso and then using this information to search for the limbs.
Unfortunately, this approach is in general not robust to different view points and self-occlusion.
MacCormick and Isard [27] propose a particle filtering framework for this type of method in
the context of hand tracking, factoring the posterior into aproduct of conditionally independent
variables. This assumption is essentially the same as that of Gavrila and Davis, and tracking has
been demonstrated only for a single view point with no self-occlusion.

The development of particle filters was primarily motivatedby the need to overcome ambigu-
ous frames in a video sequence so that the tracker is able to recover. Another way to overcome the
problem of losing lock is to treat tracking as object detection at each frame [1, 2, 33, 34]. Thus if
the target is lost in one frame, this does not affect any subsequent frame. Template based methods
have yielded good results for locating deformable objects in a scene with no prior knowledge, e.g.
for pedestrians [15]. These methods are made robust and efficient by the use of distance trans-
forms such as the chamfer or Hausdorff distance between template and image [4, 19], and were
originally developed for matching a single template. A key suggestion was that multiple tem-
plates could be dealt with efficiently by building a tree of templates [15, 31]. Given the success
of these methods, it is natural to consider whether or not tracking might not be best effected by
template matching using exhaustive search at each frame. The answer to this question is gen-
erally no, because dynamic information is needed, firstly toresolve ambiguous situations, and
secondly, to smooth the motion. One approach to embed template matching in a probabilistic
tracking framework was proposed for complete image frames by Jojic et al. [24] and for exem-
plar templates by Toyama and Blake [43]. However, it is acknowledged that“one problem with
exemplar sets is that they can grow exponentially with object complexity. Tree structures appear
to be an effective way to deal with this problem, and we would like to find effective ways of using
them in a probabilistic setting.”This paper presents one solution, which combines ideas from
hierarchical view-based detection and probabilistic tracking in the object parameter space. A
large number of templates are generated from a 3D model and a hierarchy of these templates is
constructed off-line by partitioning the parameter space.The finest partition corresponds to the
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leaves of the tree. At each time instant the posterior distribution of the state parameters is esti-
mated over these partitions. If no dynamic information is available, for example in the first frame
of a sequence, this corresponds to a hierarchical detectionscheme. In subsequent frames, the
distribution is propagated over time while making use of global and intrinsic object dynamics.

2 Hierarchical Filtering

This section proposes an algorithm for Bayesian tracking, which is based on a multi-resolution
partitioning of the state space. It is motivated by methods introduced in the context of hierarchical
object detection, which are briefly outlined in the next section.

2.1 Tree-based detection

Methods for detecting objects are becoming increasingly efficient. Examples are real-time face
detection or pedestrian detection [15, 44], both of which are based on hierarchical or cascaded
methods. However, applying these techniques to hand detection from a single image is difficult
because of the large variation in shape and appearance of a hand in different poses. In this case
detection and pose estimation are tightly coupled. One approach to solving this problem is to
use a large number of shape templates and find the best match inthe image. Inexemplar-based
methods, such templates are obtained directly from the training sets [8, 15, 26, 43]. For example,
Gavrila uses approximately 4500 shape templates to detect pedestrians in images [15]. To avoid
exhaustive search, a template hierarchy is formed by bottom-up clustering based on the chamfer
distance. A number of similar shape templates are represented by a cluster prototype. This proto-
type is first compared to the input image, and only if the erroris below a threshold value, are the
templates within the cluster compared to the image. The use of a template hierarchy is reported
to result in a speed-up of three orders of magnitude comparedto exhaustive matching [15].

If a parametric object model is available, another option tobuild such a tree of templates is
by partitioning the state space. Let this tree haveL levels, each levell defines a partitionP l of
the state space intoNl distinct setsl = 1, . . . , L, such thatP l = {S i,l}Nl

i=1. The leaves of the tree
define the finest partition of the state spacePL = {Si,L}NL

i=1. The use of a parametric model also
allows the combination of a a template hierarchy created off-line with an on-line optimization
process. Once the leaf level is reached, the model can be refined by continuous optimization of
the model’s parameters. In [42] we used this method to adapt the shape of a generic hand model
to an individual user in the first frame.

A draw-back of a single-frame exemplar based detector, suchas the one presented in [15], is
the difficulty of incorporating temporal constraints. We take inspiration from Jojicet al.[24] who
modeled a video sequence by a small number of image exemplarsand modeled the motions by a
discrete label set, imposing dynamics by a hidden Markov model. This idea was taken further by
Toyama and Blake [43] who suggested a metric mixture model for exemplar-based tracking. The
integration of a dynamic model is useful, firstly to resolve ambiguous situations, and secondly,
to smooth the motion. However, in [43] no template hierarchyis formed as the problem is not
seen as one of efficient object detection. The following section introduces an algorithm which
combines the efficiency of hierarchical methods with Bayesian filtering.
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2.2 Tree-based filtering

Tracking is formulated as a Bayesian inference problem, where the internal parameters of an
object at timet are given by valuesxt ∈ R

n of a random variableXt, and the measurement
obtained are valueszt ∈ R

m of the random variableZt. Given the observations up to and
including timet, z1:t = {zi}

t
i=1, the state estimation is expressed as a pair of recursive prediction

and update equations [23]:

p(xt|z1:t−1)=

∫

p(xt|xt−1) p(xt−1|z1:t−1) dxt−1 (1)

and p(xt|z1:t) = c−1
t p(zt|xt) p(xt|z1:t−1) , (2)

where ct =

∫

p(zt|xt) p(xt|z1:t−1) dxt. (3)

In the general case it is not possible to obtain analytic solutions for these equations, but there exist
a number of approximation methods which can be used to obtaina numerical solution [12, 38].

An important issue in each approach is how to represent the prior and posterior distributions in
the filtering equations. One suggestion, introduced by Bucyand Senne [9], is to use a point-mass
representation on a uniform grid. The grid is defined by a discrete set of points in state space, and
is used to approximate the integrals in the filtering equations by replacing continuous integrals
with Riemann sums over finite regions. The distributions areapproximated as piecewise constant
over these regions. The underlying assumption of this method is that the posterior distribution is
band-limited, so that there are no singularities or large oscillations between the points on the grid.
Typically grid-based filters have been applied using an evenly spaced grid and the evaluation is
thus exponentially expensive as the dimension of the state space increases [5, 9]. Bucy and
Senne suggest modeling each mode of the distribution by a separate adapting grid, and they
devise a scheme for creating and deleting local grids on-line. A different approach is taken by
Bergman [5], who uses a fixed grid, but avoids the evaluation at grid points where the probability
mass is below a threshold value.

The aim in this section is to design an algorithm that can takeadvantage of the efficiency
of tree-based search to efficiently compute an approximation to the optimal Bayesian solution
using a grid-based filter. In the following, assume that the values of the state vectorsx ∈ R

n are
within a compact regionR of the state space. In the case of hand tracking, this corresponds to
the fact that the parameter values are bounded, the boundaryvalues being defined by the valid
range of motion. Define a multi-resolution partition of the regionR as described in section II-A
by dividing the regionR at each tree-levell into Nl partitions{S i,l}Nl

i=1,

Nl
⋃

i=1

S i,l = R for l = 1, . . . , L . (4)

A graphical depiction is shown in figure 1. The posterior distribution is represented as piecewise
constant over these sets, the distribution at the leaf levelbeing the representation at the highest
resolution.
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Figure 1:Hierarchical partitioning of the state space. The state space is partitioned using a
multi-resolution grid. The regions{Si,L}NL

i=1 at the leaf level define the finest partition, over which
the filtering distributions are approximated as piecewise constant. The number of regions is
exponential in the state dimension. However, if large regions of parameter space have negligible
probability mass, these can be identified early, achieving reduction in computational complexity.
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Figure 2:Discretizing the filtering equations. (a)The transition distributions are approximated
by transition probabilities between discrete regions in state space, which can be modeled by a
Markov transition matrix.(b) The likelihood function is evaluated at the centrec(Sj,l) of each
region, assuming that the function is locally smooth.

Define a discrete probability distributionp(x̂i,l
t ) over the regionsS i,l,

p(x̂i,l
t |z1:t) =

∫

xt∈S
i,l

p(xt|z1:t) dxt. (5)

In the first frame, the posterior is set to the likelihood distribution. In the following frames the
discrete recursive relations are obtained from the continuous case by integrating over regions.
Given the distribution over the leaves of the tree,p(x̂i,L

t−1|z1:t−1), at the previous time stept − 1,
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the prediction equation now becomes a transition between discrete regionsS i,L andSj,l in state
space:

p(x̂j,l
t |z1:t−1) =

NL
∑

i=1

p(x̂j,l
t |x̂i,L

t−1) p(x̂i,L
t−1|z1:t−1). (6)

Given the state transition distributionp(xt|xt−1) the transition probabilities are approximated
by region to region transition probabilities, see figure 2a.In order to evaluate the distribution
p(x̂j,l

t |z1:t), the likelihoodp(zt|x̂
j,l
t ) needs to be evaluated for a region in parameter space. This

is computed by evaluating the likelihood function at a single point, taken to be the centre of the
regionc(Sj,l). This approximation assumes that the likelihood function in the regionSj,l can be
represented by the value at the centre locationc(Sj,l), see figure 2b.

p(zt|x̂
j,l
t ) ∝ (zt|c(S

j,l)) . (7)

This is similar to the idea of using a cluster prototype to represent similar shapes.
Having laid out Bayesian filtering over discrete states, thequestion arises how to combine the

theory with the efficient tree-based algorithm previously described. The idea is to approximate
the posterior distribution by evaluating the filter equations at each level of the tree. In a breadth-
first traversal regions with low probability mass are identified and not further investigated at
the next level of the tree. Regions with high posterior are explored further in the next level
(Figure 3). It is expected that the higher levels of the tree will not yield accurate approximations
to the posterior, but are used to discard inadequate hypotheses, for which the posterior of the
set is below a threshold value. In the experiments the template hierarchy is built by manually
setting the resolution for each parameter dimension such that the appearance within each region
is below a threshold value. At each level of the tree the maximum p̂

l,max
t and minimump̂

l,min
t of

the posterior values is computed and the threshold is chosenas

τ l
t = p̂

l,min
t + cτ (p̂l,max

t − p̂
l,min
t ) . (8)

wherecτ = 0.5 in our experiments. Alternatively, to fix the computation time, only a constant
number of modes could be explored. By changing the thresholdvalue, the trade-off between
accuracy and computational time can be regulated. Note thatthe local maxima on one level do
not necessarily correspond to the global maxima of the posterior distribution. In particular, ifτ is
set too high, the branch containing the global maximum may bemissed, leading to an incorrect
pose estimate in that frame. After each time stept the posterior distribution is represented by the
piecewise constant distribution over the regions at the leaf level. When a hand is in the scene, this
leads to a distribution where there is at least one strong peak, whereas in background scenes the
values do not vary as much. In this case no dynamic information is used and as in the initialization
step only the likelihood values are computed at the first level. An overview of the algorithm is
given in Algorithm 1.

2.3 Edge and color likelihoods

This section introduces the likelihood function which is used within the algorithm. The likelihood
p(z|x) relates observationsz in the image to the unknown statex. The observations are based on
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Algorithm 1 Tree-based filtering equations
Notation: par(j) denotes the parent of nodej.

Initialization step at t = 1, assuming uniform distribution over the states initially.

At level l = 1: p(x̂j,1
1 |z1) = p(z1|x̂

j,1
1 ) for j = 1, . . . , N1 . (9)

At level l > 1:

p(x̂j,l
1 |z1) =

{

p(z1|x̂
j,l
1 ) if p(x̂

par(j),l−1
1 |z1) > τ l−1

t ,

p(x̂
par(j),l−1
1 |z1) otherwise,

(10)

Normalize after computing the values at each levell such that
∑Nl

j=1 p(x̂j,l
1 |z1) = 1.

At time t > 1

At level l = 1: p(x̂j,1
t |z1:t) = p(zt|x̂

j,1
t ) p(x̂j,1

t |z1:t−1) , (11)

where
p(x̂j,1

t |z1:t−1) =

NL
∑

i=1

p(x̂j,1
t |x̂i,L

t−1) p(x̂i,L
t−1|z1:t−1) (12)

At level l > 1:

p(x̂j,l
t |z1:t) =

{

p(zt|x̂
j,l
t ) p(x̂j,l

t |z1:t−1) if p(x̂
par(j),l−1
t |z1:t) > τ l−1

t ,

p(x̂
par(j),l−1
t |z1:t) otherwise,

(13)

where
p(x̂j,l

t |z1:t−1) =

NL
∑

i=1

p(x̂j,l
t |x̂i,L

t−1) p(x̂i,L
t−1|z1:t−1) . (14)

Normalize after computing the values at each levell such that
∑Nl

j=1 p(x̂j,l
t |z1:t) = 1.
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Figure 3: Tree-based estimation of the posterior density. (a)Associated with the nodes at
each level is a non-overlapping set in the state space, defining a partition of the state space. The
posterior for each node is evaluated using the center of eachset, depicted by a hand rotated by a
specific angle. Sub-trees of nodes with low posterior are notfurther evaluated.(b) Correspond-
ing posterior density (continuous) and the piecewise constant approximation. The modes of the
distribution are approximated with higher precision at each level.

the edge mapzedge of the image, as well as pixel color valuesz
col. These features have proved

useful for detecting and tracking hands in previous work [26, 27, 46]. In the following sections
the joint likelihood ofz = (zedge, zcol)T is approximated as

p(z|x) = p(zedge, zcol |x) ≈ p(zedge |x) p(zcol |x) , (15)

thus treating the observations independently. The likelihood term for each of the observations is
derived in the following sections.

Edge likelihood: The edge likelihood termp(zedge|x) is based on the chamfer distance func-
tion [4, 7]. Given the set of template pointsA = {ai}

Na

i=1 and the set of Canny edge points
B = {bi}

Nb

i=1, a quadratic chamfer distance function is given by the average of the squared dis-
tances between each point ofA and its closest point inB:

d(A,B) =
1

Na

∑

a∈A

min
b∈B

|| a − b ||2. (16)

The chamfer function can be computed efficiently for many model templates by using a distance
transform (DT) of the edge image. This transformation takesthe set of feature pointsB as input
and assigns each location the distance to its nearest feature, i.e. the DT value at locationu
contains the valuemin

b∈B || u−b ||. The chamfer function for a single template can be computed
by correlating its points with the DT image. To increase robustness toward partial occlusion the
DT image is thresholded by an upper boundτ on the distance to the edge, typicallyτ = 20. Edge
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orientation is included by decomposing both template and edge image into a number of separate
orientation channels according to gradient orientation. The distance is computed separately for
each channel, thereby increasing the discriminatory powerof the likelihood function, especially
in cases when there are many background edge points present in the image [31]. The used cost
term is thus

de(A,B) =
1

Na

Nγ
∑

i=1

∑

a∈Ai

min

(

min
b∈Bi

||a − b||2, τ

)

(17)

whereAi andBi are the feature points in orientation channeli, andNγ = 6, in our experiments.
A shape template is treated as the centre of a mixture distribution, each component being ametric
exponentialdistribution [43]. Given the shape templateP and the observed edge imagez

edge, the
likelihood function is defined as

p(zedge | x) =
1

Z
exp

(

−λ de(A(x),B(zedge))
)

, (18)

whereA(x) denotes that the set of template pointsA is generated by projecting the model using
the state vectorx, andB is the set of edge points obtained from the edge imagez

edge. Another
option is to define the likelihood function based on thePDF projection theorem[41], which
incorporates information about the distribution of background edges as well and is perhaps better
justified by theory.

Color likelihood: The color likelihood functionp(zcol|x) is based on a skin color distribution
ps and a background color distributionpbg, respectively. Given a state vectorx, corresponding to a
particular hand pose, the pixels in the image are partitioned into a set of locations within the hand
silhouette{k : k ∈ S(x)} and outside this region{k : k ∈ S̄(x)}. If pixel-wise independence is
assumed, the likelihood function for the whole image can be factored as

p(zcol|x) =
∏

k∈S(x)

ps (I(k))
∏

k∈S̄(x)

pbg (I(k)) (19)

whereI(k) is the color vector at locationk in the image. When taking the logarithm, this term
is converted into a sum. The evaluation can now be performed efficiently by computing a sum
table (or integral image),Bsum, which has the same size as the image and contains the cumulative
sums along thex-direction:

B
sum(x, y) =

x
∑

i=1

(

log ps(I(i, y)) − log pbg(I(i, y))
)

, (20)

where in this equation the imageI is indexed by itsx andy-coordinates. This array only needs to
be computed once and is then used to compute sums over areas byadding and subtracting values
at points on the silhouette contour. Thus the computation time is proportional to the contour
length. In the experiments skin color is modeled with a Gaussian distribution in(r, g)-space, for
background pixels a uniform distribution is assumed. Note that if a distribution of background
appearance can be obtained, this should be used, e.g. if there is a static scene.
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For an illustrative example using single-frame detection,which shows how combining edge
and skin color information facilitates detection when one of the features becomes unreliable, see
figure 4. Color is very useful when edge information is unreliable due to many background edges,
low intensity contrast or fast hand motion. On the other hand, edge information allows accurate
matching when the hand is in front of skin colored background.

Input Image Edges Color Detection

Figure 4: Detection with integrated edge and color features. (Top row) Hand in front of
cluttered background,(bottom row) hand in front of face; situations in which one of the cues is
not discriminative (edges in row 1, color in row 2), but by using them in combination the hand is
correctly detected in both cases (last column).

In a second experiment on a sequence of 640 frames the hand pose was kept fixed as an
open hand parallel to the image plane with 4 DOF motion; translation in x, y, andz-direction,
as well as rotation around thez-axis. The task is made challenging by introducing a cluttered
background with skin-colored objects. The hand motion is fast, and during the sequence the
hand is partially and fully occluded, as well as out of the camera view. A set of 500 templates is
generated, corresponding to 100 discrete orientations andfive different scales, to search for the
best match over the image. The translation space is sampled at a 6-pixel resolution. No dynamics
are used in this sequence as the hand leaves and re-enters thecamera view several times. Figure 5
shows typical results for a number of frames as well as the 2D position error measured against
manually labelled ground truth. The RMS error over the complete sequence for the frames in
which the hand was detected, was 3.7 pixels. For comparison,a single hypothesis version of
the Kalman filter [39] was run on this sequence using a four dimensional state space and a first
order dynamic model. Theunscented Kalman filter(UKF) is a nonlinear extension of the Kalman
filter [25]. The UKF uses an approximation of the underlying distributions using a set of sample
points which are propagated through the original Kalman filter equations. The observation model
used are local skin color edges, as in [27], i.e. points of transition between areas of high and low
skin color likelihood. The UKF tracker was initialized manually in the first frame and tracked the
hand for only 20 frames before lock was lost. The main reasonsfor this are that the color edge
features alone are not robust enough and that the dynamic model is not able to handle fast and
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abrupt motion. Different models (constant velocity and constant acceleration models) were also
tested, but once the target was lost, the tracker was unable to recover.

frame 0 100 250 257 390 519 598

Figure 5:Detecting an open hand.This figure shows successful detection using edge and color
features of an open hand showing the best match superimposed, if the likelihood function is above
a constant threshold. The sequence is challenging because the background contains skin-colored
objects and motion is fast, leading to motion blur and missededges. The method handles partial
occlusion and lighting changes to some degree, can initialize and deal with unsteady camera
motion. The graph shows an error plot for the detection algorithm and a Kalman filter (UKF)
tracker. The hand position error was measured against manually labelled ground truth. The
shaded areas indicate intervals in which the hand is either fully occluded or out of camera view.
The detection algorithm successfully finds the hand in the whole sequence, whereas the UKF
tracker using skin-color edges is only able to track the handfor a few frames. The reasons for the
loss of track is that the hand motion is fast between two frames and that skin-color edges cannot
be reliably found in this input sequence.

2.4 Modeling hand dynamics

The global motion of the hand is modeled using a zero order Gaussian model, making only
weak prior assumptions about motion continuity. Other models, such as a second order model
learned from data [6] or a mixed-state tracker [22] have alsobeen used for modeling global hand
motion. However, as shown in the previous experiment, choosing a particular motion model can
be restrictive.

Articulated motion is naturally constrained, since each joint can only move within certain
limits and the motion of different joints is correlated [45]. Thus the articulation parameters are
expected to lie within a compact region in the 21 dimensionalangle space. The dynamics for
this articulated motion are modeled as a first order process,which are learned from training
data obtained from three subjects with a data glove. Since discrete regions in state space are

11



considered, the process can be described by a Markov transition matrix M
LL ∈ [0, 1]NL×NL ,

which contains the transition probabilities between the regions{Sj,L}NL

j=1 at the leaf-level. In
order to evaluate the transitions at different tree levels,a transition matrixMLl ∈ [0, 1]NL×Nl for
each levell of the tree is required, where each matrix contains the values:

M
Ll
i,j = p(x̂j,l

t |x̂i,L
t−1), i = 1, . . . , NL, j = 1, . . . , Nl. (21)

In practice, these matrices are sparse and the non-zero values are stored in a look-up table.

Figure 6: Tracking a pointing hand. The images are shown with projected contours super-
imposed(top row) and corresponding 3D model(bottom row), which are estimated using the
tree-based filter. The hand is translating and rotating.

3 Experimental Results

The following experiments show the effectiveness of the technique by detecting and tracking a
hand in scenes using input from a single camera (image size320 × 240).

3.1 Tracking rigid body motion

In the following experiments the hierarchical filter is usedto track rigid hand motion in cluttered
scenes using a single camera.

The results show the ability to tolerate self-occlusion during out-of-image-plane rotations.
The 3D rotations are limited to a hemisphere and for each sequence a three-level tree is built,
which has the following resolutions at the leaf level: 15 degrees in two 3D rotations, 10 degrees
in image rotation and 5 different scales, resulting in a total of 13×13×19×5 = 16, 055 templates.
The resolution of the translation parameters is 20 pixels atthe first level, 5 pixels on the second
level, and 2 pixels at the leaf level. The translation is doneby shifting the templates in the 2D
image. Note that for each of the sequence a different tree is constructed, using the corresponding
hand configuration. Figure 6 shows the tracking results on aninput sequence of a pointing hand
during translation and rotation. The top row shows the inputframes with the projected model
contours superimposed. The bottom row shows the corresponding pose of the 3D model. During
the rotation there is self-occlusion as the index finger moves in front of the palm. For each frame
the maximum a-posteriori (MAP) solution is shown. Figure 7 shows frames from the sequence
of an open hand performing out of image plane rotation. This sequence contains 160 frames and
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shows a hand first rotating approximately 180 degrees and returning to its initial pose (figure 7,
two top rows). This is followed by a 90 degree rotation (figure7, two bottom rows), and returning
to its initial position. This motion is difficult to track as there is little information available when
the palm surface is normal to the image plane.

Figure 7:Tracking out-of-image-plane rotation. In this sequence the hand undergoes rotation
and translation. The frames showing the hand with self-occlusion do not provide much data, and
template matching becomes unreliable. By including prior information, these situations can be
resolved. The projected contours are superimposed on the images, and the corresponding 3D
model is shown below each frame.

Figure 8 shows example frames from a sequence of 509 frames ofa pointing hand. The tracker
handles fast motion and is able to recover after the hand has left the camera view and re-enters
the scene. The computation takes approximately two secondsper frame on a 1GHz Pentium IV,
corresponding to a speed-up of two orders of magnitude over exhaustive detection. Note that in
all cases the hand model was automatically initialized in the first frame of the sequence.
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frame 0 102 115 121 128 131

302 311 316 344 351 400

Figure 8: Fast motion and recovery. This figure shows frames from a sequence tracking 6
DOF. (Top row) The hand is tracked during fast motion and(bottom row) the tracker is able to
successfully recover after the hand has left the camera view.

Figure 9 shows error plots for the three sequences. The erroris the localization error measured
against manually labelled ground truth locations of the tipof the thumb and one finger. It can be
observed that the presence of peaks, which are due to local minima in the likelihood function, do
not cause tracking to fail. The mean RMS error for the three sequences above is 6.7, 6.6, and 7.9
pixels, respectively.
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Figure 9: Error performance. This figure shows the error performance in terms of finger tip
localization measured against manually labelled ground truth. (a) pointing hand sequence of
figure 6,(b) rotating hand sequence of figure 7,(c) pointing hand sequence of figure 8, where the
hand is out of the view in frames 319–352,(d) opening and closing hand sequence of figure 15.

3.2 Initialization

Two illustrative experiments demonstrate the algorithm during the initialization phase. In the
first frame of each sequence the posterior termp(x̂j,1

1 |z1) for each region is proportional to the
likelihood valuep(z1|x̂

j,1
1 ) for the first observationz1. A tree with four levels and 8748 templates
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of a pointing hand at the leaf level was generated, corresponding to a search over 972 discrete
angles and nine scales, and a search over translation space at single pixel resolution. As before,
the motion is restricted to a hemisphere. The search processat different levels of the tree is illus-
trated in figure 10. The templates at the higher levels correspond to larger regions of parameter
space, and are thus less discriminative. The image regions of the face and the second hand, for
which there is no template, have relatively low cost as they contain skin color pixels and edges.
As the search proceeds, these regions are progressively eliminated, resulting in only few final
matches. Figure 11 gives a more detailed view by showing examples of templates at different
tree levels which are above (accepted) and below (rejected)the threshold valuesτ l

0, l = 1, . . . , L,

in equation (8). It can be seen that the templates which are above the threshold at the first level
do not present very accurate matches, however a large numberof templates can be rejected at this
stage. At lower tree levels the accuracy of the match increases.

Figure 10:Automatic initialization. From Top Left : Input image,next: Images with detection
results super-imposed. Each square represents an image location which contains at least one
node with a likelihood estimate above the threshold value. The intensity indicates the number
of matches, high intensity indicated larger number of matches. Ambiguity is introduced by the
face and the second hand. Regions are progressively eliminated, the best match is shown on the
bottom right.
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Accepted Rejected

Level 1

Level 2

Level 3

Figure 11:Search results at different levels of the tree.This figure shows templates above and
below the threshold valuesτ l

t at levels 1 to 3 of the tree, ranked according to their likelihood val-
ues. As the search is refined at each level, the difference between accepted and rejected templates
decreases.

(a) (b)

(c) (d)

Figure 12:Variation along principal components. This figures shows the variation in hand pose
when moving away from the mean pose into the direction of the(a) first, (b) second,(c) third,
and (d) fourth principal component. The input data set contained 50,000 joint angle vectors,
obtained from a data glove. The subject was moving the fingersin a random way while trying to
cover the possible range of motion.

3.3 Constructing a tree for articulated motion

As mentioned above, finger joint angles are highly correlated. Even though the model has 21
DOF for finger articulation, it has been observed that less parameters are usually sufficient to
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model articulated hand motion. Using a data glove, 15 sets ofjoint angles (sizes of data sets:
3000 to 264,000) were captured from three different subjects carrying out random hand gestures,
trying to cover the possible range of finger motion. It was found in all cases that 95 percent of the
variance was captured by the first eight principal components, in ten of the data sets within the
first seven, which largely confirms the results reported in [45] on a larger data set. The variation
along the first four principal components is illustrated in figure 12. Two methods to obtain the
discrete sets{Si,l}Nl

i=1, l = 1, . . . , L , have been implemented:

• Clustering in parameter space:Since the joint angle data lies within a compact region in
state space, the data points can simply be clustered using a hierarchicalk-means algorithm
with the distance measured(x1,x2) = ||(x1 − x2) mod π||2.

A partition of the state space is given by the Voronoi diagramdefined by these nodes, see
figure 13a.

• Partitioning the eigenspace:The joint angle data is projected onto the firstk principal
components (k < 21), and the partitioning is done in the transformed parameterspace.
The centres of these regions are then used as nodes on one level. Only partitions, which
contain data points need to be considered, see figure 13b. Multiple resolutions are obtained
by subdividing each partition.
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Figure 13:Partitioning the state space.This figure illustrates two methods of partitioning the
state space:(a) by clustering the data points in the original space, and(b) by first projecting
the data points onto the firstk principal components and then using a regular grid to define a
partition in the transformed space.

Both techniques are used to build a tree for tracking finger articulation. In the first sequence
the subject alternates between four different gestures (see figure 14). For learning the transition
distributions, a data set of size 7200 was captured while performing the four gestures a number of
times in random order. In this experiment the tree is built byhierarchicalk-means clustering of
the whole training set. The tree has a depth of three, where the first level contains 300 templates
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together with a partitioning of the translation space at a20 × 20 pixel resolution. The second
and third level each contain 7200 templates (i.e. the whole data set) and a translation search at
5 × 5 and 2 × 2 pixel resolution, respectively. The transition matricesM

Ll are obtained by
histogramming the data [18, 43]. The tracking results for the tree constructed by clustering are
shown in figure 14. No global parameters other than translation parallel to the image plane was
estimated in this experiment. As before, initialization ishandled automatically.

Figure 14: Tracking articulated hand motion. In this sequence a number of different finger
motions are tracked. The images are shown with projected contours superimposed (top) and
corresponding 3D avatar models (bottom). The nodes in the tree are found by hierarchical clus-
tering of training data in the parameter space. Dynamics areencoded as transition probabilities
between the clusters.

Figure 15 shows the results of tracking global hand motion together with finger articulation.
In this case the opening and closing of the hand is captured bythe first two eigenvectors, thus
only two articulation parameters are estimated. For this sequence the range of global hand motion
is restricted to a smaller region, but it still has 6 DOF. In total 35,000 templates are used at the
leaf level. The resolution of the translation parameters is20 pixels at the first level, 5 pixels on
the second level, and 2 pixels at the leaf level. The out-of-image-plane rotation and the finger
articulation are tracked successfully in this sequence. The RMS error for this sequence, mea-
sured as localization error against labelled ground truth,is shown in figure 9d. The mean RMS
error is 9.3 pixels, this larger error compared to the other sequences is mainly attributable to the
discretization error introduced by using only two parameters to model articulated motion. The
execution time for this sequence is about three seconds per frame on a 2.4 GHz P4 computer.
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Figure 15:Tracking a hand opening and closing with rigid body motion. This sequence is
challenging because the hand undergoes translation and rotation while opening and closing the
fingers. 6DOF for rigid body motion plus 2DOF for finger flexion and extension are tracked
successfully.

The purpose of the tree structure is efficiency, thus it is interesting to examine ways of con-
structing an optimal tree in terms of run-time. One approachto analyzing the performance of the
method for the detection case is to interpret the template hierarchy as a tree of classifiers [3, 40].
A classifierCi,l at each node decides whether or not the current observation is within the region
below that node. The aim is to design classifiers with high detection rates with modest false pos-
itive rates, minimizing the computational cost at the following levels. The expected run time for
a tree below the nodei at levell is given, similar to [3], by the recursion

E[T (Ci,l)]=T c(Ci,l) + E[pos(Ci,l)]
∑

j∈succ(i)

E[T (Cj,l+1)], (22)

whereT c(C) is the run time of classifierC, pos(C) is the detection rate of classifierC, and
succ(i) are the successors of nodei. Minimizing this function requires simultaneous optimization
of the tree structure as well as the threshold values.

The view of the nodes as classifiers also raises the question whether chamfer or silhouette
template matching are optimal for classification [40]. It has been shown that classifiers trained
with large sets of real image data perform better, however there is a trade-off between compu-
tation time and classification performance as shown in figure??. When used in a classification
hierarchy, the detection rate of a classifier needs to be veryhigh, so as not to miss any true pos-
itives. The false positive rate for each single pose classifier at a fixed detection rate of 0.99, is
given in the last column of table??. Chamfer and Hausdorff matching, while having a larger false
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positive rate, are about 10-14 times faster to evaluate thanmarginalized templates [40] and about
40 times faster than the trained linear classifier [14]. In addition, they only require the contour
points to be stored in memory.

Classification Method Number of Points Execution Timefp at tp = 0.99
Chamfer 400 13 ms 0.10
Hausdorff 400 13 ms 0.12
Marginalized template [40] 5,800 186 ms 0.02
Linear classifier [14] 16,384 524 ms 0.01

Figure 16:Computation times for template correlation. The execution times for computing the
dot product of 10,000 image patches of size128 × 128, where only the non-zero coefficients are
correlated for efficiency. The time for computing a distancetransform or dilation, which needs to
be only computed once for each frame when chamfer or Hausdorff matching is used, is less than
2 ms and is therefore negligible when matching a large numberof templates. The last column
shows the false positive (fp) rates for each single pose classifier at a fixed true positive(tp) rate
of 0.99.

4 Conclusions and future work

In this paper a framework was developed for tracking articulated hand motion from a video. The
ability of the proposed hierarchical filter to recover 3D motion, even under self-occlusion, was
demonstrated. The combination of hierarchical detection and Bayesian filtering has a number of
benefits, in particular it specifically addresses the problems of initialization and recovery. The
results in this paper were obtained using sequential on-line processing, motivated by applications
in the HCI domain. However, the leaf nodes can be viewed as defining a discrete state model,
thus it is straightforward to process the sequence using a batch algorithm as in hidden Markov
models to optimize over the whole sequence [8, 24]. It shouldbe noted that in contrast to particle
filters [12, 21, 17] the tree-based filter is a deterministic filter, which was motivated by a number
of problem-specific reasons. First of all, the facts that hand motion can be fast and that the
hand can enter and leave the camera view in HCI applications call for a method that provides
automatic initialization. The second important consideration is the fact that the time required
for projecting the model is approximately three orders of magnitude higher than evaluating the
likelihood function. This makes the sampling step in a particle filter costly and the off-line
generation of templates attractive. The ideas of tree-based filtering and particle filtering can
also be combined by using the posterior distribution estimated with the tree-based filter as an
importance distribution for a particle filter in a way similar to [30]. The range of allowed hand
motion is currently limited by the number of templates that need to be stored. This currently
poses a main obstacle for extending this method to a full range hand tracker. There is a trade-off
between generating templates online and storing them offline for fast access, i.e. memory usage
vs. speed. The proposed method is to be used when speed is at a premium and memory is not.
With better hardware acceleration model projection will befaster, while at the same time memory
will also increase. One can expect, for example, that current systems using a PC cluster to store
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large data bases of templates [35] will become much more compact. In fact, storing one million
shape templates requires about 2 gigabytes, and keeping them in memory is a viable option on
current PCs. Additionally faster online generation of templates as well as learning a relevant set
of representative templates will allow a reduction of the memory requirement.
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