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ABSTRACT

This paper describes the development of the Cambridge Univer-
sity Fall 2004 Rich Transcription evaluation structural metadata
systems. Details are given concerning the systems that were con-
structed for the Conversational Telephone Speech Slash Unit Bound-
ary Detection, Filler Word Detection, and Interruption Point detec-
tion tasks, as well as for the Broadcast News Slash Unit Boundary
Detection task. The systems described all used adapted versions
of the same generic architecture. The use of large training data
sets for the Slash Unit Boundary Detection task is considered, and
development and evaluation results are given for all the systems.

1. INTRODUCTION

As defined within the EARS program, Structural MetaData Extrac-
tion (SMD) requires (i) the segmentation of an input speech sig-
nal into sentence-like units, and (ii) the identification of specific
regions in the input signal which, if necessary, can be extracted
from the resulting speech transcription without a significant loss
of informational content [1, 2]. Within the EARS Fall 2004 Rich
Transcription (RT-04) evaluation framework, four structural meta-
data extraction tasks were defined for two different domains. The
four tasks were Edit Word Detection (EWD), Filler Word Detec-
tion (FWD), Interruption Point Detection (IPD), and Slash Unit
Boundary Detection (SUBD), while the two domains were Con-
versational Telephone Speech (CTS) and Broadcast News (BN).

Essentially, the various SMD tasks require specific kinds of
metadata to be identified in a given speech signal using input audio
files and their corresponding Speech-To-Text (STT) system out-
put files. More specifically, the FWD task requires semantically
bleached discourse-structuring elements such as um and anyway
to be identified; the IPD task requires interruption points to be
located in the context of edit disfluencies such as repetitions and
restarts, while the SUBD task requires the boundaries that sepa-
rate sentence-like units to be identified. Once these portions of
the audio have been identified, it is possible to produce speech
transcriptions that are easier to read since the identified structural
metadata events enable the transcriptions to be divided into quasi-
sentences; non-information bearing elements such as fillers can be
removed; and the points at which the speech becomes disfluent
can be indicated. Recent research has suggested that ‘cleaned-up’
transcriptions of this kind can significantly enhance the readability
of automatically generated speech system output [3]. In addition,
apart from facilitating readability, it is also possible that speech
transcriptions which contain metadata information could benefit
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downstream processing tasks such as automatic machine transla-
tion [4].

For the previous RT-03f evaluation, the Cambridge University
Engineering Department (CUED) submitted SMD system output
for a CTS SUBD system [5] [6]. By contrast, for the RT-04 eval-
uation, CUED submitted SMD system output for the CTS FWD,
CTS IPD, CTS SUBD, and BN SUBD tasks, and, of these, the
FWD, IPD, and BN SUBD systems were constructed specifically
for the RT-04 evaluation. The CUED SMD systems all share the
same basic architecture in which task-specific Language Models
(LMs) are combined with Prosodic Feature Models (PFMs) in a
lattice-based decoding framework. This paper describes the de-
velopment of the CUED SMD systems that were constructed for
the RT-04 evaluation [7], and the basic format of the paper is as
follows. The SMD tasks are defined in more detail in Section 2,
and a general overview of the CUED SMD system architecture is
presented in Section 3. The various sets of training and develop-
ment data that were used in the experiments reported in this paper
are described in Section 4, and, in Section 5, the general PFM
architecture is discussed. In Section 6, the CUED SMD systems
are presented in detail, while, in Section 7, various system devel-
opment results are given. The evaluation results for the various
systems described are summarised in Section 8, and the main con-
clusions outlined in Section 9.

2. THE SMD TASKS

2.1. Slash Unit Boundary Detection

Slash Units (SUs) are sentence-like units. Including information
about SU boundaries in a speech transcription can improve read-
ability by facilitating automatic punctuation generation. The SUBD
task requires each SU endpoint to be detected in the input sig-
nal. An SUBD system must output a start time and duration for
each SU, and, in addition, the SUs must be subclassified into one
of the following subtypes: statement, incomplete, question, and
backchannel.1 The primary scoring metric for the SUBD task
sums the number of SU boundary insertion, deletion, and substi-
tution errors in the system output file, when compared to the ref-
erence file, and divides this sum by the number of SUs boundaries
in the reference file.2 This produces the primary error rate. Full
information about the SUBD task and the scoring metric used for
RT-04 can be found in [7].

1A more detailed definition of SUs is given in [8] (Section 4).
2In RT-03f, substitution errors were not included in the scoring metric

numerator.



2.2. Filler Word Detection

The FWD task requires the regions of the input signal that contain
filler words to be detected and subclassified into one of the follow-
ing subtypes: filled pause (e.g., uh, um), discourse marker (e.g.,
anyway, I mean), or explicit editing term (i.e., a filler word that oc-
curs in the context of an edit disfluency).3 The FWD system must
specify the start time and duration of all regions of the input signal
that contain filler words. The primary scoring metric for the FWD
task sums the number of filler insertion, deletion, and substitution
errors in the system output file, when compared to the reference
file, and divides this sum by the number of filler words in the ref-
erence file. More detailed information about the FWD task and the
scoring metric used for RT-04 can be found in [7].

2.3. Interruption Point Detection

IPs occur when a speaker, who has been speaking fluently, be-
comes disfluent. Consequently, IPs are located in edit disfluencies.
The IPD task requires the time in the input signal when the IP oc-
curs to be specified,4 and, for the RT-04 evaluation, the IPs did not
have to be subclassified. The primary scoring metric for the IPD
task sums the number of insertion and deletion errors in the system
output file, when compared to the reference file, and divides this
sum by the number of IP events in the reference file. The IPD task
and the scoring metric used for RT-04 is defined in detail in [7].

3. GENERAL SMD SYSTEM ARCHITECTURE

All of the CUED SMD systems developed for the RT-04 evalua-
tion, for both the CTS and BN domains, used the same general
architecture. The main components of this framework are:

� task-specific language models (LMs)� task-specific Prosodic Feature Models (PFMs)� a lattice-based 1-Best Viterbi decoding framework

The generic architecture for the CUED SMD systems is given in
Fig. 1.
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Figure 1: Generic CUED SMD System Architecture

As Fig.1 indicates, the SMD systems use the STT output, which
provides hypothesised token sequences and timing information for

3A more detailed definition of filler words is given in [8] (Section 2).
4A more detailed definition of IPs is given in [8] (Section 3).

the input audio files. The SMD LMs and PFMs are free-standing
models constructed using the available training data (see Section
4). A lattice is created for each input audio file and the likelihoods
obtained from the PFMs are associated with the arcs of the lattices
which are then expanded using the LMs and HTK Tools [9]. The
1-Best Viterbi path through each lattice is output, and these paths
consist of STT token sequences into which SMD event information
has been inserted automatically [10] [11] [5] [6]. These files are
then converted into scorable rttm files. As detailed in Section 7,
this basic architecture was modified for each of the SMD tasks
described in Section 2.

4. DATA USED IN EXPERIMENTS

4.1. CTS Training Data

Four sets of training data were used while building the CUED CTS
SMD systems, and these data sets are specified in Table 1. The
ctsrt04, ctsrt04 v1.0, and ctsrt03 data sets were prepared by the
Linguistic Data Consortium (LDC) for the EARS project. The ct-
srt04 v1.0 consists of the same training data files as the ctsrt04
data set; the difference is that the ctsrt04 v1.0 data was annotated
using an earlier version of the EARS MDE annotation specifica-
tion [8]. The WordWave (WW) data had been prepared as training
data for the CTS STT RT-04 evaluation. However, since it con-
tained punctuation marks, it was possible to map this data so that
it approximated the V6.2 EARS MDE annotation specification for
the SUBD task [8]. The basic mapping for the WW data was as
follows: all fullstops and commas were mapped to statement SU
boundaries, while all question marks were mapped to question SU
boundaries.

Name ctsrt04 ctsrt04 v1.0 ctsrt03 WW
Epoch 2004 2004 2003 2004
Released 07/09/04 04/06/04 2003 2004
Spec V6.2 (v1.1) V6.2 (v1.0) V5 mapped
Hours c.40 c.40 c.30 c.1800
Tasks all SMD all SMD all SMD SUBD

Table 1. Summary of CTS training data sets used for SMD system
development

4.2. CTS Development Data

Three development data sets were used during the process of CTS
SMD system development, and these are specified in Table2:

Name ctsdev03 ctseval03 ctsdev04
Epoch 2003 2003 2004
Spec V6.2 (v1.1) V6.2 (v1.1) V6.2 (v1.1)
Hours c.1.5 c.1.5 c.3

Table 2. Summary of CTS dev data sets used for SMD system
development

The ctsdev03 and ctseval03 data sets constituted the development
and evaluation data sets for the RT-03f evaluation [2], while the
ctsdev04 data set was prepared as the development set for the RT-
04 evaluation.



4.3. BN Training Data

Five sets of training data were used while building the CUED BN
SUBD system, and these are specified in Table 3. The db98 data
and the bn2003 were developed as STT training data sets, but, as
with the CTS WW data, these sets contained punctuation marks,
and therefore could be mapped to approximate the V6.2 EARS
MDE annotation specification for the SUB task [8]. The basic
mapping was as follows: all fullstops and commas were mapped to
statement SU boundaries, while all question marks were mapped
to question SU boundaries.

Name bnrt04 bnrt04 v1.0 bnrt03 db98 bn2003
Epoch 2004 2004 2003 1998 2003
Released 07/09/04 04/06/04 2003 1999 2004
Spec V6.2 (v1.1) V6.2 (v1.0) V5 mapped mapped
Hours c.20 c.20 c.20 c.90 c.4000
Tasks all SMD all SMD all SMD SUBD SUBD

Table 3. Summary of BN training data sets used for SMD system
development

4.4. BN Development Data

Three development data sets were used during the process of BN
SMD system development, and these are specified in Table4

Name bndev03 bneval03 bndev04
Epoch 2003 2003 2004
Spec V6.2 (v1.1) V6.2 (v1.1) V6.2 (v1.1)
Hours c.1.5 c.1.5 c.3

Table 4. Summary of BN dev data sets used for SMD system
development

The bndev03 and bneval03 data sets constituted the development
and evaluation sets for the RT-03f evaluation [2], while the bn-
dev04 data set was prepared as the development set for the RT-04
evaluation.

5. PROSODIC FEATURES

Since the CUED SMD systems submitted for the RT-04 evaluation
utilised audio data in order to produce output files that contained
information about SMD events, prosodic features were extracted
for the training and development sets. The stages in the prosodic
feature extraction process were the same for all the CUED SMD
systems, and these stages are detailed below.

5.1. Training Data

Forced alignments were obtained for the non-mapped CTS and BN
training data sets specified in Table 1 and Table 3. The segmented
files in the ctsrt04, ctsrt04 v1.0, and ctsrt03 training data sets were
aligned using non-VTLN HLDA MPE triphone models. The seg-
mented files in the bnrt04, bnrt04 v1.0, and bnrt03 training data
sets were aligned using non-VTLN HLDA MPE gender depen-
dent triphones.5 The forced alignments obtained for both the CTS

5NB: No prosodic features were extracted from the CTS WW and the
BN db98 and bn2003 training data sets; these data sets were only used to

and BN training data sets provided word sequences and word-level
start and end times, and, using this timing information, a set of 10
prosodic features was extracted for each lexeme token in the train-
ing data sets. The 10 prosodic features used are given in Table
5.

Prosodic Feature Description
Pause Length pause length at end of word

Duration duration from previous pause
Avg F0 L mean of good F0 values in left window
Avg F0 R mean of good F0 values in right window

Avg F0 ratio Avg F0 L / Avg F0 R
Cnt F0 L number of good F0s in left window
Cnt F0 R number of good F0s in right window

Eng L RMS energy in left window
Eng R RMS energy in right window

Eng ratio Eng L / Eng R

Table 5. Prosodic Features: ‘good’ F0s values are those that fall
between 50Hz and 400Hz

The prosodic features in Table 5 were extracted either from
the waveform data or from corresponding plp encoded data files
using ESPS tools (e.g., get f0) and CUED-internal tools [5] [6]
[12]. The features were extracted from 0.2 sec window at the end
of each word, and the feature vectors obtained were used in or-
der to construct the task-specific PFMs. Since the training data for
the various SMD tasks was dominated by non-SMD-event feature
vectors, the set of vectors extracted for each SMD task was down-
sampled so that the number of non-SMD-event vectors was equal
to the number of SMD-event vectors, creating a ‘50-50’ downsam-
pled data set. These downsampled data sets were used to create the
task-specific CART-style decision tree PFMs.

5.2. Dev Data

For the speech condition evaluation task, the CUED STT RT-04
20xRT output (for both the CTS and BN domains) was used as in-
put for the CUED SMD systems, and the STT output files provided
segmented hypothesised word sequences (with a start time, dura-
tion information, and confidence measures for each lexeme token)
and hypothesised speaker information for each input speech signal
file [13] [14]. In addition, the CTS STT output files provided chan-
nel information, indicating whether the hypothesised lexemes are
associated with the speaker on channel 1 or the speaker on channel
2. Given the word sequences and word times provided by the STT
output files, the 10 prosodic features specified in Table 5 were ex-
tracted for each lexeme token in the development data audio files.
The task-specific PFMs output probability streams for the input
feature vectors sequences obtained for the development data sets.

6. SMD SYSTEMS ARCHITECTURE

6.1. CTS and BN SUBD System Architecture

The CUED CTS SUBD system used the CUED CTS 20xRT STT
output as input [13], and it used Slash Unit Language Models
(SULMs) in order to detect the SU boundaries in the input files.

train the language models for the CTS and BN SUBD task respectively, as
detailed in Sections 7.1 and 7.2.



Trigram (tg) and fourgram (fg) word-based SULMs, and class-
based trigram SULMs with 40 classes (cl40-tg), were constructed
using each of the training data sets given in Table 1. The training
data was converted into standard language model training texts,
and unique tokens for the SU boundary subtypes were inserted
after those lexemes that preceded the SU boundaries. SU tokens
were only inserted in the boundary locations, and no special tokens
were inserted after lexemes that did not constitute an SU boundary
[12]. The word-based SULMs were constructed using Kneser-Ney
discounting as implemented in the SRI LM Toolkit [15] [16], while
the class-based SULMs were built using the HTK LM Tools [9].
The class-based N-gram SULMs were estimated, and the class-
based models were trained using 4 iterations of Cluster [17].

Prosodic features were extracted for the training data as de-
tailed in Section 5, and each feature vectors obtained was classi-
fied either as an SU feature vector (i.e., the lexeme associated with
the vector constitutes an SU boundary), or else as a non-SU feature
vector (i.e., the lexeme associated with the vector does not consti-
tute an SU boundary). A separate free-standing Cart-style decision
tree which functioned as a PFM was constructed for each of the
training data sets. In order to compensate for the fact that c.90%
of the training data consisted of non-SU vectors, 50-50 downsam-
pled PFMs were constructed.

The SULMs were combined with the PFM in a lattice-based
1-Best Viterbi decoding framework (with the grammar scale factor
set to 1). The probabilities obtained from the PFMs for each token
in the dev sets were divided by their priors, (and averaged if PFMs
for different training sets were combined), and the resulting like-
lihoods were placed on the arcs of the initial lattices which were
then expanded using the SULMs and HTK lattice tools [9]. The 1-
Best decoder output produced token sequences for each file in the
dev sets specified in Table 2, and these contained the STT lexeme
token sequence and SU boundary tokens that had been inserted au-
tomatically during the decoding process. The decoder output files
were subsequently converted into scorable rttm files.6

The CUED BN SUBD system used the CUED BN 10xRT STT
output as input [14], [18], and both word-based and class-based
SULMs were built using the training data specified in Table 3.
Apart from this, the CUED BN SUBD system was identical to the
CUED CTS SUBD system, with one exception: for the BN SUBD
system, the SULM training files and initial lattices contained spe-
cial tokens indicating the segment boundaries.

6.2. CTS FWD System Architecture

The CUED CTS FWD system used the CUED CTS 20xRT STT
output as input [13], and it used Filler Word Language Models
(FWLMs) in order to detect the filler words in the input files. Tri-
gram (tg) and fourgram (fg) word-based FWLMs, and class-based
trigram FWLMs with 40 classes (cl40-tg), were constructed using
each of the training data sets given in Table 1. The FWLMs were
constructed in the same way as the SULMs (as detailed in Section
6.1).

Prosodic features were extracted for the training data as de-
tailed in Section 5, and the feature vectors obtained were each
classified either as a filler subtype, or else as a non-filler feature
vector. The FWD PFM was built in the same was as the SUBD
PFM (as described in Section 6.1).

The FWLMs were combined with the PFMs in a lattice-based
1-Best Viterbi decoding framework, as detailed in Section 6.1. The

6The ‘rttm’ file format is defined in [7].

decoder output files were subsequently converted into scorable
rttm files. Although PFMs were used in development experiments,
as demonstrated in Section 7.3, the FWD PFM degraded the per-
formance of a system that used FWLMs only.

6.3. CTS IPD System Architecture

The CUED CTS IPD system used the CUED CTS 20xRT STT
output as input [13], and it used Interruption Point Language Mod-
els (IPLMs) in order to detect the interruption points in the in-
put files. Trigram (tg) and fourgram (fg) word-based IPLMs, and
class-based trigram IPLMs with 40 classes (cl40-tg), were con-
structed using each of the training data sets given in Table 1. Once
again, these were constructed in the same manner as the SULMs
and FWLMs.

Prosodic features were extracted for the training data as de-
tailed in Section 5, and the feature vectors obtained were each
classified either as IP vectors (i.e., the lexeme associated with the
vector precedes an IP event), or else as a non-IP feature vector
(i.e., the lexeme associated with the vector does not precede an IP
event). The IPD PFMs were built as described previously.

The IPLMs were combined with the PFMs in the same lattice-
based 1-Best Viterbi decoding framework that had been used for
both the SUBD and FWD tasks.

7. DEVELOPMENT EXPERIMENTS FOR CUED SMD
SYSTEMS

7.1. CTS SUBD System Development

The ctsrt04 training data was used to construct a single free-standing
50-50 downsampled PFM (ctsrt04 PFM) as described in Section
5. The PFM made use of 9 prosodic features and it contained ˜100
terminal nodes. The average Residual Mean Deviance (RMD) for
the dev sets was 1.69, and the average Misclassification Rate (MR)
for the dev sets was 0.34. The ctsrt04 PFM was combined with the
various SULMs as discussed below.

During the process of CTS SUBD system development, vari-
ous combinations of SULMs were explored. As mentioned in Sec-
tion 6.1, independent word-based and class-based SULMs were
constructed for the various training data sets, and these SULMs
were then interpolated, with the weights being determined man-
ually.7 As discussed in Section 4.1, the ctsrt04 training data was
specifically prepared for the RT-04 evaluation, and it was anno-
tated in accordance with V6.2 of the MDE Annotation Specifica-
tion [8]. By contrast, the WW training data was prepared CUED-
internally by mapping c.1800 hours of the WW RT-04 STT train-
ing data so that it crudely approximated the ctsrt04 data. The WW
data was only used to train the SULMs, and it was not incorpo-
rated into the ctsrt04 PFM. The main results for the ctsrt04 PFM
and various ctsrt04 PFM+SULM systems are given in Table6.

The WW SULMs were created in order to reduce the DEL er-
ror rate that was obtained using the ctsrt04 trained SULMs, and
certainly the WW fg achieves DEL rates that are lower than those
for the ctsrt04 fg (the WW fg DEL rates are lower by 1.9% abs,
1.0% abs, and 0.4% abs for the dev03, eval03, and dev04 sets re-
spectively). However, as expected, the lower DEL rates are ob-
tained at the expense of higher INS rates when performance of
the WW fg is compared to that of the ctsrt04 fg (the WW fg INS

7Automated interpolation schemes proved to be suboptimal, and sys-
tems that used manually selected weights achieved lower ERR rates.



SYSTEM %Err (DEL/INS/ERR)
dev03 eval03 dev04

ctsrt04 PFM 32.6/69.3/131.5 34.2/64.7/132.4 30.1/68.2/131.2
ctsrt04 fg 31.8/15.1/57.9 31.5/14.0/56.8 29.2/15.7/56.2
ctsrt04 cl40-tg 33.1/20.3/63.9 33.3/18.7/62.6 30.8/19.7/61.9
WW fg 29.9/46.3/91.3 30.5/46.4/91.8 28.8/47.6/91.1
ctsrt04 fg+cl40-tg 31.8/14.8/57.0 31.3/13.8/56.1 29.1/14.7/54.4
ctssu interp 30.7/15.4/56.7 30.4/14.3/55.8 28.1/15.3/54.2

Table 6. CTS PFM and PFM+SULM Results; all results were
obtained using mdeval-v19 with the options ‘-w -W -t 1.00’
set; the interpolated SULM ctssu interp = ctsrt04 fg+ctsrt04 cl40-
tg+WW fg; all SULM results are for PFM+SULM systems, using
the ctsrt04 PFM

rates are higher by 31.2% abs, 32.4% abs, and 31.9% abs for the
dev03, eval03, and dev04 sets respectively). These comparatively
high INS rates are undesirable, and they suggest that a more subtle
mapping strategy would make the mapped WW data more useful.

The results in Table 6 indicate that a system that uses an in-
terpolated ctsrt04 fg and ctsrt04 cl40-tg achieves lower ERR rates
than a system that uses either of these SULMs separately, and that,
despite the comparatively high WW fg INS rates, further reduc-
tions (0.3% abs and 0.3% abs and 0.2% abs for the dev03, eval03
and dev04 sets respectively) can be achieved by interpolating the
WW fg with the ctsrt04 SULMs. The interpolation weights used
in the ctssu interp system were determined manually, and they are
given in in Table 7.

SYSTEM Interpolation Weights
ctsrt04 fg 0.575
ctsrt04 cl40-tg 0.375
WW fg 0.050

Table 7. CTS SULM Interpolation Weights for the SULMs in the
interpolated ctssu interp SULMs

Table 7 indicates that the WW fg SULM is given a weight
that is an order of magnitude lower than those assigned to the ct-
srt04 fg and cl40-tg SULMs. The ctsrt04 fg is given the high-
est weight, and therefore dominates the interpolated ctssu interp
SULM. When the WW fg was assigned a higher weight (e.g., a
value between 0.05 and 1.0), as expected, the DEL error rates de-
creased slightly, but these gains were lost because the number of
INS errors increased at a faster rate, thus degrading the perfor-
mance of the system.

7.2. BN SUBD System Development

The bnrt04 training data was used to build a single free-standing
50-50 downsampled PFM (bnrt04 PFM) as described in Section
5. The PFM made use of 5 prosodic features and it contained ˜60
terminal nodes. The average RMD for the dev sets was 0.96, and
the average MR for the dev sets was 0.17. The bnrt04 PFM was
combined with various SULMs as detailed below.

Various combinations of SULMs were explored. As men-
tioned in Section 6.1, independent word-based and class-based
SULMs were constructed for the training data sets, and these SULMs
were then interpolated, with the weights being determined manu-
ally. As discussed in Section 4.3, the bnrt04 v1.0 bnrt04 training

data were specifically prepared for the RT-04 evaluation, and they
were annotated using different versions of the MDE annotation
specification respectively [8]. The bnrt03 training data had been
prepared for the RT-03f evaluation, and had been annotated in us-
ing V5 of the MDE annotation specification [19]. By contrast, the
db98 and bn2003 STT training data sets were modified CUED-
internally by mapping the punctuation marks in the original tran-
scripts so that the resulting mapped data crudely approximated the
bnrt04 data. The db98 and bn2003 data were only used to train the
SULMs, and they were not incorporated into the bnrt04 PFM. The
main results for the bnrt04 PFM and various bnrt04 PFM+SULMs
systems are given in Table8.

SYSTEM %Err (DEL/INS/ERR)
dev03 eval03 dev04

bnrt04 PFM 45.2/40.2/110.2 47.3/42.2/107.9 52.0/49.1/134.0
bnrt03 tg 45.8/17.1/66.1 44.9/20.1/68.8 51.7/24.8/79.8
bnrt04 v1.0 tg 49.7/15.4/68.6 50.2/15.0/68.5 56.7/19.2/79.8
bnrt04 tg 50.4/16.0/69.9 49.4/17.2/70.2 55.9/19.9/79.0
bnrt03 cl40-tg 42.5/22.2/68.0 44.3/24.4/72.5 50.7/28.6/82.7
bnrt04 v1.0 cl40-tg 49.1/17.1/68.3 49.4/21.2/74.6 55.7/23.5/82.2
bnrt04 cl40-tg 50.2/17.5/69.5 45.2/20.6/69.0 56.1/25.6/84.8
db98 tg 29.6/35.4/67.9 31.4/44.2/80.6 40.9/45.1/89.4
db98 cl40-tg 28.0/42.9/74.4 30.1/52.7/87.8 39.1/52.6/95.7
bn2003 cl40-tg 37.1/26.9/67.4 42.4/30.1/76.8 48.4/36.2/88.6
EARS SULMs 46.1/14.8/63.4 45.4/15.3/63.9 53.7/21.7/78.8
+ db98 SULMs 42.4/16.6/61.7 42.9/16.7/63.1 52.0/22.4/77.9
+ bn2003 SULMs 41.0/17.2/61.0 42.1/16.8/62.5 51.5/22.8/77.8

Table 8. BN PFM and PFM+SULM Results; all results were ob-
tained using mdeval-v19 with the options ‘-w -W -t 1.00’ set; the
EARS SULM consisted of interpolated bnrt03, bnrt04 v1.0, and
bnrt04 tgs and cl40-tgs; all SULM results are for PFM+SULM
systems, using the same bnrt04 PFM

As for the CTS WW fg, the bn98 and bn2003 SULMs were
created in order to reduce the DEL error rate that was obtained us-
ing the bnrt04 v1.0, bnrt04, and bnrt03 trained SULMs; and cer-
tainly the db98 and bn2003 tgs and cl40-tg achieve DEL rates that
are lower than those for the bnrt04 v1.0, bnrt04, and bnrt03 tgs
and cl40-tgs. However (also as for the CTS WW fg), the lower
DEL rates are obtained at the expense of higher INS rates, and
these comparatively high INS rates are undesirable. Presumably,
a more subtle mapping strategy would make the bn98 and bn2003
data more useful.

The results in Table 8 indicate that a system that uses an inter-
polated bnrt04 v1.0, bnrt04, and bnrt03 tgs and cl40-tgs achieves
lower ERR rates than a system that uses these SULMs separately.
Also, the results indicate that further gains (2.4% abs, 1.4% abs,
and 1.0% abs for the dev03, eval03, and dev04 sets respectively)
can be obtained if the db98 and bn2003 mapped-data SULMs are
added to the set of interpolated models. The interpolation weights
used were determined manually, and the weights for the interpo-
lated SULM system used in the evaluation are given in in Table
7.

Table 9 indicates that the bnrt04 tg and the bnrt04 v1.0 cl40-tg
dominate the interpolated SULM, while the SULMs created using
the mapped db98 and bn2003 data sets are assigned comparatively
low weights.



SYSTEM Interpolation Weights
bnrt03 tg 0.10
bnrt04 v1.0 tg 0.10
bnrt04 tg 0.30
db98 tg 0.05
bnrt03 cl40-tg 0.10
bnrt04 v1.0 cl40-tg 0.20
bnrt04 cl40-tg 0.05
bn2003 cl40-tg 0.05
db98 cl40-tg 0.05

Table 9. BN SULM Interpolation Weights

7.3. CTS FWD System Development

The ctsrt04 training data was used to construct a single free-standing
50-50 downsampled PFM (ctsrt04 PFM) as described in Section
5. The PFM made use of 10 prosodic features and it contained
˜100 terminal nodes. The average RMD for the dev sets was 1.58,
and the average MR for the dev sets was 0.32. The ctsrt04 PFM
was combined with the various FWLMs, although the FWD ct-
srt04 PFM always degraded the performance of the FWD system,
as discussed below.

Several combinations of FWLMs were explored. As men-
tioned in Section 2.2, independent word-based and class-based
FWLMs were constructed for the training data sets, and these FWLMs
were then interpolated, with the weights being determined manu-
ally. Some of the results for the FWLMs are given in Table 10.
The best results on the dev data were obtained using word-based
tg FWLMs constructed using the ctsrt03 and ctsrt04 training data
sets.

SYSTEM %Err (DEL/SUB/ERR)
dev03 eval03 dev04

ctsrt03 tg 35.7/12.4/49.0 36.6/12.8/50.1 31.6/9.7/41.6
ctsrt04 tg 30.0/14.8/45.9 32.6/16.4/49.8 26.7/11.9/39.0
ctsrt03 cl40-tg 45.5/12.8/59.1 46.3/13.9/60.1 41.5/10.8/52.8
ctsrt04 cl40-tg 41.0/14.3/55.8 41.2/16.6/58.3 36.4/13.6/50.2
fw interp 31.8/13.8/46.4 33.7/14.6/49.2 27.7/10.8/38.9
+ ctsrt04 PFM 33.4/18.8/52.2 36.0/19.2/55.2 30.2/14.1/44.3

Table 10. CTS FWLM and FWLM+PFM Results; all results were
obtained using mdeval-v19 with the options ‘-w -W -t 1.00’ set;
the fw interp FWLM consisted of interpolated ctsrt03 and ctsrt04
tgs and cl40-tgs; the results are all for FWLM systems with no
PFM, except for the fw interp + ctsrt04 PFM system which uses
the FWD ctsrt04 PFM

The results in Table 10 indicate that, for the eval03 and dev04
sets, interpolated ctsrt03 and ctsrt04 tgs and cl40-tgs achieve lower
ERR rates than any of these word-based and class-based models
used independently. When a FWD ctsrt04 PFM was incorporated
into the decoding framework, the performance of the system de-
graded for all three dev sets. Specifically, the fw interp+ctsrt04 PFM
system achieves ERR rates for the dev03 eval03 and dev04 data
sets that are 5.8% abs, 6.0% abs, and 5.4% abs higher than those
obtained by the fw interp system without the ctsrt04 PFM.

7.4. CTS IPD System Development

A single free-standing 50-50 downsampled PFM (ctsrt04 PFM)
was built using the ctsrt04 training data as described in Section 5.
The PFM made use of 8 prosodic features and it contained ˜100
terminal nodes. The average RMD for the dev sets was 1.42, and
the average MR for the dev sets was 0.25. The ctsrt04 PFM was
combined with the various IPLMs as discussed below.

During IPD system development, numerous combinations of
IPLMs were explored. As for the SULMs and FWLMs, inde-
pendent word-based and class-based IPLMs were constructed for
the training data sets, and these IPLMs were then interpolated,
with the weights being determined manually. Some results for the
IPLMs are given in Table 11. The best results on the dev data were
obtained using word-based tg IPLMs constructed using the ctsrt03
and ctsrt04 data sets.

SYSTEM %Err (DEL/SUB/ERR)
dev03 eval03 dev04

ctsrt03 tg 51.6/12.5/64.2 53.0/11.9/65.0 49.6/11.6/61.2
ctsrt04 tg 45.7/16.0/61.7 48.0/14.8/62.8 43.6/14.7/58.2
ctsrt03 cl40-tg 52.0/19.6/71.6 55.3/22.0/77.3 53.9/22.4/76.3
ctsrt04 cl40-tg 52.9/20.2/73.0 53.2/17.5/70.7 49.6/17.9/67.5
ip interp 49.3/12.3/61.5 51.3/11.4/62.7 47.1/11.4/58.5
+ ctsrt04 PFM 45.7/15.7/61.4 48.5/13.7/62.2 43.9/14.2/58.1

Table 11. CTS IPLM and IPLM+PFM Results; all results were
obtained using mdeval-v19 with the options ‘-w -W -t 1.00’ set;
the ip interp SULM consisted of interpolated ctsrt03 and ctsrt04
tgs and cl40-tgs; the results are all for IPLM systems with no PFM,
except for the ip interp + ctsrt04 PFM system which uses the IPD
ctsrt04 PFM

The results indicate that small gains can be obtained by IPLM
interpolation, although the interpolated IPLMs only perform slightly
better than the ctsrt04 tg (0.2% abs, and 0.6% abs respectively for
the dev03, eval03 data sets; the interpolated ip interp IPLM per-
form 0.3% abs worse on dev04 set than the ctsrt04 tg). When
the ctsrt04 PFM is added, the ERR rates fall by about 0.4% abs
on average. The interpolation weights for the IPLMs used in the
ip interp model are given in Table 12.

SYSTEM Interpolation Weights
ctsrt03 tg 0.30
ctsrt04 tg 0.40
ctsrt03 cl40-tg 0.10
ctsrt04 cl40-tg 0.20

Table 12. CTS IPLM Interpolation Weights for the IPLMs in the
interpolated ip interp IPLM

The numbers in Table 12 indicate that the ctsrt03 tg was as-
signed the highest weight, and therefore dominated the interpo-
lated IPLM. However, the ctsrt03 cl40-tg was assigned the lowest
weight, which is appropriate since these models produce higher
ERR rates when they are used independently.



8. RESULTS ON THE RT-04 EVALUATION DATA

8.1. RT-04 Evaluation Data

Information concerning the CTS and BN RT-04 evaluation data is
given in Table 13.

Name ctseval04 bneval04
Epoch 2004 2004
Spec V6.2 (v1.1) V6.2 (v1.1)
Hours c.3 c.3

Table 13. Summary of CTS and BN RT-04 Evaluation data

This data was processed in exactly the same manner as the dev
data sets had been processed. For details, see Sections 5 and 6.

8.2. CTS RT-04 Evaluation Results

The CUED CTS SMD evaluation system results for the dev sets
and the RT-04 eval set are given in Table 14. These results are for
both the speech and reference conditions. The reference condition
involved ‘perfect’ token sequences being used as input to the SMD
systems. Consequently, the reference results indicate how the var-
ious system would have performed if the STT output files used as
input to the SMD systems were entirely free from errors.

SYSTEM %Err
dev03 eval03 dev04 eval04

CTS FWD (spch) 52.2 55.2 44.3 45.8
CTS FWD (ref) 25.3 25.4 25.5 27.4
CTS IPD (spch) 61.4 62.2 58.1 63.5
CTS IPD (ref) 42.8 42.1 44.5 47.2
CTS SUBD (spch) 56.7 55.8 54.2 56.5
CTS SUBD (ref) 52.0 50.6 45.2 46.2

Table 14. CTS RT-04 Results

These results indicate that the SMD systems performed broadly
as expected given the dev set results. Since the CTS FWD and
CTS IPD systems were constructed for RT-04, the main progress
since RT-03f in relation to these systems is that they now form a
baseline for future research. A CTS SUBD system was submit-
ted for RT-03f, but determining progress since that evaluation is
not trivial since the task definition has changed: for RT-03f SUB
errors were not scored, while these errors were scored for RT-04.
Consequently, the RT-03f SUBD system used a posterior decoding
scheme that did not take SU subtypes into account [6]. However,
the results in Table 15 provide a comparison of the RT-03f and
RT-04 CTS SUBD evaluation system, by presenting numbers for
the RT-03f and RT-04 system output files when scored against ver-
sions of the eval03 reference files that are annotated using V5 and
V6.2 of the MDE annotation specification respectively.

The results in Table 15 suggest that (ignoring SUB errors)
the RT-04 system achieves ERR rates that are between c.5% and
c.11% abs lower than those achieved by the RT-03f system.

8.3. BN RT-04 Evaluation Results

The CUED BN SMD evaluation system results for the dev sets and
the RT-04 eval set are given in Table 16. Once again, the results
presented are for both the speech and reference conditions where

SYSTEM DEL INS SUBS %Err (DEL/INS)
RT-03f sys/V5 ref 33.1 19.3 11.7 64.1 (52.4)
RT-03f sys/V6.2 ref 34.1 21.2 10.9 66.1 (55.2)
RT-04 sys/V5 ref 32.0 15.1 13.9 61.0 (47.1)
RT-04 sys/V6.2 ref 30.4 14.3 11.2 55.8 (44.7)

Table 15. Results for RT-03 and RT-04 eval systems using V5 and
V6 ref files for eval03 data

the reference condition involved ‘perfect’ token sequences being
used as input to the SMD systems. Consequently, the reference re-
sults indicate how the various system would have performed if the
STT output files used as input to the SMD systems were entirely
free from errors.

SYSTEM %Err
dev03 eval03 dev04 eval04

BN SUBD (spch) 61.0 62.5 77.8 72.2
BN SUBD (ref) 57.5 60.6 75.1 71.1

Table 16. BN RT-04 Results

These results indicate that the dev04 and eval04 data sets were
more difficult than the dev03 and eval03 sets, and this roughly
corresponds to STT performance on these data sets [14] [18].

9. CONCLUSIONS

This paper has summarised the CUED SMD systems that were de-
veloped as part of the EARS RT-04 evaluation. Since all except
one of these systems was developed from scratch specifically for
the RT-04 evaluation, the systems described in this paper primar-
ily constitute an initial attempt to solve the non-trivial CTS FWD,
CTS IPD, and BN SUBD pattern recognition problems defined
within the EARS SMD framework. In general, these results sug-
gest that is is possible to use the same generic system architecture
for the FWD, IPD, and SUBD tasks, adapting the same general
framework for each specific task. For instance, particular frame-
work modifications can include the use of PFMs and task-specific
variations in the number and types of language models. The results
presented here suggest that the FWD task is best approached as a
pattern recognition problem that does not utilise acoustic informa-
tion as an independent information source once the STT stage in
the process is complete. By contrast, the IPD system achieve the
lowest ERR rates when the interpolated IPLM are combined with
IP-based PFMs. The RT-04 CTS SUBD system gave an c.8% abs
improvement over the RT-03f system, and the CTS and BN SUBD
results in general suggest that these systems may benefit by using
larger amounts of mapped training data. Since small gains are ob-
tained for both the CTS and BN SUBD tasks using SULM trained
on crudely mapped data, it is reasonable to assume that a more sub-
tle automated punctuation-to-SU mapping could enable the large
STT training data sets (which contain thousands rather than tens
of hours of data) to be utilised as training data by the SMD SUBD
systems. If such a mapping were developed, then the amount of
available training data for the SUBD tasks would increase by sev-
eral orders of magnitude.
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