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ABSTRACT This paper is arranged as follows. Sectibaxplains the 'di-

i, . risation’ score used to evaluate the segmentations, Settim
Speech recognition systems for conversational telephone speec usses the data used in the experiments and Settitescribes
require the audio data to be automa_tically d_ivided_into regions Qf the segmentations. Sectidrbriefly describes the recognition sys-
speech and non-s_peech. The qualllty of this audlp segmentationg < sed to generate the WERs and compares the WERSs resulting
affects the recognition accuracy. This paper describes several aPtrom the segmentations, then Sectidmvaluates the correlation

proaches to segmentation and compares the r_esulting recaniseEietween the diarisation score and the WER. Finally conclusions
performance. It is shown that using Gaussian Mixture Models out- are offered in Sectiofi

performs an energy-detection method and using the output from

the speech recogniser itself increases performance further. An up-

per bound on possible performance was obtained when deriving a 2. THE DIARISATION SCORE
segmentation from a forced alignment of the reference words and
this outperformed using manually marked word times. Finally the
correlation between an appropriately defined segmentation score” <> ~ . .
and WER is shown to be over 0.95 across three data sets, suggesﬁ”sat'on evaluationl]. The general formulation takes a reference

ing that segmentations can be evaluated directly without the needa.nd a hypothesis segmentation and performs a one-to-one map-
for full decoding runs. ping of the reference speaker IDs to the hypothesis speaker IDs so

as to maximise the total overlap of the reference and (correspond-
ing) mapped hypothesis speakers. Speaker detection performance
is then expressed in terms of the miss (speaker in reference but
1. INTRODUCTION not in hypothesis), false alarm (speaker in hypothesis but not in
) - ] reference), and speaker-error (mapped reference speaker is not the
Automatic Speech Recognition (ASR) systems for conversational same as the hypothesised speaker) rates. The overall diarisation

telephone speech (CTS) data require the audio to be divided intogcore s the sum of these three components, and can be calculated
regions of speech and non-speech. The quality of the audio segysing the following formula:

mentation affects the performance of the recogniser, for example if

speech regions are labelled as non-speech and discarded they pro- 22, dur(s) - (max(Nr(s), Nu(s)) — No(s))

duce deletion errors, whereas regions of non-speech which are not > dur(s) - Nr(s)

discarded in segmentationayproduce insertion errors. Recogni- wheres is the longest continuous piece of audio for which the
tion performance may also be affected by other properties of thereference and hypothesised speakers do not chdngés) is the
segmentation such as the minimum/maximum duration of a speechduration ofs, Ng(s) is the number of reference speakerssjn
segment or the tightness of the segment boundaries, for exampleVy (s) is the number of hypothesised speakers iand N¢(s)

by affecting the normalisation or adaptation. is the number of mapped reference speakers which match the hy-
pothesised speakers. For the CTS data, the channels are provided
I,§,eparately with only one speaker per side, so this becomes:

The segmentations are evaluated using the diarisation score, which
Jwas defined for the 2003 Spring Rich Transcription (RT-03s) di-

This paper investigates several different methods of producing
segmentations, based on either acoustic information, such as al
adaptive energy-based method or using Gaussian Mixture Mod- > dur(s) - (Hmiss(s) + Hya(s))
els (GMMs); or on word-level timing information, such as using S dur(s) - Hyep(s)

a recogniser output, a forced alignment of the reference words,\yhere is always zero excefil,mis (s) is 1 for a missed speech
or manually generated wo_rd times. The segmentations are CoMsegmentf, (s) is 1 for a false alarm speech segment &hd; (s)
pared both from the resulting recognition word error rates (WER) is 1 for a segment containing a reference speaker. Thus missed

and a segmentation score which is the sum of the missed speeclipeech and false alarm speech errors are weiggadllyin the
and false alarm rates compared to a reference segmentation. Thgror count.

results are given from experiments into how to maximise the cor- o . . ) ]
relation between the segmentation score and WER, so as to allow [N the RT-03s diarisation evaluation, regions which contained
the WER to be predicted solely from the segmentation without the SPeaker-attributable vocal noise (and surrounding silence) were
need for potentially computationally expensive decoding runs. ~ €xcluded from scoring. We do not do this since, for the purposes
of ASR, any events in the audio which are not speech should be
This work was supported by DARPA grant MDA972-02-1-0013. The freated in the same way as silence. We also chose to generate our

paper does not necessarily reflect the position or the policy of the US Gov- reference segmentations in a slightly different way (see se6tion
ernment and no official endorsement should be inferred. for more details).
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3. DATA USED IN EXPERIMENTS These initial segmentations were refined by having segments
of silence which were less than a certain critical length relabelled

The experiments reported in this paper were conducted on the deas speech (smoothing) and where applicable, the boundaries of
velopment and evaluation data used in the English CTS RT-02 speech segments expanded (padding). The smoothing and padding
and RT-03 Rich Transcription evaluatiorid.The main data sets  parameters for diarisation scoring were chosen so as to match those
are the RT-02 evaluation dafavalO2)consisting of 60 5-minute  used when generating the reference file. It was found empirically
conversations, the December 2002 RT-03 dryrun datédsgd3) that using 0.6s smoothing and 0.2s padding resulted in the lowest
which is a 12 conversation subset of eval02, and the main RT-03WER on the dry03 data, giving a 7.2% relative gain over the case
STT evaluation sefeval03)consisting of 72 5-minute conversa- of no smoothing or padding3[. Therefore when the segmenta-
tions. The eval02 and eval03 sets are relatively large and providetions are used as input to the speech recogniser, 0.6s smoothing
more reliable results to be obtained, but the dry03 subset is alsoand 0.2s padding are added unless otherwise stated.
necessary since some transcriptions or segmentations were only
available on this data. In particular, manually derived word times, 5 GENERATING WORD ERROR RATES
which were initially used to derive the diarisation reference were

only produced on the dry03 data set. Further details about the ex-Tpe recognition system used in this paper to measure the effect of

act composition of the data sets can be foundn [ different segmentations on recognition accuracy is based on the
2002 CUED 10xRT CTS system developed for the RT-02 STT
4. GENERATING SEGMENTATIONS evaluation []. The acoustic models were improved but the system

structure was unchanged. The system uses cross-word triphone

The data must be segmented into speech and non-speech regioﬁEOdels and a fourgram language model with a 54k dictionary. The
for recognition. The CUED RT-03 CTS recognition system used acoustic features were based on PLP analysis and normalised us-

a segmentation based on the CUED RT-03s CTS diarisation sys"9 VTLN.

tem. This used GMMs to segment and label the audio as silence,  The system operates in three passes. The initial pass uses rel-
male or female and ran in 0.05xRT. Two different model sets were atively simple models to generate a transcription for use as super-
built, one using Switchboard-I and Il (phase 1 and 2) data, and thevision in the estimation of VTLN warp factors and global MLLR
other using cellular (Switchboard-Il phase 4) data. Approximately adaptation transforms. The following two passes use models trained
3 hours of training data was used for each model and the silenceysing Minimum Phone Error Estimation and employ a global HLDA
model contained 128 mixture components, whilst the male and fe- transform in the feature extraction. The second pass generates
male models both contained 256. A Viterbi decoder was used toattices which are then rescored in the final stage using models
finddthe mgsdt likely sequednce of GMMsl, endsuring only a singleI adapted using 2 MLLR speech transforms per speaker.

gender and dataset per side were postulated. An insertion penalty " . -
was used to prevent rapid oscillation between models. Each side Inan addltlc?nal expeniment ihe more sophisticated 2003 CUED
was processed independently, so no cross-channel modelling sucﬂOXRT systemd] was useq on the evaIO_3 data. This system em-
as that used by BBN/] was performed, although experiments sug- ploys two separate acoustic model sets in separate branches of the

gest that the standard of the CUED and BBN CTS RT-03 Segmen_final rescoring stage whose outputs are combined. One model set
tations is similar. Further details are given id.[ was trained using Speaker Adaptive Training and the other em-

ploys a single pronunciation dictionary (SPron). All models were
Additional segmentations were generated in the following waystrained using MPE and used HLDA. Adaptation was performed

CUED Pre-ASR: Thisincludes the GMM based system described YS9 lattice-based MLLR and full-variance transforms.

above, and a number of similar systems with slight varia- The WERs for the segmentations described in sectiomthe

tions in training data, models and/or parameters. eval02 and dry03 subset, and the eval03 data are given in Table
along with that from using the (manually defined) segmentation
used in ASR scoring (the STM file) with raxditional smoothing
or padding. These results show that the GMM-based pre-ASR seg-
mentation consistently outperforms the energy-based baseline seg-
mentations and the post-ASR segmentation outperforms the pre-
ASR segmentation on the eval02 and eval03 data sets, showing
that segmentations can be improved using the ASR output. (Since
the dry03 subset data set is only a fifth of the eval02 data set, the
Baselines: These are the two baseline segmentations, rt02baseWER numbers are more reliable on the latter).

and rt03base, provided by MIT-LL for the Rich Transcrip-

tion evaluationsj]. They use an adaptive energy-based de-

tector [5] and differ considerably in quality.

CUED Post-ASR: The word times output by the speech recog-
niser are used to define the regions of speech. The primary
run, Post-ASR-full , used the CUED RT-03 187xRT
CTS recogniserd] to generate the word times. A contrast
run, Post-ASR-fast using the CUED RT-02-based
10xRT recogniser described in sectiérto generate the
word times is also provided.

Itis also interesting to note that the segmentation derived from
the CUED forced alignment times consistently provide the best
WER results, outperforming the segmentation derived from the
CUED FA: A forced alignment of the reference words to the au- manually marked word times on the dry03 subset, and the man-

dio is performed and the resulting word times used to define ually defined STM segmentation on all three data sets. This may

the regions of speech. be down to a system interaction effect, but suggests that to get
an upper bound on segmentation performance, or to predict the
WER of a CUED recognition system from just comparing seg-
mentations, the reference segmentation should be derived from the
CUED forced alignment times.

Manual word times: For the Dec 2002 dryrun 12-side subset of
the eval02 data, manually produced word times were pro-
vided, which were used to define the regions of speech.
Non-lexical tokens were ignored.
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System dry03 | eval02 eval03 2951 L
BASELINE rt02base 29.5 29.2 271 (22.8) Leto
BASELINE rt0O3base 28.3 28.0 26.7 (22.4) £ 29r dry03 data _,—"
CUED Pre-ASR 28.1 27.3 26.3 (22.2) 5 . JPLae
CUED Post-ASR-fast 28.0 27.2 26.2 (22.0) 228-5* ‘,/’
CUED Post-ASR-full 28.2 27.1 26.0 (22.0) © & . ‘?“
CUED FA word times 27.4 26.2 254 (21.3) & 28r ’,x’ ¢ eval02 data
Manual word times 278 | — — (—) % ‘ e .
STM (unknown smth/pagd) 27.7 26.7 256 (21.6) P 275] ! 3
(8] Phd -
Table 1. Word Error Rates using different segmentations for CTS E e " cuep Pre-ASR
. . . b’ Manual Word Times
data. Numbers in parenthesis are from using the RT-03 based %2657 < CUED Forced-Align.
recogniser. i CUED Post-ASR
4 ¢ Baseline
6. THE CORRELATION BETWEEN DIARISATION %% 30

10 15 20 25
SCORE AND WER % Diarisation Score (Ref. from dry03 Manual Times)

Th lity of th tati learly affects th litv of th Fig. 1. Relationship between diarisation score on dry03 data and
€ quality ot Ine segmentation clearly altects he quaity ot e \yep on evalo2 and dry03 data. The dashed line shows the divi-

Lecoglnlster ouélputt tﬁnd\,\;gésdthe :/IVEfR Iolﬁally we w?utl.d like to sion between the two data sets. The manual word times were used
€ able 1o predict the rectly from the segmentation, SO aSy, yarjye the diarisation reference.

to allow different segmentation configurations to be tried without

needing to perform a (computationally expensive) full decode for 2951 o .-
every case. The diarisation score offers a way of measuring seg- Lo
mentation performance by summing the missed speech and false § 29r dry03 data 3l
alarm speech giving equal weighting to both. This does not there- E . ot
fore reflect the commonly held view that for ASR segmentations T28.5¢ et
the missed speech is more important than the false alarm speech, § ’.‘. fx’
since the latter is recoverable for example by matching a silence 5 28 el ¢ eval02 data
acoustic model. However, it offers an unbiased comparison oftwvo & 8,7
segmentations in that the numerator of the error score is indepen-  g275;  .-° :
dent of which file is the reference and which the hypothesis. "2 JPial e

In order to investigate the correlation between the diarisation E:: i * cuep Pre-ASR
score and the WER, 16 segmentations were made on the dry03 = < COED Foreadoanion.
data subset. These were derived from 10 CUED Pre-ASR runs, 2 R265) CUED Post-ASR
CUED Post-ASR runs, 2 Baseline runs, the CUED forced align- ) : : o Base'f"e ‘ ‘

N
2

ment word times and the manual word times. A diarisation refer- 0 30

ence was generated from the manual word times using 0.6s smooth-

ing, and diarisation scores of the (similarly smoothed) segmenta-gjy > Relationship between diarisation score on dry03 data and
tions were calculated. Segmentations were similarly made on the\yer on evalo2 and dry03 data. The dashed line shows the di-
eval02 data for all cases except for the manual word times (which vision between the two data sets. The CUED forced alignment

were only available on the dry03 subset). The WER was then o4 times for the dry03 data were used to derive the diarisation
found using the RT-02 based recogniser described in setion reference.

the dry03 data and the eval02 superset after adding an additional

5 10 15 20 25
% Diarisation Score (Ref. from dry03 FA Times)

0.2s padding to the (smoothed) segmentations. The results are il- DIARY DIARY | WER | WER
lustrated in Figure. Manual Ref| FA Ref | dry03 | eval02
DIARY(Man) 1.00 0.94 0.90 | 0.93

It was noted in sectiof that the CUED-FA derived segmenta-

tion gave a lower WER than using the manual times possibly due \?\/lésél(rl;%)?,) ) 1.00 (1)83 832
t t int ti ffect d thus it b i- ) . : )
0 a system interaction effect, and thus it may be more appropri WER(eval02) ) ) i 1.00

ate to use the CUED-FA times to derive the diarisation reference
when trying to use the diarisation score to predict the WER of a Tahle 2. Correlation Coefficients for predicting the evalo2 WER
CUED recogniser. To investigate this more carefully, the diarisa- from the dry03 subset

tion scores were recalculated using a reference derived from the

i(rzluFliijrf(e)rzce(']ll'hae“%?:;glnz;ti\gr?rgogmgféntlhlfe{\zzzlrgsts;e dlilzlaurisst;%fr? rises from 0.90 to 0.98, and that between the dry03 data diarisa-
; . : tion score and the WER on the eval02 superset rises from 0.93 to
scores and the word error rates are given in Table 0.98. This is very encouraging, given that the correlation between
The results show there is a strong correlation between the di-the WERs themselves on the two sets is only 0.94. This suggests
arisation scores and the subsequent WERSs of the system, and thithat predicting the WER on the eval02 superset of data using just
correlation is highest when the diarisation reference is derived fromthe dry03 subset, can be done with as much confidence using the
the CUED forced alignment word times. In particular, the correla- diarisation score as the WER, so new segmentations can be tested
tion between the diarisation score and the WER on the dry03 datawithout the need for computationally expensive decoding runs.
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An added advantage of using forced alignments to generate
the diarisation reference is that they can be produced with rela-

7. CONCLUSIONS

tively little manual effort and thus, unlike using manually gener- Segmentations for the CTS data can be generated using many dif-
ated word times, are possible to obtain for large data sets. A di- ferent methods and can be compared using the diarisation score.
arisation reference was thus constructed for the eval02 and eval03Adding 0.6s smoothing and 0.2s padding to the segmentations min-
data starting with the CUED forced alignments. The results are il- imised the resulting WER from the recogniser and thus 0.6s smooth-
lustrated in Figur& and the correlation between diarisation scores ing was added to the segmentations for diarisation scoring. Also

and WER given in Tabl&. These results confirm that there is a

including the padding was found to have little impact on the corre-

very high correlation between the diarisation score and the WER lation between the diarisation scores and WER and so was omitted.

providing the reference is generated appropriately, and this corre-
lation is maintained across different data sets and recognisers.

29.51
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Fig. 3. Relationship between diarisation score and WER on the
eval02 and eval03 data, using the CUED forced alignment word
times to derive the diarisation reference.

(6]

Dataset| Size | Num Points Correlation
eval02 | 5hrs 15 0.96/0.96
eval03 | 6 hrs 6 0.99/0.99 (0.97/0.98 [7]

Table 3. Correlation Coefficients between the diarisation score
and the WER when using the CUED forced alignment to derive
the diarisation reference. The second number is when adding 0.2s
padding (in addition to the 0.6s smoothing) to the segmentations[g]
when calculating the diarisation score. The numbers in parenthesis
are from using the RT-03 based recogniser.
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Using the ASR output to refine the segmentation proved ben-

eficial, reducing both diarisation score and WER. An upper bound

on performance was obtained using a segmentation derived from
° the CUED forced alignment word times. This also outperformed

using manually derived word or segment-level times. Generating
the diarisation references from the CUED forced alignment word

times rather than the manually derived word times also increased
the correlation between diarisation score and WER, and made it
possible to score much larger data sets.

The WER on the eval02 data can be predicted from the dry03

. subset with just as much confidence using the diarisation score as
the WER itself. The correlation coefficient between the diarisation
score and WER was over 0.95 on both the eval02 and eval03 data
sets even when the recogniser was changed, showing the value of a
segmentation for ASR can generally be judged from the diarisation
score without needing computationally expensive recogniser runs.
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