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Abstract

It is often important to be able to automatically label ‘who spoke
when’ during some audio data. This paper describes two sys-
tems for audio segmentation developed at CUED and MIT-LL
and evaluates their performance using the speaker diarisation
score defined in the 2003 Rich Transcription Evaluation. A new
clustering procedure and BIC-based stopping criterion for the
CUED system is introduced which improves both performance
and robustness to changes in segmentation. Finally a hybrid
‘Plug and Play’ system is built which combines different parts
of the CUED and MIT-LL systems to produce a single system
which outperforms both the individual systems.

1. Introduction
Segmenting audio data into speaker-labelled regions has many
applications, including improving readability of transcripts,
enabling speakers to be tracked, conversations to be followed,
data to be indexed, browsed or searched by speaker, and aiding
speaker adaptation techniques in speech recognition.

A particularly challenging domain for speaker labelling
is broadcast news shows. These programs contain an un-
predictable number of speakers who speak for a wide range
of different times, sometimes simultaneously; as well as
containing unwanted regions such as commercial (advert)
breaks. However, tracking speakers through current affairs
debates, or being able to search for information known to
be spoken by the primary anchor or newsreader, can be very
beneficial - and so the task of identifying ‘who spoke when’ in
broadcast news audio is particularly interesting and challenging.

This paper describes systems developed at CUED and MIT-
LL to perform automatic segmentation, clustering and labelling
of speakers (and in some cases commercial breaks) in broadcast
news data. The paper is arranged as follows: the ‘diarisation’
error rate used for scoring is explained in Section2 and the data
used for experiments defined in Section3. The December 2003
CUED diarisation system is described in Section4 which also
introduces a new clustering procedure with new stopping crite-
ria. The MIT diarisation system is described in Section5 and a
hybrid ‘Plug and Play’ system which combines stages of both
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the CUED and MIT-LL system is described in Section6 along
with comprehensive experimental results. Finally conclusions
are offered in Section7.

2. Diarisation
Speaker diarisation was a task in the 2003 Spring Rich Tran-
scription (RT-03s) evaluation.[1] This was a development of the
RT-02 Broadcast News Metadata speaker segmentation task [2]
which in turn developed from the (multi-speaker) speaker
segmentation task in the speaker recognition evaluations.[3, 4]

A system hypothesises a set of speaker segments each
of which consist of a speaker-id label and the corresponding
start and end time. This is then scored against a reference
‘ground-truth’ speaker segmentation. A one-to-one mapping of
the reference speaker IDs to the hypothesis speaker IDs is per-
formed so as to maximise the total overlap of the reference and
(corresponding) mapped hypothesis speakers. Speaker detec-
tion performance is then expressed in terms of the miss (speaker
in reference but not in hypothesis), false alarm (speaker in
hypothesis but not in reference), and speaker-error (mapped
reference speaker is not the same as the hypothesised speaker)
rates. The overall diarisation score is thesum of these three
components, and can be calculated using the following formula:P

s dur(s) · (max(NR(s), NH(s))−NC(s))P
s dur(s) ·NR(s)

(1)

wheres is the longest continuous piece of audio for which the
reference and hypothesised speakers do not change,dur(s) is
the duration ofs, NR(s) is the number of reference speakers
in s, NH(s) is the number of hypothesised speakers ins and
NC(s) is the number of mapped reference speakers which
match the hypothesised speakers. Since the RT-03s diarisation
score excluded from scoring areas where multiple reference
speakers were talking simultaneously, and we do not postulate
any regions of overlapping speech in the hypotheses, this
formula becomes:P

s dur(s) · (Hmiss(s) + Hfa(s) + Hspe(s))P
s dur(s) ·Href (s)

(2)

whereH is always zero exceptHmiss(s) is 1 for a missed
speech segment,Hfa(s) is 1 for a false alarm speech segment,
Hspe(s) is 1 for a segment with a speaker error, andHref (s)
is 1 for a segment containing a reference speaker.
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The references used for scoring were generated accord-
ing to the rules specified in [1, 5]. Effectively, speaker turns
were derived using word times generated by a word-level forced
alignment from the Linguistic Data Consortium (LDC), with
segment breaks when either a new speaker starts talking, or
the speaker pauses for more than a certain critical length of
time (here fixed at 0.3s as was used in the RT-03s diarisation
evaluation). Speaker-attributable non-lexical events, such as
{cough, breath, lipsmack, sneeze and laughter} were excluded
from scoring along with their adjoining silences. Commercial
breaks were not transcribed for the reference, and as a result
were also excluded from scoring in the primary scoring metric,
although we also consider a secondary metric which penalises
systems for retaining adverts in their hypothesised output.

3. Data used in experiments

The experiments reported in this paper were conducted on the
diarisation development data(bndidev03)and the entire 2003
evaluation data(bneval03)used in the English Broadcast News
RT-03 Rich Transcription evaluations.[6]

Each data set consists of one 30 minute extract from 6
different US broadcast news shows. Two of these are radio
shows, namely Voice of America English News (VOAENG)
and PRI The World (PRITWD); and four are TV shows,
namely NBC Nightly News (NBCNNW), ABC World News
Tonight (ABC WNT), MSNBC News with Brian Williams
(MNB NBW) and CNN Headline News (CNNHDL). Details
of the exact composition of the data sets can be found in [7].

4. CUED diarisation system

The CUED December 2003 diarisation system can be split into
three basic components. Firstly there is an optional stage of
advert detection, namely trying to postulate where commercial
breaks occur within the broadcast news shows. Next the re-
maining data is segmented, which aims to produce acoustically
homogeneous segments of speech with bandwidth and gender
labels. Finally clustering is performed to group together seg-
ments from the same speaker to produce the final speaker labels.
This process is illustrated in Figure1.
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Figure 1:The CUED Dec 2003 diarisation system

4.1. Advert removal

The advert detection stage is similar to that used in the TREC-8
Cambridge Spoken Document Retrieval system[8]. It uses a
direct search of the audio, as described in [9] to find exact
matches which represent re-broadcast (pre-recorded) portions
of the news shows. These repeats are then converted into
postulated commercial breaks by applying a series of rules
relating to the number of times the audio is repeated and the
gaps between labelled repeats.

A library of broadcast news shows was made1 using the
English TDT-4 training data, excluding the shows from the
RT-03s development sets. This consisted of between 40 and
70 shows for each of the 6 broadcasters spanning October
2000 to January 2001. This library is denotedCUTDT4. A
further library was generated which excluded shows for each
broadcaster which were broadcast in the same calendar month
as that broadcaster’s episode in the diarisation development
data. This was to simulate conditions in the RT-03s evaluation,
where there was a temporal gap between the test-audio and the
training shows. This library is denotedCUEVAL.

The data for both the library and the evaluation shows
is first coded at a frame rate of 100Hz into 39-dimensional
feature vectors consisting of the normalised log-energy and 12
Mel-frequency PLP cepstral parameters along with their first
and second derivatives.

Overlapping windows are generated on the data; 5 sec-
onds long with a 1 second shift for the ABC, CNN, MNB
and NBC shows, and 2.5 seconds long with a 0.5 second
shift for the VOA and PRI shows. The difference in these
values reflects the nature of the shows, the radio shows in
general having fewer well-defined commercial breaks, but
still including other repeated material such as station jingles
which could be removed automatically. The windows are then
represented by a diagonal correlation matrix. (It was found that
using the correlation matrix instead of the covariance matrix
gave better results due to the retention of the mean information.)

The Arithmetic Harmonic Sphericity (AHS) distance[10]
is then calculated for each evaluation window compared to
each library window. This is marked as a repeat if this distance
metric falls below a small threshold. For a perfect match
the distance would be zero, but since the granularity of the
windows means there may be a delay of up to half the window
shift between corresponding events in the two audio streams,
causing a slight mismatch in the data, a threshold is required.
This is set conservatively so that there should not be any false
matches whose distance metric is lower than the threshold. To
remove any false positives, and guard against the possibility of
a news-story being repeated on different shows, the evaluation
window had to match at least 2 different library windows to be
marked as a repeat.

After finding the repeats, smoothing was carried out
between the areas labelled as repeats in order to identify the
commercial breaks. The smoothing relabelled any audio of less
than a certain duration which occurred between two repeats

1The library used in the advert detection was obtained automatically
by windowing over whole training shows. It is possible in theory to
manually mark the training data to define a true ‘library of known ad-
verts’ but this was considered impractical on these large data sets.



as part of the adverts unless this made the overall commercial
break exceed a maximum duration. These values were chosen
on a broadcaster-specific basis to reflect the overall properties
of the broadcasts, but in general the maximum permitted
duration was around 3 minutes, and the smoothing for the
TV shows was just over 1 minute, with minimal smoothing
for the radio shows. CNN had less smoothing than the other
TV sources due to the frequent occurrence of 20 to 30s long
sports reports between adverts and station jingles. Finally the
boundaries of the postulated commercial breaks were refined to
take into account the granularity of the initial windowing.

Further details and analysis of the effectiveness of this
technique can be found in [7]. The CUTDT4 system re-
moved 18.4% of the audio, which consisted of 1783s=86.3%
of all the adverts and 198s=2.28% of all the news; whilst the
CUEVALsystem removed 6.75% of the audio, which consisted
of 582s=28.2% of all the adverts and 144s=1.66% of all the
news on the diarisation development data. The system removed
8.9% of the evaluation data, which consisted of 867s=40.5% of
all the adverts and 70s=0.83% of all the news.

4.2. Segmentation

The CUED RT-03s segmentation was used for these
experiments[7]. The data is first coded at a frame rate of
100Hz into 39-dimensional feature vectors consisting of the
normalised log-energy and 12 MFCC coefficients along with
their first and second derivatives. This data is then run through
a GMM classifier which has models for wideband speech (S),
telephone speech (T ), speech with music/noise (MS) and pure
music/noise (M ). TheMS segments are relabelled asS and
theM portions discarded, leaving bandwidth labelled data. An
inter-class transition penalty is used which forces the classifier
to produce longer segments and an additional penalty on leav-
ing theM model reduces the number of misclassifications of
speech as music. The classification also includes an adaptation
stage, using MLLR to adapt both the means and variances of
the models using the first stage classification as supervision.

A phone recogniser, which has 45 context independent
phone models per gender plus a silence/noise model with a null
language model is then run for each bandwidth separately. The
output of the phone recogniser is a sequence of phones with
male, female or silence tags. The phone identifiers are ignored
but the phone sequences with the same gender are merged and
some heuristic smoothing rules applied to produce a series
of small segments, using the silence tags to help define the
boundary locations.

Finally clustering and merging of similar temporally adja-
cent segments is performed using the GMM classifier output to
restrict the boundary locations, to produce the final segmenta-
tion with bandwidth and putative gender labels. The final gen-
der labels are produced by aligning the output of the first-pass of
the CUED RT-03 Broadcast News ASR system [11] with gen-
der dependent models. The segments are then assigned to the
gender which gives the highest likelihood.

4.3. Clustering

Segment clustering is performed on the segments separately
for each bandwidth and gender, making the assumptions that
the gender and location of a speaker will not change within
a broadcast; and that these properties can be labelled with

sufficient accuracy to aid clustering performance.

Each segment is represented by a fullcorrelationmatrix of
the 13-dimensional PLP vectors (withoutfirst or second deriva-
tives) and the distance metric used is the Arithmetic Harmonic
Sphericity (AHS).[10] The clustering is performed top-down as
follows:

0. Initialise all segments into a single active node

foreach active node:

1. Assign its segments to one of two children nodes, main-
taining the order to exploit the temporal closeness.

2. Calculate the Gaussian statistics for the 2 children nodes.

3. Move any segment which gives a smaller distance to the
sibling node than its own node.

4. Update the node statistics.

5. Repeat steps 1-4 until no segments move or the maxi-
mum number of iterations is reached.

6. If the stopping criterion is not met add the children nodes
to the active node list and remove the parent node, other-
wise turn the parent node into a leaf node.

The stopping criteria are critical in determining the final
clusters. The system allows several different criteria to be used
which reflect the aim of the clustering. These include specify-
ing a minimum occupancy for clusters (used in the ASR system
where a certain amount of data is necessary for adaptation, but
not for diarisation where speakers can talk for arbitrarily short
portions of time) or using measures based on the ‘cost’ as de-
fined by the average distance of the segments from the nodes.
For this paper we also implemented a new stopping criterion
based on the Bayesian Information Criterion.

4.3.1. Cost-based stopping criterion

The clustering used in the CUED RT-03s diarisation system
was based on a4-way (not 2-way) splitting algorithm.[7] If
the parent node could not be split into 4 in a way that satisfied
the stopping criteria, the child segments would be merged to
try to form a 3-way split, and if this failed a 2-way split was
attempted. If this was also disallowed, the parent node became
a leaf node.

Three parameters were used to control the cost-based
stopping criteria. The first was the most important, and
specified the ratio of the gain in cost function from splitting to
the global node cost. A node cost is the sum of the distances of
its segments to itself and the gain in splitting is the cost of the
parent node minus the cost of the children nodes. We call this
the ‘h-parameter’. Additionally the ‘p-parameter’ controlled
the ratio of the inter:intra child cost and the ‘j-parameter’
provided a multiplicative component used to weight the
scores for the special case of a node containing only one
segment since the distances are zero in this case. This system
gave a diarisation error rate of 33.29% on the development
(bndidev03) data and 32.30% on the evaluation (bneval03) data.

The CUED December 2003 system discussed in this
paper uses a simpler 2-way splitting algorithm. Therefore, the
‘p-parameter’ is set arbitrarily high and the ‘j-parameter‘ is
set to 1 since they are not as important for the 2-way splitting
procedure. The cost-based stopping criterion is thus controlled
solely by varying the ‘h-parameter’.



The results from varying theh-parameter on the diarisation
development (bndidev03) and evaluation (bneval03) data are il-
lustrated in Figure2, showing the method generalises reason-
ably well to the unseen evaluation data.
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Figure 2: Effect of changing theh-parameter on the diari-
sation score on the development (bndidev03) and evaluation
(bneval03) data.

4.3.2. BIC-based stopping criteria

An alternative stopping criterion, commonly used in speaker
clustering, is based on the Bayesian Information Criterion
(BIC)[12, 13]. This is effectively a penalised log likelihood:

BIC = L − 1

2
α#M log N (3)

where #M is the number of free parameters,N the
number of data points andα the tuning parameter, usually set
to 1. The data is modelled using a full Gaussian of dimensiond:

p(xk) =
1

(2π)0.5d|S|0.5
exp−0.5(xk−µ)′S−1(xk−µ)

whereµ is the mean vector,S is the covariance matrix and|S|
is the determinant ofS . The log likelihood term,L is then

L(x1, .., xN ) =

NX
k=1

log p(xk) = −1

2
N log(|S|) + NC

where C is a constant,− 1
2
d(1 + log(2π)). The number of free

parameters forK clusters is:

#M = K

�
d +

d(d + 1)

2

�
Thus when making a local decision as to whether a cluster
Z should be split into 2 clusters, X and Y, the equations become:

P=
1

2

�
d +

d(d + 1)

2

�
log(Nz)

BICx+y=−1

2
[Nx log(|Sx|) + Ny log(|Sy|)]− 2αP + NzC

BICz=−1

2
Nz log(|Sz|)− αP + NzC

∆BIC=
1

2
[Nz log(|Sz|)−Nx log(|Sx|)−Ny log(|Sy|)]− αP

and the split goes ahead if∆BIC > 0. We call this formulation
BIC-local as the decision about whether to split a particular
cluster is taken locally. Alternatively the whole cluster set
can be viewed as an entity, and the decision then becomes
should theK clusters be increased toK + 1. In this case
the formula for the∆BIC remains the sameexceptthat the
N used in the penalty term,P , becomes the total number
of frames in all the clusters,Nf , rather than the number in
the cluster being split,Nz. We call this formulationBIC-global.

In general the BIC formula is used in conjunction with
agglomerative clustering, so can be thought of as a decision as
to whether to merge the two clusters X and Y into Z (rather
than splitting Z into X and Y). In this case, the choice of which
clusters to merge is usually made such as to produce the most
negative∆BIC. If this is non-negative the merge doesnot go
ahead and all clustering is stopped.

The CUED implementation instead uses a divisive clus-
tering scheme which tries to split each active node in turn and
does not order the decisions. The segment assignment for a
given potential split is made as before using the full correlation
matrix and the AHS distance, but the decision as to whether to
split a node is now taken by testing if the∆BIC is > 0. For
this reason it was felt that the BIC-local formulation may be
more appropriate for this case.

The results from changing theα penalty using both the
BIC-global and BIC-local implementations on the develop-
ment (bndidev03) and evaluation (bneval03) data are illustrated
in Figure 3. The BIC-global implementation seems to gen-
eralise slightly better, with the performance across both data
sets roughly matching each other except for one point and the
same value ofα producing the best performance in both cases.
However, the BIC-local implementation, although slightly more
noisy, does give slightly better performance.

4.3.3. Summary

A summary of the performance on the development (bndidev03)
and evaluation (bneval03) data for the optimal parameter values
of the three different stopping criterion on the two data sets is
given in Table1. The results show that the best performance is
produced using the BIC-local implementation, but if the param-
eters are tuned on the development data there is little difference
in performance between the two BIC implementations on the
evaluation data.

The new 2-way clustering strategy with the introduction of
the BIC stopping criteria has reduced the diarisation error by
7 → 8% absolute compared to the CUED RT-03s evaluation
system[7] on both the development and evaluation data.
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Figure 3: Effect of changingα on the diarisation score on the
development (bndidev03) and evaluation (bneval03) data. The
first graph is using BIC-local and the second BIC-global

Stopping Optimal Param Diarisation Score
Criterion bndidev03 bneval03 bndidev03 bneval03
RT-03s sys - - 33.29 32.30
Cost-based 0.825 - 28.51 27.24
Cost-based - 0.8 28.66 27.09
BIC-global 6.25 6.25 26.13 25.21
BIC-local 7.25 - 25.54 25.12
BIC-local - 6.75 26.47 24.27

Table 1:Optimal parameters and performance using the differ-
ent stopping criterion.

5. MIT-LL diarisation system
The MIT-LL RT-03s BN diarisation system, shown in Figure4,
consists of three main components: An initial segmentation to
detect putative change points in the audio stream, a classifica-
tion of these segments as speech or non-speech, and a clustering
stage to associate speech segments with each speaker present in
the audio file. In addition to the main components, there is also a
speech activity detection (SAD) gating stage and a gender clas-
sification on the final segmentations. The system is described in
more detail in [7].
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COMBINE

CLASSIFY (M/F)

non−speech
rejected

speech
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Figure 4:The MIT-LL BN diarisation system

This system gave a diarisation error of 24.46% on the develop-
ment and 23.85% on the evaluation data.

5.1. Segmentation

The initial segmentation is based upon a BIC change point
detection algorithm[13]. The audio signal is first converted
into a stream of feature vectors at a frame rate of 100Hz
consisting of 30 MFCC coefficients extracted over the full
8kHz bandwidth. No channel compensation is applied so as
to exploit differences in channels to aid in detection of change
points in the audio signal. For a window of N feature vectors,
{x1, x2, ..., xi, ..., xN}, the BIC statistic is computed for all
possible change pointsi in the window :

∆BIC(i) = − log
p(X/λ)

p(X1/λ1)p(X2/λ2)
− αP (4)

where X1 = {x1, ..., xi}, X2 = {xi+1, ..., xN},
X = {x1, ..., xN}, andλ, λ1, λ2 are full covariance Gaussian
models trained withX, X1, X2 respectively. P and α are
defined as in Section4.3.2. A change point is detected when
∆BIC(i) > 0. If no change point is found in the current
window, the window length is increased and the search is
repeated. Once a maximum search window length is reached
and no change is found, a change point is declared and the
process is restarted. When a change point is found, a new
search window is begun one vector after the detected change
point.

To help minimise the cost of computing the BIC statistics
at every point, a faster Hotelling’sT 2 test is first used to
identify the potential change point in a search window[14].
The full BIC statistic is then computed for the point with the
maximum Hotelling’sT 2 value in the window.

After the above process is run on the entire audio sequence,
a second-pass BIC test is run on each detected change point
to determine if adjacent segments should be merged. This
second-pass mainly helps in eliminating very short segments
and artificial change points due to reaching the maximum
search window length.

When advert detection is used (as discussed in Section4.1),
detected advert regions are skipped during the change point
detection.



Based on experimentation, the following settings are used
for the change point detection algorithm: An initial search
window size of 100 frames, a search window increment of 50
frames, a maximum search window size of 1500 frames, and
α=1.0.

The segments are then classified as speech or non-speech
using a GMM based maximum likelihood classifier. Five 128
mixture diagonal covariance GMMs are built forSpeech ,
Speech+Music , Speech+Other , Music and Other .
Any segments labelled asMusic or Other are discarded be-
fore clustering. Further details can be found in [7].

5.2. Clustering

The speech segments are next clustered into speaker-
homogeneous groups using a hierarchical agglomerative clus-
tering approach[15] with the following steps:

0. Initialise leaf clusters of tree with speech segments.

1. Compute pair-wise distances between each cluster us-
ing a tied-mixture based generalised likelihood ratio dis-
tance.

2. Merge closest clusters.

3. Update distances of remaining clusters to new cluster.

4. Iterate steps 1-3 until stopping criteria is met.

The distance between clusters is :

dTGMM (x, y) = − log
p(z|λz)

p(x|λx)p(y|λy)
(5)

wherex and y are the data from two different clusters,z is
the union ofx andy, andp(x|λx) is the likelihood of datax
given the pdf modelλx for datax. The pdf model used is a
tied-mixture model where the basis densities are estimated from
the entire set of speech segments and the weights are estimated
for each segment. Advantages of this model are the per-frame
likelihoods to the basis densities need only be computed once
and the weights for merged clusters are computed as a simple
averaging of counts. The BIC criterion for this case is:

∆BICTGMM = dTGMM (x, y)− α

�
1

2
M log N

�
(6)

whereM is the number of basis densities (and hence the
number of free parameters) andN the total number of feature
vectors. The clustering is stopped when∆BICTGMM > 0.
Again, the penalty weightα, was set to 1.0, whilstM was 128.

5.2.1. Speech activity detection (SAD) gating

The purpose of this step is to detect and remove short bits of
silence from the segments which can give rise to false-alarm
errors in the scoring. A simple energy-based speech activity de-
tector is run on the entire audio file to produce time marks of
silence regions. Strictly speaking this is just an activity detec-
tor, since only the energy of the signal is used. The detected
silence regions are gated out of the final segments prior to gen-
der classification.

5.2.2. Gender classification

Gender classification is applied to the final speaker clusters. A
GMM-based maximum likelihood classifier is applied to the ag-
gregation of all data from a cluster. Using this approach, rather
than classifying each segment independently, ensures a single
gender label for all segments from a single speaker label. The
gender classifier uses adapted GMM models[16] trained using
data from the 1996 Hub4 training data set. A maximum of 2
hours of speech with High, Medium and Low quality labels for
both male and female speakers (up to 6 hours of speech per gen-
der) is used to train a 1024 mixture base GMM. The male and
female speech is then used to adapt male and female models,
respectively, from the base model. Using adapted models al-
lows for a fast scoring technique[16] that significantly reduces
the required computation. The gender classification error rate is
2.2% on the bndidev03 diarisation development data and 1.2%
on the bneval03 data.

6. Building hybrid systems
A three-stage diarisation architecture was defined where each
stage could be one of several options including the ‘PERFECT’
case, derived from the manually generated reference file. The
stages are broken down as follows:

1. Advert Removal

NONE The advert removal stage was bypassed and the whole
shows were passed on untouched.

CU EVAL, CU TDT4 Automatic advert detection as de-
scribed in Section4.1.

PERFECT All regions marked as adverts in the reference UTF
file were removed.

The output from this stage consisted of a list of portions of
audio for each show which were left after the advert removal
stage.

2. Segmentation

CUED The CUED segmentation system described in Sec-
tion 4.2. This included the music-removal and gender-
relabelling stages.

MIT The MIT-LL segmentation system described in Sec-
tion 5.1. Segment-level gender labels were additionally
provided by MIT-LL, whilst bandwidth labels were auto-
matically generated by CUED using the wide and narrow
band models from the CUED segmenter in a GMM.

PERFECT Manual segmentation derived from the diarisation
reference file. The times and gender of each segment
were taken, but the speaker-id was ignored. Bandwidth
labels were added automatically by CUED.

The output from this stage was a list of segments with band-
width and gender labels.

3. Clustering

CUED The CUED clustering with BIC-local stopping crite-
rion as described in Section4.3.

MIT The MIT-LL clustering as described in Section5.2. This
included the final speech-activity-detection gating and
the cluster-based gender-labelling stages.



PERFECT Cluster labels are assigned so as to maximise the
overlap with the reference speakers in the diarisation ref-
erence file. The success of this obviously depends on the
segment-purity of the preceding segmentation stage.

The results from running all combinations of this hybrid
‘Plug-and-Play’ system on the diarisation development (bn-
didev03) data are given in Table2 and illustrated in Figure5.

Adverts excluded Adverts as FA
ADV SEG CLU GE MS FA DIA FA DIA
NO CU CU 1.9 0.2 9.1 25.54 29.7 46.14
NE CU MIT 2.1 2.5 5.3 24.23 24.7 43.60

CU PER 0.4 0.2 9.1 11.60 29.7 32.20
MIT CU 2.5 0.4 9.3 27.67 31.5 49.91
MIT MIT 2.2 2.7 5.6 24.46 26.8 45.68
MIT PER 0.6 0.4 9.3 11.67 31.5 33.91

CU CU CU 2.0 0.6 9.1 25.89 23.5 40.34
- CU MIT 1.7 2.9 5.3 24.92 18.7 38.38

EV CU PER 0.5 0.6 9.1 11.65 23.5 26.11
AL MIT CU 2.5 1.4 9.2 26.87 25.1 42.81

MIT MIT 2.3 3.7 5.6 25.93 20.6 40.96
MIT PER 0.6 1.4 9.2 12.54 25.1 28.49

CU CU CU 2.3 1.0 8.9 27.03 12.6 30.80
- CU MIT 1.8 3.4 5.1 26.67 8.2 29.80

TD CU PER 0.8 1.0 8.9 12.69 12.6 16.46
T4 MIT CU 2.4 1.8 8.9 28.37 12.7 32.18

MIT MIT 1.7 4.1 5.3 25.02 8.5 28.26
MIT PER 0.6 1.8 8.9 12.67 12.7 16.48

PE CU CU 2.0 0.3 9.0 25.03 10.0 26.06
RF CU MIT 2.4 2.7 5.2 27.18 5.8 27.73

CU PER 0.6 0.3 9.0 11.93 10.0 12.96
MIT CU 2.5 0.9 9.3 26.12 10.3 27.12
MIT MIT 2.2 3.2 5.6 25.78 6.1 26.30
MIT PER 0.6 0.9 9.3 12.12 10.3 13.12

PE PER CU 0.0 0.0 0.0 18.71 0.0 18.73
RF PER MIT 2.3 2.5 0.0 17.55 0.0 17.57

PER PER 0.0 0.0 0.0 0.00 0.0 0.00

Table 2: Effect on diarisation score of using CUED, MIT and
PERFECT components for advert-removal, segmentation and
clustering within the ‘Plug-and-Play’ hybrid system. Scores are
given both for the primary metric (where adverts are excluded
from scoring) and a secondary metric which effectively counts
adverts as silence in scoring, giving rise to additional FA er-
rors if they are in the hypothesis. Scores are given for gender
confusion error (GE), miss (MS), false alarm (FA) and total di-
arisation score (DIA) and are on the bndidev03 data.

6.1. Analysis of components

Advert Removal The average diarisation score for the differ-
ent levels of advert removal are 20.9%, 21.3%, 22.1%
and 21.4% for no-removal, CUEDEVAL, CUED TDT4
and perfect removal, when excluding adverts from scor-
ing. As the amount of automatic advert removal in-
creases the diarisation score increases due mainly to the
increase in false alarm rate due to incorrectly removed
news. However, when adverts are treated as silence in
scoring, the scores become 41.9%, 36.2%, 25.7% and
22.2% respectively, showing that the automatic advert
removal helps, cutting the error rate by almost 40% rela-
tive.
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Figure 5: Results from the ‘Plug-and-Play’ hybrid diarisation
system on the development (bndidev03) data. The inset table
shows the ordering of the bars in each group of six.

Segmentation The segmentations are of similar quality, the
average perfect clustering score being 12.0% on the
CUED segmentation and 12.3% on the MIT segmenta-
tion, whilst the averages when using automatic cluster-
ing are 25.8% and 26.3% respectively.

Clustering The CUED and MIT clustering components are
both quite robust to changes in input segmentation, with
a variance of 1.1% and 1.0% respectively over all the
segmentations. The MIT clustering component slightly
outperforms the CUED system, the average score across
the different segmentations being 25.5% and 26.6% re-
spectively. It is interesting to note that the CUED clus-
terer always does better on the CUED segmentations,
whereas the MIT clusterer sometimes does better on
CUED segmentations and sometimes on MIT segmen-
tations.

6.2. The best system

The best diarisation results from fully-automated runs are given
in Table3. For both diarisation scores the best system is a hy-
brid, using some components from CUED and some from MIT.

Adv Seg Clust Score Metric
NONE CUED MIT 24.23 Primary
CUED TDT4 MIT MIT 28.26 Secondary

Table 3:Best diarisation scores from a fully-automated hybrid
system. The primary score excludes adverts in scoring, whilst
the secondary score treats them as silence regions.

7. Conclusions
This paper has described the CUED December 2003 diarisation
system, introducing a new 2-way splitting process with two
new possible stopping criteria within the clustering component.
This system gives a diarisation score 7→ 8% absolute better



than the CUED RT-03s evaluation system on both the develop-
ment and evaluation data, and is considerably more robust to
changes in segmentation.

The MIT-LL RT-03s diarisation system was also described,
and a new hybrid ‘Plug and Play’ system was developed to
allow the benefits of both the CUED and MIT-LL systems to be
exploited in a single system. Analysis showed that on average
the best performance came from using the CUED advert
detection (when adverts were not excluded from scoring) and
segmentation stages, whereas the MIT-LL clustering generally
performed best. The lowest diarisation error rate whether
adverts were excluded from scoring or not, came from a hybrid
system, outperforming the individual systems from either site.

Future work will look at removing the ‘Plug-and-Play’
method’s restriction on the diarisation systems having a com-
mon architecture, by combining the outputs from different diari-
sation systems directly using a cluster-voting scheme.[17] This
could potentially allow information from many different sys-
tems (including those that do segmentation and clustering in a
single stage) to be integrated to try to improve diarisation per-
formance further.
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