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Summary

Three-dimensional (3D) acquisition and visualisation techniques are increasingly being incorpo-
rated into commercial ultrasound scanners. The diagnostic benefit of such techniques is not yet
convincing, compared to the added inconvenience of using them. Although it is straightforward
to use special probes to acquire 3D data, these are more restrictive than conventional 2D probes.
The only 3D technique which retains the scanning flexibility and wide area of application of 2D
ultrasound, is freehand 3D ultrasound, where a 2D probe is moved manually and its location
sensed remotely. However, it is hard to generate a regular volume of data from the resulting
non-parallel ultrasound images.

Probably the largest body of evidence justifying the use of 3D ultrasound relates to the
accurate measurement of volume. However, volume measurement with 3D ultrasound requires
segmentation (i.e. outlining of the area of interest), which is a time consuming, manual task.
Both this problem, and that of creating a regular volume of data, are eased by the use of
sequential freehand 3D ultrasound, a recent technique amplified in this thesis, where all the
processing is performed on the original ultrasound images. Thus a regular array of data is not
required, and segmentation is performed on images whose features and artifacts are recognisable
to the clinician.

In this thesis, novel volume measurement and surface visualisation algorithms are developed
for sequential freehand 3D ultrasound. A particular emphasis is placed on limiting the number
of segmented cross-sections required for a given measurement accuracy. Inherent accuracy is
demonstrated by simulation to be within ±2%, from 10 or fewer cross-sections. In vivo precision,
including registration and segmentation errors, is shown to be within ±7%, even on complicated
objects such as the liver or a foetus, from similar numbers of cross-sections. The volume can
be updated in real-time as each image is segmented, and surfaces can be interpolated and
visualised within a few seconds. Such visualisation can reveal errors in the segmentation which
are otherwise hard to see.

In addition, a framework for multiple-sweep data is developed, which allows volume mea-
surement and surface visualisation of anatomy that can only be scanned by several sweeps of the
ultrasound probe. Accurate volume measurements can therefore be made of all areas observable
by conventional ultrasound. These measurements can be accomplished within approximately 5
minutes of examining the patient.

The surface visualisation algorithms can also produce high quality renderings of data from a
wide range of sources in medical imaging and other fields. The interpolation of cross-sections is
an improvement on shape-based interpolation, and the triangular mesh created from the data is of
a much higher quality than that using marching cubes. An extension of the surface interpolation
algorithm can also be used to gradually change, or ‘morph’ one 3D surface to another, a technique
commonly used in the film industry.

Keywords freehand 3D ultrasound, volume measurement, surface from cross-sections, isosur-
face triangulation, volume metamorphosis.
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Glossary

2D/3D/4D two-/three-/four-dimensional.

atherosclerosis hardening of the arteries.

B-scan a cross-sectional ultrasound image within the plane of the ultrasound
beam.

catheterisation insertion of a tube into the bladder, for measurement of urine volume.

chamfer code a discrete, propagated estimate of distance.

choroidal melanoma a malignant tumour of the eye.

cleft lip (or hairlip) a congenital deformity of the upper lip.

compounding the averaging of data, usually acquired from different directions, to
reduce noise.

cross-dissolving the averaging of the grey-levels of two images, to generate interme-
diate images.

CT Computed Tomography, a technique for acquiring 3D cross-sectional
data, using X-rays.

distance transform a discrete image whose values have been replaced by distances to an
object within that image.

dysplasia abnormal development of skin, bone or other tissue.

echocardiography ultrasound of the heart; regarded as a separate discipline to ultra-
sound of other areas.

ejection fraction the ratio of the blood ejected from the left ventricle of the heart, to
that remaining.

endometrial polyp a benign tumour of the lining of the uterus.

fibroid a benign fibrous tumour.

fontanelle a gap between the skull bones in a young infant.

freehand unrestricted manipulation by hand.

Gouraud shading a computer graphics technique for shading lit polygonal surfaces
smoothly.

grey-scale any data whose values represent a range from white to black.

haemodynamic related to blood flow.
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haemorrhage loss of blood.

hypo/hyperplasia under-/over-development of tissue.

hysteroscopy investigation of the inside of the uterus.

iliac crests part of the pelvis.

implicit surface a surface defined as the zero value of a 3D function.

in vitro conducted on a specimen; not in vivo.

in vivo conducted on a living organism.

insonification broadcast of ultrasound over a region.

intravascular inside a blood vessel.

isosurface a surface of constant value of a function.

IUD Intra-Uterine Device, a contraceptive device.

lattice a regular arrangement, used in this context to determine were a
continuous function should be sampled.

LED Light Emitting Diode.

lumen the space within a blood vessel, or other fluid filled cavity.

mammography X-ray examination of the breast.

manifold any surface which can be flattened out to a plane without local
distortion.

MC Marching Cubes, a technique for triangulating the surface of a reg-
ular array of 3D data.

mesh simplification any technique for reducing the number of polygons in a mesh.

morphing the metamorphosis of one object to another.

MRI Magnetic Resonance Imaging, a technique for acquiring 3D cross-
sectional data, using magnetic fields.

MSD Maximal Set of Discs.

MSMD Minimal Set of Maximal Discs.

MT Marching Tetrahedra, a technique similar to MC, but based on tetra-
hedral, rather than cubic, lattices.

myointimal layer part of the arterial wall.

pathology the presence of abnormalities associated with disease.

PET Positron Emission Tomography, a technique for determining the lo-
cation of function, e.g. blood flow.

pixel each element of a discrete image.

planimetry the measurement of volume from planar area.

pulmonary relating to the lungs.

raster scan row by row processing of an image.

ray casting a computer graphics technique for rendering volume-based data,
where a light ray from each screen pixel is cast through the volume.



GLOSSARY x

real-time any processing which is performed as the data is generated.

registration relative alignment of sets of data.

rendering the representation of an object on a computer screen.

reslice a cross-section through a 3D data set.

saphenous vein a superficial vein in the leg.

scan conversion the sampling of a geometric representation to a regular grid by a
raster scan.

segmentation the process of specifying a region of interest within a data set.

speckle noise in ultrasound images due to random diffuse reflection from
many small scatterers.

splatting a computer graphics technique for rendering volume-based data,
where each voxel is projected onto the screen in turn.

spline a piecewise polynomial function used to represent a part of a curve
in computer graphics.

sweep one motion of the ultrasound probe across the skin surface.

transvaginal through the vagina.

triangulation the construction of a triangular mesh from a set of points, or data
values.

ultrasound very high frequency sound waves, generally measured in MHz, used
for examining internal organs.

vertex clustering the merging of vertices in a surface mesh, to reduce the number of
primitives.

urethrogram X-ray of the urethra, after addition of a radio-opaque fluid.

ventricle either a chamber of the heart, or a fluid-filled cavity in the brain.

volumetry the measure of volume by counting voxels.

voxel (from volume pixel) each element in a rectilinear 3D array.

warping controlled distortion of data, usually by moving the relative location
of each data value.



Chapter 1

Introduction

1.1 Motivation

In the last three decades, a great many researchers have attempted to produce systems which
will allow the construction and visualisation of three-dimensional (3D) images from ultrasound
data [130]. There is general agreement that this development represents a positive step forward
in medical imaging, and clinical applications have been suggested in many different areas. How-
ever, although manufacturers are now beginning to introduce some 3D features to their flagship
ultrasound machines1, it is clear that 3D ultrasound has not yet gained widespread clinical ac-
ceptance. There are many algorithms for providing new visual and quantitative information
from such data, but the effort required to generate such information often exceeds the benefit it
would provide. More importantly, such algorithms can mask clinical information, or introduce
artifacts: new information which is not justified by the measured data.

The emphasis in this work is not to provide new types of information from 3D ultrasound
data, but to improve the integrity of such information, the ease with which it can be produced,
and to expand the areas to which it can be applied. These are of particular importance in a
clinical setting. Hopefully, in doing so, the advantages of using 3D ultrasound will begin to
sufficiently outweigh the disadvantages, such that it can become a useful clinical tool.

1.1.1 What is ultrasound?

Ultrasound images, or B-scans2 are essentially a measure of acoustic response to an impulse at
a particular frequency3. A simplified outline of this process is shown in Figure 1.1. In reality, all
stages of the process are considerably more complex; for a more detailed description, see [103].
Ultrasound images cannot be associated with any particular tissue parameter; the magnitude
of the reflected signal is affected both by the compressibility, and changes in the density, of the
material. Hence the acoustic response at any location is affected by tissue above as well as at
that location — a scan of the same area from another direction will therefore generate a different
image. This, and many other effects (reviewed extensively in [158]) can make ultrasound images

1For instance Kretz Technik, http://www.kretz.co.at, ATL, http://www.atl.com and Siemens Ultrasound,
http://www.siemens-ultrasound.com

2B-scans are one of several images which can be produced using ultrasound. The ‘B’ is historical and distin-
guishes this mode of image from ‘A’, ‘C’ or ‘M’ mode. However, B-scans are commonly used, and this thesis is
concerned exclusively with this type of ultrasound image.

3The choice of frequency represents a trade-off between spatial resolution and maximum depth. ‘High’ fre-
quencies around 15MHz have very good resolution, but can only scan to a depth of a few centimetres. Lower
frequencies around 3MHz, with poorer resolution, can scan to depths of 25cm or above.

http://www.kretz.co.at
http://www.atl.com
http://www.siemens-ultrasound.com
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Figure 1.1: Ultrasound B-scan generation. Each B-scan is composed of a set of strips
acquired sequentially over time and space. Each strip represents the magnitude of the response
from an ultrasound impulse generated in that location and steered in that direction. A constant
speed of sound is assumed in order to relate this response to depth within the patient. Since the
magnitude of the response decays exponentially with depth, it must also be log-weighted before
it can be quantised and represented as a grey-scale image strip.

very hard to interpret. Nevertheless, it is one of the most common forms of medical imaging in
use today.

1.1.2 Why 3D ultrasound?

A 3D ultrasound system, as its name suggests, is one in which the location of the ultrasound
signal is known in three dimensions. This allows a whole volume data set to be generated, rather
than just the conventional planar data set, or image.

3D ultrasound is the least widespread amongst a variety of medical imaging modalities,
e.g. Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission To-
mography (PET) or conventional B-mode and Doppler 2D ultrasound. Each has its own dis-
tinctives and is appropriate for particular situations. The main advantages which have been put
forward for 3D ultrasound are:

• Ultrasound is a real-time imaging modality, and 3D ultrasound also has the potential for
displaying information in near real time. This is currently limited more by processing than
acoustics, which is the ultimate limit. High rates of acquisition (between 10-60 images per
second) [152] can allow imaging within a single breath hold, greatly increasing modelling
accuracy in organs which move with inspiration and expiration. This also allows the
study of organ motion itself; much of the development of 3D ultrasound has been targeted
towards such studies of the heart. Shorter examination times are also of benefit to both
clinician and patient [51, 57].

• Extension of ultrasound to 3D provides new images which would otherwise be impossible
to visualise, and previously could only be imagined by the clinician building up a mental
picture from 2D information [131]. This may make the modality more accessible to those
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less experienced in analysing ultrasound images. The acquisition of an entire volume allows
the clinician to view 2D ultrasound images in planes which would not normally be possible
due to the physical restrictions of the scanning process, for instance parallel to the skin
surface. It also allows for surface-rendered or volume-rendered displays — different ways
of looking at the data that can sometimes reveal pathology which is otherwise hard to
see [50]. These are also very accessible images which are often appreciated by patients,
particularly in the field of obstetrics [173].

• The reconstruction of 3D ultrasound by computer brings greater standardisation and re-
peatability to conventional examinations [152], which are otherwise quite subjective [57].
It may provide a better point of reference for discussing diagnosis than a conventional 2D
hard copy. It would also provide a better means of documentation of the examination for
clinical record, or for remote diagnosis.

• 3D data can be used to provide much more accurate assessments of volumes due to the
use of non-geometric methods rather than the conventional ellipsoid-based formulae [1].

• 3D ultrasound offers the potential for improving the quality of a conventional 2D image,
by compounding images acquired from different perspectives [18, 159].

• There are some practical reasons for using ultrasound rather than CT, MRI or PET.
Existing ultrasound machines are less expensive both to buy and to run, and require less
specialised facilities [131]. They can also be upgraded to 3D surprisingly cheaply [152].
Unlike CT, ultrasound scanning does not involve the use of ionising radiation, and the
examination is less traumatic for the patient than MRI.

• Finally, in some cases 3D ultrasound may be able to replace other, more invasive, proce-
dures [152].

The main disadvantage of 3D ultrasound is the same as for conventional 2D ultrasound,
in that the image quality (though not necessarily resolution) is much worse than it is in CT
or MRI. In addition, it is not possible to examine through air or bone interfaces, since these
interfaces completely reflect the ultrasound signal. This restricts the anatomical areas in which
ultrasound can be used. The decrease in signal amplitude with depth also limits the usefulness
of the modality for examining larger patients.

1.1.3 Why volume measurement and surface visualisation?

There are many clinical areas to which 3D ultrasound has been applied [50, 57, 152]:

Heart Much of the work involving 3D (and 4D) ultrasound has been concerned with echocar-
diography. For reviews of this wealth of literature see, for example [125, 165]. In part, this
has been driven by the desire to understand and visualise the structure of the heart and
how it changes throughout the cardiac cycle. Most clinical applications relate to the mea-
surement of ventricular volume, from which ejection fraction can be derived, for instance
in heart disease [8, 136, 165]. Measurements of both ventricular volume and mass by 3D
ultrasound have been shown to be accurate even for hearts of abnormal size and geome-
try [71]. Increased left ventricular mass has been established as a predictor of increased
cardiac morbidity and mortality independent of age and blood pressure [71]. Accurate
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measurements of atrial diameter can also be made [117]. In addition, 3D visualisation
may reduce invasive monitoring for managing critically ill patients during surgery [119].

Carotid Artery Many researchers have suggested that 3D visualisation of the carotid artery
can help in the accurate definition of the size and features of atherosclerotic plaques [57,
162]. For instance, it can generate simultaneous displays of both longitudinal and cir-
cumferential distribution of the plaque, which is impossible with 2D images. However,
Rankin [152] argues that clinical applications for the popular 3D reconstruction of the
carotid bifurcation [6] have yet to be defined.

Vascular Anatomy Serial surveillance of saphenous vein bypass grafts is of benefit for the
detection of haemodynamically significant myointimal hyperplastic lesions [84, 95]. Geo-
metric measurements of luminal change with 3D ultrasound may allow detection prior to
the development of haemodynamic disturbances.

Brain 3D ultrasound has been proposed for the localisation of tumours and arteriovenous mal-
formations during surgery of the brain, in order to provide accurate guidance for sur-
geons [152].

Cerebral ventricles Although it is not normally possible to examine the brain using ultra-
sound (except during surgery, as above), new-born babies have skulls which are not com-
pletely formed, and the brain can hence be examined through the anterior fontanelle.
Volume measurement of the ventricles using 3D ultrasound has been achieved using this
technique [96, 127].

Eye Most of the work on the eye has concentrated on the evaluation of choroidal melanomas.
The 3D display shows the tumour in relation to the globe and optic nerve, which can be
significant for surgical planning, and allows volume measurement, which is important as
tumour size is significantly correlated to survival rate [91]. Accurate volume measurement
of melanomas has also been used for follow up of therapeutic response [152]. 3D ultrasound
display has been suggested to be better than conventional 2D for the evaluation of vitreous
haemorrhages and retinal detachment [51].

Breast Some early work by Lalouche [104] indicates that the hypoechoic areas, which are
difficult to distinguish in 2D, organise into a visible ductular system in 3D. There is also a
higher accuracy of diagnosis of benign cystic disease with 3D ultrasound than with X-ray
mammography [57, 58].

Foetus Like the heart, the foetus has had much attention in this area. There have been several
reviews of foetal applications of 3D ultrasound [121, 156, 173]. Much of this work has
been concerned with the detection of foetal abnormalities [10], for instance cleft lip or
other malformations of the face [107]. The visualisation of the foetal spine and thorax
has also been achieved; important in evaluating skeletal dysplasia, abnormalities leading
to a small thorax and subsequent pulmonary hypoplasia, and neural tube defects [132].
Volume measurements of the foetal lumbar spine have been reported [167]. Foetal volume
and weight have been estimated and used to evaluate intrauterine growth retardation [152].
Transvaginal 3D ultrasound has been used to investigate the volume and shape of embryos
and early foetuses [26]. Attempts at foetal echocardiography [49] and foetal liver [105] and
lung [144] volume measurement using 3D ultrasound have also been reported.
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Placenta Placental volume around mid-pregnancy has been measured using 3D ultrasound,
to investigate its relationship to birth weight and susceptibility to heart disease in later
life [87]. Another study of placental volume showed that second-trimester measurements
alone were not sufficient to predict small-for-gestational-age infants [75]. 3D power doppler
ultrasound has been used to examine the placental vasculature [147].

Uterus Reconstruction of transvaginal images of the uterine cavity allows accurate visualisa-
tion prior to surgical treatment of fibroids and endometrial polyps [14]. 3D transvaginal
ultrasound has also been used to control intrauterine device (IUD) insertion [30]. In this
case, abnormal IUD insertions were identified as accurately and precisely as would have
been done by hysteroscopy.

Liver Reconstruction of the liver with 3D ultrasound has been severely limited, due to its large
size, and sheltered position behind the lower ribs. It moves considerably with respiration
and the left lobe also moves with cardiac motion [57]. Nevertheless, liver volume assessment
is a standard part of clinical examination, and a more accurate measure would undoubtedly
be useful.

Gall bladder 2D ultrasound is the current standard for measuring gall bladder volume, in order
to investigate dysfunction, however 3D ultrasound has been found to be more accurate [79].

Prostate There have been a great many successful attempts to measure the volume of the
prostate gland using 3D ultrasound [19, 129]. Accurate assessment of prostate size at
regular intervals is essential to clinical studies of drug therapy for reducing prostate vol-
ume [2]. Tumour volume is of great prognostic significance in prostatic cancer, and its
measurement may be more accurate with this technique [58]. A precise estimate of the
enlargement due to benign prostatic hyperplasia helps to determine the appropriate ther-
apy [174]. 3D ultrasound has also been used in the examination of baboon prostates in
order to better understand the pathogenic mechanisms of prostate cancer. Rather than
using “invasive surgery or terminal experiments to excise the prostate”, this method is
minimally traumatic [92].

Kidney The size and discrete anatomy of the kidney make 3D imaging of this organ attractive.
Possible clinical uses include intrarenal neoplasia and renal transplants, where accurate
assessment of renal volume and its change over time may be of help in defining rejec-
tion [152]. Volume assessment by 3D ultrasound has been compared favourably to that
performed by MRI [69].

Bladder Incomplete voiding is an important sign of many urologic disorders. This is conven-
tionally measured by catheterisation, but ultrasound estimates of the volume are poten-
tially more accurate and reliable [118].

Stomach 3D ultrasound has been used to assess intragastric distribution and gastric emptying,
by repeated volume measurement after eating a specified meal [67].

Urethra 3D images of the urethra generated from ultrasound scans provide more information
than conventional voiding urethrograms [133].

It is apparent from reviewing this list of potential applications for 3D ultrasound that volume
measurement is a recurrent theme. This is supported by a more extensive review of the subject
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given in [68]. This emphasis is partly due to the prevalence of volume measurements as clinical
indicators, and partly due to the very approximate techniques which are currently used to
measure volume using conventional ultrasound (reviewed in Chapter 2). 3D ultrasound clearly
has much to offer in this area.

There is also something to be gained from being able to show the surfaces of objects in 3D.
Although it is not necessary to find the surface of an object in order to calculate its volume,
rendering the surface reveals the shape and arrangement of an object which cannot be seen from
simply looking at cross-sections. Surface display is also a common feature in the list above. In
fact this is probably the type of display which is most frequently conjured up in the imagination
by the use of the term ‘3D’.

Volume measurement and surface visualisation can be helpfully regarded as a natural pair;
both place very similar requirements on the clinician to define the object of interest. As explained
in Section 1.2.3, this manual definition is generally the most laborious task in the whole process.
Having completed this task, it is important to make full use of the information generated,
and this is best done by both techniques combined. In addition, volume measurement without
surface visualisation presents quantitative data to the clinician, but without an indication of
how accurate this data is likely to be. A rendered surface from the same source can act as a
reassurance that the volume measure is sensible.

1.1.4 Why freehand 3D ultrasound?

Freehand scanning is one of many different techniques for generating 3D ultrasound data, and
there are several reviews covering the variety of systems which have been successfully used for this
purpose [57, 130, 165]. Such systems can be broadly classified into two main areas; acquisition,
which covers the measurement of data value and spatial location, and display, which covers the
techniques used to present this data to the user. Most systems have an additional reconstruction
step where the acquired data is pre-formatted before display techniques are applied. However,
as explained in Section 1.3, this step is not a necessity, and for the purpose of this thesis is
considered to be part of the display processing. Freehand 3D ultrasound describes a particular
acquisition technique. Most display techniques are equally applicable, not only to all ultrasound
acquisition techniques, but also to most other medical imaging modalities.

Acquisition techniques can themselves be classified either by scan pattern or positioning
equipment. As can be seen from Figure 1.2, most positioning equipment can be used with a
variety of scan patterns. Freehand scanning is classified separately since, although it can be used
to give approximate linear, fan or rotational scans, the relative plane orientation will not be as
precise. All of the acquisition techniques, with the exception of volume scanning, are designed
as additions to conventional ultrasound machines, and as a result are focused on calculating
the location in space of entire B-scans rather than individual ultrasound responses. It is an
underlying assumption of all such techniques that the 2D localisation within each B-scan is
already correct. Inaccuracies in this assumption can be considered a further cause of ‘noise’ in
each image. The majority of systems use the video output of the ultrasound machine to acquire
the ultrasound data to an external PC, introducing further noise to the B-scans; an exception
which used raw ultrasound data is presented in [22].

The following sections summarise the reported systems, grouped by the positioning equip-
ment used in each case.
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Position Estimation by Eye

The simplest systems rely on estimation of the position of the individual ultrasound images by
eye. This requires extreme care when scanning, as it is imperative that the movement of the
transducer is both smooth and constant. Any jitter introduced at this stage is carried through
directly to the reconstruction. Examples of linear sweeps include [14] and [162], where in both
cases the slice separation was assumed to be uniform. Rotational scans have also been performed
using uniform sweeps [87], or by estimating the orientation of each image separately [59, 153].
In one case, 3D surfaces were reconstructed from only two images, manually positioned so that
they were approximately orthogonal to each other [47]. While these methods are simple, they
clearly leave much to be desired if accurate reconstructions are needed.

Manual Position Measurement

This is a more reliable technique, but is only possible if each image is acquired individually
(therefore giving time to measure its position). Examples include a catheter mounted on a
ratcheted device, giving a measurement of drawback [129, 174], and rotational scanning with
the angle measured from a scale attached to a fixed mechanical arm and the transducer [46].
Clearly this method precludes fast acquisition, which is one of the potential benefits of 3D
ultrasound.

Automatic Position Sensing

An alternative to measuring the position is to sense it remotely by some means. This is known as
freehand scanning, since it potentially allows complete freedom of movement of the transducer,
and hence results in images which are arbitrarily oriented in space. There are five reported ways
of achieving this, namely acoustical, optical, magnetic, electrical and image-based.

Acoustical The acoustical method works by attaching an emitter to the transducer and picking
up these signals with three remote microphones, positioned in different orientations (not
necessarily orthogonal). An acoustic spark gap is generally used for the emitter as it can
produce high frequencies (hence giving good resolution) and is a much smaller source than,
for instance, a loudspeaker. The system was originally devised by Moritz [125] and is still
used by some groups [7, 71, 101].

Optical The optical (‘stereotactic’) method works in a similar manner, except the emitter is
replaced by at least three infrared LEDs [176]. A restriction of this technique is that there
must be a line of sight at all times between the LEDs and the optical sensor. However, it
is probably the most accurate method.

A new technique involving optical fibres mounted on flexible tape has also recently been
investigated [140]. The tape is fixed at one end to a stationary reference and at the other to
the ultrasound probe, and the curvature along the tape (measured using the optical fibres)
is integrated to give the location and orientation of the probe. Although the technique
holds promise, the accuracy currently limits it to lengths of tape which are too short to
be used in practice.

Magnetic The most popular approach to remote sensing is to use a magnetic field. In this case
the receiver is mounted on the ultrasound probe, and the transmitter, which generates
the magnetic field, is remote [18, 22, 49, 52, 84, 89, 120, 132, 133, 145]. There are two
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main types of sensor; one that uses an AC (alternating current), and one a DC (direct
current). Each is affected to some extent by the presence of metallic (AC sensors) or
ferromagnetic (DC sensors) materials in the vicinity [24]. However, they allow complete
freedom of movement, and do not require a line of sight.

Electrical Several systems have used a mechanical arm with either one [119], three [138] or
six [57] degrees of freedom. Potentiometers are mounted at the arm joints, and the electri-
cal signals from these can be used to calculate the position. With one degree of freedom,
(used for intravascular scanning of the heart) the scanning pattern is similar to a fan, but
the angle between each scan need not be constant.

The relative position of each B-scan could also be approximated by measuring the move-
ment of the probe using inertial accelerometers, although I am not aware of any published
work in this area.

Image-based It is also possible to use the ultrasound images themselves to estimate the move-
ment of the probe, and hence the relative position of each image. In-plane movement can
be estimated by tracking image features, and used to generate much larger B-scans than
is otherwise possible [183]. However, out-of-plane movement in such systems cannot be
detected, and results in positioning errors.

It has recently been demonstrated that the statistics of speckle (the structured noise
present in ultrasound images) can be used to provide an estimate of out-of-plane move-
ment [179]. In combination with using image features, this can provide all six degrees of
freedom. The method has the advantage of not requiring any additional positioning equip-
ment. However, the positioning accuracy has not yet been fully established, and there is
considerable processing overhead, which presents a challenge for real-time acquisition.

Automatic Mechanical Localisation

A completely different approach to measuring position is to determine it in advance by mechan-
ical localisation. This is generally achieved by attaching the transducer to a stepper motor, for
linear [92, 104, 117, 169], rotational [51, 91, 136], fan [20, 69] or intravascular linear [102] scan-
ning. This kind of approach has also been used in integrated transducers, for instance Kretz
Technik’s4 Combison 330 [1, 2] and 530 [30, 107, 121, 173], which scans an entire pyramidal
volume. Diagnostic Ultrasound Corporation also produce an integrated scanner and volume
calculation device, Bladderscan5, specifically for urological use [118]. All these devices impose
limitations on the maximum swept volume, since this is constrained by the mechanics.

In a similar category, two-dimensional phased arrays are also being investigated [112]. These
may represent the future of 3D ultrasound; however before they become practical a number
of problems must be overcome — for instance low yields due to the large number of small
elements [57], and problems associated with the number of signals between the transducer and
the ultrasound machine. Like mechanically swept probes, these still constrain the maximum
swept volume.

4http://www.kretztechnik.com/
5http://www.diagnosticultrasound.com/prodBS.html

http://www.kretztechnik.com/
http://www.diagnosticultrasound.com/prodBS.html
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Summary of acquisition techniques

Both the freehand and mechanical (or phased array) acquisition techniques have clear advan-
tages. The mechanical systems produce a regular data set which simplifies later processing and
ensures uniform coverage of the scanned volume. On the other hand, it is impossible to scan
larger volumes than the mechanics allow for (the coordinate reference frame is based on the
stepper motor housing, which must not be moved during acquisition). This limitation cannot
simply be overcome by increasing the size of the system. Larger systems are difficult to use in
practice, since the transducer must keep a good contact with the surface at all times, but excess
pressure moves the underlying anatomy, generating mis-registered data.

The freehand systems have certain advantages over the mechanical systems, in that they do
not constrain the acquisition volume, and they allow the clinician the freedom to scan in planes
which are suitable for the area of interest. In many cases, particularly near the ribs, the most
appropriate scanning plane is not orthogonal to the skin surface. However, the lack of regularity
in the data set complicates the processing, and this potentially increases the time from scanning
to display. It is also much easier to produce 4D data sets using the mechanical technique.

Perhaps the main advantage of the freehand acquisition technique is that it preserves the
nature of ultrasound examination. Ultrasound is a more tactile modality than CT or MRI; the
clinician is in complete control of the scan and can see the images as they are acquired. This is
equally the case for freehand 3D ultrasound. 2D images remain the most diagnostically useful
aspect of ultrasound imaging, and it is therefore important that any advances in the technology
do not detract from the clinician’s ability to produce these images.

1.1.5 Summary of motivation

The subject of this thesis is ‘volume measurement and surface visualisation in sequential freehand
3D ultrasound’. Ultrasound because it is readily available and in widespread use. 3D because
of its many advantages, and since, although there has already been much work in this area, it is
not yet in frequent clinical use. Volume measurement because this is both the most compelling
motivation for 3D ultrasound, and probably the area where the current clinical practice can
be most improved. Surface visualisation because it provides information which is otherwise
impossible to see, and it is also a natural pair with volume measurement, since it is based on
the same initial data. Freehand ultrasound as it places the least constraints on both the size of
volume which can be scanned, and the manner in which it is scanned.

Sequential freehand 3D ultrasound is a term, coined in this thesis, which describes an ex-
isting response to the challenges of the freehand acquisition technique. The initial stated aims
of improving the integrity, the ease of production, and in addition expanding the application
areas for 3D ultrasound data, are all contributory factors to this response. The sequential ap-
proach forms the basis of the volume measurement and surface visualisation algorithms outlined
in Chapters 2 and 3, and has also been used for other forms of visualisation [65, 145]. The
characteristics of the approach are described in Section 1.3; in order to appreciate these, it is
first necessary to look at some of the challenges which freehand 3D ultrasound poses.

1.2 Challenges of using freehand 3D ultrasound

As already mentioned, freehand 3D ultrasound brings with it the challenge of working with
data acquired in irregularly spaced and oriented planes. This problem, related to interpolation
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Figure 1.3: Processing freehand 3D ultrasound data. Major processing steps are shown
from the initial representation to final display, with particular emphasis on volume measurement
and surface visualisation.
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and registration, adds to that of segmentation posed by the many artifacts present in ultra-
sound data. In addition, this modality shares the common problems of surface visualisation
and working under clinical constraints which are associated with all 3D medical imaging modal-
ities. Figure 1.3 places each of the processing tasks in the context of a path from the initial
representation (constrained by the acquisition technique) to the final display or quantitative
result (desired by the clinician). Each transition generally represents a whole area of research,
with many underlying problems and solutions. Those which are relevant to the tasks of volume
measurement and surface visualisation are reviewed here.

1.2.1 Data registration

The first challenge in freehand 3D ultrasound is to calculate exactly where the data is in space.
This is not necessarily just a function of the device used for spatially locating the B-scans;
movement can also occur within each B-scan, due to the pressure of the probe on the patient’s
skin, even if the patient themself is lying perfectly still. In most cases, this second source of
mis-registration can be addressed by good scanning practice, i.e. the patient remains still and
the clinician keeps the probe contact at a constant pressure. However, there are two situations
where good scanning practice alone is not sufficient: spatial compounding and multiple-sweep
scanning.

Spatial compounding is the process of averaging multiple B-scans together to reduce the
noise (speckle) present in the images [6, 55, 159]. This is only possible if the images are acquired
from different viewpoints6; multiple images from the same viewpoint generate highly correlated
speckle. However, if these images are not well registered, the averaging process blurs the data
in addition to reducing speckle. Intensive image-based registration techniques are necessary as
a first step before compounding the images [160].

Multiple-sweep scanning is the process of combining data from several sweeps of the ultra-
sound probe (i.e. examining the patient at one location, moving the probe, then examining again
at another) in order to increase the volume over which data is acquired. This is necessary for
examining anything with a larger cross-section than the width of an individual B-scan [3, 80].
Here the problem is not that increased registration accuracy is required, but that the registra-
tion errors in this case are much worse. This is a direct result of using multiple-sweep data;
both the magnitude and the location of probe pressure change when the probe is moved in this
manner. Combining such data can only be achieved by using image-based registration, and
warping (stretching) the data [3].

Even if registration is not required within the B-scan, good spatial location is still a challenge;
the ultrasound resolution within the scan plane is often greater than the precision of the spatial
locator. For accurate 3D ultrasound investigations, these spatial locators first require careful
calibration [146].

1.2.2 Data interpolation

It is not possible to display irregularly spaced data on a regular grid, such as a computer screen,
without first interpolating this data. In fact the majority of freehand 3D ultrasound systems
interpolate the data to a regular array before performing any other operations. Indeed the
current reviews assume that this is the only approach to the problem [130, 165]. This array
is often called a voxel array to indicate that each element represents a volume (as opposed to

6Multiple images acquired using different frequencies would suffice, but in general this is not a practical option.
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the pixels which make up an image). It is generally of equal resolution in all three dimensions,
since this simplifies subsequent processing. For this reason, interpolation is required even if the
original scans are already parallel, since the scan spacing is usually not the same as the in-plane
pixel resolution.

There are many ways to perform this interpolation. The techniques employed are often very
simple, as it would otherwise take a long time to process the typically large amount of data7.
Generally, a linear method involving a limited number of data points is used [20, 162, 169]. Gilja
used trilinear interpolation of the eight neighbouring values from a regular rotational scan [69].
Lalouche used cubic interpolation, but from parallel scans [104].

Interpolation methods for freehand scans include nearest-neighbour bin-filling [176], which is
probably the simplest technique — pixel coordinates are transformed to 3D space, and rounded
to the nearest voxel, which is then assigned the original pixel value. Larger ‘bins’ (i.e. more
than one voxel) can be assigned from each pixel in order to reduce any empty space between
scans. More sophisticated is closest-points interpolation [176], where each voxel bounded by
two scan planes is assigned a distance weighted value based on the closest pixel in each of the
two scan planes. An inverse-distance weighting scheme can also be used, in which the inverse-
distance weighted value of all the surrounding pixels in a bounding sphere of some chosen
dimension [18], is assigned to each voxel. Alternatively, a 3D convolution of the 2D slice with
a 3D reconstruction kernel can create the 3D volume incrementally. Both spherical [138] and
ellipsoidal [120] Gaussian kernels have been used; the latter is more representative of the actual
sampling resolution. A more accurate method has been suggested in which the data is smoothly
approximated by using radial basis functions [161]; however the small gain in reconstruction
accuracy is matched by a significantly increased processing overhead.

Voxel-based representations are relatively easy to manipulate, but they also have disadvan-
tages. As already mentioned, considerable time is needed to create them (a minimum of several
minutes for the simplest schemes). They also require a lot of memory space, for example a
256 × 256 × 256 voxel representation with 8-bit grey-scale data requires 16Mbytes. This is in
addition to the memory required to store the original scans. Both the time and memory con-
straints frequently mean that in practice the original resolution of the data is compromised in
the production of the voxel array. Also, the interpolation, however it is done, creates new data
values for all the voxels, which can introduce artifacts, especially if (as is the case with most
practical systems) the interpolation is a simple linear one [82]. These artifacts can affect the
accuracy of segmentation, or lead to image misrepresentation.

1.2.3 Data segmentation

Segmentation is the process of identifying, within the data, a particular region of interest. This
is a prerequisite for displaying surfaces8 or for accurately measuring organ volume. In this
context, segmentation is generally performed by constructing cross-sections of an organ, either
in a B-scan, or in slices through a voxel array. However, it can also be performed directly in 3D.

7Using a dedicated processor rather than a PC can speed up this time such that approximately 10 B-scans can
be processed per second [52]. For typical scans of 20 seconds duration at 25 frames per second, the production of
a 128× 128× 128 voxel array could therefore be performed in just under one minute. However, this voxel array
was only one quarter of the resolution of the original B-scans.

8As explained in [180], this is the case even if volume-based techniques are used to render the surface, since
regions apart from the surface may need to be removed (for instance the womb, in the case of a foetus). In
addition, many volume rendering techniques are themselves a type of segmentation algorithm.
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The design of automatic segmentation algorithms is probably the most challenging problem
in 3D ultrasound, and indeed in medical imaging and computer vision in general. This is
equally the case for voxel-based and scan-plane based data. The problem is accentuated with
ultrasound because of the many artifacts present in the images, compared with those of other
imaging modalities. Automatic approaches are only feasible if strong assumptions are made
about the data; in practice this means such algorithms are restricted to the data (and usually
the organ) for which they were designed. Semi-automatic [17, 56, 97] methods can be applied
more widely, but are still difficult to use in many circumstances. Many researchers recognise
this difficulty and opt instead for manual segmentation (usually by outlining the feature on a
computer screen). In a recent paper, Gopal [71] even goes to the extent of suggesting that

. . . manual boundary tracing is the most accurate method for identifying the surfaces
of the ventricle for all imaging modalities,

and that

automated methods . . . have not yet reached a stage suitable for adaptation to 3D
echocardiography.

Manual segmentation is not, however, an ideal solution, since it is very time consuming. It
may also have higher inter- and intra-observer variability than automatic techniques, although
this has not always been the case in practice [1].

1.2.4 Surface visualisation

The visualisation of surfaces is particularly challenging in freehand 3D ultrasound. Gradient
operators can be used in ray casting voxel-based data, but the resulting surfaces are dominated
by speckle. Both filtering of the data and removal of extraneous regions are required to produce
a useful surface rendering. It is also extremely difficult to directly render the original, irregular
data.

The alternative is to construct geometric surfaces from segmented cross-sections. This is a
complex problem even when the cross-sections are parallel, as is the case if the segmentation is
generated from a voxel array. The topology of each cross-section can be very different, both from
the actual object represented by the cross-section, and from other cross-sections of this object.
It is not always obvious which parts of the cross-sections correspond to each other, nor what
to do if the topology changes. If the segmentation is generated from the original non-parallel
B-scans, then the problem becomes similar to that of scattered data interpolation, which is even
less well constrained.

Once a geometric surface has been generated, it must still be rendered. Fortunately, most
graphics display hardware is optimised for rendering the geometric primitives (usually triangles)
which make up such surfaces. However, the shading technique is usually very simple9, and
can highlight thin or badly proportioned triangles. Higher quality renderings require higher
quality surfaces, consisting of regular primitives with good aspect ratios. In addition, surfaces
from medical data are often composed of a large number of primitives, and therefore take a
proportionately longer time to render. If interaction with the surface is desired, the number of
primitives in the surface must also be minimised.

9Gouraud shading is usually implemented as it is the fastest realistic technique [60].
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1.2.5 Clinical constraints

The importance of maintaining the integrity of the original data in subsequent processing has
already been established as a prime concern in any clinical context. This context also places
other constraints on algorithms designed for freehand 3D ultrasound data; namely speed and
simplicity.

Speed is important for any clinical tool — the clinician has limited time to spend with the
patient, and this time should not be wasted waiting for algorithms to complete. In practice,
where processing of medical data takes more than a few minutes, it becomes an off-line task to
be performed after the patient has left. This is the case for much processing of CT and MRI
data. Ultrasound, however, is a real-time modality where diagnosis is generally made during
the examination of the patient. The most significant advantage of this approach is the ability
to re-examine the patient appropriately, to verify conclusions reached from the initial data. It
would be a step backwards to design an algorithm that forced ultrasound analysis to become
an off-line process. This is particularly important in freehand 3D ultrasound, where acquiring
a good data set is dependent on both scanning technique and a still patient; the latter is not
an easy requirement to satisfy for foetal scans! The clinician must be able to review the data
immediately after acquisition, in order to check that these requirements were met, and acquire
further data if not.

The need for simplicity applies both to the underlying algorithms and the tools into which
they are built. Clearly, it is good for the clinician to be able to use the tools with relative ease.
More importantly, though, it must be clear what the data represents. It must also be possible
to compare and contrast this data with similar data from other patients. This task becomes
more complicated with increasing dependency of the display algorithms on user parameters.

1.3 Sequential freehand 3D ultrasound: a partial response

Recently, an alternative approach to freehand 3D ultrasound has been proposed, which removes
the need for a voxel array [145]. In sequential freehand 3D ultrasound, the data is visualised
and analysed directly from the original B-scans. This is represented schematically in Figure 1.3
— the sequential approach takes the right hand and more direct paths between the scan-plane
representation and the display, bypassing the voxel-based representation completely. The main
motivation for this approach is the desire to be as true to the original data as possible. In
particular:

• When reslicing (displaying data on planes other than those in the original scan), the data is
resampled only once, from the B-scan pixels to the slice pixels. The conventional approach
requires two resampling stages — from the B-scan pixels to the voxel array, then from the
voxel array to the slice pixels. Since resampling usually involves data approximation, more
accurate visualisation is possible by avoiding one such process. For volume measurement
and surface visualisation, the need for data interpolation is removed entirely.

• Reslicing can be performed at the full resolution of the B-scans, without the significant
memory overhead of a high resolution voxel array.

• Visualisation and data analysis can be performed in real time10, as the sequential algo-
rithms reference each B-scan only once, in the order of acquisition.

10This is only the case for sequential algorithms which do not require manual user interaction.
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• Segmentation is performed on the B-scans, rather than on parallel slices through the voxel
array. The B-scans are high resolution and exhibit no interpolation artifacts, making them
easier to interpret than slices through the voxel array. They should also make more sense
to the clinician, since these same images were displayed as the data was acquired. In
addition, many of the artifacts in ultrasound images are directional, and although they
can be understood in the original B-scans, become impossible to detect in slices with other
orientations [35].

The advantage of integrity to the original data, however, brings with it the disadvantage of
working with data from planes that are not parallel. In the voxel array approach, this is only an
issue for the initial step of interpolation to this array; in the sequential framework, all algorithms
have to be able to handle non-parallel image data. Nevertheless, any-plane slicing (reslicing),
thick reslicing, non-planar slicing and panoramic imaging algorithms have all been successfully
designed for the sequential framework [65, 145], as shown in Figure 1.3.

1.4 Original contribution

It is the subject of this thesis to design volume measurement and surface visualisation algorithms
for this sequential framework, and to extend this framework to multiple-sweep data, so that these
algorithms can also be applied to larger, or awkwardly shaped, organs. In doing so, both the
challenges presented in Section 1.2, and the additional problems generated by the sequential
framework itself, are addressed. Several of the responses to these challenges are common to all
of the algorithms presented in this thesis:

• All of the algorithms have been designed with processing speed in mind, as this is such an
important feature for clinical use. Potential solutions which would clearly take too long
to calculate (i.e. more than a few minutes) are rejected on this basis.

• Everything presented in this thesis has been implemented in software. Volume measure-
ment, surface visualisation, and the extension of both of these to multiple-sweep data,
have all been added to Stradx [145], which is a tool for acquiring and processing sequential
freehand 3D ultrasound data. This was written in conjunction with Richard Prager and
Andrew Gee; an overview of the system is contained in Appendix A.2. Implementing all
the algorithms in this way ensures that they are all practically realisable. It also allows
others to use them: the software is freely available on the internet11, and is in use by other
groups.

• The volume measurement and surface visualisation algorithms presented in this thesis have
also been designed to operate successfully on sparse segmented data. This minimises the
number of cross-sections that need to be manually segmented in order to provide accurate
quantitative and visual results, which is of crucial importance, since manual segmentation
remains the most time consuming task in the whole process.

1.4.1 Volume measurement in a sequential framework

Cubic planimetry is a new volume measurement technique that can estimate volume accurately,
and quickly, from a small number of non-parallel segmented cross-sections. It is an extension of

11http://svr-www.eng.cam.ac.uk/~rwp/stradx/

http://svr-www.eng.cam.ac.uk/~rwp/stradx/
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a technique proposed by Watanabe [182] for volume estimation using vector areas and centroids
of serial cross-sections. The trapezoidal interpolation in this algorithm is the major source of
inaccuracy. This causes volume overestimation for conical sections, and underestimation for
spheres and ellipsoids (noted in practice [118]).

It was suggested in the original paper, and in [19], that an extension to cubic interpolation
may be beneficial. This has been achieved in this thesis. In doing so, the original ability of the
algorithm to handle highly non-parallel cross-sections has been preserved.

1.4.2 Surface visualisation in a sequential framework

The surface visualisation algorithm has been designed as a two-step process, where the cross-
sections are first interpolated, then the surface of the interpolated data is triangulated. Framing
the surface generation as an object interpolation problem allows a more fluid treatment of varying
topologies. It also breaks the link between the position of the initial segmented cross-sections
and the size and shape of the eventual geometric surface primitives, and hence the triangulation
algorithm can be designed to produce high quality triangles.

Disc-guided interpolation is a new algorithm which addresses the first step of this process —
that of surface interpolation. This algorithm is a significant extension of shape-based interpola-
tion, first suggested by Raya and Udupa [154] and later adapted by Herman [82]. Shape-based
interpolation is a good basis for surface interpolation, since it is both fast, and able to handle
arbitrary topology. The important advances to this algorithm are:

• Shape-based interpolation is applied for the first time to arbitrarily oriented planes, so
that it can be used on sequential freehand 3D ultrasound data.

• The technique is extended to improve the handling of complex shapes, by allowing the
direction of interpolation to vary within the scan planes. The variation in direction is
itself guided by the shape of the object cross-sections, as defined by a set of maximal
discs [33]. This enables surfaces to be correctly interpolated from a small number of
cross-sections.

Regularised marching tetrahedra generates a triangulated surface of the interpolated data,
with very regular triangles that result in high quality display using standard graphics hardware.
This new algorithm is the result of combining marching tetrahedra [38] with vertex clustering
schemes [5, 155], to generate isosurfaces which are topologically consistent with the data, and
contain a number of triangles appropriate to the sampling resolution (typically 70% fewer than
marching tetrahedra), with significantly improved aspect ratios. The scheme is also adapted
such that the tetrahedral grid upon which it is based can be locally aligned to the non-parallel
planes that contain the interpolated surface data.

1.4.3 Application to multiple-sweep data

As has already been mentioned, image-based registration is a requirement if data from multiple
sweeps is to be combined, which is necessary for the creation of a voxel array. However, the
sequential technique operates on the original B-scans, and can examine each sweep one at a time,
without using such an array. A new technique is presented which, rather than combining the
data from each sweep, leaves it separate, such that subsequent operations (for instance reslicing,
volume measurement and surface visualisation) are performed on each sweep, and the results of
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these operations combined in such a way as to give a correct overall result. Combination at this
stage is much faster than image-based registration of the original data.

Both volume measurement and surface visualisation are applied to multiple-sweep data using
this framework. As far as I am aware, there is only one other published freehand 3D ultrasound
system which uses data from multiple sweeps in order to calculate organ volume, without con-
structing a voxel array [80]. In this system, points at the edge of the organ are selected from the
original B-scans, and a piecewise smooth subdivision surface is fitted to these points, subject
to some ‘smoothness’ criterion. In contrast, rather than smoothing out inconsistencies in the
data, the approach presented in this thesis is true to the aim of maintaining the integrity of the
original data, in that mis-registration errors are clearly identifiable, but do not detract from the
‘real’ data. The sweep separation approach also allows the generation of multiple-sweep reslices,
which is otherwise impossible.

1.5 Beyond ultrasound: application to other fields

There are few fields other than freehand 3D ultrasound in which data is measured in non-
parallel planes. However, algorithms which are designed for such data can also be used in
situations where the planes are parallel. Many of the advantages of the algorithms discussed in
the previous section also carry through to this situation. In addition, disc-guided interpolation
can be extended into four dimensions, such that surfaces are interpolated to form 3D morphing
sequences12, rather than cross-sections interpolated to form surfaces. This leads to applications
in a variety of other fields, including medical imaging, more generally, and computer graphics,
both of which are considered in this thesis.

In the same way as with freehand 3D ultrasound, each of these applications has been imple-
mented in software which is freely available on the internet13, and described in Appendix D.

1.5.1 Medical imaging

There are several other medical imaging modalities which can generate 3D data sets, for instance
CT, MRI and PET. The visualisation of surfaces is just as important from these data sets as
from freehand 3D ultrasound, and many of the challenges remain the same. For instance, the
distance between image planes in CT is generally greater than the in-plane resolution, hence
interpolation of cross-sections is required, even if the segmentation is performed by a simple
thresholding operation on the entire data set.

In addition, the desire to generate surface triangulations containing a small number of regular
triangles is equally strong for other types of medical data. Thresholding medical data can lead to
highly intricate surfaces which are very difficult to display unless the triangulation is generated
with a great deal of care. Examples of surfaces from CT and MRI data, which have been
generated using disc-guided interpolation and regularised marching tetrahedra, are included in
Chapter 3.

1.5.2 Computer graphics

Surface visualisation from a 3D data set can be useful even if the original data is not in this
format. For instance, surfaces of mathematical functions, or implicit surfaces (i.e. surfaces

12i.e. the gradual change, or metamorphosis, of one surface into another
13http://svr-www.eng.cam.ac.uk/~gmt11/software/software.html

http://svr-www.eng.cam.ac.uk/~gmt11/software/software.html
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defined as the zero level set of a sum of functions), can be displayed by sampling the functions
on a regular grid, and using regularised marching tetrahedra to triangulate this sampled data.
Examples of such surfaces are contained in Chapter 3.

The extension of disc-guided interpolation to interpolate surfaces, thus generating 3D mor-
phing sequences, can be used to produce the visual effect of one surface ‘becoming’ another. It
can also be useful for interpolating time-varying surfaces (for instance a sequence of models of
a beating heart) to give better time resolution. 3D morphing has recently been used in place of
image morphing, since it allows changes to the viewing location and lighting parameters during
the morph sequence. The extension of disc-guided interpolation to sphere-guided interpolation
is presented in Chapter 5, and found to be a useful tool for this purpose.

1.6 Outline of thesis

The remainder of this thesis is split into three major areas. In Chapters 2 and 3, novel algorithms
are presented for volume measurement and surface visualisation from single-sweep freehand 3D
ultrasound data. In Chapter 4, a framework is outlined for processing multiple-sweep data, and
it is shown how both volume measurement and surface visualisation can be achieved through this
framework. Chapter 5 demonstrates how the cross-section interpolation algorithm presented in
Chapter 3 can be extended to interpolate surfaces, generating morphing sequences.

Each of Chapters 2 to 5 contain reviews of work related to these areas, a description of
the algorithms themselves, and results of these algorithms applied to freehand 3D ultrasound,
as well as other data. Finally, in Chapter 6, the performance of each of these algorithms is
compared with the aims and objectives outlined in this chapter, and conclusions drawn.

Several of the figures in Chapters 3 and 5 have movie sequences associated with them.

Where this is the case, a symbol has been placed next to the figure legend. Clicking

on these symbols in the PDF14 version of this thesis (supplied on the CDROM described in
Appendix E) will display a movie in QuickTime15 format, provided a suitable plug-in is available.
Alternatively the movies can be viewed directly from the CDROM, as described in Appendix E.

14Portable Document Format c©2000 Adobe Systems Incorporated
15 c©2000 Apple Computer Inc.



Chapter 2

Volume measurement

2.1 Current methods of ultrasound volume measurement

Organ volumes can be estimated using ultrasound from measurements of length or area, or from
surface reconstructions. The first of these is the only method that is applicable to conventional
2D ultrasound; the remainder can only be used in conjunction with 3D ultrasound systems.

2.1.1 Volume from length measurements

Volume measurements using conventional 2D ultrasound are in frequent clinical use today. These
are achieved by approximating the organ of interest as a simple mathematical shape (generally
an ellipsoid), and measuring the length of the major and minor axes in appropriately selected
2D ultrasound images. A correction is then applied to the result, dependent on the organ, the
age and sex of the patient, and possibly additional factors. There are many formulations for the
resulting equations [23, 87, 174].

Ellipsoid formulae are easy to use, but they have an inherent disadvantage in that they
make geometrical assumptions about the shape of a given organ. This leads to errors in volume
measurement, often exceeding 20%. These errors are greater where the organ under examination
differs from the expected shape upon which the formulae were based. Unfortunately, these
situations are often those in which the volume is of particular clinical importance.

2.1.2 Volume from area measurements

An alternative approach that becomes possible with 3D ultrasound is planimetry, where the
volume is calculated from a sequence of cross-sectional areas. The most common implementation
of this technique is step-section planimetry, where it is assumed that the cross-sections are
parallel. There are numerous reports which indicate that step-section planimetry is much more
accurate than ellipsoid or other geometrical formulae [1, 129, 149, 175]. The only exception to
this is [174], where step-section planimetry is compared with sixteen equations for measuring
prostatic volume and it is found that using π

6 (transverse diameter)2(anteroposterior diameter) is
marginally more accurate than planimetry; however, this result is not applied to an independent
data set.

Watanabe developed a planimetric method for calculating volumes from cross-sections that
were not parallel [182], and could even be overlapping. This has rarely been used in practice,
although it has been implemented for measuring the volume of the prostate [19].
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2.1.3 Volume from surfaces

If the surface of an object has been reconstructed, the volume can be calculated from this surface
representation. There are several ways of doing this:

Volumetry If the object of interest has been sampled to a regular voxel array, the volume can
be calculated simply by summing the number of voxels inside the object, and multiplying
by the volume of one voxel. This is by far the most common technique in use with 3D
ultrasound systems — even when the acquisition is performed using freehand scanning; in
which case volumetry is applied to the reconstructed voxel array.

Tetrahedral Volume If the whole object has been reconstructed as a solid formed of tetrahe-
dra, the volume can be calculated from the sum of the volumes of these tetrahedra, the
volume of a tetrahedron being 1

6 ~pa · ~pb × ~pc, where the points p, a, b and c are its ver-
tices. Alternatively, the polyhedral approximation formula developed by Cook [45] can be
used. This is based on the above equation, but formulated in terms of the points making
up each of the object cross-sections. Although this appears to allow volume calculation
from cross-sections without triangulation, in fact a simple triangulation is assumed in the
algorithm which will only be correct for simple shapes. This technique is used for instance
in [7, 71, 101].

Cylindrical/Pyramidal Volume Tetrahedra are not the only simple mathematical shapes
that can be used to estimate volume. If the scanning pattern is rotational, parts of
cross-sections can be connected with the mid-point of the rotation to form pyramidal or
cylindrical part sections, from which the volume can be calculated. This technique has
been used for the eye [91]. Moritz also applied this technique to freehand scans by re-
sampling these scans in a rotational scanning pattern, and then calculating the volume
from the new cross-sections [125].

Volume from Surface Hughes has suggested two ways of measuring the volume directly from
a triangulated surface, without forming tetrahedra. ‘Ray Tracing’ involves projecting rays
from a 2D grid through the object, and calculating the intersection points of these rays
with the object. The volume can then be deduced from the length of each ray inside
the object, and the granularity of the 2D grid [89]. Alternatively, a discrete version of
Gauss’ theorem can be adapted to calculate the volume component for each individual
triangle, such that the sum of these components is equivalent to the object volume [90].
An implementation of this algorithm is contained in Appendix B.2.

Comparisons of some of the various volume measurement techniques [90], and many in
vitro measurements using 3D ultrasound systems [21, 53, 86] have been performed. It is clear
from these that all of the 3D ultrasound methods are accurate to approximately ±5%, and
are to be preferred over the ellipsoid or similar equations [42, 71]. The most robust method
for working with non-parallel, sequential cross-sections is the planimetric method proposed by
Watanabe [182], and this forms the basis of the algorithm presented in the next section.
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(a) Cross-sections (b) 2D version (c) Linear volume (d) Cubic volume

Figure 2.1: Overview of volume measurement process. The cross-sections in (a) are
converted to a 2D representation in (b), whose total enclosed area is equal to the volume of the
cross-sections as given by equation (2.2), and shown in (c). A more accurate volume is given by
calculating the area inside a cubic interpolation of the 2D representation, as in (d).

2.2 A new approach: cubic planimetry

2.2.1 Overview

An overview of the algorithm described in the following sections is given in Figure 2.1. In
this illustration, a kidney has been scanned, and six cross-sections segmented in the original
non-parallel B-scans. Rather than use the planimetric method directly on these cross-sections,
they are reduced to a 2D representation, where the area of each cross-section is represented
by the length of each line, and the orientation of the lines is related to the orientation of the
cross-sections. In this representation, the enclosed area is equivalent to the volume of the real
object. Using a cubic (rather than a linear) interpolant improves the accuracy with which the
enclosed area (and hence volume) can be estimated.

2.2.2 Dealing with non-parallel cross-sections

The equation for the volume v of any object defined from non-parallel sequential cross-sections,
is given by [182]:

v =
∣

∣

∣

∣

∫

L
~s · d~ω

∣

∣

∣

∣

(2.1)

where ~ω is the position vector of the centroid of the object cross-section, whose vector area
(i.e. the vector normal to the plane with magnitude equal to the cross-sectional area) is given
by ~s. L is the path of ~ω as the object is scanned. Equation (2.1) gives the correct volume even
if the cross-sections overlap. The only restriction is that the planes containing the first and last
cross-sections must be oriented in the same sense with respect to the object, i.e. the object is in
front of the first plane and behind the last plane, or vice versa. In practice, rotational scanning
is the only common scanning pattern which violates this condition.
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Equation (2.1) can be implemented discretely by approximating the integral using the trape-
zoidal rule between each pair of cross-sections, which gives:

v =

∣

∣

∣

∣

∣

N
∑

i=2

1
2

(~si + ~si−1) · (~ωi − ~ωi−1)

∣

∣

∣

∣

∣

(2.2)

where the N cross-sections have vector areas ~s1, . . . , ~sN and centroids ~ω1, . . . , ~ωN . This approx-
imation is equivalent to assuming that the surface area projected onto a plane normal to the
path of the centroids, L, varies linearly from one slice to the next. This is true for objects whose
cross-sectional area does not vary, and also for paraboloids, for which equation (2.2) is the exact
solution of equation (2.1). However, objects which are either more concave or more convex than
a paraboloid will not be correctly approximated by this equation. For example, the volume of
a cone will be overestimated, and that of a sphere or an ellipsoid will be underestimated. This
error increases as the number of cross-sections is reduced.

Equation (2.2) can easily be implemented on a computer once the cross-sections have been
generated. In practice, this first segmentation step is by far the most time consuming, typically
taking around half a minute for each cross-section, assuming it is outlined manually. Once this
has been done, the calculation of volume can be achieved in less than one second.

Using cubic rather than trapezoidal interpolation would increase the accuracy of the volume
estimate and eliminate the bias towards paraboloids or prisms. It has been argued [19] that
the small increase in accuracy this would provide does not justify the additional complexity.
However, two points can be made in defence of this approach. Firstly, the additional complexity
is completely transparent to the user — once the algorithm has been implemented, the user per-
forms precisely the same operations (i.e. segmenting the cross-sections) in both cases. Secondly,
the reduction in the number of cross-sections required for an accurate volume estimation is very
welcome, as segmentation is the time consuming step in the process.

In order to estimate equation (2.1) using cubic interpolation, two important decisions must
be made. The first is the selection of the points or vectors to interpolate. The second is the
selection of the cubic representation for the interpolation.

2.2.3 A 2D representation of the problem

Interestingly, the whole problem can be reduced to finding the area of a carefully constructed
2D graph, that represents a combination of the original 3D object with the scanning pattern.
The equivalence between the 3D and 2D representations is shown in Figure 2.2.

The area enclosed within the dashed and solid lines in the 2D representation is equivalent
to the volume that would be calculated by Watanabe’s trapezoidal equation from the 3D rep-
resentation. This can be easily proved by considering the 2D representation to have a nominal
thickness of one unit, and then applying equation (2.2) to calculate the area:

A =
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∣
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∣

∣
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∣

∣
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(2.3)



Section 2.2. A new approach: cubic planimetry 24

1

1

3

2 2

2

1

2

3

Volume, V

3

2

1

θ
φ

θ
φ

∆ω

s
s

s

∆ω

(a) 3D representation

1
1

1

3

2 2

2

2

1

3

2

3

2

1Area, A

n
β

αβ

a

a

a c

α
c

n

(b) 2D representation

Figure 2.2: 3D and 2D representation equivalence. i) The length of a 2D line, a, is
equivalent to the area of the cross-section, |~s|. ii) The length of the line, c, is equal to the
magnitude of the vector,

∣

∣

∣

~∆ω
∣

∣

∣. iii) The angle, α, between the line c joining the centres of each
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vector ~∆ω joining the centroids of each area. iv) Similarly, the angle, β, is equal to the angle, φ.
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Figure 2.3: Choice of angles for 2D representation.

Equation (2.2) can be similarly re-written as:

v =

∣
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∣
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(2.4)

If the variables in equations (2.3) and (2.4) are equated for all values of i, then A ≡ v. There
is, however, significant redundancy in this conversion. Firstly, only the multiple of the lengths of
the lines ai and ci is used, and hence an arbitrary scale factor can be multiplied into one, so long
as it also divides the other. This has the effect of stretching or shrinking the 2D graph, but has
no bearing on the volume calculation. Secondly, only the cosine of the angles αi and βi are used,
hence they can be arbitrarily positive or negative. The effect of this choice is demonstrated in
Figure 2.3.

Although the choice of angles has no effect on the volume calculated by the trapezoidal
method, it does affect that calculated using cubic interpolation of the 2D representation, as the
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(a) Original cross-sections (b) 2D graph representation

Figure 2.4: Scanned sphere in 3D and 2D representations.

latter involves the use of information from several sequential slices. An additional heuristic rule
is required to ensure that the angles αi and βi are chosen correctly.

For each choice of angle αi between the line joining centroids ci and the area representation
ai, the angle which ci makes with ci−1 is also calculated. The value of αi is then chosen for
which this calculated angle is closest to the 3D version (i.e. the angle which ∆ωi makes with
∆ωi−1). A similar rule is employed for the angle βi, using the area normals rather than the lines
joining the centroids as the reference.

The result of this entire process is shown for a sphere in Figure 2.4. The sphere was scanned
with a pattern which varied in position, azimuth, elevation and roll, using the simulation software
described in Appendix A.1. The resulting 2D graph retains some of the shape of the sphere but
also reflects the way in which it was scanned.

2.2.4 Cubic interpolation of the 2D representation

If, instead of joining the end points of the lines ai in Figure 2.2(b) with straight lines, a set of
smooth curves is fitted between them, then the area enclosed by these curves should represent the
volume of the original object more accurately. The curves must at least be cubic, since continuity
is required in at least the first derivative (i.e. the curves are C1 continuous). They must also be
defined parametrically, since they may have multiple values in both x and y directions.

The smoothest possible curve could be obtained by fitting an appropriate function through
all the end-points simultaneously. However, this sort of global optimisation is in general costly
to compute, which violates one of the motivations for improving the volume calculation: that
the increase in processing time is negligible. A less optimal but faster solution can be found by
using parametric cubic splines.

In depth descriptions of the various forms of splines can be found, for example, in [60]. In
summary, they are curves which in 2D are represented parametrically by sets of coefficients:
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where C is a matrix of coefficients, and T is the parameter matrix. The matrix C can be
generated from a list of control points P and the spline transformation matrix M. The choice of
the control point and transformation matrices determines how the cubic spline will be defined.
In particular, a spline is required that interpolates the control points, i.e. the resulting curve
passes through the points which are used to define it. One of the simplest cubic spline forms
possessing this property is the Hermite, in which case:

P =













~p2

~p3

~r2

~r3













, and M =













2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0













(2.6)

where ~p2 and ~p3 are the position vectors of the points p2 and p3, and the gradient vectors ~r2

and ~r3 are defined in Figure 2.5. The choice of gradient vectors is not obvious in this case, as
we only have a set of connected points. An alternative cubic spline form invented by Catmull
and Rom [37] overcomes this by using the four position vectors ~p1 to ~p4 directly. In this case,
the point and transformation matrices are:

P =













~p1

~p2

~p3

~p4













, and M =
1
2













−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0













(2.7)

With this form of cubic spline, the control points p1 to p4 are the points to be interpolated,
and the curve is fitted between p2 and p3, as in Figures 2.5 and 2.6. This is equivalent to using
the Hermite form, with the gradient vectors defined as:

~r2 =
1
2

(~p3 − ~p1) , and ~r3 =
1
2

(~p4 − ~p2) , (2.8)
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Figure 2.6: Handling of end points for cubic splines.

The first and last curve segments are necessarily a special case, as only three points can be
used to fit the curve. There are a variety of ways of handling this, that can all be implemented
by inventing the additional missing point p1, as in Figure 2.6. There are three main options for
the position of this point:

1. If p1 is chosen such that the point set p1, . . . , p4 has reflectional symmetry about the mid-
point of ~p2p3, then the final curve will also be symmetrical, i.e. the gradients at each end
will be the mirror image of each other.

2. If p1 lies along the extension of the line ~p3p2, then the gradient at the last point will be
equal to that of the line ~p3p2.

3. If p1 is identical to p3, this has the effect of placing a null gradient at the end point. The
resulting curve has a rate of change of gradient at the end point of zero.

The last solution is the simplest and most natural, since there is no knowledge of the gradient
at p2, and it is therefore employed in this technique. The resulting curve, for the same situation
as Figure 2.4, is shown in Figure 2.7, together with the actual object curve which results from
scanning in smaller steps.

Once the curves joining the end points of the lines ai have been defined, the enclosed area
can be calculated directly from the parametric coefficients of each curve. This calculation is
based on the application of equation (2.1), and is given in Appendix B.1.

Rather than fitting curves to the end points of the lines ai, they can be fitted directly to
the vector normals to these lines n̂i and the centroid difference vectors ~ci. The result of this,
overlaid on the former interpolation technique, is shown in Figure 2.8(a). In fact, the resulting
curves can be deduced from each other, and the volume calculation is identical for each method.

Alternatively, the cubic splines can be fitted directly to the original 3D vector areas ~si, in
situ. In this case the 2D representation is not required. This 3D representation is hard to
visualise, but is shown in Figure 2.8(b) superimposed on the original 3D cross-sections. The
vector areas ~si emanate from the centres of the original cross-sections, and the two curves join
the end points of these vectors.

In this case, the curve parameters are now defined in 3D; hence the calculation of enclosed
area in Appendix B.1 requires an additional z(t) coordinate. The resulting volume is slightly
different from that obtained using the 2D graph method, although the implementation is simpler
since the translation from 3D to 2D representation is no longer required. However, the problem
is less well conditioned, as there are more parameters to estimate than in the 2D case. The
accuracy of the various techniques is investigated in Section 2.3.
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(a) Cubic and trapezoidal combined (b) Greater number of cross-sections

(a) and (b)
agree very well

(a) and (b) do not quite agree

(c) Previous figures superimposed

Figure 2.7: Cubic and trapezoidal interpolations for a scanned sphere. Cubic inter-
polation of a few cross-sections in (a) is compared with trapezoidal interpolation of a greater
number of cross-sections in (b). The slight difference between these measures can be seen in (c).
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(a) 2D techniques (b) 3D technique and original cross-sections

Figure 2.8: Alternative cubic interpolation techniques applied to a sphere.

2.3 Simulated scanning results

2.3.1 Test setup

In order to verify the volume measurement technique presented in this chapter, and the surface
visualisation technique presented in Chapter 3, simulation software was developed to allow
geometrical objects of known volume and shape to be ‘scanned’. This software is described in
Appendix A.1.

Testing the algorithms in this way allowed more control of the sources of error than would
be possible with in vitro experiments. In particular, segmentation error, which is common to
all ultrasound volume measurement techniques, could be eliminated entirely. Both the effects
of the clinician moving the probe unsteadily, and errors in the position measurement, could also
be controlled.

The location of the first and last scan planes also has a significant effect on the volume
measurement, for any sequential technique. This is because any part of the object which lies
beyond these planes is not included in the volume measurement or surface estimation process.
Hence, in the following experiments, the first and last planes were always positioned at the
extremities of the object.

Six different techniques were tested: the three volume measurement techniques discussed
in this chapter, and three surface reconstruction techniques discussed in Chapter 3. Volume
measurements from surface reconstructions are presented for comparative purposes. These are
generally worse than the planimetric volume measures described in this chapter, since the sur-
faces are reconstructed using linear, rather than cubic, interpolation. Surface reconstructions
from the cross-sections are also shown here — these are discussed in Section 3.5.1.

1. Linear planimetry This is the original method of volume measurement using vector areas
and centroids presented in [182].
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2. 2D cubic planimetry The volume measurement technique presented in this chapter using
the 2D representation.

3. 3D cubic planimetry The volume measurement technique presented in this chapter which
uses cubic interpolation directly in 3D.

4. Shape-based interpolation The surface interpolation method on which the technique pre-
sented in Chapter 3 is based [82, 154].

5. Centroid-guided interpolation An extension to the above in [83], and similar to [114].

6. Disc-guided interpolation The surface interpolation technique presented in Chapter 3.

2.3.2 Volume measurement accuracy

Each test object (outlined in Table 2.1) was scanned with linear, fan or freehand sweeps. The
number of scans in each sweep varied from 4 to 20, to show the change in volume measurement
as the number of segmented cross-sections increased. The results of this are shown in Figures 2.9
to 2.12. The solid horizontal lines on the graphs show the actual volume of the object, and a
margin of ±1% around this value. Object contours and surface reconstructions in Figures 2.9
to 2.12 are shown with the smallest number of scans for which the cubic planimetry volume was
within this margin. Table 2.1 contains this number of scans for each object, and the percentage
error for 20 scans.

The size of each pixel in the scan planes was 0.012cm. Objects were scaled to just fit inside
a cube of 2cm× 2cm× 2cm, hence length measurements had an error of approximately ±0.3%.
Surface reconstructions, using disc-guided interpolation, were performed at half this resolution,
giving volume errors of 3 × 2 × 0.3 = ±1.8%. Planimetry is inherently less dependent on
resolution, being based on area measurements, leading to volume errors of ±0.6%.

The time taken for each measurement was approximately 20ms for cubic planimetry methods,
and approximately 7s for surface reconstructions, the latter being relatively independent of the
number of scans.

Cubic planimetry gave the most accurate volume measurements with fewer segmented cross-
sections, in all cases. Table 2.1 shows that typically only ten cross-sections were required to give
an accuracy (due to the volume measurement technique alone) of better than ±1%. This was
the case for both linear and complex scanning patterns, and simple or complex objects; even
the sharp-edged cube in Figure 2.9.

The results for 2D cubic planimetry were generally very similar to those for 3D cubic planime-
try. The 2D technique was perhaps slightly better, due mostly to the more natural fitting of
cubic splines to the end points than was the case with the 3D technique.

For parallel or nearly parallel scanning patterns, linear planimetry gave more accurate vol-
ume measurements than any of the surface reconstruction methods, for example the cone in
Figure 2.11(a) and (b) and “baseball glove” shape in Figure 2.11(c) and (d). However, as the
scanning patterns increased in complexity, this method became less accurate, and the surface re-
construction methods tended to be more accurate. See, for example, the sphere in Figure 2.9(b)
(the apparent oscillations in this and Figure 2.12(e) are in fact due to how the surface is inter-
sected for odd and even numbers of scans). Linear planimetry assumes a linear change in area
between scan planes, whereas the surface reconstruction methods fit an approximately linear
surface — which of these gives the better volume measurement is therefore a function of the
relative accuracy of these assumptions.
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(a) Sphere, fan scan
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Figure 2.9: Simulated scan of a sphere and cube.
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(a) Ellipsoid, free scan
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Figure 2.10: Simulated scan of an ellipsoid and cone.
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(a) Cone, linear scan

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2

2.22

C
al

cu
la

te
d 

vo
lu

m
e 

/c
m

3

Number of scans

Linear Planimetry       
2D Cubic Planimetry    
3D Cubic Planimetry    
Shape−based      
Centroid−guided    
Disc−guided

(b) Cone, linear scan

(c) Glove, linear scan
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(d) Glove, linear scan

Figure 2.11: Simulated scan of a cone and “baseball glove” shape.
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(a) Glove, linear scan (b) Glove, free scan (c) Hat, linear scan

(d) Hat, free scan
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Figure 2.12: Simulated scan of a “baseball glove” and “jester’s hat” shape.
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Table 2.1: Simulation results: all objects. 1: Linear planimetry, 2: 2D cubic planimetry, 3:
3D cubic planimetry, 4: Shape-based, 5: Centroid-guided, 6: Disc-guided. Missing values imply
> 20 scans. The values for the cone fan scan were the result of the symmetry of the situation
— odd numbers of sweeps gave more accurate volumes than even.

Object Scan Planes for < 1% error % error at 20 planes
1 2 3 4 5 6 1 2 3 4 5 6

Sphere linear 11 6 6 20 20 20 −0.2 +0.1 +0.1 −0.8 −0.8 −0.8
fan - 9 10 19 19 19 −1.4 −0.1 −0.1 −0.9 −1.4 −1.1
free 20 9 9 15 16 16 −0.9 −0.1 −0.1 +0.0 −0.1 −0.1

Ellipsoid linear 11 6 6 15 15 15 −0.3 −0.0 −0.0 −0.5 −0.5 −0.5
oblique 11 6 6 17 17 17 −0.2 +0.1 +0.1 −0.6 −0.6 −0.6
free - 9 9 - - - −1.3 −0.0 +0.1 −1.1 −1.6 −1.4

Cone linear 8 5 5 - - - +0.2 +0.0 +0.0 −1.8 −1.8 −1.8
fan - 9 9 17 17 17 −1.8 −1.3 −1.3 −1.8 −1.6 −1.7

Cube free 12 8 8 14 14 12 −0.5 −0.0 −0.0 −0.5 −0.5 −0.3
Glove linear 12 6 6 15 15 15 −0.3 +0.1 +0.1 −1.2 −1.0 −0.9

linear 9 6 6 15 - 15 −0.2 −0.0 −0.0 −0.8 −1.9 −0.9
free - 16 15 - - - −2.4 −0.6 −0.3 −1.5 −1.5 −1.5

Hat linear 10 9 9 - - - −0.3 −0.0 −0.0 −2.2 −2.2 −1.8
free - 14 14 - - 18 −1.9 −0.0 −0.0 −1.4 −1.9 +0.1

2.3.3 Registration and unsteady hand effects

In Figures 2.9 to 2.12, the scan planes were evenly spaced and their location and orientation
known precisely. In practice, this is rarely the case, even with good calibration. In order to
examine the effects of these errors, the “baseball glove” shape was scanned with ten linear scans,
in the same pattern as in Figure 2.12(a). Random errors were applied to the location of the
scans, first before scanning the object (unsteady hand simulation), then after scanning the object
(mis-registration simulation). Errors were added to all three location and all three orientation
parameters simultaneously. Five scales of errors were used in each case, corresponding to the
numbers on the x-axes of the graphs in Figures 2.13 and 2.14, as follows:

1. ±0.02cm in location, ±1◦ in orientation.

2. ±0.05cm in location, ±2.5◦ in orientation.

3. ±0.1cm in location, ±5◦ in orientation.

4. ±0.2cm in location, ±10◦ in orientation.

5. ±0.4cm in location, ±20◦ in orientation.

The object dimensions were approximately 2cm× 2cm× 2cm, hence these represent a wide
range of errors. 2D cubic planimetry volumes were measured for 20 different samples at each
scale of error. The graphs show the quartiles (rectangular boxes) and minimum and maximum
values (dotted vertical lines) for each of these distributions.

The effect of the clinician holding the probe with an unsteady hand is very small for all of
the methods examined — volume errors remain at about ±1% for unsteadiness of up to 5% of
the object size. This slight reduction in both volume and accuracy, seen in Figure 2.13, is the
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(a) Sections and surface

1 2 3 4 5

90

91

92

93

94

95

96

97

98

99

100

P
er

ce
nt

ag
e 

of
 a

ct
ua

l v
ol

um
e

Unsteadiness Number

(b) Distribution of cubic planimetry volumes

Figure 2.13: Simulated unsteady sweeps of a “baseball glove” shape. Rectangles show
quartile values, dotted lines show minima and maxima.
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(b) Distribution of cubic planimetry volumes

Figure 2.14: Simulated mis-registered sweeps of a “baseball glove” shape. Rectangles
show quartile values, dotted lines show minima and maxima.
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result of the larger gaps between object cross-sections rather than the irregularity of the scan
positions.

As expected, mis-registration of the scan planes (i.e. errors in the position and orientation
information) is a more significant source of error. In this case, volume errors are about ±10% for
mis-registration errors of up to 5% of the object size. In practice, the magnetic position sensor in
use with the freehand 3D ultrasound system described in Appendix A.2, is accurate to typically
±1mm [146]. This implies a worst case mis-registration of approximately 2% for a small organ1.
At this level of mis-registration, the volume measurement error shown in Figure 2.14 is at about
the same scale as the mis-registration error.

2.4 In vivo ultrasound results

In vivo measurements have the disadvantage of including both registration and segmentation
errors, but do therefore represent the volume measurement accuracy that is achievable in prac-
tice. The ultrasound scanner and the system used to acquire freehand 3D ultrasound data are
both described in Appendix A.2.

It was not possible to compare ultrasound volume measurements with those from another
imaging modality, for instance CT, as there was insufficient access to a CT scanner. However,
volume measurement precision could be assessed by repeated observations. The only practical
way of assessing in vivo volume measurement accuracy was to compare bladder volume with
measurements of urine output.

Three areas were examined: the kidney, bladder and a foetus. Typical B-scans for all of
these are shown in Figure 2.15, along with the segmentation. The scan plane pixel size for these
scans was 0.035cm, hence for typical volumes of 150ml the volume errors due to resolution were
approximately ±1%.

2.4.1 Kidney

Four scans were performed of the same kidney, two using a transverse and two a longitudinal
scanning pattern. Each of these was then segmented with approximately 25 cross-sections,
spaced reasonably evenly, and ensuring that the organ extremities were sufficiently covered.
Each set of segmented cross-sections was then gradually reduced, closest ones being removed
first, and volume measurements made at each step.

The actual volume of the kidney is not known. However, the volume measurements should
agree both for the varying number of scans within a sweep, and across each of the sweeps.
Graphs of the volume measurements for each of the six techniques are shown in Figures 2.16
and 2.17, for transverse and longitudinal scans respectively; surface reconstructions are shown
for ten scans. Table 2.2 shows the volume measurements for ten cross-sections.

In vivo volume measurement precision was achieved to ±6ml, ±5% for the kidney. This was
the case even if only six cross-sections were used to measure the volume; the difference between
the scanning patterns was more significant than the number of cross-sections used. This variation
of volume with scanning pattern was probably a result of difficulties in segmenting the kidneys
in each case.

1This does not take into account the unknown error due to organ movement, which also causes mis-registration.
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Figure 2.15: Typical in vivo ultrasound B-scans. The top row shows (from left to right) a
longitudinal scan of a kidney, a transverse scan of a kidney and a scan of a bladder and prostate.
The bottom row shows a longitudinal and transverse scan of a foetus at 16 weeks. Manual
segmentation of the anatomy is also shown.

Table 2.2: Human kidney volume: all scans Volumes were measured using ten cross-sections
of the transverse and longitudinal scans. 1: Linear planimetry, 2: 2D cubic planimetry, 3: 3D
cubic planimetry, 4: Shape-based, 5: Centroid-guided, 6: Disc-guided.

Scan Volume measurement in ml
1 2 3 4 5 6

Transverse 1 127.3 128.4 128.3 125.7 126.2 126.2
2 123.7 124.6 124.7 121.3 122.2 121.9

Longitudinal 1 126.9 125.7 125.4 122.0 122.1 122.6
2 113.7 117.2 117.3 114.4 114.2 114.9
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(b) Volume measurement

Figure 2.16: In vivo transverse scan of a human kidney.
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(b) Volume measurement

Figure 2.17: In vivo longitudinal scan of a human kidney.
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Figure 2.18: In vivo scan of a human bladder. The bladder was partially voided four times
during the examination. Two sets of scans were recorded between each partial voiding. The
data is contained in Table 2.3.

2.4.2 Bladder

In order to validate in vivo volume measurements, the actual volume must be known by an
alternative, more accurate, method. This is possible for the bladder, which is a collapsible sack
whose volume at any time is equal to the amount of fluid it contains. The output of the bladder
can be easily measured from urine volume. The input to the bladder is more difficult to measure,
but can be estimated from sequential volume measurements in periods with no urine output. In
addition, the bladder wall is very well defined by ultrasound, and is therefore easier to segment
than, for instance, the kidney.

Ten scans were performed of an initially full bladder, in pairs, with varying amounts of urine
output between each pair. The bladder was completely voided after the eighth scan. The scans
were performed in fast sequence, the output being collected for later measurement, in order to

Table 2.3: In vivo bladder volume. Fill is the estimated rate at which the bladder was
filling. Diff is the calculated difference in volumes, adjusted for bladder filling, and Void is the
actual measured output. The same data is shown graphically in Figure 2.18(b).

Time, m:s 00:00 00:40 02:54 03:54 05:17 05:58 07:28 08:07 10:26 11:02
Volume, ml 342.7 363.4 360.9 369.2 306.0 319.8 194.8 206.2 14.7 20.3
Fill, ml/m 30.7 8.3 20.0 17.5 9.3
Diff, ml 24.2 84.1 155.6 219.0
Void, ml 25 74 156 234
Error, % 1.6 6.8 0.1 3.2
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limit the amount of bladder filling during the experiment. The output was then measured using
a 20ml or 60ml graded syringe (dependent on the volume) to an accuracy of approximately
±1ml. The stored ultrasound B-scans were then segmented, using 15 to 20 cross-sections per
examination: Figure 2.18(a) shows an example of this. Volumes were calculated from these
cross-sections using 2D cubic planimetry, as in Table 2.3.

The amount of bladder filling was estimated in three stages. Firstly, the linear rate of filling
was calculated, for each pair of scans, from the volume measurements. Secondly, cubic splines
were used to interpolate these values and give a continuous bladder filling rate. Thirdly, this
function was integrated, to give the estimated amount by which the bladder had filled at any
point during the experiment. This information, along with the measured volumes, was then used
to estimate the actual bladder volume at any point (for this purpose, the voiding was considered
to be instantaneous at the mid-point between pairs of scans). The resulting curve is shown in
Figure 2.18(b), along with the estimated urine output calculated from this curve.

The errors in Table 2.3 were calculated for the bladder volume measurements, rather than
for the urine volume. The urine volume is a complicated function of the bladder volume mea-
surements, due to the adjustments for bladder fill rate, making these errors hard to estimate.
Since it is essentially a measure of difference, the urine volume error is assumed to be twice the
actual bladder volume error. This leads to a volume measurement accuracy of approximately
±7%.

A similar study of 3D ultrasound bladder volume measurement was recently performed,
using the reverse of this procedure: the bladder was initially empty, and filled with known
quantities of saline between each measurement [168]. Filling the bladder in this manner requires
catheterisation, which is obviously less comfortable than the approach outlined above. Indeed,
one patient

. . . felt a very strong, unpleasant desire to urinate at 210ml and refused to have the
bladder filled with 250ml.

The reported measurement accuracy was worse than ±20%, however the 3D system in use
involved very approximate automatic, rather than manual, segmentation. In addition, no ad-
justment was made for internal filling of the bladder during the experiment.

2.4.3 Foetus

The foetus presents more of a challenge to ultrasound volume measurement than most other
areas of anatomy, since it is a more complicated shape which is harder to segment, and is also
capable of extreme movement. This movement causes problems during scanning, as it can lead
to artifacts in the 3D data; in practice the acquisition process must be repeated if too much
movement occurs. Changes in shape can also lead to significant changes in the topology of the
cross-sections, which adds to the segmentation difficulty.

To investigate the precision with which the volume of a foetus can be measured, a foetus of
16 weeks was scanned ten times over the course of 20 minutes2. The scan pattern was either
longitudinal or transverse, and between 15 and 25 cross-sections were segmented in each case.
Surfaces reconstructed from each of these scans are shown in Figure 2.20 — the large variation
in pose is clear from this figure.

2In practice, roughly three times as many scans were acquired than could be used, due to movement of the
foetus.
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Figure 2.19: In vivo volume measurement of a foetus at 16 weeks. The dashed line
shows the mean volume and the dotted lines the 95% confidence limits.

Figure 2.19 shows the result of using 2D cubic planimetry to calculate the volume from these
sets of cross-sections. Taking the transverse scans alone, the 95% confidence limit for the volume
measurement precision is ±7%, or ±9% over all ten scans. This error is a result of difficulty
in segmenting (as with the kidney) and changes in pose of the foetus resulting in a variety of
regions outside the foetus being included in the volume measurement.
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(a) Transverse (b) Longitudinal (c) 0 minutes (d) 3 minutes

(e) 5 minutes (f) 7 minutes (g) 9 minutes (h) 11 minutes

(i) 13 minutes (j) 15 minutes (k) 17 minutes (l) 19 minutes

Figure 2.20: In vivo scan of a foetus at 16 weeks. Scans (h) to (j) were longitudinal as in
(b), the remainder were transverse as in (a).



Chapter 3

Surface interpolation and
visualisation

3.1 Current methods of surface interpolation

Surface interpolation, as explained in Section 1.4.2, is the first step in generating a geometrical
representation of the surface, which can be used for interactive display. Surface reconstruction
can also be achieved by direct triangulation from cross-sections. Most reconstruction techniques
have been developed for parallel cross-sections; even then, estimating the surface position in
a robust and feasible manner is a very difficult task. These techniques are briefly reviewed in
Section 3.1.1, before concentrating on interpolation (functional) methods in Section 3.1.2, and
reviewing the few techniques that have been applied to non-parallel data in Section 3.1.3. Some
of the related techniques of scattered data interpolation are finally reviewed in Section 3.1.4.

3.1.1 Surface from cross-sections

There are two distinct approaches for constructing a surface from cross-sections of an object.
Both approaches can be used to generate a triangular mesh of the surface, which is useful for
rendering using standard graphics hardware. In the first approach, the set of points making up
each of these cross-sections are directly triangulated, such that these points become the vertices
of the triangular mesh. The alternative is to use the cross-sections to estimate a 3D function
that represents some measure of distance from any point to the surface. Once this function has
been created, the zero isosurface (also known as the ‘level set’) can be triangulated to reveal
the object surface. This approach was originally suggested by Levin for the interpolation of CT
data [111].

Direct triangulation of points on the cross-sections is a difficult (though well studied) problem
in cases where the cross-sectional shape varies between planes. Additional vertices must be
created if the topology changes, for instance a saddle point for a branching structure. It is
also impossible to constrain the aspect ratios of the generated triangles, since the vertices are
defined by the positions of the cross-sections. This can lead to poor quality surface displays
if Gouraud shading (which is the fastest effective shading technique) is used. Much effort is
required to detect and correct special cases where the triangulation of complex shapes might
otherwise fail [13, 16, 29, 122]. In addition, there have been very few examples in the literature
of direct triangulation of non-parallel cross-sections [48, 143].

In contrast, in the functional approach, the same criterion is applied to both simple and
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(a) Cross-sections (b) Side (c) Top (d) Front

Figure 3.1: Limitations of shape-based interpolation. (b), (c) and (d) show shape-based
reconstructions from three cross-sections of a simple cylinder, shown in (a).

complex shapes. Once the function has been created, the isosurface can be triangulated quickly
by a variety of algorithms, discussed in Section 3.3. In some cases, extracting the isosurface
at a non-zero value (i.e. at a constant distance from the actual surface) can also provide useful
information [142]. This approach also lends itself more naturally to the interpolation of non-
parallel cross-sections, or even scattered data.

3.1.2 Shape-based interpolation

Shape-based interpolation, first proposed by Raya and Udupa [154], is probably the simplest
form of distance function creation. In this method, the first step is to calculate, for each pixel
in the image, the distance from the closest point on the object cross-section. In order to define
the inside of the object, this distance is chosen by convention to be positive for points inside
the object and negative for points outside. Secondly, these transformed images are interpolated
using a linear or cubic function, to generate new transformed images. Finally, the new images
can be thresholded at zero, such that any pixels greater than zero are considered to be inside
the objects on the new scan planes. A faster method was also proposed, which restricted the
distance calculation to pixels that were contained by the object cross-section on only one of the
parallel scan planes. The authors suggested that the method could be adapted for near-parallel
images, although this was not demonstrated.

Herman et al. [82] later introduced a more accurate and efficient algorithm for calculating
the distance values, based on a distance transformation introduced by Borgefors [31]. This
transformation used a chamfer code, which is a better estimate of Euclidean distance than the
city-block distance in the previous method. At much the same time, Montanvert and Usson [124]
also arrived at a near identical algorithm for use in 2D granulometry and 3D reconstruction,
again by interpolating Borgefors’ chamfer code. In this case, the distance maps were interpreted
as “fate maps” — for each pixel, the distance value indicated a date, where zero indicated the
“birth” of the pixel in the interpolated images. The results were, however, identical to the
linear interpolation used by Herman. Another near identical algorithm was presented later by
Jones and Chen [94], although here the distances were calculated by a more complex method.
Ohashi [137] used morphological erosion and dilation operators to produce similar results, this
time applied to pore geometry.

All of the above shape-based methods can handle bifurcations and relatively complex shapes.
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However, they can also produce undesirable artifacts when the shape on each contour changes
radically, or undergoes significant translation. The effect of translation can be demonstrated
by examining the results of shape-based interpolation applied to the reconstruction of a simple
cylinder, scanned at an oblique angle, as in Figure 3.1. The side view is nearly correct, however
the front view shows the surface of the cylinder as concave. This is because the interpolated
object can only exist within the bounds of the original cross-sections, projected in the direction
of interpolation, as seen from the top view. This is also demonstrated in Figure 3.2, which
contains some (near) parallel cross-sections from a freehand 3D ultrasound scan of part of the
system of hepatic ducts. Figures 3.2(a) and (b) show the actual anatomy, whereas Figure 3.2(d)
shows the result of applying shape-based interpolation to every other cross-section.

This problem has been partly addressed by moving the cross-sections to align the centroids
of each object before interpolation (then using the inverse transform on the interpolated cross-
sections) [83], as in Figure 3.2(e). This works well for tree-like shapes that have been scanned
transverse to the main axis, for instance the top three cross-sections in Figure 3.2(e). In this
case, individual objects are treated separately, and the union of the interpolated objects is used
to create the final object contours. However, disastrous results can ensue when the shape of
each cross-section changes dramatically, even if the original shape is still a tree-like structure, as
can be seen from the other cross-sections in Figure 3.2(e). Scaling each cross-section such that
the bounding rectangles are the same size, in addition to aligning the object centroids, can help
in some cases [116] — but makes the situation worse in the case of Figure 3.2(f).

A similar method has been proposed recently by Liu et al. [114]. This interpolation method,
edge-shrinking interpolation, is a close relative of shape-based interpolation, in that the interme-
diate cross-sections are still derived from distance transforms calculated using a chamfer code.
In this case, the start contour is eroded by a morphological disc of varying size, determined by
the distance code at that point in the contour. The results of this operation are, however, very
similar to those achieved with a more straightforward linear interpolation. An interpolation di-
rection similar to connecting centroids is used, but based on minimisation of the distance field of
one contour, sampled along the other contour. In addition, one contour can be “shrunk” before
interpolation in order to fit inside the other contour, thus reducing the effects of radical shape
changes. This technique improves the interpolation result slightly, but is much more complex.
In addition, the treatment of multiple contours is the same as for Higgins’ method, in that the
union of the results is used, generating gradient discontinuities at the junctions.

An example of a gradually varying interpolation direction, applied to parallel slice data,
is given by Moshfeghi [126]. Here a simple scheme is used to interpolate magnetic resonance
angiography data, where the centroid of each separate contour is first calculated, then the
connectivity between centroids on adjacent scans is determined. The vector connecting matched
contours is then used to interpolate data within those contours, in the same way as in [83, 114].
However, the data between contours is interpolated with a varying direction which is itself a
linear interpolation of centroid connection vectors. This works well for multiple simple shapes
with clear connectivity, but not for complicated shapes, since only a single interpolation direction
is calculated for each contour.

Several other object-based strategies have been proposed for interpolating images as well
as cross-sections. Cores can be extracted from the grey-level image (without segmentation)
and used to interpolate intermediate parallel slices [148]. The idea of varying the direction of
interpolation across the image has also been applied to this case [63]. Morphing (particularly
known for its use in films such as Terminator II) has been used recently on object cross-sections
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(a) Cross-sections (b) Surface from (a)

(c) Every other cross-section (d) Shape-based interpolation

(e) Centroid-guided interpolation (f) Scaled centroid-guided

(g) Disc-guided interpolation

Figure 3.2: Reconstruction of part of the system of hepatic ducts. The cross-sections
were manually outlined on the original B-scans of a freehand 3D ultrasound scan. (a) and
(b) show the original cross-sections, (d) to (h) show the surface interpolated from the selected
cross-sections shown in (c).



Section 3.1. Current methods of surface interpolation 48

(a) Cross-sections (b) Interpolated surface from (a)

(c) Fewer cross-sections (d) Interpolated surface from (c)

Figure 3.3: Section of human ribs. The cross-sections were automatically segmented by
thresholding CT data.

to guide the interpolation [171]. Interpolation in the direction of object centroids has also been
used to reconstruct an object from ‘staircases’ formed by iteratively connecting points on two
cross-sections [184].

Where there is some definition of connectivity in all of the above algorithms, it is based on
whole contours, but it can be seen from Figures 3.2(e) and (f) that this is not always appropriate:
the small contours only correspond to a part of the longer contours. An alternative object-based
interpolation approach, dynamic elastic interpolation, begins to address this problem [41]. Here,
a force field is constructed which iteratively deforms one cross-section towards the other. The
initial formulation produced similar results to centroid-guided shape-based interpolation for
complex objects. However, this behaviour was improved by imposing an upper threshold on the
forces at each point on the contour. This prevents far portions of the cross-section having a
detrimental effect on the deformation, but also adds further complexity, and the requirement to
estimate an additional parameter.

In disc-guided interpolation, presented in this thesis, the interpolation of a distance transform
is guided by using correspondence of regions of cross-sections. This region correspondence is
determined by representing each cross-section by a set of discs that are contained by the object.
The result of this algorithm is shown in Figure 3.2(g). A shape interpolation method using a disc
representation has also been presented in [151]. However, in this method the ‘union of circles’
representation is interpolated directly, rather than used as a guide for shape-based interpolation.
The advantages of shape-based interpolation, in particular treatment of complex topology and
faithfulness to the original data, are not therefore apparent in this case.

It is important to recognise that no technique can guarantee to reconstruct the actual
anatomy from any set of cross-sections. It will always be possible to create a set of cross-
sections whose connectivity will be misjudged by a given algorithm. This is equally true for
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techniques which use more than two cross-sections to calculate connectivity [15]. For instance,
Figure 3.3(a) and (b) show a section of ribs, segmented from a CT scan. If fewer cross-sections
are used, as in Figure 3.3(c), the incorrect surface in Figure 3.3(d) is generated, as this is the
simplest way to connect the cross-sections. This is a consequence of under-sampling: if the
inter-slice spacing is greater than the shortest wavelength present in the data, fine detail will
inevitably be missed in the surface reconstruction. However, it is fair to expect a reconstruction
algorithm to produce a ‘reasonable’ surface, in the sense that similar contours should be con-
nected and the surface should have the simplest topology given the cross-sections (see [76] for
further discussion of this issue) — this is the goal of the algorithm presented in Section 3.2.

3.1.3 Surface from non-parallel cross-sections

All of the algorithms in the previous section have been proposed for parallel cross-sections. In
order to reconstruct the surface in a sequential freehand 3D ultrasound framework, a method
that does not assume parallel planes is required. Such reconstruction methods are few and far
between. Most of the following techniques will not in fact handle arbitrarily oriented cross-
sections. Usually the scan plane orientation is restricted such that they are nearly parallel
(or nearly regular for fan or rotational scanning patterns), or at least do not self-intersect. In
addition, there are often restrictions on the shape and number of contours in each plane.

In [84], a surface was triangulated between cross-sections of phantoms of the saphenous vein.
They were nearly parallel (a ‘translational sweep’ was used) and all approximately circular, such
that the resulting surface was conical or cylindrical. A similar application, again with nearly
circular cross-sections, was investigated in [102].

Several researchers [7, 71, 101] make use of an algorithm initially developed by Cook [45].
Two contours are sampled as a set of lines joining boundary points, then the volume calculated
from these points by forming tetrahedra with a common central point on each plane. This
volume represents that contained by the surface formed by triangulating between each contour
boundary point in turn. This will be accurate for fairly similar contours, but not so for larger
changes of shape. In addition to this restriction on contour similarity, the planes containing the
contours are not allowed to intersect in the region of the contours.

A completely different approach to surface reconstruction by using deformable models is
presented in [46], which also contains a review of the application of similar techniques to the
heart. Rather than starting with the cross-sections and attempting to extract a surface, this
method starts with a model and attempts to fit this to the cross-sections. The fitting process is
controlled by appropriate forces applied to the model from the data, and usually also internal
forces (e.g. bending stress) to prevent the model from moving too far from its original shape. The
technique has several advantages — notably that the cross-sections need not be parallel, nor even
closed. In fact, the data used to drive the model deformation can consist of arbitrarily scattered
points or line segments, as with the algorithms described in Section 3.1.4. The adoption of a
model allows more a priori knowledge to be included in the process, but this is a two-edged
sword. A priori information can greatly assist with difficult reconstruction problems if the
object has the expected shape. However, objects which do not have the correct shape tend to
be forced into the shape of the model. In a clinical context, such objects are often those which
have the most importance.

Another method that can handle overlapping planes is given in [125]. This relies on finding
a suitable longitudinal axis, which passes near the centre of each of the cross-sections. Having
selected the axis, the original cross-sections are rescanned on to new scan planes, that rotate
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about the longitudinal axis. This creates points on the new scan planes where they are crossed
by the contours, which can then be joined to produce new contours. Importantly, the new
contours no longer overlap (the points are joined in the order of distance along the axis, not
in the original scan plane order) so that further processing is greatly simplified. The technique
works well for simple shapes, but does not handle complex ones (e.g. with bifurcations). A very
similar approach is adopted in [119] for fan scanning of the heart, except that the scan planes
do not overlap in this case.

Robert [157] recently presented a method which can construct surfaces from only three
orthogonal cross-sections. The surface is composed of eight triangular patches, which interpolate
each quadrant of the cross-sections. The simplicity of the method makes it fast, and useful
for defining a volume of data to be rendered. However, visualisation or volume measurement
from the surface itself is only useful for simple objects, which can be defined by only three
cross-sections. In addition, a set of three orthogonal ultrasound images can in general only be
generated from a voxel array, rather than from a sequence of B-scans, due to restrictions in
scanning direction.

3.1.4 Surface from scattered points

Algorithms that can create surfaces from scattered point sets can be applied to more regular
planar cross-sections, by using the vertices of each cross-section — although in general this
increases the complexity of the problem. There are several such algorithms that generate a 3D
distance function from these points [12, 25, 85]. These represent very general solutions, but
as a result are not always well constrained, and many points are required to ensure a correct
reconstruction. This approach is attractive for freehand 3D ultrasound, since the cross-sections
are already non-parallel: indeed it has recently been implemented for in vitro reconstructions
of the left ventricle [109]. However, it was noted that the segmentation of the ultrasound
data was not sufficiently dense to constrain the surface, and the method had to be adapted to
include a prior model of the surface, which was then deformed to represent the data, rather than
constructed from the data.

More sparse data can be interpolated by adding the constraint that the surface curvature is
minimised, as well as that the surface passes through the data. This can be achieved by using
volume splines to reconstruct the surface from cross-sections. In one method [166], each cross-
section is first represented by a 2D carrier function, whose values are calculated at the vertices of
the cross-section. A spline function of two variables is used to approximate the function, which
can then be linearly interpolated between each cross-section, once again giving a 3D distance
function which is then thresholded at zero. Alternatively, a volume spline can be fitted to all
the cross-sections simultaneously, generating the 3D distance function directly [178]. Since these
methods involve the inversion of an N × N matrix, where N is the number of points on each
cross-section for the former method, and on all cross-sections for the latter, the processing time
increases significantly with data complexity.

3.1.5 Morphing

The idea of constructing a surface between two differing cross-sections is very closely linked with
that of ‘morphing’ one 2D shape into another, much used in computer graphics [106]. In fact,
distance field interpolation has recently been used for this purpose [44]. The surface interpolation
algorithm presented in Section 3.2 can also be applied to morphing 3D data, and this is discussed



Section 3.2. A new approach: disc-guided interpolation 51

in more detail in Chapter 5. Distance transformation has also been used in conjunction with
field-morphing in order to interpolate the intensity information in medical images [171]. In this
method, shape-based interpolation is used to determine intermediate cross-sections which form
the basis of the control points required by the field-morphing process.

3.2 A new approach: disc-guided interpolation

3.2.1 Overview

The overall strategy of the surface interpolation algorithm is summarised in Figure 3.4. It is
built on shape-based interpolation, however the interpolation direction is allowed to vary at
each point, dependent on the object correspondence. Since shape-based interpolation already
requires a distance transform to be calculated for each cross-section, it is straightforward to
extract a set of maximal discs from these transforms, which loosely represent the shape of
each object. The correspondence between each of these discs is then calculated, assisted by
the original distance transforms. The interpolation direction at any point is calculated as a
weighted sum of contributions from each disc, where the weighting is once again derived from
the original distance transforms. Thus, the distance function can be found at any point in space
between sequential cross-sections, and evaluated on a grid suitable for performing zero isosurface
triangulation.

The use of the distance transform to weight both the correspondence and interpolation
direction calculations makes up for the loose representation of the object by only a few discs.
Centres of discs are a useful representation to guide the shape-based interpolation, since they are
independent of the disc radii. Shape-based interpolation is itself already very good at handling
changes of scale in similar shapes.

Each step in the interpolation process is discussed in detail in the following sections. The
final step, that of isosurface triangulation, is the subject of Sections 3.3 and 3.4.

3.2.2 Calculation of the distance transform

The first step in shape-based interpolation is to calculate, for each pixel of interest, the minimum
distance from the object cross-section. This can either be performed as a pre-processing step,
yielding a distance-transformed image; or for each pixel as required, during the interpolation.
Chamfer coding [31] is an efficient way of calculating a distance transform within a bounding
rectangle, however additional storage is required for this transformed portion of the image. In
addition, it is not necessarily obvious how large the distance-transformed region should be —
especially if the planes are not parallel and the direction of interpolation is allowed to vary, as
in this case.

For these reasons, a two phase approach has been adopted. Firstly, chamfer coding is per-
formed in a rectangle which just bounds the object cross-section in each segmented B-scan.
Secondly, an additional algorithm is presented that can calculate far distance codes using the
edge information from the chamfer-coded region. When a distance code is required for a given
point, the process handling this operation will either return a value from the transformed region,
or calculate a new value if the pixel is outside this region. Most of the points will be contained
within the chamfer-coded region, so the interpolation processing time is kept to a minimum.
However, the far point algorithm guarantees a correct distance code for any arbitrary point,
should that be required.
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(a) Original cross-sections (b) Distance transformation

(c) Maximal-disc extraction (d) Disc correspondence

(e) Disc-guided interpolation (f) Triangulation of zero isosurface

Figure 3.4: Surface interpolation algorithm. Distance transformation is first performed on
each cross-section (b), then a set of representative discs can be extracted from these transforma-
tions (c). Region correspondence is estimated for each disc (d), and this is combined to give a
correspondence direction at any point. This provides the interpolation direction for the distance
field interpolation (e), which can then be triangulated to reveal the surface (f).
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Figure 3.5: 3× 3 chamfer code masks.

Near point calculation

The various ways of estimating Euclidean distance from an object are reviewed by Borgefors [32].
It is suggested that any of the reviewed methods (city block, chess-board, octagonal, chamfer
3×3 or chamfer 5×5) may be appropriate in different situations. In practice, the chamfer 3×3
code is accurate enough for shape-based interpolation; the added complexity of the chamfer 5×5
code is not worth the minimal effect it has on the interpolated surface.

Chamfer coding requires as an input a binary segmented image, i.e. an image in which pixels
inside the object of interest are set to one, and those outside set to zero. Cross-sections defined as
vectors can be transformed to this representation by scan conversion, described in Appendix C.1.
Non-object (zero) pixels are initialised with a large negative value, following which a “mask” is
passed first forward (top to bottom, left to right), then backward (bottom to top, right to left),
through the image. Each pixel in the image is summed with the respective mask pixel, and
the minimum of these sums represents the new value for the centre pixel. Each mask contains
the centre pixel, and those pixels which have already been examined in this pass, as shown in
Figure 3.5 — pixels without mask values are ignored. Borgefors suggests that the 3-4 chamfer
code is a good 3× 3 mask.

Herman [82] suggested a couple of minor changes to this process. Firstly, the slightly different
10-14 mask is used, rather than the 3-4 mask. The image is then initialised such that non-
object pixels are given a very negative number, object pixels a very positive number, and pixels
which share an edge with the object contour either +5 or −5 for object and non-object pixels
respectively. This ensures that the distance values are measured from the contour itself, rather
than the outermost object pixels. Secondly, the masking operation is inverted in both passes for
pixels which are outside the object (i.e. negative), in that the mask is subtracted from the image
and the largest value used. This enables the simultaneous calculation of the distance fields both
inside and outside the object.

In practice, the edge-detection and initialisation of image pixels can be combined with the
first chamfer coding pass, such that pixels are initialised to either +5, −5, or the first pass
minimum distance. 16-bit integers are used throughout this thesis to represent chamfer distance
codes; this allows the coding of images up to 215/14, or 2340 pixels width1.

An example of a typical cross-section that has been chamfer coded in this way is given in
Figure 3.6. This is from the “baseball glove” object (see Appendix A.1), sampled on a 330×420
grid, and the distance transformation calculated using both the near and far field algorithms.
This figure shows the effect of using this estimate of Euclidean distance — the far field distance

1This discretisation introduces a slight error into the surface location, since distance values of 0 are considered
to be inside the surface.
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Figure 3.6: 10-14 chamfer-coded object contour.



Section 3.2. A new approach: disc-guided interpolation 55

i0

x,y

b-ia q

d i

q

d

q

p

q

0

q

j

i

Object

Chamfer-coded region

Figure 3.7: Far point distance calculation from a chamfer-coded rectangle.

tends towards an eight sided shape similar to an octagon. However, the estimate is good near
the contour, which is the region with the greatest effect on the interpolated object surface.

A fast method for calculating a Euclidean distance field, based on city block and chess-board
transformations, has also been suggested [39]. This would increase the smoothness of the surface,
however the additional processing time is not considered to be worth the minimal additional
effect.

Far point calculation

The simplest way of calculating the distance field for an arbitrary location would be to iterate
through the contour points, calculating the distance of each from that location, and retaining
the minimum value. However, it is possible to calculate the distance code for arbitrary points
more efficiently by making use of the rectangular chamfer-coded region surrounding the object
cross-section.

Figure 3.7 is an example of such a cross-section, where the distance code for a far point px,y

is required. Distances in a chamfer 3 × 3 code can be represented by the minimum Euclidean
distance along any path formed entirely from lines parallel to or at 45◦ to the image edges.
Hence the 10-14 chamfer distance from px,y to a point qi is:

px,yqi = max (10(|j| − |i|) + 14 |i| , 10(|i| − |j|) + 14 |j|)
≡ max (10 |i|+ 4 |j| , 10 |j|+ 4 |i|) (3.1)

where i and j are the distances in pixels from px,y to qi in the x and y directions respectively. The
chamfer distance from the point px,y to the nearest object point can be calculated by minimising
the sum of the distance to the edge of the chamfer region, px,yqi, and the chamfer code at the
edge, di. This property of the chamfer 3× 3 code is demonstrated by Embrechts [54]. Hence, if
dx,y is the chamfer code at point px,y, then:
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i := 0; dmin := j + d0; dpart := j;

while dpart < dmin and ( −i ≤ a or i ≤ b ) do

dpart := max (10i + 4j, 10j + 4i) ;

if −i ≤ a then

dmin := min (dpart + d−i, dmin) ;

if i ≤ b then

dmin := min (dpart + di, dmin) ;

i := i + 1;

Figure 3.8: Far distance code algorithm. dmin is the current distance code estimate for the
point, dpart is the chamfer distance from the point to the current edge point. Other variables
are as previously indicated.

dx,y = min
a≤i≤b

(px,yqi + di) (3.2)

where a and b are the distances in the x direction from the point px,y to each corner of the
chamfered region. The search space can be further limited by noting that if the distance px,yqi

is already greater than the minimum dx,y found so far, there is no need to search for greater (or
smaller if i is negative) values of i. The resulting process, for calculation of distance field points
directly above the chamfer-coded region, is described in Figure 3.8.

The distance code for points immediately below, to the sides, or outside the corners of the
region can be calculated in a similar manner. For the corner regions, the search proceeds from
the nearest corner point along each of the region edges connected to that point.

3.2.3 Maximal-disc representation

In order to calculate correspondence between parts of each cross-section, a description of the
shape of the cross-sections is required, which can be used as a comparison. The distance field
itself contains information about the cross-sections, from which it might be hoped some definition
of shape could be formed. For instance, the direction of the gradient of the distance field always
points towards the closest point on the cross-section, and hence also to the local ‘centre’ of the
object. Unfortunately, although the distance field itself is contiguous, the gradient is not — in
fact for the 10-14 chamfer it is +10 everywhere except at the ridges and canyons, (i.e. the local
maxima and minima), where it is between +10 and 0. In order to generate a smooth surface,
the change in interpolation direction must also be smooth, so this gradient can clearly not be
used directly — another representation of the object shape is required.

One possibility is the use of the multi-scale medial axis (MMA). This has been used in image
registration and it is suggested that it could form the basis for object-based interpolation [61].
However, the MMA is calculated directly from the grey-scale information in the image, rather
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than from the segmented cross-sections which are available in sequential freehand 3D ultrasound.
Blum [28] proposed an object-based representation which consisted of a set of discs just enclosed
by an object (i.e. which touch the boundary at two or more points). The locus of centres of
these discs forms the symmetric axis, which has also been termed the skeleton or medial axis of
the object2.

Rather conveniently, this set of discs can be derived from the maxima of the distance trans-
form which has already been calculated for each object cross-section. Firstly, all possible internal
or external discs that touch the cross-section at two or more points (the maximal set of discs or
MSD) are found. For city-block and chess-board distances, the MSD can be found simply from
the local maxima of the distance field. The derivation of the MSD for chamfer 3 × 3 codes is
given by Arcelli and di Baja [9]. Essentially, any pixel with distance field value p is a disc centre
if the following equation is satisfied:

p > qij −
{

10, i, j ∈ ( 1, 0 −1, 0 0, 1 0,−1 )
14, i, j ∈ ( 1, 1 1,−1 −1, 1 −1,−1 )

(3.3)

where i, j are the pixel coordinates referenced to p, and qij is the distance field value of the pixel
at i, j.

However, it is possible for discs in the MSD to be completely enclosed by the union of
several other discs, making them redundant in terms of shape representation. Therefore, this
set is reduced to eliminate any such discs, giving finally the minimal set of maximal discs, or
MSMD. This process is entirely loss-less, and the MSMD can be used to exactly reconstruct the
original cross-section. Several methods have been suggested for finding the MSMD. Nilsson and
Danielsson [134] consider border coverage and build a “relation table” which relates border pixels
to maximal discs, and is reduced by iteration. Borgefors and Nyström [33] suggest a simpler
technique where a second image is created, each pixel representing the number of maximal discs
that cover it. Redundancy can then be found by checking for discs which have a value greater
than one for every contained pixel. These discs are removed and the process iterated.

In this case, a set of discs that completely covers the object is not required — the object
border position is precisely defined by the distance field which will be interpolated. Only enough
discs are needed to adequately define the shape of the cross-section. Having a smaller set of
discs than the MSMD also decreases subsequent processing time. The MSD is therefore reduced
iteratively, by keeping the largest disc at each step, and discarding any others that protrude
from this disc by less than half of their radii.

In order to include external discs (those outside the cross-sections, rather than contained by
them), the troughs and valleys are also considered, using the same criteria as for the internal
discs. This allows correspondence of holes, concavities and gaps between objects, in addition to
objects themselves. The region over which external discs are gathered is limited by the size of the
distance-transformed area3. The set of internal and external discs for the distance-transformed
region in Figure 3.6 is shown in Figure 3.9.

2It is also possible to represent an object with any other shape, for instance an ellipsoid [100]. Using ellipsoids
can reduce the number of elements required for a given representational accuracy, but is over complicated for our
purpose.

3In reality, there are situations where external discs exist outside this area, but this has little practical effect
on the results.
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Figure 3.9: Maximal-disc set used to determine correspondence. The cross-section is
the same as in Figure 3.6. Both internal and external discs are shown.

3.2.4 Calculation of region correspondence

In order to find the correspondence between a region on one cross-section and a neighbouring
sequential cross-section, correspondence is first found for each of the discs representing the
cross-section. This correspondence is a vector calculated for each disc on each cross-section,
that points towards the corresponding part of a neighbouring cross-section4. This vector is a
weighted sum of the relative locations of each of the discs on the neighbouring cross-section from
the centre of the disc under consideration:

~ca =



















1
∑

b∈discs
ωb

∑

b∈discs
ωb~lab if

∑

b∈discs
ωb > 0

0 otherwise

(3.4)

where ~ca is the correspondence vector for disc a, ~lab is the vector from the centre of disc a to disc
b, and ωb is a weighting indicating the likelihood of correspondence of discs a and b, which are
from cross-sections on neighbouring planes A and B. All distances and vectors are calculated
in a plane that has the average orientation of both these planes, by projecting the discs from
the planes along the normal to this average plane. Such projection allows correspondence to be
calculated between cross-sections on non-parallel sequential planes.

The calculation of correspondence likelihood, ω, for each pair of discs, is the most important
step in this process. It is estimated by comparing, in each plane, the difference in distance
transform values at the centre of each disc with the planar distance between the disc centres.
This gives an error which, if small compared to the radii of each of the discs, is used as the
likelihood estimate for this disc pair. If the error is larger than either of the disc radii, no
correspondence is made between these discs, and the likelihood estimate is set to zero:

ωb =











1
(εa2+µ) + 1

(εb
2+µ) if εa < ra and εb < rb

0 otherwise
(3.5)

4This vector does not, therefore, simply connect a disc from one cross-section to that on another, as is the case
in [151]
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εa = chamfer
(

~lab

)

− |ra − db| , εb = chamfer
(

~lab

)

− |rb − da| (3.6)

ωb is itself simply a combination of the ‘coverage errors’ for each disc, εa and εb, with a small
value µ chosen to be the square of the chamfer distance represented by one image pixel, which
prevents an infinite weighting. εa is an estimate of the extent to which the distance field of plane
A at the projected centre of disc b is determined by disc a. Conversely, εb is an estimate of the
extent to which the distance field of plane B at the projected centre of disc a is determined by
disc b. ra and rb are the radii of the discs, and da and db are the distance field values at the
projection of each disc on the opposite plane. The function chamfer

(

~lab

)

is an estimate of
∣

∣

∣

~lab

∣

∣

∣,
measured along a path formed entirely from lines parallel to or at 45o to the image edges. This
is the same estimate as used in the distance transformation of the cross-sections, described in
Section 3.2.2.

This method of weighting the contributions from each disc has a variety of features which
make it attractive:

• The correspondence relationship is not symmetrical, and discs will only correspond with
the nearest discs on the neighbouring cross-section if this relationship is reciprocal. This
allows regions to be left unconnected, if appropriate.

• It is not necessary for regions (or discs) to overlap in order to correspond.

• Small discs will only tend to have a local effect on correspondence, unless the contour they
represent is itself small. Larger discs on the same contour will take priority in the far field,
since the ‘coverage error’ will be less for the larger disc.

The only limiting assumption is that at least one contour must be connected to one other contour
on a neighbouring plane, i.e. at least one object must span the cross-sections.

Figure 3.10 shows an example of the calculation of coverage error, given in equation (3.6), for
one disc from a pair of simple cross-sections. Essentially, ε is large if there are other discs on the
cross-section that are nearer to the centre of the projected disc. This is equally the case for discs
from other contours, as in Figure 3.10(a), or from the same contour, as in Figure 3.10(d). The
criteria for there to be any correspondence at all is that εa < ra, rather than εa = 0: this allows
for the loose representation of the contour by a small number of discs — in practice ε will rarely
be equal to zero. If there is correspondence, then ε indicates how strong that correspondence
is; so for instance the disc in Figure 3.10(b) has a smaller error than that in Figure 3.10(c).
This leads to a correspondence vector which is closer to the disc with the smaller error, as in
Figure 3.10(e).

In the previous case, the converse error εb is nearly the same for each pair of discs, and as
a result has little bearing on the correspondence. In general, both errors must be considered
before correspondence between a pair of discs is determined. The addition of another contour
to plane B in Figure 3.11 demonstrates this. εb for discs b1 and a2 is now greater than rb, so
even though εa has not changed, there is no longer any correspondence between these discs. The
effect on the correspondence vector for b1 is to move it further away from b2, thus ‘sharing out’
the larger contour on plane A more equally between b1 and b2, as in Figure 3.11(b).

The correspondence ~c is calculated for each internal disc, based on all the other internal
discs; and for each external disc, based on all the other external discs, such that internal discs
do not correspond to external discs, and vice versa. Any discs that have no correspondence
at all are ignored in later processing. The result of this operation on the cross-sections of
Figure 3.4(a) is shown in Figure 3.4(d) — note that in this case the external discs have no
partners on neighbouring planes, and hence do not contribute to the correspondence estimate.
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Figure 3.10: Effect of εa on correspondence. Discs a1 . . . a4 (shown in dark grey) are from
one plane, and disc b1 (shown light grey and dashed) is projected onto this plane from another.
(a) to (d) show the calculation of ‘coverage error’ εa for each pair of discs — the converse error εb

is not shown, as in this case it is nearly the same for all disc pairs. The resulting correspondence
vector for disc b1 is shown in (e).
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Figure 3.11: Additional effect of εb on correspondence. An additional contour and repre-
sentative disc b2 has been added to those in Figure 3.10. This has no effect on the values of εa,
but it changes those for εb, such that there is no longer any correspondence between disc a2 and
b1, as shown in (a). The resulting correspondence vector for discs b1 and b2 is shown in (b).

3.2.5 From region correspondence to point correspondence

Once the correspondence for each disc has been estimated, the correspondence at any point on
each plane can also be estimated from a weighted sum of the disc correspondences on that plane.
This is performed in much the same way as for disc correspondence, save that the information
from both internal and external discs must now be combined. The point correspondence ~cp at
any point p on the plane, is:

~cp =
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]

otherwise

(3.7)
where int implies internal discs, ext implies external discs, and dp is the distance field value at
the point p. The weighting ωa is defined as:

ωa =
1

εa
2 + µ

(3.8)

εa = chamfer
(

~lap

)

− |ra − dp| (3.9)

This is similar to the definition in equations (3.5) and (3.6), save that the error is now based on
the distance field dp at the point position p, rather than at the centre of the projected disc.

There are three separate cases in equation (3.7). In the first and simplest case, if the geometry
is such that there are no external discs, or no external discs have any correspondence, then the
point correspondence depends solely on the internal discs, as in equation (3.4). Otherwise,
the point correspondence is calculated by a combined weighting of internal and external discs,
using a slightly different equation for points inside (dp > 0) and outside (dp < 0) the object
cross-section. This combined weighting is further affected by the estimate of the distance to
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the internal and external disc sets, lint and lext. These estimates are calculated using a similar
weighting to the first case of equation (3.7):

lint =
1

∑

a∈int
ωa

∑

a∈int

ωala, lext =
1

∑

a∈ext
ωa

∑

a∈ext
ωala (3.10)

where la is the distance from the point to the centre of each disc.
The effect of these values in equation (3.7) is to ensure that the use of internal or external

discs is governed by the distance transform value dp; i.e. how far the current point is inside or
outside the object cross-section. Inside the cross-section, the weighting of internal discs increases
as the point moves closer to the nearest internal disc. Outside the cross-section, the weighting
of external discs increases as the point moves closer to the nearest external disc. At the edge of
the cross-section (dp = 0), internal and external disc correspondence is evenly weighted.

The final correspondence for a point between neighbouring planes is found from the average
of the values of ~cp from each plane. ~cp is calculated at the intersection with each plane, of
the average plane normal through this point. As with the disc correspondence, this vector is
calculated in a plane which has the average orientation of the neighbouring planes.

3.2.6 Interpolation using point correspondence

The previous sections describe how to create distance transforms of each of the cross-sections,
and calculate correspondence for each point between neighbouring cross-sections. How can this
information be used to improve the surface interpolated between these cross-sections? There
are two main classes of interpolation techniques — those which interpolate data only from the
planes that bound the point of interest, and those which interpolate data from all planes within a
bounding volume of the point of interest. The latter class includes all of the numerous techniques
for interpolating scattered data. In order to interpolate surfaces in the sequential framework,
the former class must be used.

This class, bounding plane interpolation, includes as a subset those techniques that apply
to data from parallel planes. In fact, very few such techniques exist for non-parallel planes,
and many of these have been developed with 3D freehand ultrasound specifically in mind, as
discussed in Section 3.1.3. Both the order and the direction of interpolation must be chosen
carefully for this task.

The order of interpolation is in fact determined by the type of data to be interpolated: i.e. 2D
distance transforms. There are two features of this data which make linear interpolation the
only sensible solution. Firstly, the distance transform represents a 2D distance, and is not the
same as that which would be calculated by a 3D distance transform on the eventual surface.
In particular, this 2D distance is dependent on the orientation of the cross-sections, and not
just the object from which the cross-sections are drawn. Hence it will not vary consistently
across non-parallel cross-sections. Secondly, the distance transform is only C0 continuous, so
it makes no sense to impose C1 or higher continuity in the third dimension by using cubic
interpolation. The effect of this choice is demonstrated in Figure 3.12 — it can be seen from
this figure that, far from improving the result, cubic interpolation actually degrades the surface
estimate. Disc-guided interpolation is also shown for comparison.

Figure 3.13(a) to (c) show three possible options for the interpolation direction between two
non-parallel planes5. In each of these cases, the distance field value at the point p is calculated
by weighting the distance codes with the lengths, l1 and l2, as in equation (3.11):

5For data which comes from randomly oriented planes, any given point may be bounded by many of these
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Figure 3.12: Effect of interpolation order on distance fields. The graphs show a cross-
section through the centre of a cylinder such as in Figure 3.1, containing the interpolated distance
field between two cross-sections, one at the bottom and one at the top. The thin black line is
the actual cylinder surface, the thick black line the interpolated surface. Cubic interpolation
is achieved by using two additional cross-sections surrounding those given in the figure. Disc-
guided interpolation is a form of linear interpolation.

dp =
l2d1 + l1d2

l1 + l2
(3.11)

where dp is the interpolated distance code at the point p. The effect of using each of these schemes
is shown for a cylinder scanned with a fanning action in Figure 3.14. The closest-points method,
although simple, produces unacceptable artifacts when the planes are highly non-parallel. This
is because the line of interpolation is bent at the interpolated point, causing the surface also to
be curved, as in Figure 3.14(b). It is more natural to connect the contours with surfaces that
are as straight as possible, hence the line of interpolation must also be straight. Interpolating
by using the average normal to both planes corrects this tendency, but suffers from the same
problems outlined in Section 3.1.2 for parallel planes.

As already discussed, interpolating in a different direction, for instance in the line joining the
centroids of the cross-sections, can produce better results, as in Figure 3.1(d). However, there
are restrictions on the set of directions that can be used for interpolation when the planes are
not parallel. Figure 3.13(d), for example, demonstrates the use of centroid-guided interpolation
on overlapping planes. In this case, the interpolation direction is such that the intersections with
both planes are the same side of the point, p. If d1 and d2 are both positive, and have similar
values, the distance code at the point p will always be positive, irrespective of the magnitude

planes, hence the interpolating data may be from more than two planes. The techniques described here are
appropriate for sequential data, in which case the two interpolating planes are those that bound the point in
sequence. Freehand ultrasound data is inherently sequential, and the manner in which it is acquired produces
gradually varying, rather than randomly oriented, planes.
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Figure 3.13: Choice of interpolation direction. d1 and d2 are the sampled distance field
values in each plane. The interpolation in (c) is parallel to the line joining the object centroids.
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Figure 3.14: Effect of interpolation direction for non-parallel planes. Interpolation of
a cylinder defined by non-parallel cross-sections is shown, for the three types of interpolation
presented in Figure 3.13. The rendered surfaces are the zero crossing points of the interpolated
volume.
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Figure 3.15: Construction of interpolation direction from correspondence. To ensure
that the ‘spilling out’ artifact illustrated in Figure 3.13(d) is avoided, the correspondence vector
~cp is always projected onto the plane that causes its projection ~c′p to point away from p. This
ensures that the interpolation direction ~ip intersects each plane at either side of the point p.

of the lengths l1 and l2. This is the case whether or not l1 is considered to have the same sign
as l2. In effect, the object ‘spills out’ in the direction of interpolation, potentially to infinity.
The interpolation direction must be chosen such that the intersections with each plane are on
opposite sides of the point to be interpolated.

Figure 3.15 demonstrates how the interpolation direction, ~ip, used to interpolate a new value
for the point, can be derived from the point correspondence vector, ~cp. Figure 3.15(a) and (b) are
both reasonable solutions which generate similar values of ~ip, however only the former guarantees
that the ‘spilling out’ effect of Figure 3.13(d) is never apparent, even for overlapping planes.

For each interpolated point in-between two planes, the point correspondence vector, ~cp, is
calculated at the orthogonal projection of this point onto the average plane. This vector is
projected onto one of the neighbouring planes, as described in Figure 3.15, to generate ~c′p. ~c′p
is then added to the vector connecting the two planes through p, along the average planar
normal. Finally, the resulting vector is normalised to give the interpolation direction, ~ip. This
interpolation direction is used to determine both the distance field values, and lengths, used in
the linear interpolation equation (3.11).

There are two additional complications which arise because of the possibility of the scan
planes intersecting each other. An extreme version of this situation, with two orthogonal planes,
is shown in Figure 3.16. The first task is to decide which regions should be interpolated from
these planes. The four regions in the example are all equally ‘enclosed’, but presumably only
two of them should be interpolated. Since the scan planes are sequential, it makes sense to
interpolate only the area which was swept out during the scan. This can be deduced from the
direction of the normals to each plane — regions that are ‘in front’ of one plane and ‘behind’
the other plane are interpolated (corresponding to B and D in Figure 3.16).
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Figure 3.16: Object scanned with two orthogonal scan planes.

Secondly, if the intersection of the scan planes passes through the object, then part of
the swept volume between these scan planes must have already been swept out by previous
planes. The volume calculation for these regions should be negative, else the total volume will
be overestimated. This can once again be resolved by examining the plane normals — if the
normals point more from the first towards the second plane, then the volume is positive (region
B), else it is negative (region D), i.e.:

sign(volume) = ( ~n1 · ~navg) > 0 (3.12)

where ~navg is a vector connecting plane 1 to plane 2 within the region, along the average of the
plane normals ~n1 and ~n2.

3.3 Current methods of surface visualisation

Section 3.2 describes a method of determining the location of a surface reconstructed from
cross-sections, at any point in space. However, this in itself does not allow the surface to be
visualised. There are two ways to display an isosurface from such interpolated distance field
data: volume-based or polygon-based rendering. In the volume-based approach, the sampled
data is displayed directly, e.g. by ray casting or splatting [99, 170]. However, this is a complex
operation for freehand 3D ultrasound data, which is not sampled to a regular cubic lattice. The
alternative polygon-based approach, where a geometric representation of the isosurface is first
created from the data, has a variety of advantages:

• There is currently more hardware support for polygon-based rendering than for volume-
based rendering. This may equate to faster display, and hence better interactivity with
the data, depending on the balance between processor and display hardware speed.

• Sequential interpolated data on non-parallel planes can lead to regions that are swept out
more than once, i.e. have multiple data values. This can be handled with polygon-based
approaches by allowing the surface to follow the sweep of the planes. This sort of data
cannot be rendered directly using volume-based approaches.

• A geometric representation of the surface can also be used to provide an additional volume
estimate.
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(a) Inconsistent (b) Consistent

Figure 3.17: Marching cubes. (a) The use of complementary symmetry can generate topo-
logical inconsistencies. (b) This can be corrected by use of an alternative triangulation for the
complementary case. Grey vertices indicate data on one side of the surface, and black on the
other.

The current polygon-based methods for extracting an isosurface are reviewed in Section 3.3.1.
A class of techniques for post-processing such surfaces to improve the quality of the triangulation
is briefly reviewed in Section 3.3.2.

3.3.1 Marching cubes and its derivatives

Marching cubes (MC) [115] is a simple method for constructing isosurfaces, which was introduced
for 3D medical data. The basic principle is to reduce the problem to that of triangulating a
single cube, intersected by the isosurface. Surface intersection points are defined along the edges
of the cube, by linear interpolation of the sampled data at each corner. These points become the
vertices of one to five triangles, to form a polygonised surface patch. The whole isosurface can
be triangulated by ‘marching’ this cube through the data and creating surface patches whenever
the isosurface passes through the cube. There are 28 different cases for the triangulation of a
cube, based on whether sampled data at the corners is greater or less than the surface threshold;
however this can be reduced to only 15 by symmetry. The triangulations for these 15 cases are
stored in a look-up table — it is only necessary to compute the symmetry and the case at each
cube location.

There are two well known problems with this otherwise very simple and attractive algorithm,
connected with the topology and the regularity of the triangulation.

The original MC algorithm does not produce surfaces that are topologically consistent with
the data from which they are derived. This is due to the arbitrary choice of triangulation for a
cube with any face containing two diagonally opposite corners on one side of the isosurface, and
two which are on the other. If the same triangulation is chosen for both the cubes containing
this face, then there will be a hole in the surface, as shown in Figure 3.17. Several methods have
been proposed to correct this situation [135, 186]. The simplest of these employs a different cube
triangulation for complementary symmetries of ambiguous faces [123], which results in a bias
in the topology towards one side of the surface. More complex methods use more sophisticated
interpolation to determine the cube triangulation [128], or incorporate data from outside the
cube.
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 3.18: Marching tetrahedra. The three possible cases, two of which require triangula-
tion, and the resulting triangulations. (c) Case 3 can be rendered as a quadrilateral rather than
two triangles, since the surface is guaranteed to be planar.

This ambiguity can be eliminated by tessellating space with tetrahedra rather than cubes.
Tetrahedra only have 24 possible triangulations, which reduce to 3 by symmetry. These are
shown in Figure 3.18. A tetrahedral tessellation can be constructed by dividing each cube
into five tetrahedra [74, 141]. Unfortunately, this introduces an additional ambiguity, since the
symmetry of the cube subdivision has to alternate between cubes, in order to align the faces of
the tetrahedra. There are, therefore, two possible tessellations for a given cubic lattice, which can
generate opposed topologies. This ambiguity can only be resolved by using cubic interpolation,
rather than linear, thereby allowing the isosurface to intersect the tetrahedral edges more than
once [188]. However, this is much more complex, and the resulting look up table has 59 cases
— many more than the original MC method.

Recently, Chan and Purisma proposed a scheme, referred to here as marching tetrahedra
(MT), where space was tessellated into tetrahedra based on a body-centred cubic lattice [38].
The lattice can also be formed from a higher resolution cubic lattice. In contrast to the subdi-
vided cube method, the resulting tetrahedra are all identical, and there is no ambiguity in the
tessellation. The tetrahedra are also more regular than those formed by subdividing a cube.
The resulting triangulation is more uniform, and has fewer of the sharp edges associated with
tetrahedral decompositions. Using a body-centred cubic lattice also results in better sampling
efficiency compared with the cubic lattice [38]. The main disadvantage of tetrahedral schemes is
that they create an even larger number of triangles than MC for a given data set. This aggravates
the second problem with MC, that of the regularity of the resulting surface triangulation.

3.3.2 Mesh simplification

The MC algorithm creates on average three triangles for each cube intersected by the surface;
more if different complementary case triangulations are used. In addition, where the cubic lattice
just intersects the surface, these triangles can be arbitrarily small or thin. In typical medical ap-
plications this often results in more than 500,000 triangles — with substantial associated storage
and rendering requirements. There is a large body of literature on methods of post-processing
triangulated surfaces to reduce this number of triangles, whilst maintaining the ‘quality’ of the
surface. These mesh simplification methods have recently been reviewed in [43].

The driving force behind much of the work on mesh simplification is the reduction of storage
and rendering times, often with complex virtual reality scenes in mind. However, badly propor-
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(a) MC mesh (b) MT mesh (c) RMT mesh

(d) MC surface (e) MT surface (f) RMT surface

(g) MC variance (h) MT variance (i) RMT variance

Figure 3.19: Effect of triangle condition on interpolated shading. Results are shown for
marching cubes (MC), marching tetrahedra (MT) and regularised marching tetrahedra (RMT).
(a), (b) and (c) show the triangulated surface, (d), (e) and (f) a smooth shaded rendering of this
surface. (g), (h) and (i) show the standard deviation of the grey level of each pixel in a set of
20 renderings with different orientations. White represents a standard deviation of 0 grey levels
(out of 255), and black represents 8 or more grey levels.
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tioned triangles can also result in poor quality renderings when any form of interpolated shading
is used to make the surface appear smooth. This is particularly the case for Gouraud shading,
which is the simplest form and has the most hardware support. Specular reflections using this
technique highlight the original mesh — very thin triangles tend to appear as sharp edges and
very small triangles as sharp points. Figure 3.19 demonstrates this effect for a sphere — (a)
and (d) show the isosurface formed using MC and (b) and (e) show that formed using MT. In
addition, mesh simplification algorithms do not take advantage of the regular way in which the
isosurface is created, since they are mostly designed to operate on arbitrary (although usually
closed and oriented) triangle meshes.

Mesh simplification methods are generally iterative, and many are suitable for generating
meshes of various resolutions, which can then be used for efficient rendering at different dis-
tances [43]. One of the simplest and fastest groups is vertex clustering. Here vertices in a region
are merged to form one new vertex, and triangles containing more than one of the merged ver-
tices can then be removed [5, 155]. Edge collapsing, where an edge is reduced to zero length and
two triangles removed, can be seen as a subset of vertex clustering in which only two vertices
are clustered.

The main differences between these methods are how they are iterated, and what cost func-
tion is used to drive the vertex clustering and determine whether clustering is allowed in any one
case. Quadric error metrics [64] is a fairly sophisticated example, in which an error is calculated
for each vertex, based on the sum of squared distances from the planes that originally contained
that vertex.

There are only two published instances where the ideas of vertex clustering are applied
during, rather than after, isosurface construction. Both of these employ tetrahedral lattices.
In [77], vertices that are near to the corners of the tetrahedra (within 5% of the tetrahedra edge
length) are ‘snapped’ to the nearest corner location, thus eliminating any triangles with edges
shorter than this distance. In [73, 74], surface perturbation is allowed as an option, whereby
positive values sampled at the tetrahedral vertices are set to zero. This ensures that all new
vertices are positioned at the tetrahedral vertices, and the triangulation consists entirely of
tetrahedral faces.

3.3.3 Related applications

If the original data is sampled sufficiently densely, isosurface triangulation can be used directly to
generate a surface from this data. In this case, the values from which the surface intersections
are interpolated are the grey scale data values, rather than the interpolated distance values
presented in the previous section. This is the context in which marching cubes was originally
presented.

Implicit surfaces, i.e. surfaces which can be defined by a mathematical function, can also be
displayed by using isosurface extraction techniques. In this case, the function is sampled to a
regular grid, from which the isosurface is extracted. This is the technique used to generate the
spheres in Figure 3.19. As has been noted in [78], this can also include discrete surfaces as long
as it is possible to implicitise them with an appropriate function.



Section 3.4. A new approach: regularised marching tetrahedra 71

each tetrahedron
Triangulate

(clustering not possible)
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Figure 3.20: Regularised marching tetrahedra: overview. The data from which an isosur-
face is required is first sampled on a tetrahedral grid. Intersections of the isosurface with edges
of the tetrahedra are marked at each sample point. Following this, the surface topology at each
sample point is examined, and surface intersections are clustered if this can be done without
affecting topology, to form the vertices of the triangle mesh. Finally, each tetrahedron is tri-
angulated, using these new vertices, keeping only those triangles which contain three different
vertices.

3.4 A new approach: regularised marching tetrahedra

3.4.1 Overview

The main idea of this approach is to combine the two fastest and most simple algorithms —
MT for isosurface extraction, and vertex clustering for mesh simplification — using each to
improve the performance of the other. Vertex clustering can be used to produce a regularised
triangle set from MT, and basing the clustering around the original tetrahedral lattice allows
the preservation of the original topology, which is otherwise difficult to achieve in clustering
methods. The result is a triangulated surface consisting of near regular triangles that can be
generated in nearly the same time as a surface using MT alone. A sphere generated using this
technique, regularised marching tetrahedra (RMT) is shown in Figure 3.19(c) and (f).

The RMT algorithm presents the following benefits:

• Simplification using vertex clustering is performed before triangulation, taking advantage
of the original sampled data. This allows the original topology to be preserved through
the clustering process.

• The additional time required for clustering is offset by a reduction in the number of stored
points and triangles, resulting in a fast algorithm.

• Triangle condition is dramatically improved, which results in better quality interpolated
shading.

• Triangle count is typically reduced by 70% compared to that obtained from MT, and by
40% compared to MC. This reduces the rendering time for the surface, which in turn
improves the real-time interaction.

• Since the technique does not require searching of the point or triangle sets, these can be
stored quickly and efficiently in simple lists.

An overview of the process is shown in Figure 3.20. The choice of sampling grid and the
marking of surface intersections at each sample point is considered in Section 3.4.2. Calculation
of the local surface topology at each sample point is discussed in Section 3.4.3. Clustering of
surface intersections and triangulation of the tetrahedra to form a surface mesh are described
in Section 3.4.4. A more complex approach, taking into account data curvature to position the
clustered surface intersections more appropriately, is presented in Section 3.4.5. Finally, some
issues of implementation are discussed in Section 3.4.6.
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(a) Lattice with cube (b) Alignment with cube face (c) Alignment with tetrahedra

(d) Alignment with tetrahedra (e) Tetrahedra for 1 point

Figure 3.21: Body-centred cubic sampling. (a) shows a body-centred cubic lattice. (b) and
(c) are two possibilities for defining sample planes through (a). In (b), the distribution of planar
points is square, whereas in (c), the tetrahedral faces are aligned with the plane. (d) shows
the alignment of (c), rotated such that the planes are horizontal, and (e) the six tetrahedra
associated with each point for this alignment.

3.4.2 Choice of sampling grid

Cubic versus tetrahedral lattices

The first step is to construct a suitable lattice on which to sample the data, in this case the
interpolated distance field values. As in [38], a body-centred cubic lattice is used — this gives
better sampling resolution than the conventional cubic lattice, and can be subdivided into a set
of identical and nearly regular tetrahedra. Each of these tetrahedra have one pair of opposite
edges of length 2 units, and the remaining four edges of length

√
3 units. This lattice is shown in

Figure 3.21(a), along with the cube on which it is based (rendered semi-transparent to show the
hidden edges). Sample points are connected to their nearest neighbours to form four tetrahedra
per cube face.

In [38], the planes containing the sample points are aligned with the faces of the cube, as in
Figure 3.21(b). The orientation can also be chosen so that the planes lie along the diagonal of
two cube faces, as in Figure 3.21(c). The first orientation leads to sample points spaced on a
square grid on each plane, which is more suitable if the original data is arranged in this manner.
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- original plane containing cross-section

- additional lattice points

- new intermediate plane

- subset used in body-centred lattice

- rectangular lattice used for projection

Figure 3.22: Progression of lattice for non-parallel planes. A rectangular grid of lattice
points is projected onto the next plane along the average normal to the planes. If the planes are
too far apart, additional lattice points are defined on intermediate planes, in a similar fashion.
The body-centred lattice used for triangulating is formed from a subset of this projected lattice,
which alternates with each plane.

However, the tetrahedra intersect these planes, such that the space between two planes cannot
be exactly tessellated by them. In contrast, the second orientation leads to non-square (though
still rectangular) spacing of data points on each plane, but with no tetrahedra intersecting a
plane. This orientation simplifies the processing for the first and last planes in a sequence, and
is assumed in the following description. The sample points within the plane are spaced 2 units
apart in one direction and

√
2 in the orthogonal direction. This is not a problem for distance

functions based on cross-sections of the original data, since this data can be interpolated to any
lattice.

Sampling grid for sequential non-parallel planes

In sequential freehand 3D ultrasound, the data is on non-parallel planes. In this case the lattice
of Figure 3.21(c) is projected to the next plane as in Figure 3.22. This means tetrahedra vary
in size from regions were the planes are close, to those where they are further apart. It also
means that tetrahedra will not be completely regular where the bounding planes are not parallel.
However, it ensures that lattices between each pair of planes meet at the in-plane sample points,
and hence can be constructed sequentially from such data.

It is even possible to handle data from overlapping planes, as in Figure 3.23, although a
few modifications are required. Firstly, the direction of sweep of the sequential planes affects
the orientation of the triangles. Unfortunately, this imposes two opposite requirements. For
correct surface shading, all triangles should be oriented consistent with outside/inside criteria.
For correct volume measurement, when the sweep direction changes, the triangle orientation
should flip such that the volume is reduced as a result. If volume calculation is performed after
triangulation, an additional flag is required per triangle, indicating the sweep direction of the
planes that the triangle lies between.

Secondly, surface intersection points which are on planes at the extremity of a sweep direction,
are only allowed to move within that plane. This ensures that the edge of the surface will still
be contained within the original plane after vertex clustering. Thirdly, sample points that are
close to the intersection of two overlapping planes are moved on to the line of intersection. This
ensures that there are no tetrahedra which are themselves intersected by this line, and hence
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(a) Cross-sections (b) Triangulation (c) Shaded surface

Figure 3.23: Overlapping cross-sections. The contours have been highly mis-registered such
that the planes in which they are defined overlap each other. The resulting surface is self
intersecting, but consistent with the mis-registered contours.

would not be correctly triangulated.

Marking surface intersections

Each sample point has 14 edges radiating from it, shown in black in Figure 3.21(a) for the central
point. Since each edge is associated with 2 sample points, only 7 edges need be examined for
each new sample point. All of the 14 edges are assigned a reference in the form of a bit position,
as in Figure 3.24. If any edge examined intersects the isosurface (i.e. the sampled distance values
at each end point are of opposite sign) then the appropriate reference is marked in the bit field
of the nearest sample point associated with that edge. Hence, each sample point contains a
bit field indicating the existence of any near surface intersections, and on which edges these
intersections are found. This way of labelling surface intersections greatly simplifies subsequent
topology calculations.

3.4.3 Topology preservation

The next step is to determine whether the near surface intersections that have been marked at
each sample point can be combined into new vertices, whilst preserving the topology. There
are a variety of situations where clustering these surface intersections would lead to a change of
topology in the resulting surface. The possible cases, shown in Figure 3.25, are:

(a) Closed surface The sample point has a value opposite in sign from all the surrounding
points. Clustering the surface intersections to a single vertex would result in the elimination
of this surface, so the original surface intersections remain.

(b) Hole There is a single (open) surface, but with a hole in it. Clustering the surface inter-
sections would close up the hole, so once again the original surface intersections remain.



Section 3.4. A new approach: regularised marching tetrahedra 75

0
9

12

1

11

3

6

13

5

4

87

2

10

Figure 3.24: Edge labels for marking intersections. The 14 edges associated with one
sample point are given the labels 0 . . . 13. Edges 0 . . . 6 are the 7 new edges introduced when the
sample point is traversed for the first time. It is convenient to label the opposite set of edges by
adding 7 to each of these labels.

(a) Closed (b) Holes (c) Flat (d) Multiple (e) Simple

Figure 3.25: Topology preservation. (a) to (e) show the topological cases considered during
vertex clustering. (a), (b) and (c) cannot be clustered. (d) and (e) can be, with one new vertex
per surface. Clustering of the vertices in (c) might lead to non-manifold surfaces.
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Figure 3.26: Criterion for a ‘flat surface’. O is the current sample point, A . . . D are some
of the neighbouring sample points. The existence of edges OA and OB with no near surface
intersection, and edges OC and OD with near surface intersections, will lead to a collapsed
surface if it is connected around O, and the surface intersections on edges AD and AC are both
near A, or those on BC and BD are both near B.

(c) Flat surface There is a single (open) surface with no hole, but the boundary of the surface
is such that clustering the surface intersections might result in the closing up of this
boundary. Hence the surface would be ‘flattened’, leading to two edges or two triangles
being back to back. Again, the original surface intersections remain.

(d) Multiple surfaces The surface intersections form more than one separate surface; each
can be clustered into one new vertex.

(e) Simple surface The simple (and most common) case, where there is only one surface, that
does not fall into case (c). This can be clustered to a single new vertex with no change in
surface topology.

Since the surface intersections are each recorded as one bit of a bit field, the determination
of the topological case can be performed simply by using logical operations on these bit fields.
The operations for each of the topological cases in Figure 3.25 are described in Appendix C.2.

The criterion for a ‘flat surface’, shown in Figure 3.26, is the most complex case. Each
of the 36 outer edges (i.e. those joining the surrounding sample points, for instance AB) are
examined to see if any fall into the category described in the figure. The surface intersections
surrounding such holes cannot all be clustered, as this would result in the closing up of portions
of the surface, potentially making it non-manifold.

3.4.4 Clustering and triangulation

Once a collection of surface intersections near to the sample point have passed the topology
checks, they can be clustered to form a single new vertex. These vertices are stored in a simple
list, and the vertex reference marked in each of the edges containing the surface intersections
from which the vertex was formed. Each sample point is surrounded by 24 tetrahedra, and each
tetrahedron is associated with 4 sample points. Therefore there are 6 new tetrahedra associated
with each sample point, as in Figure 3.21(d). All of the tetrahedra with surface intersections on
any edges are triangulated using either case (b) or (c) from Figure 3.18, as appropriate. However,
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(a) Cross-sections (b) Curvature estimate

(c) MT (d) Simple RMT (e) RMT

Figure 3.27: Effect of clustering. (a) shows the object cross-sections from which a distance
function was derived. (c) shows the result of using MT, (d) includes vertex clustering, and
(e) also includes weighting of the vertex position using curvature. (b) shows the curvature
estimate mapped to colours — blue indicates low curvature through green then red indicating
high curvature.
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(a) Edge in 2 planes (b) Tetrahedra for (a) (c) Edge in 3 planes

Figure 3.28: Geometry for gradient and curvature calculation. An edge can be contained
in (a) four or (c) six faces. Calculations of gradient and curvature projections within each of
the (a) two or (c) three planes are combined to give the gradient and curvature estimates. (b)
shows the region used to estimate values for the central edge in case (a).

any triangles which contain two or more vertex references that are identical are discarded before
storage.

The simplest method of calculating the position of the new vertex is to take the average loca-
tion of each of the surface intersections. Figure 3.27 shows an example of an object whose surface
has been reconstructed by calculating a distance function based on the object cross-sections in
Figure 3.27(a). The triangulation formed by averaging the surface intersection positions is much
more regular than the original MT triangulation, and this results in a smoother rendering. In
the majority of cases, all surface intersections near a sample point can be clustered, so the tri-
angulation has approximately one vertex for each sample point near the surface. The evenness
of the distribution is a direct result of the evenness of the original sample lattice.

3.4.5 Adapting to local curvature

Using the average of the surface intersection locations works well for smooth surfaces, but not
so well for sharp corners or regions of high curvature. This can be seen in Figure 3.27(d), where
the front vertical edge of the ‘stand’ has a sequence of specular reflections on it, due to the
triangulation not following the actual edge of the surface. This can be overcome by using a data
curvature estimate to weight the surface intersection locations before averaging.

The previous technique involving tetrahedral lattices [38] used orthogonal estimates for gra-
dient calculations, taking an average of these estimates over the nearest points to the sample
point. For this technique, a gradient and curvature estimate is required for each edge, since this
is where the surface intersections are located. The natural region of influence for this calculation
includes those tetrahedra which share this edge. The geometry is shown in Figure 3.28. There
are two types of edge, of length 2 and

√
3 units, the former surrounded by four tetrahedra as in

(a), and the latter surrounded by six as in (c). For both, the gradient and curvature are first
calculated for each of the planes containing a pair of triangles. Figure 3.29(a) shows a pair of
triangles for an edge of length

√
3 units.

If the sampled values at each of the points o, a, b and c are do . . . dc, then the angle that the
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Figure 3.29: Gradient and curvature calculation in each plane. (a) Gradients and curva-
tures for an edge are calculated in each plane using the two triangles neighbouring the edge. (b)
Curvatures must then be adjusted for the orientation of the plane with respect to the calculated
surface normal.

data surface in each triangle makes with oa is given by

θb = arctan
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 (3.13)

and the curvature, expressed as an angle which is zero for a flat surface, is therefore

α = |θb|+ |θc| (3.14)

This curvature estimate requires further adjustment, since the plane in which it is calculated
may be at a shallow angle to the actual surface, as in Figure 3.29(b). If α is the original estimate,
and the actual surface normal makes an angle γ with a plane orthogonal to the original plane
and the line oa, then the adjusted estimate, β is given by
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(3.15)

We are interested in the maximum curvature for each surface intersection, hence the mini-
mum value of
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∣ in each plane is used as the curvature measure. The location of the new
vertex po is then calculated from the weighted locations of each surface intersection si in the set
of intersections to be clustered S, with the following equation:
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Note that an estimate of the actual surface normal for each surface intersection is also
required for equation (3.15), in addition to being useful for shading the surface. 1/ tan θ gives
the projection of the normal in each plane orthogonal to the line oa and scaled for a unit distance
of oa. In the case of Figure 3.28(a), vector addition of these projections in each of the two planes
plus a unit vector along oa gives an estimate of the surface normal. For the case in Figure 3.28(c),
the surface normal is given by 2

3 of the vector addition of the projections in each plane, plus a
unit vector along oa. This is because there are three planes at 60o to each other6.

6Lattices constructed from non-parallel planes as in Figure 3.22 are slightly distorted, which introduces a small
error into the calculation of the surface normal.
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3.4.6 Implementation

For the lattice orientation of Figure 3.21(c), the whole process can be performed by storing one
plane of information, then progressing this plane through the data. The locations of the sample
points on neighbouring planes alternate, so that two planes taken together form a rectangular
lattice of sample points with half the spacing of that on an individual plane. One data structure
is required for each of these points, with the following information:

• The location and the distance field value of the current sample point.

• The location and the distance field value of the last sample point at this lattice position
(i.e. the plane before last).

• An unsigned integer indicating which of the 14 edges radiating from this point contain a
near surface intersection.

• A reference for each of the 7 edges associated with this point, indicating the vertex created
for this edge, if any.

In the first pass through a plane, the location and value of the current sample point are
calculated (and the previous values updated), and any near surface intersections are marked. In
the second pass, these surface intersections are clustered, creating new vertices, whose references
are marked in each of the edges in which the surface intersections were located. Triangulation
can then be performed for the six tetrahedra associated with this point, based on the vertex
references. For lattices that are entirely orthogonal (i.e. for non-ultrasound applications), the
locations for each point can be inferred from the lattice indices.

The triangles and vertices can be stored in two simple lists, since it is not necessary to
search either list at any point in the process. Each triangle contains a (32-bit) reference to each
of three vertices. Each vertex contains a location (a 16-bit integer was used for each direction)
and a surface normal (again using 16-bit integers). Each vertex is stored once only, but can be
referenced by several triangles.

3.5 Results: surface interpolation

The surface interpolation method outlined in Section 3.2 was assessed both by reconstructing
surfaces of known objects, and by comparison with reconstructions by alternative techniques.
It is not possible to visualise the results of these experiments without also using a surface
visualisation algorithm, and in all the following figures, the algorithm of Section 3.4 has been
used to triangulate the surface of the interpolated data. These triangulations are displayed with
Gouraud shading using the Geomview7 visualisation package. Experiments designed specifically
to assess the surface visualisation algorithm itself are outlined in Section 3.6.

Surfaces were generated using shape-based interpolation, and two variants:

Centroid-guided interpolation This was a combination of the techniques in [83] and [116],
whereby the interpolation was performed for each pair of corresponding contours along the
direction of linked centroids. The bounding rectangles for each contour were also scaled
independently in the x and y directions such that each were the same size. Correspondence
of contours was determined manually (rather than simply by detecting object overlap). The

7http://www.geom.umn.edu/software/geomview/.

http://www.geom.umn.edu/software/geomview/.
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Table 3.1: Processing time for surface visualisation. This includes all operations after
creation of the cross-sections, up to and including display of the triangulated surface. Times
were recorded on a Silicon Graphics Indigo 2 workstation; however they were comparable to a
166MHz Pentium MMX running Linux.

Object Fig. Modality Triangles Processing Time /secs
Shape-based Centroids Discs

Hepatic ducts 3.2 Ultrasound 1,800 0.7 0.8 1.1
Bladder/Prostate 3.30 Ultrasound 13,000 2.3 2.3 4.0
Foetus 3.31 Ultrasound 39,000 8.1 12.6 12.9
Child’s skull 3.32 CT 93,000 13.9 - 147.1
Pelvis 3.33 CT 103,000 31.6 - 71.1
Liver 3.34 MRI 7,000 1.5 1.6 1.7

union of the generated surfaces was used to create the final object surface. The method of
edge-shrinking interpolation [114] was not implemented as it is much more complicated,
and in practice gives very similar results to the centroid-guided technique. The results will
be slightly better, due to the more sophisticated alignment of corresponding contours, but
the same gross artifacts are present.

Disc-guided interpolation The new technique described in Section 3.2.

It should be noted that there are many examples of simple surfaces where the differences
between the results of any shape-based technique are negligible. The following data have been
selected to highlight the properties of each algorithm over a broad range of surface types, par-
ticularly concentrating on surfaces that produce different results with each algorithm.

Processing times are shown in Table 3.1. The software was designed for non-parallel cross-
sections, and the processing time for the parallel cases (CT and MRI) would have been sig-
nificantly less had this not been so. However, since this applies equally to all the surface
interpolation algorithms, the times still give a good relative measure of performance.

Unsurprisingly, the more complex disc-based algorithm takes longer than the centroid-based
or standard shape-based algorithms. However, the increase in time is generally quite small, since
all algorithms require calculation of the distance transform and triangulation of the interpolated
data. The additional processing time for the disc-based algorithm increases with the number
of discs involved in the correspondence calculation, hence objects with cross-sections which are
long and thin (for instance the skull in Figure 3.32) take more time to process than those with
fatter cross-sections.

3.5.1 Simulated scanning results

All of the surfaces shown in Figures 2.9 to 2.12 of Chapter 2, are reconstructed from cross-sections
using disc-guided interpolation. Clearly, they all correctly represent the original objects, even
in cases where those objects are branching or concave (Figure 2.12). Since the algorithm makes
no assumption about smoothness, it is equally applicable to the reconstruction of sharp objects,
for instance the cube of Figure 2.9(e).

The volumes calculated from these surfaces, using the algorithm of Appendix B.2, are also
shown in the graphs of Figures 2.9 to 2.10. These volumes are less than the actual volume,
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since the interpolation is linear and the objects are mostly convex. However, the disc-guided
surface volume is better than the centroid-guided surface volume in all cases, and better than the
shape-based surface volume for the more complex shapes in Figures 2.11(d) and Figure 2.12(e).

3.5.2 In vivo ultrasound results

The same ultrasound scanner and system were used to acquire freehand 3D ultrasound data as
in Section 2.4, described in Appendix A.2. Three areas were examined: the hepatic ducts, the
bladder, and a foetus.

Hepatic ducts

The interpolation of cross-sections through part of the system of hepatic ducts, shown in Fig-
ure 3.2, has already been discussed in Section 3.1.2. The disc-guided interpolation technique
(Figure 3.2(g)) clearly gives the best results in this instance, even though the cross-sections are
fairly simple.

Bladder and prostate

The bladder and prostate in Figure 3.30 demonstrate the effect of interpolating two close objects.
Although both have very simple shapes, the contours from each overlap, and hence shape-based
interpolation incorrectly makes a connection between these objects, as seen in Figure 3.30(b).
Centroid-guided interpolation is not affected, since each of the bodies are treated individually
(although they would still be connected if object correspondence was based on contour overlap,
rather than manual determination). Disc-guided interpolation correctly constructs the surface
without any manual interaction, as the external discs ensure the algorithm also ‘connects’ the
gap between each of the objects.

Foetus

The foetus in Figure 3.31 is a much more complicated shape than the bladder or prostate.
Many cross-sections contain only one contour which nevertheless includes the body and limbs.
Centroid-guided interpolation performs very badly when connecting such contours with sim-
ple cross-sections of the torso — thin ‘webs’ are formed between regions which should not be
connected. Shape-based interpolation is much better than centroid-guided interpolation in this
case, but still incorrectly connects the upper hand with the head. This connection is not made
by disc-guided interpolation, even though the contours overlap.

Further examples of disc-guided interpolation of foetal cross-sections are shown in Figure 2.20
of Chapter 2. These demonstrate the ability of the algorithm to reconstruct sensible surfaces
from cross-sections with varying topology.

3.5.3 Other applications

Computed tomography: child’s skull

The skull in Figure 3.328 [181] is a good example of the sort of cross-sections that result from au-
tomatically thresholding medical images. Here, a high resolution (0.41mm by 0.41mm by 1mm)

8From CHILD.IM0, provided with 3DViewnix v1.1.1 (c) 1993-1996 M I P G University of Pennsylvania, All
Rights Reserved.
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(a) Cross-sections (b) Shape-based interpolation

(c) Centroid-guided (d) Disc-guided

Figure 3.30: Human bladder and prostate. The cross-sections were manually outlined in
the original B-scans of a freehand 3D ultrasound investigation.
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(a) Cross-sections (b) Shape-based interpolation

(c) Centroid-guided (d) Disc-guided

Figure 3.31: Foetus at week 22. The cross-sections were manually outlined in the original
B-scans of a freehand 3D ultrasound investigation.
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(a) Actual surface (b) Fewer cross-sections

(c) Shape-based interpolation (d) Disc-guided interpolation

Figure 3.32: Child’s skull. The cross-sections were automatically segmented by thresholding
CT data. (a), (c) and (d) have been rendered with a slight transparency, so that both the inner
and outer surfaces can be seen.
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Computed Tomography (CT) scan of a child’s skull has been thresholded using the appropriate
coefficient for bone. Most cross-sections have many contours, and the shape of each contour is
complex. The centroid-guided technique is not appropriate in this case, since there are multiple
contours which are neither simple nor tree-like. Liu’s method [114] would have given sensible
results if the inner skull contour was separate from the outer, and hence the inside of the skull
could be interpolated separately from the skull itself. However, this is not the case on many of
the cross-sections.

The cross-sections in the upper part of the skull are far from overlapping, and hence shape-
based interpolation reconstructs these as separate rings, rather than one surface. Disc-guided
interpolation has no such constraint, so the skull can still be correctly reconstructed despite the
lack of overlap.

Computed tomography: pelvis

The female pelvis in Figure 3.33 is from CT data provided by the Visible Human Project9. In
this case the original CT resolution was 0.9375mm × 0.9375mm × 1mm; however only a small
subset of these planes was used to generate the cross-sections in Figure 3.33(b).

The surface in Figure 3.33(c) reveals the interplay between the interpolation process and the
resolution of the interpolated data from which the triangulation is created. The hole in the left
hand side of the pelvis is the result of under-sampling of data — the pelvis is very thin in this
region. Even though Figure 3.33(d) has been generated at the same resolution, this effect has
been reduced by a better interpolation direction. Disc-guided interpolation also improves the
smoothness of the surface at the edges, for instance at the upper rims (iliac crests).

Magnetic resonance imaging: liver

The human liver in Figure 3.34 is from MRI data, also provided by the Visible Human Project,
in this case from the male data set. The original data resolution was 1.875mm×1.875mm×4mm.
Five cross-sections were manually segmented from this data. This is enough information to give a
reasonable idea of the shape of the liver, and an estimate of its volume. However, it is not enough
information for shape-based interpolation to estimate the surface — hence the large invagination
in Figure 3.34(b). This sort of shape should be ideally suited to centroid-guided interpolation,
however the disc-guided interpolation performs slightly better (particularly noticeable on the
sharp upper edge of the liver). This is because the calculation of centroid position is dominated
by the bulk of the object, hence small features on large objects do not contribute and may not
be reconstructed correctly. Disc-guided interpolation uses local information and can re-adjust
the interpolation direction in the region of the local feature.

3.6 Results: surface visualisation

The surface visualisation algorithm of Section 3.4, regularised marching tetrahedra (RMT) was
assessed by a variety of methods, and compared to both marching cubes (MC) and marching
tetrahedra (MT)10. The quality of smooth renderings of such surfaces, the number of triangles,

9The Visible Human Project is an initiative from the National Library of Medicine in Bethesda, Maryland.
10Comparisons were made with MT and with MC at a resolution such that the inter-plane spacing was the

same in all cases.
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(a) Actual surface (b) Fewer cross-sections

(c) Shape-based interpolation (d) Disc-guided interpolation

Figure 3.33: Female pelvis. The cross-sections were semi-automatically segmented by thresh-
olding CT data, then manually editing the results of this threshold operation.
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(a) Cross-sections

(b) Shape-based interpolation (c) Centroid-guided (d) Disc-guided

Figure 3.34: Human liver. The cross-sections were manually outlined from coronal MRI slices
of the abdomen.
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Table 3.2: Number of triangles. The topological cases indicated for each sample point are
cs: closed surface, ms: multiple surfaces, mh: multiple holes, fs: flat surface.

Object Fig. Vertices Triangles Topological Cases
MC MT RMT MC MT RMT cs ms mh fs

Sphere 3.19 1,161 2,480 660 2,320 4,956 1,316 0 0 0 0
Example 3.27 8,646 20,924 5,563 17,450 41,796 11,102 0 20 12 0
Peaks 3.39 3,150 8,415 2,199 6,130 16,498 4,238 0 1 0 0
Closed 3.39 4,113 9,368 2,500 8,196 18,744 5,008 0 6 0 0
Skull 3.32 78,103 169,750 50,543 156,528 339,942 101,573 19 974 258 445
Hepatic 3.35 12,909 27,404 7,646 26,087 55,350 14,890 0 60 2 16
Bladder 3.36 15,053 28,524 7,828 30,213 56,848 15,556 0 4 0 0

Table 3.3: Volume and surface area. The values shown are not calibrated, except for the
skull, bladder and hepatic ducts, in which case the volume is in ml, and the surface area in cm2.

Object Fig. Volume Surface area
MT RMT % MT RMT %

Sphere 3.19 1.0159 1.0121 99.63 4.8905 4.8793 99.77
Example 3.27 0.7728 0.7716 99.84 8.8393 8.7799 99.33
Peaks 3.39 - - - 9.2656 9.2482 99.81
Closed 3.39 0.8196 0.8145 99.38 7.9559 7.8811 99.06
Skull 3.32 362.84 361.95 99.75 1614.8 1602.9 99.26
Bladder 3.36 317.60 317.51 99.97 249.37 249.01 99.86
Hepatic ducts 3.35 37.510 37.248 99.30 173.70 171.42 98.69

the triangle aspect ratios and the effect on volume and surface area measurements were all inves-
tigated. Surface visualisation techniques were applied to simulated data, data from ultrasound
and CT examinations, and data from mathematical functions.

As can be seen from Table 3.2, the number of both vertices and triangles with RMT were
reduced by about 70% compared to MT and 40% compared to MC. This reduction is affected
by the complexity of the surface at the sampling resolution. The reduction is slightly less for
the child’s skull, which has the highest complexity, since no vertex clustering can be performed
for the ‘closed surface’, ‘multiple holes’ and ‘flat surface’ topological cases. In all the other
examples, and indeed in most practical situations, there are very few occurrences of topological
cases that prevent clustering. Indeed, such occurrences are often an indication of the lack of
appropriate data filtering.

The effect of the isosurface extraction method on the volume and surface area of the triangu-
lation is compared to that for standard MT in Table 3.3. In all cases, there were approximately
100 sample points spanning the objects in each direction. This leads to at least a 1% error in
distance, 2% error in area and 3% error in volume measurement. By comparison, all of the mea-
surements on the objects were within 1.5% of the measurements calculated with MT. The volume
measurements were calculated from the triangulation by a method outlined in Appendix B.2.
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Table 3.4: Quality of surface rendering. The values shown give the mean and maximum
for the standard deviation of each pixel in the images of Figure 3.19(g), (h) and (i). Units are
grey-levels, for an 8-bit (255 level) image. The values for the sphere are based on all pixels inside
the border pixels.

Statistic Triangulation
MC MT RMT

Mean std (whole image) 2.52 2.54 1.56
Mean std (sphere) 2.83 2.85 1.21
Maximum std (sphere) 8.82 7.86 3.32
% border pixels 1.47 1.38 1.54

3.6.1 Simulated results

The triangulations of Figure 3.19(a), (b) and (c) clearly demonstrate improved regularity when
using RMT to visualise a sphere. Smooth renderings of these triangulations in Figure 3.19(d),
(e) and (f) indicate that this regularity improves the quality of the rendering; but how can this
improvement in quality be assessed?

A sphere has the same shape when viewed from any direction, and so long as the light
source is kept fixed with respect to the viewer, surface renderings should also be identical. If
the sphere has been rendered by triangulating the zero isosurface of the underlying function
f(x, y, z) = x2 + y2 + z2− r, as in Figure 3.19, any variations in these renderings are therefore a
result of the triangulation quality. This can be quantified by measuring the variation in image
grey-scale for each pixel in a set of images rendered from different viewing directions.

Figure 3.19(g), (h) and (i) shows graphical results for this variation. It is immediately obvious
that using RMT results in much less variation in the smooth rendered images. In addition, this
variation is more uniformly distributed across the image. The average standard deviation for
each of the pixels, in Table 3.4, reveals that the mean variation in the RMT image is only 43%
of that in the MC image, 38% for the worst case. In practice, the variation is reduced to such
an extent that it is difficult to detect whether the RMT sphere is being spun or not, an action
which is very apparent with MC or MT.

Figure 3.19(g), (h) and (i) also highlight an additional effect of representing a sphere with a
triangulated surface. Although the sphere shading can be interpolated in order to smooth across
the triangles, the shape is still defined by the actual triangulated surface. Hence the black rings
around each of the figures, which represent the variation in the surface position (i.e. for some
viewing directions, the surface exists at a pixel, and for others it does not). This effect increases
as the number of triangles used to make up the surface is reduced — Table 3.4 shows that MT,
which has the greatest number of triangles, has the fewest border pixels. However, the slight
increase in border pixels with RMT is dramatically less than the reduction of triangles compared
to MC or MT.

3.6.2 In vivo ultrasound results

Bladder and hepatic ducts

The hepatic ducts in Figure 3.35 and bladder in Figure 3.36 were both reconstructed in the same
way as in Section 2.4, using software described in Appendix A.2. The triangulations in both
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(a) MC (b) MT (c) RMT

(d) Surface
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(e) Comparison of aspect ratios

Figure 3.35: System of hepatic ducts. (a), (b) and (c) show the triangulated surface after
disc-guided interpolation and MC, MT and RMT isosurface extraction, respectively. (d) shows
a smooth rendering of (c). (e) The aspect ratio is defined by the ratio of the radius of the
circumscribed circle, to the radius of the inscribed circle. This is normalised by the aspect ratio
for an equilateral triangle.
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(a) MC (b) MT (c) RMT
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(e) Comparison of aspect ratios

Figure 3.36: Human bladder. (a), (b) and (c) show the triangulated surface after disc-
guided interpolation and MC, MT and RMT isosurface extraction, respectively. (d) shows
a smooth rendering of (c). (e) The aspect ratio is defined by the ratio of the radius of the
circumscribed circle, to the radius of the inscribed circle. This is normalised by the aspect ratio
for an equilateral triangle.
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(a) Front view (b) Side view

Figure 3.37: Teeth and skull. The cross-sections were automatically segmented by thresh-
olding CT data. The teeth are rendered white and opaque, and the skull transparent, so that
details, such as the second set of adult teeth, are clearly visible.

these figures demonstrate the improved regularity of the RMT technique over MT and MC.
This regularity can be assessed by considering the aspect ratios of the triangles making up

the surface, as shown in the graphs of Figures 3.35(e) and 3.36(e). In these graphs, the triangles
for MC, MT and RMT have been sorted in order of increasing aspect ratio, and normalised by
the total number of triangles. The first peak on the graph represents near equilateral triangles,
and the second smaller peak near right-angled isosceles triangles. The former type of triangle
is generated when the four tetrahedra around a 2 unit edge are intersected by the surface, and
the latter when the six tetrahedra around a

√
3 unit edge are intersected. In both cases, 99.9%

of the triangles in RMT had aspect ratios of better than 2. MC and MT, on the other hand,
generated many triangles with aspect ratios of worse than 10.

3.6.3 Other applications

Computed Tomography: child’s skull and teeth

Figure 3.37 shows an example of RMT applied to thresholded CT data: this is from the same
data set as in Figure 3.32. 3D data sets contain more information than can be easily visualised
in 2D. Colour and transparency can help to display surfaces more clearly, and show relative
positions which would otherwise be impossible to see.

Equally important is the ability to reconstruct surfaces within the same data set at varying
resolutions. The teeth in Figure 3.37 are the area of interest, and these have been reconstructed
at a high resolution. The skull, however, is only there to show where the teeth are located, and
can be reconstructed at a lower resolution. This allows the optimum number of triangles to be
used, which improves the rendering speed and hence the user interaction with the display.
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Computed Tomography: pelvis and thigh muscles

Figure 3.38 is another example of using colour, transparency and varying resolution. This is
from the same data set as in Figure 3.33. In this case the body, skeleton and thigh muscles have
been reconstructed separately; the body at a lower resolution than the other areas. Changes in
the transparency of each surface, and the gradual removal of the surfaces, can both be used to
show relative location.

The surfaces in Figure 3.37 and Figure 3.38 where generated using software which implements
RMT, and is described in Appendix D.1.

Visualisation of implicit surfaces

The triangulations of two implicit isosurfaces are shown in Figure 3.39. Figure 3.39(a) and (b)
are from the well known ‘peaks’ function provided with Matlab v5.011:

f (x, y, z) = (3− 3x)2 e−x2−(y+1)2

− 10
(

x
5
− x3 − y5

)

e−x2−y2

− 1
3
e−(x+1)2−y2 − z (3.17)

Figure 3.39(c) and (d) are from a closed surface used in a recent paper [78]:

f (x, y, z) =

(

1−
(

x
6

)2
−

(

y
3.5

)2
)

(

(x− 3.9)2 + y2 − 1.44
) (

x2 + y2 − 1.44
)

(

(x + 3.9)2 + y2 − 1.44
)

− z2 (3.18)

Any such function can be visualised by evaluating it on the tetrahedral lattice, and using
RMT to triangulate a surface at a particular threshold. The surfaces shown are for f (x, y, z) = 0.
Display of surfaces by this method has a significant advantage over the usual method of setting
up a grid in the x-y plane, whose z-values at each location are defined by the function. In
the latter method, it is not possible to visualise surfaces with multiple values in any direction,
whereas RMT is completely independent of topology and has no such restriction.

The surfaces in Figure 3.39 where generated using software which implements RMT to vi-
sualise surfaces of arbitrary functions, described in Appendix D.2.

11 c©1984-96 The MathWorks, Inc., http://www.mathworks.com.

http://www.mathworks.com.
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(a) Skin surface (b) Muscles and pelvis revealed

(c) Muscles and pelvis alone (d) Pelvis revealed

Figure 3.38: Pelvis and thigh muscles. The cross-sections were automatically segmented by
thresholding CT data. Rendering each surface in a different colour, and changing the trans-
parency properties of each surface, allows the relative location of different structures to be seen.
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(a) Triangulation of equation (3.17) (b) Surface of equation (3.17)

(c) Triangulation of equation (3.18) (d) Surface of equation (3.18)

Figure 3.39: Isosurfaces of implicit functions. Both surfaces have been generated using
RMT.



Chapter 4

Application to multiple-sweep data

4.1 Current methods for combining data from multiple sweeps

As explained in Section 1.2, despite the many advantages 3D ultrasound offers, it has seldom
been used to examine anatomy which is larger then the width of a single B-scan, since this would
require multiple sweeps to cover the entire organ.

There are several such cases where the anatomy is too large, or the shape is too awkward, or
the direction of view is too restricted, to scan the entire volume in a single sweep. For instance
the foetus beyond mid-term is difficult to scan in this way. Tumours, too, can grow to be larger
than will fit into a single B-scan, or if they are located beneath the lower ribs (e.g. in the liver)
can be impossible to scan in one motion of the probe. The liver itself is also in this category,
though there are few situations were an accurate volume measurement of the liver is clinically
relevant1. However, in a recent CT study of liver volume, it was suggested that an accurate
measure of volume compared to patients’ weight and height correlated well with the severity
of chronic liver disease [113]. In any case, the liver provides an excellent test case for using
ultrasound in this context, since it is large, has a relatively complex shape, and its position
beneath the lower ribs constrains the direction of insonification.

There have been a few attempts in the past to use a primitive form of 3D ultrasound, where
the position of each B-scan is recorded manually, to measure liver volume [11, 36, 62, 153].
The earliest of these used a freehand scanning technique [153], although the accuracy of the
volume measurements was limited by the large number of hand calculations and inaccurate
B-scan localisation. The remainder used parallel transverse slices, with which it is difficult to
examine the entire liver. In none of these cases was it possible to include the entire liver cross-
section in all of the B-scans — approximations to the shape of missing sections were required.
It is only recently that freehand scanning techniques have again been applied to liver volume
measurement [80] and foetal liver volumes [163].

As discussed in Section 1.2.1, mis-registration is more apparent when using multiple-sweep
data — it is much worse between data sweeps than within them. This is primarily a result of
movement of the organ under examination with respect to the position reference frame, due to
varying probe pressure from one sweep to the next. Interpolating such data to a regular voxel
array, using one of the standard techniques discussed in Section 1.2.2, produces undesirable
results. Figure 4.1(a), for instance, shows two sweeps from a liver examination which have been
interpolated using the voxel nearest neighbour [161] interpolation. The poor image quality is

1Assessment by palpation of the approximate liver volume, by contrast, is a standard part of an abdominal
examination.
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(a) Nearest neighbour interpolation (b) Partitioning using dividing planes

Figure 4.1: Viewing multiple-sweep data. Performing simple nearest neighbour interpolation
on multiple sweeps generates results as in (a). (b) is the result of using additional planes to
separate the sweeps.

due to a combination of treating the black regions around each B-scan as ‘real’ data, and mis-
registration of the data itself. This mis-registration has been studied in the context of spatial
compounding (a technique to reduce the noise in ultrasound images) [6, 159, 160]. The data
from each sweep must be registered before it can be compounded, which is a time consuming
and often poorly constrained problem.

Combining data from multiple ultrasound sweeps has been successfully achieved for use in
an ultrasound simulator [3]. Creating a good data set for simulation is, however, a somewhat
different problem to that of examining a patient. The techniques of image warping and blending
used to register the data are both time consuming and inappropriate in an unsupervised clinical
context, since the warping algorithm can make changes to the data which are not justified by
the physics of the acquisition. The simplest way to combine data from multiple sweeps in a
clinical context, and possibly most appropriate, is to use only one sweep in any one part of
the interpolated volume, as in Figure 4.1(b). The data from each sweep can now be clearly
seen. This partitioning approach can also be used to allow volume measurement and surface
visualisation from segmentations of the original B-scans, in a sequential framework.

4.2 A new approach: partitioning multiple sweeps

4.2.1 Overview

The entire process of volume measurement and surface visualisation from multiple-sweep data
is outlined in Figure 4.4. Once the ultrasound data has been acquired, the orientation of the B-
scans can be displayed in an ‘outline’ window, as in Figures 4.2(a) and 4.3(a)2. The clinician can
then review the scans in a ‘review’ window, as in Figures 4.2(c) and 4.3(c). B-scans which are
in-between the valid sweeps, for instance where the probe has been lifted from the skin surface
temporarily, are then marked as invalid. Each sweep of data is thus defined as a contiguous set

2These scans have been registered to a computer generated manikin in order to show their location and
orientation [177].
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(a) Orientation of B-scans (b) Segmentation (c) Typical B-scan

Figure 4.2: Liver examination using two sweeps. The viewing direction in (b) is the same
as in (a). The position of the dividing plane shown in (b) is based on the sweep orientation.
Cross-hatching in the B-scan, as in (c), indicates areas that are better covered by a B-scan from
another sweep. One longitudinal and one horizontal sweep is used.

(a) Orientation of B-scans (b) Segmentation (c) Typical B-scan

Figure 4.3: Liver examination using three sweeps. The figures and orientation are as in
Figure 4.2. In this case, the liver is covered by three overlapping longitudinal sweeps.
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sweep data
Acquire multiple Volume and

surface estimate
Check dividingMark invalid

B-scans plane position
Segment ~20

B-scans

Figure 4.4: Volume measurement and surface visualisation from multiple sweeps. The
multiple-sweep data is acquired and invalid B-scans (i.e. those between sweeps) marked. Divid-
ing planes (which separate the sweep data) are calculated automatically, but can be manually
adjusted if necessary. Cross-sections are then outlined in the original B-scans — only a handful
are required to give an accurate volume estimate.
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Figure 4.5: Definition of terms for multiple sweeps. Sweep A and B are separated by two
dividing planes 0 and 1. These planes form four partitions of space 0 . . . 3. In this case sweep
A is used in partitions 0, 2 and 3, sweep B is used in partition 1. Dividing planes are rendered
opaque only where they separate data from different sweeps.

of B-scans separated by these invalid scans.
Once the sweeps have been defined, a set of ‘dividing planes’ can be automatically generated

to partition space, such that only one sweep of data is used in each partition (see Figure 4.5
for a definition of these terms). Dividing planes are displayed as discs in the ‘outline’ window,
Figures 4.2(b) and 4.3(b), and their location and number can also be edited manually if necessary.

The clinician can now manually segment the area of interest in the ‘review’ window. Any
region not in a partition of space for which its sweep is being used, is cross-hatched. Hence the
clinician can clearly see which data is relevant, and which data is better covered by a B-scan
from another sweep. Segments must either be closed or end in cross-hatched regions, which
is easily ensured by automatically closing a contour if either the start or end point is outside
a cross-hatched region. Typical B-scans with cross-hatching and open contours are shown in
Figures 4.2(c) and 4.3(c), together with the result of a complete segmentation (roughly 20 cross-
sections) in Figures 4.2(b) and 4.3(b).

Volume measurement is performed from these cross-sections in each partition of space, where,
if necessary, incomplete cross-sections are closed by the dividing planes defining the partition.
The total volume is the sum of the absolute volumes in each partition. Surface reconstruction
is also performed in each partition of space, and each surface is clipped to the dividing planes
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which make up that partition. The total surface (which is not guaranteed to be closed) is the
union of these surfaces. Volume can also be estimated from each surface, provided that it is
only clipped by a maximum of two dividing planes (which is usually the case in practice).

Each step in this process is outlined in more detail in Sections 4.2.2 to 4.2.5. It is fundamental
to this system that the apparent complexity is hidden from the clinician behind a carefully
designed user interface. The important features of this interface are also outlined in the following
sections.

4.2.2 Partitioning of data using dividing planes

Automatic generation of dividing planes

The only restriction on the scanning pattern for each of the sweeps is that the sweep must pass
into and out of the object under investigation, and the side of the scan plane which first enters
the object must also be the first side to leave it. This means that the freehand nature of the
acquisition process during each sweep is preserved, in that the B-scans can have any orientation
and spacing, and can even be overlapping. Multiple sweeps are recorded in one sequence, and the
number of sweeps determined after recording, by marking B-scans in-between each valid sweep
as invalid. This has the advantage of enabling recording during a single breath hold. The sweeps
could equally be separated by pausing the acquisition process between each of them, making the
marking of invalid B-scans unnecessary, although it is less likely that the examination could be
completed in a single breath hold with this method.

Initially, one dividing plane is placed between each pair of sweeps (redundant planes are
removed later), up to a maximum of 32. This limit allows each partition of space to be labelled
with an integer, where bit i defines the side of dividing plane i in which that partition exists3.
In most practical situations only one to three planes are required to separate the data — the
worst case processing time is exponential in the number of planes.

The position of each dividing plane is based on the corners of the extreme B-scans in each
sweep, and the centre of the sweep: for sweep A in Figure 4.6(a), these are the points a0 . . . a7

and ga respectively. The vector from the centre of one sweep to the other, ~v, is compared with the
orientation of each of the average planes through {a0, a1, a2, a3}, {a0, a4, a5, a1}, {a1, a5, a6, a2},
{a5, a4, a7, a6}, {a3, a2, a6, a7} and {a4, a0, a3, a7}. The plane from each sweep, for which the
dot product of its normal with ~v is greatest, is selected for defining the new dividing plane. In
the case of Figure 4.6(b), the planes defined by {b1, b5, b6, b2} and {a5, a4, a7, a6} are used. The
dividing plane is then defined by ~p · n̂− o = 0, where ~p is any point on the plane, and o and n̂
are defined by equations (4.1):

n̂a = norm (( ~a4 − ~a5 − ~a6 + ~a7)× ( ~a4 + ~a5 − ~a6 − ~a7))

n̂b = norm
((

~b1 − ~b5 − ~b6 + ~b2

)

×
(

~b1 + ~b5 − ~b6 − ~b2

))

n̂ = norm (n̂a + n̂b)

o =
1
8

(

~a4 + ~a5 + ~a6 + ~a7 + ~b1 + ~b5 + ~b6 + ~b2

)

· n̂ (4.1)

where norm indicates vector normalisation. n̂a and n̂b are the average planar normals for the
selected planes from each sweep.

3There is an inherent redundancy in this representation, since for more than three planes, it is not possible to
partition space into 2n partitions, where n is the number of planes. However, this simple representation improves
the calculation speed for the usual case of only a few planes.
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Figure 4.6: Calculation of dividing plane position. Sweep A is linear, and B is a fan sweep.
(a) The corner points of the extreme scans and the average centre point for each sweep are
calculated. (b) The dividing plane is positioned at the average location of the two sweep sides
which are most nearly oriented perpendicular to the vector ~v joining the sweep centres.

Once all the planes have been defined, the next step is to decide which sweep should be used
in which partition of space. This is done by considering for each partition (of which there are
up to 2n, where n is the number of planes), which sweep has its centre farthest inside (or least
outside) that partition. This can be done by calculating ls,p:

ls,p =
1

Ns

Ns
∑

i=1

min
1≤j≤D

(dij) (4.2)

where s is the sweep, p is the partition, Ns is the number of B-scans in sweep s and D is the
number of dividing planes. dij is the perpendicular distance of the centre of B-scan i to dividing
plane j, where the sign is positive if the centre is the same side of that plane as the partition.
The sweep with the largest value of ls,p is the one used for partition p.

Redundant planes can be found by considering, for each partition, whether the same sweep
is used in that partition as in the one which is the opposite side of the plane. If this is the case
for all partitions, then the plane does not separate any sweeps and can be removed.

Once dividing planes have been defined, they can be used to re-slice the data (i.e. view it
on arbitrary planes). The reslice algorithm is as explained in [145], save that for each point in
the reslice, its partition is calculated, and only B-scans from the sweep used in that partition
are considered for interpolation to the reslice plane. An example of using one dividing plane has
already been demonstrated in Figure 4.1(b) — the mis-registration of the data can still be seen,
but no longer detracts from the useful information in the B-scans.
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(a) Segmentation and planes (b) B-scan review window

Figure 4.7: Editing dividing planes. The data is from the same examination as in Figure 4.2,
although a more complex arrangement of dividing planes has been used in this case. Planes
being edited are marked in red in both ‘outline’ and ‘review’ windows, and both windows are
updated as the plane is moved.

Display and manual editing of dividing planes

There are a couple of situations where dividing planes may not be generated in the most ap-
propriate positions. If the geometry of each sweep is complex, it will not be well represented
by the B-scans at the extremities of the sweep, and the dividing planes may not partition space
correctly. In addition, if the ultrasound data does not completely cover the recorded image for
each B-scan, and there is not much overlap between each of the sweeps, the dividing planes may
not be at the optimum position to separate the actual ultrasound data in each image. For this
reason, dividing planes can also be edited in the ‘outline’ window. Figure 4.7 shows an example
of a more complex dividing plane arrangement from the same data as in Figure 4.2. There are
two important features in the display of these planes, that simplify the editing process.

Firstly, dividing planes are inherently infinite — since it is not possible to show the orientation
of an infinite plane, all planes are clipped to a sphere, centred at the mid-point of the data and
large enough to contain all of it. Clipping all the planes to the same sphere ensures that the
displayed discs will meet at their edges, as in Figure 4.7(a). Secondly, again shown in this figure,
dividing planes are only rendered opaque where they separate data from two different sweeps:
in other areas only the outer edge of the disc representing that plane is rendered. Hence the
number of displayed surfaces is dependent only on the number of sweeps, and not on the number
of dividing planes — in this figure there is only one surface, since there are only two sweeps.
Rendering is achieved by clipping the disc representing each plane to each partition, resulting
in a set of convex polygons, using the algorithm in Appendix C.3.

A particular plane can be edited by selecting it with a right mouse click (whereupon it is
drawn in red), then moved by clicking and dragging (one button rotates, the other translates).
Planes can also be inserted and deleted. As the plane is being moved, the sweep used in any
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given partition is recalculated using equation (4.2), and the opaque shading of the planes is
updated. This means that as the plane is moved it is immediately obvious which part is being
used to separate data (i.e. the opaque part of the plane), and whether the plane is being used
at all — if not it will be shown as a red circle with no opaque part.

In addition, as the plane is being moved, the position of its intersection with the current B-
scan in the ‘review’ window is also updated, i.e. the red line and cross-hatching in Figure 4.7(b).
This is useful for showing whether the plane intersects the actual B-scan data, rather than just
the rectangular recorded image.

4.2.3 Segmentation with dividing planes

Segmentation is performed in the ‘review’ window. Any part of the review window that is in a
partition for which data from another sweep is being used, is cross-hatched. This means that it is
clear which part of the B-scan is better covered by data from another sweep, as in Figure 4.7(b).
Which regions to cross-hatch can be determined by the same algorithm used to calculate the
opaque regions of the dividing plane discs, outlined in Appendix C.3. For the latter case, this
algorithm is initialised with a polygon representing the dividing plane disc. For the former, it
can be initialised with a rectangle representing the B-scan under review.

Contours can be drawn in one of two modes: either by holding the mouse button down and
dragging, or by marking points individually with a mouse button click. Once the last point has
been marked (or the mouse button has been released, if using the former mode), the contour
is joined, unless both the start and end points lie within the cross-hatched region, in which
case the contour is left open. This ensures that contours are either themselves closed, or closed
by the dividing planes — which fulfils a requirement of the volume measurement and surface
reconstruction algorithms in Sections 4.2.4 and 4.2.5. In both the ‘outline’ and ‘review’ windows,
parts of the cross-sections which lie in partitions for which the sweep is being used are coloured
cyan, and the remainder dark blue. Hence, only cyan parts of the cross-section are used in the
volume and surface calculations.

4.2.4 Application to volume measurement

In order to use cubic planimetry, introduced in Chapter 2, to calculate volumes with partitioned
multiple-sweep data, the volume must be calculated in each partition of space, then summed to
give the total. The effect this summation will have on the volume estimate can be assessed by
considering a set of cross-sections cut by a single dividing plane, as in Figure 4.8. It is assumed
that the dividing plane passes through all of the cross-sections — situations where this is not
the case are discussed later. Note that the vector areas ~s and centroids ~ω in each partition are
related to the true values as follows:

~si = ~sai + ~sbi, ŝi = ŝai = ŝbi (4.3)

|~si| ~ωi = | ~sai| ~ωai + | ~sbi| ~ωbi (4.4)

The volume of the object, calculated using linear planimetry4, is:

v =

∣

∣

∣

∣

∣

1
2

4
∑

i=2

(~si + ~si−1) · (~ωi − ~ωi−1)

∣

∣

∣

∣

∣

(4.5)

4The linear version is examined here, rather than the cubic version, in order to make the maths more tractable.
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Figure 4.8: Calculation of volume in each partition. The dividing plane splits the cross-
sections 1 . . . 4 into partitions A and B. The object volume can be calculated from equation (4.5)
with ~ω1 . . . ~ω4 and ~s1 . . . ~s4, or from the sum of the similar values with subscript a and b, in
partitions A and B respectively.

where v is the volume of the four cross-sections in Figure 4.8, which have vector areas ~s1 . . . ~s4

and centroids ~ω1 . . . ~ω4.
If, instead of using the areas and centroids of the whole cross-sections, the volume is calcu-

lated for each of the two partitions, and summed, this gives:

v =

∣

∣

∣

∣

∣

1
2

4
∑

i=2

{( ~sai + ~sai−1) · ( ~ωai − ~ωai−1) + ( ~sbi + ~sbi−1) · ( ~ωbi − ~ωbi−1)}
∣

∣

∣

∣

∣

(4.6)

If we define lai as the ratio of partition A to the whole cross-sectional area, | ~sai| / |~si|, and ~αai

as the vector distance between the centroid of partition A and the whole cross-section centroid,
~ωi − ~ωai, for any cross-section i, this leads to the substitutions:

~sai = lai~si

~sbi = (1− lai) ~si

~ωai = ~ωi − ~αai

~ωbi = ~ωi +
lai

1− lai
~αai (4.7)

Substituting equations (4.7) into equation (4.6) and rearranging leads to:

v =

∣

∣

∣

∣

∣

1
2

4
∑

i=2

{

(~si + ~si−1) · (~ωi − ~ωi−1) + (lai − lai−1)
[

~si · ~αai−1

1− lai−1
+

~si−1 · ~αai

1− lai

]}

∣

∣

∣

∣

∣

(4.8)

The first half of equation (4.8) is the same as equation (4.5), i.e. the volume calculated
without using the dividing plane. The second part therefore represents the error in the volume
estimate introduced by splitting the cross-sections into two parts and performing the volume
calculation on each part. There are two interesting points to note from this expression.

Firstly, the error is dependent on terms like ~si · ~αai−1. Since ~si is by definition a vector
normal to the plane i, and ~αai−1 is by definition a vector lying within the plane i − 1, if i and
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i − 1 are parallel, the error will be zero. This is no surprise, since equation (4.5) reduces to
area × slice thickness for the case of parallel B-scans; and we would not expect this formula to
be affected by summing volumes over several sections of the object in this way.

Secondly, the second term in equation (4.8) scales with (lai − lai−1), which can be interpreted
as the difference in the area ratio into which the cross-sections on sequential B-scans are cut by
the dividing plane. Hence, if the dividing plane cuts all the cross-sections with the same area
ratio, the error will once again be zero. This scenario will tend to occur for dividing planes that
are orthogonal to the B-scans.

The result of this is that equation (4.6) gives volumes close to that of equation (4.5) in
all situations except where the B-scans are highly non-parallel and the dividing plane passes
through these B-scans at an acute angle — which happens rarely in practice. This observation
is consistent with the results of the simulated scanning experiments in Section 4.4.

In practice, the main error introduced by using dividing planes is that of partial voluming,
i.e. where a part of the object is missed from the volume calculation entirely. In Figure 4.8,
where the dividing plane cuts through all the cross-sections, this is not a problem. However,
it is often the case that the dividing plane does not intersect all the cross-sections. As the
volume calculation for each partition only includes cross-sections which exist in that partition,
small parts of the object will be left out of the volume calculation. This is particularly true for
dividing planes which have a shallow incidence with the B-scans.

4.2.5 Application to surface visualisation

The surface interpolation and visualisation method of Chapter 3 needs some adjustment for
multiple-sweep data. The cross-sections in this case are not generally closed, but a closed shape
is required in order to calculate the signed distance field used in this algorithm. Cross-sections
which are not closed are therefore joined at their end-points, which lie entirely outside the
partition in which the data is used. Then, after the surface is interpolated and triangulated,
triangles lying outside the relevant partition are removed, and those which intersect the partition
are clipped to the dividing planes surrounding the partition. The clipping requires some care,
since it is possible for triangles to intersect more than one dividing plane, in which case they must
be clipped to all such planes — this is done by a recursive algorithm described in Appendix C.4.

The surface is extracted for each partition, using in each case the sweep most appropriate to
that partition, as defined by equation (4.2). This results in a set of surfaces which together make
up the entire object. Although the surfaces are not in general closed, edges are guaranteed to
lie on dividing planes. Examples of such surfaces are included in Figure 4.9 for simulated scans
and Figure 4.12 for scans of a human liver. As with the reslice shown in Figure 4.1, errors due
to mis-registration are clearly apparent, but do not detract from the remainder of the data.

It is also possible to calculate a secondary estimate of volume from this set of surfaces,
providing each surface intersects no more than two dividing planes. This algorithm is described
in Appendix B.2.

4.3 Simulated scanning results

In order to verify the volume measurement and surface reconstruction techniques, without in-
troducing errors common to all systems due to registration and segmentation, several objects
were ‘scanned’ in simulation, using the tool described in Appendix A.1. Surface reconstructions
from multiple-sweep scans of these objects are shown in Figure 4.9. Each object was precisely
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(a) Ellipsoid (b) Box (c) ‘Glove’ (d) ‘Hat’

Figure 4.9: Reconstructed surfaces from multiple sweeps. Surface reconstructions are
shown of some of the objects in Appendix A.1. Multiple sweeps were used as in Figure 4.10(b),
(c), (g) and (h) respectively. Difference in B-scan location in each of the sweeps leads to small
gaps between the surfaces from each sweep, despite perfect registration of the B-scans.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10: Simulated multiple sweeps. (a) to (h) are the sweep patterns used to test the
volume measurement accuracy on simulated objects. Each B-scan is drawn as a ‘goal post’,
where the ‘crossbar’ is at the top of the B-scan. All are shown with a segmentation from
the ‘glove’ object. Dividing planes are calculated automatically from the sweep position and
orientation.
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Table 4.1: Simulation results. The table shows the total number of cross-sections, using
sweep configurations (a) to (h), required for the cubic planimetry volume to be within ±2% of
the actual volume. The accuracy of the volume, as calculated from linear planimetry and the
surface interpolated from these cross-sections, is also shown for comparison.

Sweep: (a) (b) (c) (d) (e) (f) (g) (h)
No. of scans for Ellipsoid <12 13 24 <16 17 21 22 <17
±2% accuracy Box <12 16 15 <18 19 <18 19 <19

Concave <12 <12 18 17 17 18 16 18
Branching 16 13 16 17 22 22 18 19

Accuracy of linear Ellipsoid >4.8 5.9 3.8 >5.8 7.3 6.9 5.4 >7.2
planimetry volume Box >1.5 3.5 7.7 >1.5 5.6 >8.8 4.4 >5.7
at this point, ±% Concave >5.7 >7.7 4.1 6.4 7.9 6.7 7.4 6.8

Branching 1.0 5.2 5.2 3.0 6.5 5.3 5.3 5.9
Accuracy of volume Ellipsoid >7.0 7.7 1.5 >9.3 9.3 1.8 4.0 >9.0
from surface at Box >1.6 4.0 2.0 >1.5 4.4 >0.6 0.5 >4.0
this point, ±% Concave >12.0 >11.3 2.5 9.0 10.7 4.7 6.2 5.8

Branching 7.8 12.6 4.7 10.8 10.5 2.5 7.0 7.7

segmented by thresholding the simulated B-scans, using a range of cross-sections between 4 and
23 per sweep, in each of the eight sweep patterns described in Figure 4.10. These sweep patterns
where chosen to be representative of actual clinical situations; for instance, scanning between
ribs.

The pixel size in all cases was 0.012cm, and the average volume of the objects was 5.4cm3,
leading to inherent volume inaccuracy due to the sampling resolution of approximately ±0.7%.
As discussed in Section 4.2.4, the position of the first and last cross-sections can cause a partial
voluming effect — in order to minimise this effect, these cross-sections were fixed at all times to
be close to the edge of the scanned object.

Volume measurements were made from the cross-sections by cubic planimetry, and also by
linear planimetry, and by calculating the volume from the interpolated surface. The latter two
methods are more commonly used than the first, and serve as a comparison with the cubic
planimetry technique.

Table 4.1 contains the results for each object and for each sweep pattern. The total number
of cross-sections required for the cubic planimetry estimate to be within ±2% of the real volume
is shown in the top four lines of the table. Where all the experiments on an object gave volumes
within ±2%, the lowest number of cross-sections investigated is shown. The remaining rows of
Table 4.1 show the accuracy of the other two volume measurement methods for the number of
cross-sections detailed in the top four rows. 2% was selected as a test point since it is above the
limit of resolution (0.7%), but still more accurate than the entire in vivo system, assessed for
single-sweep data in Section 2.4.

It is clear from this table that volume measurements to an accuracy of within ±2% are pos-
sible for all the objects described in Figure 4.9, and all sweep patterns described in Figure 4.10.
Whilst there is some variation in the number of cross-sections required to obtain this accuracy,
typically only 7 or 8 cross-sections are required per sweep (sweep patterns (a) to (c) contain two
sweeps, the remainder contain three). The only exception to this, where 12 cross-sections are
required, is for sweep pattern (c). This is a good example of the case described in Section 4.2.4,
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where the cross-sections are non-parallel, and the dividing plane cuts through them at a highly
acute angle, leading to larger errors in the volume estimate.

In all cases, with the single exception of the branching object with sweep (a), the linear
planimetry accuracy is worse than that of cubic planimetry — typically greater than ±5%. This
is similar to the previous observations with single-sweep data in Section 2.3, and indicates that
those results can be carried through to the multiple-sweep case presented here.

The accuracy of the volume calculated from the surface representation was generally slightly
less than that of linear planimetry, with a greater variability across shape and sweep pattern.
However, the similarity of the volume measurements to that of cubic planimetry suggests that
there were no gross errors in either the surface interpolation or the volume calculation algorithms.
This is backed up by the surfaces themselves, a sample of which are shown in Figure 4.9 — in
fact, surface visualisation gave sensible results for all the cases in Table 4.1.

4.4 In vivo ultrasound results

4.4.1 Liver

The in vivo precision of this volume measurement method was estimated by considering multiple
examinations of the same organ. Ten examinations were performed on the livers of each of two
healthy subjects. For each subject, five of these examinations involved two ultrasound sweeps,
as in Figure 4.2(a), and five involved three sweeps as in Figure 4.3(a). The actual orientation of
these sweeps varied somewhat between examinations. Each complete examination was performed
in a single breath hold (roughly 20 seconds).

The equipment and method used is described in Appendix A.2. Typically, 20 cross-sections
were outlined in each case, with visual feedback from the ‘outline’ window and the interpolated
surface, when it was not obvious where the cross-section should be. This whole process (from
scanning to volume measurement) took approximately 30 minutes per data set, the vast majority
of time being spent on manual segmentation. For the purpose of this experiment, the actual
volume measurement was hidden during segmentation, so there could be no chance of increasing
or decreasing the size of the cross-sections in an unconscious attempt to make the volumes
similar for the same subject.

Figure 4.11 shows the results for both subjects, and the mean and 95% confidence interval
in each case (assuming a normal distribution). The volume of the liver of subject 1 was 1391±
90ml (6.5%) and that of subject 2 was 1037±61ml (5.9%). The first five observations were from
examinations using two sweeps, and the second using three sweeps. Considered separately, the
volume for the two sweep examination of subject 1 was 1401 ± 74ml (5.3%) and for subject 2
was 1027 ± 52ml (5.1%); and that for the three sweep examination for subject 1 was 1381 ±
100ml (7.2%) and for subject 2 was 1046± 62ml (5.9%). These results indicate that the overall
precision of the system is approximately ±7%, and that using two sweeps was better than three,
in this case, giving a precision of approximately ±5%. It is not clear whether this improvement
was due to the use of fewer sweeps (and hence fewer dividing planes) or the improved definition
of the liver boundary in the sagittal (as in the right hand sweep of Figure 4.2(a)), rather than
horizontal (as in all other sweeps in Figures 4.2 and 4.3), scanning planes.

Surfaces reconstructed from each of the examinations of Figure 4.11 are shown in Figure 4.12,
looking along the longitudinal axis to the inferior side of the liver, such that the scan-head was
at the top of the surfaces, i.e. the same orientation as in Figures 4.2 and 4.3. Although there
is considerable variation due to both scanning pattern and segmentation, all the livers can be
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Figure 4.11: Liver volume for two subjects. The first five observations used two sweeps,
and the second five used three sweeps. Volumes were calculated using cubic planimetry. Dashed
lines show the mean, and dotted lines the 95% confidence intervals.

clearly categorised as being from subject 1 or 2. Variation in the surfaces is caused by probe
pressure at the top (the shape of the convex curvilinear probe can be clearly seen in all the
surfaces), and also difficulty in segmenting the liver from the gall bladder and inferior caval
and portal veins, especially given the sparsity of the cross-sections. The fanning action used for
the majority of the sweeps also tended to result in oblique incidence at the edges of the liver,
particularly in the right lobe. This made it difficult to segment the first and last cross-sections
of that sweep, aggravating the partial voluming effect, and in many cases parts of the right lobe
were missing from the volume calculation entirely. In addition, some B-scans, for instance the
one in Figure 4.2(c), did not cover part of the right lobe, and in this case the segmentation had
to be estimated from the remaining data.

4.4.2 Foetus

This technique was also used to examine a foetus at 28 weeks. By this stage in its development,
the foetus is usually too large to be scanned with a single sweep. The foetus in Figures 4.13
and 4.14 was over one litre in volume, with a crown-to-rump length of approximately 24cm, and
abdominal diameter of 6.5cm.

Acquisition is particularly difficult for foetal scans, since the foetus must keep fairly still
during the entire acquisition process, in order to limit the mis-registration in the data. The
ability to quickly review the data and assess whether there was much movement is crucial. As
with the foetal data in Chapter 2, approximately one in three data sets could be used for volume
and surface estimation.

As for the liver, two scanning patterns were employed, involving two and three sweeps.
These are shown in Figure 4.13(a) and 4.14(a). The volumes measured from each examination
were within 2% of each other, despite the variation in the scanning pattern and the position
of the foetus. The dividing planes could also be used to re-slice the data as in Figure 4.13(b)
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(a) 1: two sweeps (b) 1: three sweeps (c) 2: two sweeps (d) 2: three sweeps

Figure 4.12: Reconstructed surfaces of the human liver. The left hand columns are from
subject one, and the right from subject two.
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(a) Sweep orientation (b) Thick reslice (c) Surface

Figure 4.13: Two-sweep examination of a foetus at 28 weeks. The scanning pattern and
dividing planes are shown in (a). (b) is an averaged, 3mm thick reslice through the data, and
(c) shows the surface. The cubic planimetry volume was 1014ml.

(a) Sweep orientation (b) Thick reslice (c) Surface

Figure 4.14: Three-sweep examination of a foetus at 28 weeks. The scanning pattern
and dividing planes are shown in (a). (b) is a maximum intensity projection, 2.4mm thick reslice
through the data, and (c) shows the surface. The cubic planimetry volume was 1031ml.
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and 4.14(b), generating clear views of the whole foetus which would not otherwise be possible.
The reslice of the two-sweep data demonstrates a movement artifact which had little effect on
volume calculation, although it is also apparent from the surface reconstruction. Here, the head
moved forwards then back to its original position, while the face was being scanned.



Chapter 5

3D volume morphing: an extension
of surface interpolation

5.1 Current methods of 3D morphing

5.1.1 Comparison to image morphing

Image metamorphosis (or morphing) is the gradual transformation of one image into another,
usually by a combination of warping and interpolation, reviewed in [70, 187]. Such techniques
are popularised by their use in the film industry, where the morph is used to create the effect that
one image ‘becomes’ the other. However, morphing can also be viewed as data interpolation,
and similar techniques have been used within the medical imaging community to interpolate
between parallel slices of data [154, 164, 171], as mentioned in Section 3.1.5.

3D metamorphosis is the gradual change of one surface into another. There has been less
work on this subject, and it has been reviewed only recently [106]. 3D morphing can be used for
shape transformation (morphing between different objects), animation (interpolating interme-
diate surfaces between the same object in two different positions) and surface synthesis (editing
an existing shape by morphing it with a new one). There is also a close link between the inter-
polation of 2D cross-sections to form 3D surfaces, and the morphing of 3D surfaces to form 4D
time series. It is the ease with which the surface interpolation and visualisation algorithms of
Chapter 3 can be applied to 3D morphing which motivates the work in this area.

A major advantage of 3D over 2D morphing is its independence of viewing and lighting
parameters — the model itself is morphed, and the rendering is performed on the morphed
models. In 2D morphing, the rendering has already been done in creating the initial images,
and hence it is impossible to maintain correct lighting, or move the viewpoint, during the morph.
There are also situations where the aim is to create intermediate models rather than images, for
instance improving a model of a beating heart by interpolating sampled data, and in this case
there is no option other than to use a 3D morph.

5.1.2 Comparison to functional surface interpolation

Shape-based interpolation, a form of functional interpolation of cross-sections to reconstruct
surfaces, has been studied in detail in Section 3.1.2. Such techniques can be adapted to 3D
volume morphing simply by extending the interpolation from 2D to 3D, thus creating a 4D
(time varying 3D) sequence from two 3D volumes, as opposed to a 3D volume from a set of 2D



Section 5.1. Current methods of 3D morphing 115

images. There are, however, some differences in assumption and philosophy that complicate this
otherwise natural extension.

Firstly, when generating a morphing sequence between two objects, it is generally not desired
that objects (or parts of objects) should appear out of nothing, or alternatively disappear into
nothing. This has no parallel in reality, and hence tends to make the morph unrealistic. However,
it is frequently the case that two cross-sections of the same object have parts that should not
be connected; consider for instance two horizontal cross-sections of the letter ‘J’ — the upper
consists of a single circle, and the lower of two, but only the right hand circle should be connected
to the upper cross-section. This is because objects, or parts of objects, can be (and generally
are) discontinuous in space; hence cross-sections of these objects will also be discontinuous.
However, objects are never discontinuous in time. The assumptions underlying the calculation of
correspondence of objects are therefore not the same as those which underly the correspondence
of cross-sections.

Secondly, although both problems are highly under-determined and have many possible
solutions, it is accepted that in surface interpolation there is some ‘optimum’ surface (even if
we do not in fact know what this optimum is), and user interaction in generating this surface
is undesirable. This is because the cross-sections are generally of some physical structure, and
hence there is a ‘correct’ solution to the surface interpolation problem. Many applications of
morphing, however, are not representative of real situations, and the correct solution can be
most easily defined as ‘what the user wanted’. The issue here is therefore to provide users with
an intuitive way of describing the morph, rather than making the decisions for them. Having
said this, there are many morphs which everyone would agree look ‘wrong’ and there is hence
scope for some automation to ensure the user is selecting between ‘right’ morphs rather than
trying to avoid ‘wrong’ ones.

The third difference is related to the second, in that the desirability of user interaction
introduces a new challenge to the problem of 3D morphing, especially since that interaction
is with 3D time-varying data, and most display and input technology is designed for 2D. This
applies equally to the manual definition of correspondence, and to the assessment of the morphing
sequence.

5.1.3 Volume-based as opposed to polygon-based or implicit morphing

3D morphing algorithms can be split into three major categories [70, 106], according to the
underlying representation of the surfaces being morphed. Polygonal representations can be
morphed by interpolating the locations of the surface points [4, 72, 108, 189]. Implicit surfaces
(i.e. those defined as an isosurface of a function generated from a set of primitives) can be
morphed by interpolating the underlying primitives. Isosurfaces of volume data can be morphed
by interpolating the volume data. Each strategy has its own particular strengths and in general it
is possible to convert between representations in order to take advantage of these. In particular,
most models are initially defined as polygonal meshes, and these can be converted to implicit
representations (e.g. the skeleton representation [27] and union of spheres representation [150]),
or to volume data [172].

Since volume representations are topology and shape independent (the underlying arrange-
ment of the data stays the same — only the values change) they are inherently suited to handling
complex morphing sequences. These representations are very similar to the interpolated distance
fields discussed in Section 3.2, save that each voxel contains a signed minimum distance to the
surface, rather than to a cross-section of that surface. Intermediate volumes can be created by



Section 5.2. A new approach: sphere-guided interpolation 116

linear interpolation [142, 185]. Alternatively, new surfaces can be created by isosurfacing the
initial volumes at a different value, hence generating offset surfaces [34].

Unfortunately, this independence from topology and shape makes it difficult to constrain
the intermediate surfaces to the same topology and shape as the originals. Indeed, at the mid-
point of the sequence, intermediate objects can only exist in regions where the original objects
overlap. If there is no overlap, one object disappears and the other appears during the morph,
creating a gap in the sequence. The visual effect is similar to cross-dissolving an image — one
object ‘dissolves’ into another, but there is no sense of movement of any part of either object.
The challenge in volume-based morphing techniques lies in controlling the way in which the
volumetric data is interpolated in order to overcome this problem. This is the 3D analogy of
the problem of interpolating cross-sections of objects scanned at oblique angles, discussed in
Section 3.1.2.

One approach to this problem is to transform the volumes into the frequency domain using
either wavelets [81] or Fourier transforms [88]. Interpolation is then performed in the frequency
domain before being transformed back to the spatial domain for viewing. The main advantage is
that these methods allow information at different frequencies to be transformed at different rates,
usually with the emphasis on the low frequencies, which can improve the quality of the morph.
General correspondence between the objects can also be established from the low frequency
data. However, it is difficult to control the high frequency distortions that can be introduced,
and there is little or no scope for user interaction to control the morphing sequence — both
the cited methods are entirely automatic. Furthermore, the transformation to and from the
frequency domain is both time consuming and memory demanding.

An alternative approach is to warp the source and target volumes before interpolation, or
equivalently to vary the interpolation direction across the volume. In this case, the correspon-
dence between the two volumes is defined manually, either with matching feature ‘elements’ [110]
(consisting of points, lines, rectangles and boxes), or with matching oriented discs [40] or match-
ing points [44]. Correspondences between various elements are combined by simple inverse
distance weighting [40, 110] or used to calculate a smooth warping field [44]. In each case, the
quality of the morphing sequence is entirely dependent on the manual definition of correspon-
dence.

A new algorithm for automating correspondence in a framework similar to the latter ap-
proach has already been presented in Section 3.2. In the following section, this is expanded and
applied to 3D morphing. The aim is to prevent unrealistic morphs by providing automation of
correspondence, as in the former approach, whilst maintaining the user interaction inherent in
the latter.

5.2 A new approach: sphere-guided interpolation

Sphere-guided interpolation is the extension of disc-guided interpolation, in Section 3.2, to the
interpolation of 3D volumes of data. This approach is relatively fast, and integrates automated
and manually defined object correspondence in order to improve the definition of the morphing
sequence. Although volume graphics (the storage and display of volumetric data as opposed to
polygonal surfaces) has advanced considerably over the last decade [99, 172], most surfaces are
still defined as polygonal models, and most graphics hardware is designed to render such mod-
els. Regularised marching tetrahedra has already been presented in Section 3.4 for converting
volume-based data to a polygonal representation. A technique is also presented in this chapter
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Figure 5.1: System overview. The morphing process begins with two polygonal models (top
of diagram) and ends with a real-time display of the morphing sequence. User interaction with
this process is shown on the left. The processing steps (and sections within this thesis where
they are explained) are shown on the right.

for the inverse operation of converting polygonal meshes to volume-based data.

5.2.1 Overview

Figure 5.1 shows the main steps in the morphing of two polygonal models, and the points at
which the user can interact with this process (though not in the same order as is presented to
the user — see Section 5.2.7). The first step is to create the discrete volume representations
from the polygonal models. The accuracy of this process determines the quality of the volume
data, and hence also the final morphing sequence: or conversely it determines the size of volume
required for a given model quality. It is at this point that the alignment and scale of the two
models is set1 — this is controlled by the user. Secondly, sphere representations are calculated
from the two volumes. The user can control the coarseness of this representation, as appropriate
to the complexity of the surface.

Correspondence between the two objects is then established by using the sphere representa-
tions. As with disc-guided interpolation, there are two important features of this correspondence.
Firstly, it is not a mapping between spheres as in [150], but rather a correspondence vector is

1Alignment and scale could equally be determined after conversion to the volume representation, however
realigning the volume data introduces sampling errors, whereas realigning the polygonal models does not.
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established for each sphere, which is affected by all spheres in the other object. Secondly, since
the correspondence is between spheres and not between the original objects, this correspondence
is calculated at a regional level — i.e. it is not simply a mapping of one object to another. The
correspondence calculation can therefore improve the morph even if there is only one object
in each model, by determining which parts of which object should be connected. Unlike disc-
guided interpolation, the user controls how ‘connected’ the morph is allowed to be, by varying
the number of spheres and ‘correspondence strength’: see Sections 5.2.4 and 5.2.5.

Any number of intermediate volumes can be interpolated from the originals, using the sphere
correspondence to guide the interpolation. These, in addition to the source and target volumes,
are isosurfaced, using regularised marching tetrahedra (Section 3.4) to create polygonal models
that can be rendered. In practice, the isosurface triangulation is performed as each intermediate
volume is interpolated, and it is this, rather than the volume itself, that is stored. Real-time
display of the morphing sequence can be achieved by looping through the sequence of models
each time the display is rendered, during which the viewing and lighting can be interactively
adjusted by the user.

Each of the steps in this process is discussed in more detail in Sections 5.2.2 to 5.2.5. The
incorporation of manual definition of approximate correspondence, and how this is combined
with automatic correspondence, is discussed in Section 5.2.6. The display of the morph sequence,
and design of the user interface, are explained in Section 5.2.7.

5.2.2 Conversion to volume-based representation

The signed minimum distance to surface is not the only possible volume-based representation;
indeed others exist which can represent non-closed surfaces within a volume [172]. In this case,
however, the morphing algorithm requires the surface to be closed, and it is convenient to define
the surface at the zero (rather than some other value) threshold. Intensity-defined volume data
can be converted to this representation by thresholding, followed by distance computation, or
more accurately converted by using constrained elastic surface nets [66]. Implicit surfaces are
generally already defined by a distance function, and this function simply has to be evaluated
at each voxel location.

In order to be able to represent a polygonal mesh as a distance volume, it must be closed,
i.e. it must separate space into outside and inside regions. In addition, the surface must not
be self-intersecting, since this implies a contradictory definition of signed minimum distance at
the intersection. The geometric primitives must also be correctly oriented (i.e. the vertices are
defined in a consistent order with respect to the direction of the outward surface normal)2. These
criteria add constraints to the definition of polygonal models, all of which might be considered
good practice, but none of which are necessarily required if the model has only to be rendered.

Given that a polygonal model is suitable for representation as a distance volume, the simplest
way to convert it is by using a two-step process. In the first step (scan conversion), it is
determined which voxels in the volume are inside and which are outside the surface; in the
second (distance transformation), the distance of each inside voxel from the nearest outside
voxel, and vice versa, is estimated. Both scan conversion [98] and distance transformation [31]
can be performed very efficiently, the former by a single pass through the polygons and then the
volume, the latter by two passes through the volume. The second step is similar to the distance
transformation of cross-sections, and is discussed in the following section.

2This criterion does not apply to binary scan conversion.
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(a) Original (b) Binary scan converted (c) Anti-aliased

Figure 5.2: Effect of model conversion. (a) The original model is a polygonal mesh containing
3600 polygons. (b) and (c) show the results of scan-converting this into a volume of only
18× 18× 37 voxels, using binary and anti-aliasing techniques respectively. This is represented,
in each case, by a slice through the volume (with linear interpolation of the values at each voxel),
and the re-triangulated zero isosurface (containing approximately 2000 polygons).

Figure 5.2(b) shows results for the generation of a low resolution volume from the source
model in Figure 5.2(a). The binary nature of the process is immediately apparent in both the
distance volume itself and the triangulated isosurface. The distance values are calculated from
voxel borders rather than the original surface, and hence the voxels are themselves apparent on
the surface, although this effect is reduced by the use of a high quality isosurfacing algorithm.

The quality of the surface could be improved by calculating the distance volume at a much
higher resolution; however, this would also dramatically increase both the storage requirement
and processing time for the morph. It is much more efficient to use an anti-aliasing algorithm
to initialise the distance volume, rather than binary scan conversion — this results in the much
improved distance volume and surface of Figure 5.2(c). Voxels near to the surface are initialised
with the exact (Euclidean) signed minimum distance, then this information is propagated to the
remainder of the volume, as before, using a chamfer estimate [31]. The two-step nature of this
process is similar to a technique employed for constructive solid geometry [34]. Like binary scan
conversion, only one pass through the polygons making up the model is required (rather than
testing each of the polygons at each voxel location, as in [93]).

For each polygon, each voxel inside the 3D bounding box surrounding the polygon is ex-
amined, and the distance to the polygon calculated, up to a pre-determined maximum. If it is
greater than this maximum, the voxel remains un-initialised. The closest distance to a polygon
in 3D space can be either to the plane containing the polygon, to one of the vertices of the poly-
gon, or to one of the edges. It is most efficient to calculate the distance to the plane containing
the polygon, then project the point onto that plane and calculate the remaining distances in this
plane. An additional advantage of this technique is that if the distance to the plane is already
greater than the maximum initialisation distance, there is no need to continue. The distance
from a voxel to a polygon is stored if it is less than the initialisation distance, and the voxel is
not initialised, or already contains a greater distance value. In practice, an initialisation distance
of 1.1 (with respect to the width of a voxel) has been found to be sufficient to correctly define
the surface.
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Figure 5.3: Calculation of signed distance to surface. If the nearest surface point q to
a point p lies on the edge of two triangles A and B, the sign information from each triangle
(i.e. whether the point p is outside or inside the surface) can be contradictory. The diagram on
the right is a view of the triangles looking along the line from point 3 to 1. In regions 2 and
4 the distance to each triangle is the same, but the sign is not. In this case, the sign can be
determined by considering the angles α and β that ~pq makes with the planes containing A and
B respectively — the triangle with the largest of these angles has the correct sign.

The sign of the distance is derived from the orientation of the polygon vertices, and it is in the
correct determination of this sign that the subtlety in the algorithm lies. For example, Figure 5.3
shows a point that is closest to the edge of two triangles. There are two regions in which the
distance to each of these triangles is exactly the same, but the sign is not, and in these regions
the angles α and β must also be considered to determine the correct sign. Simply deciding
that the point is outside if either of the triangles indicate such is not sufficient, as although this
strategy would work in the case of Figure 5.3, it would not be correct in the complementary
case where the inside and outside are swapped. In order to perform the conversion in one pass
through the polygons, this angle must be stored at each voxel, along with the distance. This
makes the complete test for distance initialisation as follows:

• If the voxel is not initialised, store the new distance and angle.

• Otherwise, if the absolute value of the new distance is less than the absolute value of the
stored distance, store the new distance and angle.

• Otherwise, if the absolute value of the new distance is equal to the absolute value of the
stored distance, set the sign of the distance to that with the smallest angle, and store this
angle.

• Otherwise discard the new stored distance and angle.

This is similar to the technique used in [172], assuming that their ‘line parameter’ is used in
much the same way as the angle described above.

5.2.3 Distance transformation

The distance transformation used to propagate this information throughout the volume is the 3D
equivalent of the method described in Section 3.2.2 [31]. The process described in the previous
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section serves as an initialisation to this algorithm. A 22-31-38 chamfer code is used (i.e. the
width of one voxel is 22, the diagonal across a side is 31 and the double diagonal across the
voxel is 38) to give reasonable accuracy, whilst storing the distance in only two bytes.

As in [34], other surface properties may be stored throughout the volume in addition to
the distance, for instance the colour. In the implementation of Appendix D.3, the colour of a
voxel close to the surface is initialised from the polygon closest to that voxel, and propagated
throughout the volume during the distance transformation process. Voxels farther from the
surface inherit the colour of the voxel from which the distance was propagated. This greatly
enhances the eventual morphing sequence by allowing the gradual change of colour in addition to
shape. Texture which has been mapped to the surface could also be morphed by this technique3.

As with disc-guided interpolation, the morphing process involves variation of the interpo-
lation direction across the distance volume, and there is no guarantee that the points to be
interpolated will lie within this volume. An estimate of distance from the surface (and colour)
at any point in space is required. This estimate does not need to be very accurate, since these
points will generally have little effect on the interpolated surface, being themselves far from the
original surfaces. A simple method is used to calculate the distance at an arbitrary point:

• If the point is contained within the volume, the distance (and colour) is tri-linearly inter-
polated from the surrounding points in the volume.

• If the point is outside the volume, the intersection is found of the line joining it to the
centre of the volume, with the side of the volume. The returned distance is the sum of the
distance to this intersection point (using the same distance metric as used in the distance
transformation), plus the distance at the intersection point. The colour is inherited directly
from the intersection point.

5.2.4 Sphere representation

Sphere extraction from the 3D distance volume is performed in exactly the same manner as disc
extraction from the 2D cross-sections in Section 3.2.34. At each voxel, the sum of the difference
of the distance value from each of the 26 neighbouring voxels is calculated. If this is positive, the
voxel is at a change of gradient, and is therefore considered to be a candidate for a sphere centre.
The sphere radius is simply the value of the distance field at that voxel. This set of spheres is
thinned by starting with the largest, and removing all spheres within a certain fraction of that
sphere’s radius, then iterating.

The number of spheres (and hence the coarseness of the sphere representation) can be con-
trolled by adjusting this fraction. Figures 5.4(b) to (e) show the sets of spheres extracted from
the surface in Figure 5.4(a), with a progressively decreasing value for this fraction. Since the
spheres are only used to determine correspondence, and not to define the surface itself, it is
only necessary to have enough spheres to distinguish the important features of the object —
Figure 5.4(d) is the most appropriate choice in this case. User manipulation of this parameter
is described in Section 5.2.7. The effect on the morph of increasing the number of spheres is to
gradually increase the onset of fine detail from the target surface on the source, and vice versa.

3To do this, it would be necessary to sample the texture map at the point on each polygon nearest to each
voxel, and interpolate this sampled texture map, unless the texture was already supplied as a 3D map.

4Only internal spheres are used in this case, since this leads to more correspondence between objects themselves,
which is more appropriate for morphing.
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(a) (b) (c) (d) (e)

Figure 5.4: Level of detail in the sphere representation. (a) is the isosurface of the
distance volume for the object in Figure 5.2, containing 8300 polygons. (b) to (e) are the results
of progressively increasing the number of spheres in the representation.

5.2.5 Interpolation using sphere correspondence

Once again, sphere correspondence is calculated in the same way as disc correspondence for the
2D case (Section 3.2.4), except that the tolerance for connecting spheres from differing objects is
extended so that no regions remain unconnected. This ensures that there will be no regions in the
morphing sequence which either appear out of nothing, or disappear into nothing. Each sphere
from one object is tested against all spheres from the other object. A correspondence vector
~cs is calculated for each sphere a in the source object, which is a weighted sum of the vectors
connecting its centre with each other sphere b in the target object. ~ct is similarly calculated for
each sphere b in the target object. The weighting for each pair of spheres a and b, ωab, is:

ωab =
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∣ is the distance between the spheres, ra and rb are the radii of the spheres, and ds(b)
and dt(a) are the distance values at the centre of each sphere on the opposite volume. The
division in equation (5.1) is conditioned by a small constant µ (set to the square of half the
width of one voxel). This is the same as the disc weighting in equations (3.5) and (3.6), save
that the correspondence strength x, replaces the disc radii — it is this parameter that controls
the tolerance for connecting spheres from differing objects.

Figures 5.5(b) to (e) show the correspondence vectors for the two sphere sets in Figure 5.5(a),
representing a queen and a pawn. The effect of increasing correspondence strength is twofold:
more correspondence vectors are defined (up to the maximum of one per sphere) and these
vectors tend to connect across a larger change in shape.

The sphere correspondence vectors are used to guide the direction in which the volume data
is interpolated. One vector is calculated for each of the source and target objects, ~cps and ~cpt,
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(a) (b) (c) (d) (e)

Figure 5.5: Effect of sphere correspondence strength. (a) to (e) are examples of the
user interface for defining sphere correspondence. In all cases the source and target objects are
rendered in translucent red and green, respectively. (a) is the sphere representation. (b) to
(e) show the sphere correspondence vectors, with gradually increasing correspondence strength.
The colour of each vector varies from red to green to show the direction of correspondence over
time.

at each point p. This is also calculated from the weighted sum of all the sphere correspondence
vectors:
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a∈A
ωpa

∑
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ωpa~cs, ~cpt =
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ωpb
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The weights ωpa and ωpb, for each sphere in the sets of all spheres A and B, in the source
and target volumes respectively, is given by:
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where εpa, εpb and µ have similar definitions as in equation (5.1).
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∣ are the distance
from p to the centre of sphere a or b respectively. ds(p) and dt(p) are the distance values at the
point p, in the source and target volumes respectively. Whereas εa and εb in equations (5.1)
aim to ensure that sphere correspondence vectors connect similar regions, εpa and εpb in equa-
tions (5.5) aim to ensure that the vectors used at a specific location are from spheres which
dominate the shape at that location. This is exactly the same behaviour as discussed for discs
in Section 3.2.5.

Once the point interpolation vector has been determined, the interpolated distance value,
d(p, t), at point p and time t in the morphing sequence, is given by:

d(p, t) = tdt (p + (1− t)~cpt) + (1− t) ds (p− t~cps) (5.6)

where the time t varies from 0 to 1, ~cps and ~cpt are given by equation (5.3), and ds(p) and dt(p)
are the distance field at point p in the source and target volumes respectively, as previously
defined.
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Figure 5.6: Manual correspondence. (a) Vectors ~m1 and ~m2 connect points in the source and
target objects. For any point p at time t, two vectors are calculated, ~ps and ~pt, which give the
points corresponding to p for the source and target objects respectively. These points are used
to interpolate the value for point p at time t (t varies from 0 to 1). The calculation of ~ps and
~pt is by weighted sum, based on the inverse of distances lm1 and lm2 to points along the vectors
~m1 and ~m2, which also depend on the time t. (b) These can be combined with the automatic
correspondence vectors ~cps and ~cpt to give ds and dt, from which the interpolated value d(p, t)
for point p is calculated.

5.2.6 Manual guidance of correspondence

Section 5.2.5 demonstrates how correspondence between the source and target objects can be
calculated automatically and used in the morphing sequence. For very complex morphs, for
instance as in Figure 5.11, or to add more user control to the morphing sequence, this automatic
calculation can be combined with a manual definition of correspondence. Since the sphere
correspondence ensures that detailed connectivity is maintained across the objects, it is only
necessary to define approximate correspondence manually (e.g. which limb is connected to which
limb in Figure 5.11).

Defining manual correspondence

Manual correspondence is defined by a set of vectors that connect points in the source object
to points in the target object (the user interface for defining such vectors is described in Sec-
tion 5.2.7). Figure 5.6(a) shows an example where two such vectors, ~m1 and ~m2, have been
defined. These vectors are combined with a simple inverse distance scheme to give two corre-
spondence vectors, ~ps and ~pt, which relate the point p to corresponding points in the source
and target volume respectively. These vectors are dependent on both the position of the point
p being interpolated, and the time t in the morphing sequence. Rather than calculating the
inverse distance to the points at the ends of each manual correspondence vector, it is calculated
to a point along the vector. This point moves with time from the source to the target end of the
vector. This ensures that locations for which manual correspondence vectors have been defined
are guaranteed to be connected at all time points in the morphing sequence.
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Combining manual and automatic correspondence

The manual correspondence method detailed above generates two vectors (~ps and ~pt in Fig-
ure 5.6) for each point p in each time frame t. These vectors give the transformed points in
the source and target volumes respectively, which are interpolated to generate the data for this
point. If there is no automatic correspondence, the distance is linearly interpolated from these
two points, as is the case in Figure 5.12(b).

If only a few manual correspondence vectors have been defined, this scheme alone is not
sufficient to define correspondence over the entire object, and needs to be combined with the au-
tomatic correspondence vectors. This is done at two stages in the morphing process (Figure 5.1):
when calculating sphere correspondence and when interpolating the intermediate volumes.

In calculating sphere correspondence, rather than projecting the centre of a sphere in the
source volume to the target volume, the target manual correspondence vector at time 0 is used
to transform the sphere centre before sampling the target volume. Conversely, when considering
spheres from the target volume, the source manual correspondence vector at time 1 is used
to transform the sphere centre before sampling the source volume. Equations (5.2) therefore
become:

εa =
∣

∣

∣

~la(b+~bs)

∣

∣

∣−
∣

∣

∣ra − ds(b +~bs)
∣

∣

∣ , εb =
∣

∣

∣

~l(a+~at)b

∣

∣

∣− |rb − dt(a + ~at)| (5.7)

where ~bs is the source manual correspondence vector at time 1 for the centre of sphere b, and
similarly ~at is the target manual correspondence vector at time 0 for the centre of sphere a.
∣

∣

∣

~la(b+~bs)

∣

∣

∣ and
∣

∣

∣

~l(a+~at)b

∣

∣

∣ are the distances between the centres of spheres a and b, respectively, and
the transformed centres of the alternate sphere.

When interpolating each point at each time frame, the manual correspondence vectors are
first used to transform the point to the source and target volumes. These transformed points,
rather than the initial point, are used to calculate the two sphere correspondence vectors, ~cps

and ~cpt, for the source and target volume respectively. Hence, equations (5.5) are replaced by:

εpa =
∣

∣

∣

~l(p+~ps)a

∣

∣

∣− |ra − ds(p + ~ps)| , εpb =
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∣
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~l(p+~pt)b

∣
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∣− |rb − dt(p + ~pt)| (5.8)

where
∣

∣

∣

~l(p+~ps)a

∣

∣

∣ denotes the distance from the transformed point p + ~ps to the centre of sphere

a, and similarly for
∣

∣

∣

~l(p+~pt)b

∣

∣

∣.
Finally, the manual correspondence vectors ~ps and ~pt are also used in the interpolation of

each point, so equation (5.6) is replaced by:

d(p, t) = tdt (p + ~pt + (1− t)~cpt) + (1− t) ds (p + ~ps − t~cps) (5.9)

as shown in Figure 5.6(b). In effect, both the source and target volumes are warped by the
manual correspondence vectors, before either the sphere correspondence, or interpolation, is
performed.

5.2.7 User interface design

The user is presented with one window, but three ‘states’, which can be traversed as in Figure 5.7.
Manual correspondence is defined interactively in the first state, following which the automatic
correspondence parameters can be adjusted in the second. Finally, the morphing sequence itself
can be viewed in the third state. Each of these states leads logically to the next; they are all
described in the following sections.
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BackspaceBackspace

Enter Enter

Figure 5.7: Progression of the user interface. The user is presented with a sequence of three
displays — manual correspondence definition (on the left), sphere correspondence adjustment
(centre) and the morph itself (right). This sequence can be traversed by using the ‘Enter’ and
‘Backspace’ keys. The intermediate surfaces for the morph are calculated on starting the final
display.

State one: creation of manual correspondence vectors

Manual correspondence vectors define a 3D correspondence between points in the source and
target objects. However, both the display and the input device can only represent 2D infor-
mation. A technique for defining such vectors in 2D is presented in [70] whereby the user first
selects a point on the surface of an object (or on a pre-defined grid), following which the direction
of a unit vector from that point is chosen, and finally the magnitude of this vector.

There are two difficulties with this approach. Firstly, it would be preferable to define points
which are within, rather than on the surface of, the objects. Secondly, the interface is not
particularly natural for the user — there are three separate operations in order to define just
one correspondence vector. Most 2D drawing programs, on the other hand, use a click-and-drag
approach to define vectors. This behaviour can be mimicked by using the objects themselves to
provide the extra dimension missing from the input device. The procedure is as follows:

• Both objects are displayed simultaneously in transparent red (for the source object) and
green (for the target), as in the left hand diagram of Figure 5.7.

• Clicking and dragging outside the objects changes the viewpoint and can be used to ex-
amine the objects.

• Once the objects are at an appropriate orientation where corresponding parts can be clearly
seen, and are not obscured (either in front or behind), the user clicks on the source (red)
object.

• A correspondence point is defined on this object, using the median distance between the
surfaces underneath the selected point as the z-dimension.

• As the user drags the mouse, a vector is drawn from this point to a point on the target
(green) object, providing the mouse is over part of the target object.

• On releasing the mouse, the z-dimension of the corresponding point is similarly defined as
the median of the z-dimensions of the surface under the selected point.

• The spatial location of this vector can now be examined by clicking and dragging outside
of both objects, or deleted by right-clicking on the vector itself.
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This interface provides a very fast way of defining corresponding points. These points are
drawn in the same colour as the object for which they are defined, with the connecting vectors
in blue (as in the left-hand diagram of Figure 5.7). It is therefore easy to see which parts of
which object are connected. In addition, the way in which the vectors are defined ensures that
corresponding points will always be near the centres of the objects that they connect. The one
exception to this is if the user clicks over part of an object which has further parts behind it; in
this case the median distance over all these surfaces is used, which may lie outside any one of the
surfaces. This situation can be clearly seen due to the transparency of the objects, and if such
vectors are defined, changing the viewpoint makes them apparent, and they can subsequently
be deleted.

State two: selection of automatic correspondence parameters

There are two automatic correspondence parameters which can be adjusted to vary the eventual
morphing sequence — the number of spheres and correspondence strength (see Sections 5.2.4
and 5.2.5). Changing the former will cause both the sphere representation and the sphere
correspondence to be updated, whilst the latter only affects sphere correspondence. In all but
the most complex cases, both of these can be recalculated in real time, providing interactive
control of both parameters, as in the central image of Figure 5.7.

Both surfaces are once again rendered transparent red or green, but can be displayed either as
the triangulated isosurface of the source and target volumes, or as their sphere representations,
as in Figure 5.5(a). The correspondence vectors themselves are each displayed as lines gradually
changing from red to green to indicate their sense, as in Figures 5.5(b) to (e). If manual
correspondence vectors have also been defined, the part of each sphere correspondence vector
due to the manual correspondence is shown in blue, and the remaining part in red to green, as in
Figure 5.7(b). Both parameters can be changed using key presses, whereupon both the number
and directions of the vectors are updated.

State three: display of the morphing sequence

The interpolation of the morphing sequence is the most time consuming step in the process;
the time taken can vary from a few seconds to a few hours, depending on the complexity of the
correspondence, the isosurface resolution and the number of frames (or intermediate surfaces).
This interpolation is performed on entering the third state of the user interface. Although the
size of the volume is fixed at this point, the resolution of the isosurface compared to the volume
(i.e. the approximate size of each of the triangles) is variable. Low resolution morphs can be
calculated very quickly and used to assess the approximate behaviour before a high resolution
morph is calculated.

The user can vary the viewpoint and model position, in addition to the lighting and speed of
the morph, during the sequence. This enables sufficient interaction with the morph to determine
if it has the desired effect. If not, then the user can return to the previous states to adjust either
the automatic or manual correspondence, and then recalculate the morph once this has been
done.
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Table 5.1: Morphing details. The number of polygons, the size of the discrete volume and the
times taken in conversion, user interaction and creating the morph are shown for the sequences
in Figures 5.8, 5.9, 5.11 and 5.12. Times are given in hours:minutes:seconds, measured on a
Silicon Graphics Indigo 2 R10000 workstation.

Pawn Tricycle Dragon Pear
⇒ Queen ⇒ Sphere ⇒ Creature ⇒ Mushroom

Source model polygons 2,500 40,000 110,000 900
Target model polygons 4,000 8,000 75,000 240
Dimensions of volume 30× 30× 55 112× 105× 108 85× 136× 143 35× 38× 38
Size of volume 0.19Mb 4.84Mb 6.31Mb 0.19Mb
Scan conversion time 00:00:03 00:00:35 00:01:06 00:00:01
User interaction time 00:00:30 00:01:00 00:30:00 00:00:30
Frames 20 20 20 20
Polygons per frame ≈ 4, 000 ≈ 38, 000 ≈ 33, 000 ≈ 3, 300
Morph creation time 00:01:31 00:45:20 01:31:00 00:00:33

5.3 Results

The algorithms and interface described in Section 5.2 have been implemented using OpenGL5

in VolMorph6, which is freely available for Irix, Linux and Windows platforms, as described in
Appendix D.3. The polygonal models used in the following sections can be downloaded from
the Geomview7 distribution (pear and mushroom) or from 3D Cafe8 (all other models).

Table 5.1 contains details of each of the following examples. Source and target volumes are
stored as four bytes per voxel: two for the distance value and two for the colour. All examples
are for twenty frame morphs (i.e. eighteen interpolated models), and the morph creation time
given in the table is the time to create all of the intermediate models (including isosurface
extraction). In each example, the new scheme is compared to a simple morph generated by
linear interpolation of the distance values, with no calculation of region correspondence. This is
equivalent to shape-based interpolation [142, 154] of the objects.

5.3.1 Pawn to queen

Figure 5.8 shows a morph from a white pawn to a black queen chessman. Shape-based inter-
polation in Figure 5.8(a) results in a variety of unnatural effects. The colour of the green base
‘bleeds’ up into the lower section of the intermediate shape, giving it a green tint. The crown
of the queen unfolds from the top of the pawn head rather than growing from the side. Also,
the collar from both models is apparent in the intermediate morphs, rather than a single collar
in the average position.

All these problems can be corrected by using automatic correspondence. The user interaction
time for this morph in Table 5.1 is for adjusting the correspondence strength alone, and the
whole process (from initial models to display of a twenty frame morph) is completed in only two
minutes. Figure 5.8(b) shows the results — both the shape and colour change are now much

5http://www.opengl.org, Silicon Graphics Inc.
6http://svr-www.eng.cam.ac.uk/~gmt11/software/volmorph/volmorph.html
7http://www.geom.umn.edu/software/geomview/.
8http://www.3dcafe.com c©1996–2000 Platinum Pictures. All rights reserved.

http://www.opengl.org
http://svr-www.eng.cam.ac.uk/~gmt11/software/volmorph/volmorph.html
http://www.geom.umn.edu/software/geomview/.
http://www.3dcafe.com
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more natural.

5.3.2 Tricycle to sphere

Figure 5.9 shows a morph from a coloured tricycle to a white sphere. The shape and topology of
the objects are very different, and the simple strategy in Figure 5.9(a) is not able to cope with
this — for instance the rear wheels and the handlebars disappear completely during the morph.
In contrast, the morph of Figure 5.9(b) shows a gradual change of all parts of the tricycle to
the sphere. The effect is as if the tricycle is gradually inflated; the components of the tricycle
are visible at all stages of the morph. Interpolating colour as well as shape adds to this effect
by giving visual clues as to which parts of the sphere correspond to which parts of the tricycle.

In this case, the user interaction time in Table 5.1 was for adjusting the number of spheres
needed to represent the tricycle. In particular, both box sections (e.g. the back foot rest) and
cylindrical sections (e.g. the handlebars) require a lower than usual density of spheres to be
selected for good correspondence.

5.3.3 Dragon to creature

Figure 5.11 shows a shape-only morph from a dragon to an alien creature (neither of the models
are coloured). Although both objects have the same number of limbs and general shape, there
is considerable variation in both the detail and the poise. In fact, neither the limbs, tail, nor
head are in the same position — as can be seen from the intermediate frame of Figure 5.11(a),
where all the limbs have disappeared. In this case, automatic correspondence is not sufficient to
define the morph, since both the left arm and the head are farther away from each other than
from other body parts (the left arm, for instance, would otherwise be joined to the left thigh).

Approximately three manual correspondence vectors were defined for each limb, placed at
the major joints, plus three each for the tail, head and torso, as shown in Figure 5.10(a).
This results in the morph of Figure 5.11(b) — the limbs are now connected where the manual
correspondence has been defined; however they still disappear in-between these points. There
are resulting gaps in the surface at the tail and right claw, as well as a lack of definition at
the extremities. The addition of automatic correspondence shown in Figure 5.10(d), results in
Figure 5.11(c), in which most of these problems are corrected. However, the large movement
of the left arm in contrast with the relatively stationary left leg and torso leads to a lack of
definition in the left hand which is difficult to overcome.

Since this morph is more complex, the user interaction time in Table 5.1 is greater; this time
also includes the creation of low resolution morphs to check the effect of manual correspondence.
The models themselves are also more complex, leading to a larger volume and hence a longer
processing time. However, the entire processing was still performed within two and a half hours.

5.3.4 Pear to mushroom

Figure 5.12 shows two possible morphs from a pear to a purple mushroom, demonstrating that
there are many ‘correct’ solutions to the problem. Figure 5.12(a) is the result of using simple
interpolation (the use of sphere-guided interpolation in this case generates the same result).
Here the effect is as if the base of the pear has been squashed, resulting in the expansion of
the top. On the other hand, Figure 5.12(b) was generated by defining a small set of manual
correspondences, as in Figure 5.79. Now the effect is as if the top of the pear has been pushed

9The automatic correspondence from Figure 5.7 was not used in this case.
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(a) Surfaces (b) Manual (c) Spheres (d) Correspondence

Figure 5.10: Dragon to creature metamorphosis definition. (b) shows the manual cor-
respondences defined between the surfaces in (a). (c) shows the sphere representation, and (d)
the correspondences calculated from this representation, combined with those in (b).

downwards through the base. Either of these morphs could be the most appropriate in different
circumstances.
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Chapter 6

Summary and conclusions

6.1 3D ultrasound

The motivation for this thesis, as outlined in Chapter 1, is

. . . not to provide new types of information from 3D ultrasound data, but to improve
the integrity of such information, the ease with which it can be produced, and to
expand the areas to which it can be applied.

The two types of information addressed in this thesis are volume measurement and surface
visualisation. How do the new algorithms developed for each of the above further these aims,
when applied to 3D ultrasound data?

6.1.1 Volume measurement

Cubic planimetry, presented in Chapter 2, is a technique for measuring volume from a small
number of cross-sections, segmented from a set of sequential, freehand, 3D ultrasound B-scans.
It can also be applied to multiple sweeps, as shown in Chapter 4.

Integrity

Any method for calculating volume based on cross-sections of an object, is clearly more faithful
to the measured data than one based on prior assumptions about the shape of the object.
In this respect, planimetry is better than both the conventional ellipsoid-based measures in
current clinical use, and any method which involves fitting prior models to the data. Simple
planimetric volume measures require no such assumptions. Cubic planimetry does make an
assumption, that the cross-sectional area varies smoothly throughout the object, in order to
calculate volume accurately from fewer cross-sections. Although this assumption is not always
correct (the cross-sectional area may not always vary smoothly even for smooth surfaces), it is
much less restrictive than the assumption of overall shape involved in non-planimetric methods.

The ability to measure volume from non-parallel cross-sections allows the original measured
data to be segmented, rather than an interpolated array. This is of particular importance for
multiple-sweep data. In this case, parallel cross-sections could only be generated from data
that is both warped (so that it can be registered) and interpolated. Both of these operations
reduce the integrity of the data; neither are necessary with cubic planimetry. The multiple-
sweep framework is also robust to the registration errors which make interpolation difficult; in
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fact organ movement along the dividing planes, caused by probe pressure, has no effect on the
volume calculation.

The cubic planimetry algorithm itself (i.e. not including registration or segmentation errors)
is inherently accurate, demonstrated in Sections 2.3 and 4.3, by simulation across several very
different objects and sweep patterns. Accuracies better than ±1% were achieved, using less
than 10 cross-sections in most cases, or for multiple sweeps ±2%, with 7 or 8 cross-sections
per sweep. In vivo precision was assessed on examinations of a human kidney (Section 2.4.1),
liver (Section 4.4.1) and a foetus at 16 weeks (Section 2.4.3) and 28 weeks (Section 4.4.2).
Precision varied from ±5% to ±7% in these experiments. A similar in vivo accuracy, of ±7%,
was demonstrated by the bladder experiment of Section 2.4.2.

Ease of use

Cubic planimetry is harder to use than conventional ellipsoid formulae, however it is easier to
use than other planimetric 3D ultrasound methods. The reason for this is twofold. Firstly,
as already mentioned, the difficulty of segmentation (either by manual or automatic means) is
reduced, by the use of the original, rather than interpolated, data. Secondly, the time required
to measure the volume is less than with simple planimetry.

This time is reduced in two ways. Since the method is set in the sequential framework,
there is no need to generate a voxel array, and thus segmentation can be started as soon as the
data has been acquired. In addition, fewer cross-sections are required for an accurate volume
measurement, as demonstrated by the experiments on simulated objects in Sections 2.3 and 4.3.
The volume calculation itself takes less than one second, and can be updated automatically, as
the cross-sections are drawn. If 30 seconds is allowed for segmenting each of 10 cross-sections,
then the whole process from scanning to volume measurement can be performed in approximately
5 minutes.

Areas of application

The areas of anatomy, for which 3D ultrasound can be used to give an accurate measure of
volume, have been extended in two ways. Firstly, the use of freehand 3D ultrasound, rather
than any of the alternative techniques that acquire fixed volumes of data, allows the 3D system
to be used in all of the areas in which a conventional 2D system could be used. Secondly, the
use of sequential processing removes the requirement to generate a voxel array. This allows
scanning patterns that would result in very poor quality voxel data to be successfully used for
volume measurement. It also enables the multiple-sweep framework in Chapter 4 to be used,
thus allowing volume measurements from either very large, or very awkward to scan areas. The
only area to which the volume measurement algorithm can not be applied is rotational scanning,
e.g. of the eye.

In addition, the lack of assumption about the shape of the object under examination makes
the method equally viable for objects that have the expected shape, as for those that do not.
The latter case is often the more clinically important.

6.1.2 Surface visualisation

Disc-guided interpolation and regularised marching tetrahedra (RMT), presented in Chapter 3,
are techniques for interpolating and visualising a surface from a set of cross-sections. Disc-
guided interpolation, as with cubic planimetry, is designed for a small number of cross-sections
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segmented from a set of sequential, freehand, 3D ultrasound B-scans. Hence, many of its ad-
vantages are similar to those outlined in the previous section. Both of these techniques can also
be extended to multiple-sweep data, as shown in Chapter 4.

Integrity

The surface generated by disc-guided interpolation is derived from the cross-sections, rather than
directly from the data. In this respect, its integrity to the data is dependent on the accuracy
of segmentation. However, it is guaranteed to pass through the cross-sections, and is hence
faithful to these. This attribute is shared with all surface estimators which interpolate, rather
than fit, a surface. As far as I am aware, this is the first time that a surface interpolator has
been developed for data from multiple freehand sweeps.

RMT is also faithful to the interpolated data when generating a triangulated surface for
display. The volume and surface error differences, compared to simple marching tetrahedra, are
much less than the error inherent in the sampling resolution, as shown in Section 3.6. However,
interpolated shading of the surface is greatly improved compared to marching cubes or marching
tetrahedra. In particular, features due to the shape of the triangles, rather than the underlying
data, are much less apparent with RMT (see Figure 3.19). In addition, unlike other vertex
clustering methods, the surface topology in RMT is consistent with the sampled data.

Ease of use

Disc-guided interpolation shares the same advantages as cubic planimetry of segmentation in
the original B-scans, and calculation from a small number of cross-sections. In this case, the
use of fewer cross-sections is achieved by introducing the concept of region correspondence into
the interpolation. However, this does not introduce unnatural features, which can be generated
by other variants of shape-based interpolation. This has been demonstrated on surfaces from
simulated objects (Sections 2.3 and 4.3), and on real examples of hepatic ducts, a bladder and
a foetus at week 22 (Section 3.5.2).

Both disc-guided interpolation and RMT are relatively fast algorithms, taking typically 10
seconds or less for these ultrasound examples. The reduction in the number of triangles for a
given surface resolution with RMT, demonstrated in Section 3.6, also improves the ease with
which the surface can be reviewed. RMT generates surfaces with 40% fewer triangles than
marching cubes, and 70% fewer than marching tetrahedra, for the same sampling resolution.
Hence, once the surface has been created, it can also be rendered faster. This greatly increases
the potential for user interaction with the surface, which is one of the main benefits of 3D display.

Areas of application

Disc-guided interpolation and RMT can be applied to all the situations in which cubic planimetry
can be used. Hence, the areas of application are the same as those discussed earlier for volume
measurement. This is a result of using a functional surface interpolation technique, which has
no topological restrictions. Setting this in a sequential framework, so that registration problems
are avoided, also allows both non-parallel scanning and multiple-sweep scanning. However,
although a surface can be estimated from any such data, unlike cubic planimetry, the result will
be degraded if the scans are overlapping, since this will also cause the surface to overlap itself.
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6.2 Application to other fields

Although the surface interpolation and visualisation algorithms were designed for freehand 3D
ultrasound, they have applications in other areas. In addition, disc-guided interpolation can
easily be extended to sphere-guided interpolation for 3D volume morphing, as demonstrated in
Chapter 5.

6.2.1 Surface interpolation and visualisation

The advantages of disc-guided interpolation over shape-based interpolation carry through to
the case of parallel cross-sections, normally present in other medical imaging modalities, e.g.
MRI or CT. Where segmentation has to be performed manually, the reduction in the number of
cross-sections required for a good surface will be equally welcome for these modalities. Examples
of CT and MRI surfaces are shown in Section 3.5.3, for a child’s skull, female pelvis and liver.
Equally, the quality of RMT as an isosurface visualisation tool is apparent in the display of
a child’s teeth, and thigh muscles, in Section 3.6.3. Here, RMT is used on thresholded data,
and in this case the reduction in the number of triangles is particularly important — indeed
it may make the difference between being able to manipulate surfaces in real time or not. For
applications where the resolution can be reduced, the tetrahedral grid required by RMT can
be formed from a sub-set of the original orthogonal grid. For applications that already require
interpolation of the original data, there is no disadvantage in using a tetrahedral lattice for the
interpolated data. Isosurface extraction at the highest resolution of the original data is only
possible if additional points are interpolated from this data.

In addition, RMT can be used to display surfaces defined by functions, as shown in Sec-
tion 3.6.3, by sampling these functions to an appropriate grid. This is much more flexible than
the common technique of defining a rectangular (x-y) grid whose out-of-plane (z) values are
generated from the function, since this is only possible if the function is singularly valued in z,
and continuous in both x and y. None of these restrictions apply to the RMT method of surface
visualisation.

RMT can also be used in conjunction with the scan-conversion technique outlined in Chap-
ter 5, to re-triangulate closed, polygonal surfaces. In this case, the polygonal surface is first
sampled to an appropriate resolution, then RMT is used to create a new triangulated surface.
Repeating this at a variety of resolutions generates a set of triangulated surfaces with varying
levels of detail, appropriate for viewing at different distances. This is particularly useful for
complex virtual reality scenes.

6.2.2 3D volume morphing

Disc-guided interpolation allows a surface to be interpolated from a small number of cross-
sections, since it can handle cross-sections with very different shapes. In the same manner,
sphere-guided interpolation allows intermediate surfaces to be interpolated between two very
different source and target surfaces. Sphere-guided interpolation automates the detail of the
morph, in order to prevent morphs that are clearly incorrect, but leaves room for a natural level
of user control. The speed and versatility of this method in handling complex shape changes
enables the user to easily interact with the morphing process. Changing parameters has an
immediate effect on the display of correspondence, and low resolution morphs can be calculated
in minutes, to assess the eventual effect.
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Much of the processing speed of the algorithm is achieved by high quality scan conversion
of polygonal models to a volumetric representation, and equally high quality isosurfacing to
recreate the polygonal models for display. This can reduce the size of the volume for a given
surface quality by more than an order of magnitude. The automation of detailed correspondence
allows a simple manual correspondence technique to be adopted, where vectors are defined by
clicking and dragging.

6.3 Conclusions and further work

Volume measurement and surface visualisation techniques suitable for 3D ultrasound data have
been presented.

Using sequential freehand data as the source for these methods widens their applicability,
but also increases their complexity. In terms of scanning technique, it is easier to use an integral
3D probe, which automatically acquires an evenly sampled 3D volume, than a conventional
probe. The freehand technique requires a steadiness of hand in order to sample the volume
appropriately; however it also allows areas to be scanned which would not be possible with any
other method. Similarly, using the sequential approach makes the processing of data harder
than it would be if a voxel array was used; however it is the use of this approach which enables
multiple-sweep scanning for larger, or more awkwardly shaped or located, organs.

Segmentation is the obvious residual problem which must be tackled if the task of volume
measurement in 3D ultrasound is to be made any faster or easier. The approach adopted in
this thesis is to use manual border tracing, but limit the number of cross-sections required, and
ensure that segmentation could be performed in the original B-scans. It is unlikely that it will
ever be possible to segment ultrasound data fully automatically — even if object boundaries
were clearer, the problem of which object to segment would remain. However, semi-automatic
techniques, where the user works together with the computer in the task, may be of more use.
Whether this is the case is currently unclear; although semi-automatic techniques will in general
increase the precision of the segmentation, it is hard to implement them so that they are faster
to use than manual techniques.

There is also a trade-off between the number of cross-sections and the ease of segmentation.
Many semi-automatic techniques rely on initialising a cross-section in one image, with a prede-
fined cross-section on a neighbouring image. This is more successful if the images are similar,
however this may lead to a higher density of cross-sections than is required by the algorithms
presented in this thesis, hence also increasing the total segmentation time, even if that for each
cross-section is reduced. It should also be noted that the ability to segment the original B-scans
may well be crucial to the design of semi-automatic techniques, as well as making manual seg-
mentation easier. Many of the artifacts which make segmentation hard are directional, and if
information about the nature of these artifacts can be included in the segmentation approach,
this is likely to be much more successful in the original B-scans, where that direction is well
defined.

Another conscious decision, taken particularly in the design of the surface interpolation
algorithm and multiple-sweep framework, was to be faithful to the original data, rather than
trying to accommodate errors through smoothing. Both registration and segmentation errors are
presented to the clinician, but in such a way so as not to detract from the remaining data, giving
the clinician a clear indication of the quality of the measurements. This has the disadvantage that
surfaces will look less realistic than those created by data fitting with a smoothness constraint,
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and reslices through multiple-sweep data contain obvious mis-registration artifacts. However,
the approach makes it easier to design the algorithms for robustness in all circumstances, without
the danger of masking information which may have had clinical importance.

The surface created by disc-guided interpolation is currently constructed piecewise between
two cross-sections at a time. Although there are good reasons for avoiding cubic interpolation of
the distance field data from more than two cross-sections (outlined in Section 3.2.6), using more
than two cross-sections to establish the region correspondence may improve the consistency of
the surface. This could be achieved by altering the correspondence weighting for each disc, in
some way, such that it included a term based on the difference in correspondence direction to
each of the neighbouring planes.

Finally, the choice of experimentation technique has affected the type of conclusions that
can be drawn. Simulated experiments were chosen over in vitro measurements because although
in vitro measurements are popular and can be very useful, they neither demonstrate what the
in vivo system performance will be, nor allow enough control to assess the new algorithms
themselves. In this case, the major errors due to segmentation and registration are very similar
across all freehand 3D ultrasound systems. The crucial contribution of this thesis is in the design
of the post-processing algorithms, and these are better compared without swamping the results
with errors due to acquisition. Repeated in vivo observations were performed, and these give
an indication of the precision of the whole system, but not accuracy. Had a CT or MRI scanner
been available, a better assessment of in vivo accuracy would have been possible.

Any algorithms designed for non-parallel planes can also be applied to parallel planes, and
this is particularly the case for the surface interpolation and visualisation algorithms presented
in this thesis. Disc-guided interpolation is of use in limiting the number of parallel cross-
sections required in other medical imaging modalities. The quality and small number of triangles
generated by regularised marching tetrahedra is equally useful for any surface which is derived
from, or can be represented by, sampled data. In addition, the same framework used in the
interpolation of cross-sections can also be used to interpolate 3D volume data, leading to a robust,
topologically independent algorithm that is also appropriate for morphing between surfaces.



Appendix A

Test setup

A.1 Generating simulated scans

(a) Sphere (b) Ellipsoid (c) Cone

(d) Cube (e) ‘Baseball glove’ (f) ‘Jester’s hat’

Figure A.1: Test objects for simulated scans.

In order to validate the volume measurement and surface visualisation algorithms, software
was written to ‘scan’ the mathematically defined objects in Figure A.1. This software generated
sequences of ‘B-scans’ of any of these objects, where the image pixels were set to 255 if inside the
object, and zero otherwise. The data was saved in the same format as the actual ultrasound B-
scans, to allow processing of these simulated scans to be performed with the ultrasound software
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described in Appendix A.2. Simulated B-scans were precisely segmented by thresholding at any
value between zero and 255.

Objects were chosen to exhibit specific characteristics. The sphere is symmetric and smooth,
whereas the ellipsoid is more representative of a real organ. Both the cone and cube have sharp
edges, and the variation of the (horizontal) cross-sectional area of the cone is faster than linear.
The ‘baseball glove’ object is more complex, and contains both convex and concave regions. The
‘jester’s hat’ object is representative of a branching structure. These two objects were formed
by combining warped versions of more simple objects: an ellipsoid for the former, and three
cones and a sphere for the latter. The volume of all of the objects was known precisely.

The scanning pattern could be controlled in position, azimuth, elevation and roll. This was
achieved by defining the position and orientation of the first and last planes, then interpolating
any number of additional planes between them. A random jitter could also be added to the
positions and orientations, in order to represent a real sequence acquired with a slightly unsteady
hand. In addition, random errors could be introduced to the B-scan locations, in order to
represent possible registration errors.

Multiple-sweep simulation was achieved by concatenating the data from several simulated
scans of the same object.

A.2 Acquisition and processing of in vivo data

In vivo ultrasound data was recorded using a Toshiba Powervision 70001 with a 3.75MHz convex
curvilinear array probe. A Polhemus FASTRAK2 magnetic field position sensor was mounted
on this probe. The position signal from this, in addition to the video output of the ultrasound
machine, were then fed to a Silicon Graphics Indy workstation3 with an image acquisition card.
The position sensor was calibrated, using the technique described in [146], giving positional
accuracy over the acquisition volume of typically ±1mm in all directions.

Acquisition of the ultrasound images and position readings, calibration of the system, and
segmentation of the data were all performed using Stradx4 software [145]. Stradx is a sequential
freehand 3D ultrasound acquisition and visualisation tool, which was written in conjunction
with Richard Prager and Andrew Gee, at the University of Cambridge Department of Engineer-
ing. The volume measurement algorithm of Chapter 2, the surface visualisation algorithms of
Chapter 3, and the multiple-sweep framework of Chapter 4, have all been implemented in the
latest release, version 6.0, which is freely available on the internet, and included in the CDROM
described in Appendix E.

An example of the Stradx interface is shown in Figure A.2. The steps in using this software
for volume measurement and surface visualisation are:

Calibration Each time the position sensor is mounted on the ultrasound probe, the system is
calibrated, by scanning a carefully designed phantom in a water bath [146]. The calibration
parameters are calculated automatically from the acquired B-scans, and the whole process
takes approximately fifteen minutes.

Acquisition The clinician first determines the pattern in which the probe will be moved. Hav-
ing done so, the sequence is recorded by using the record and pause buttons in the main

1Toshiba America Medical Systems, Tustin, California
2Polhemus Incorporated, Colchester, Vermont
3Silicon Graphics Incorporated, Mountain View, California
4http://svr-www.eng.cam.ac.uk/~rwp/stradx/

http://svr-www.eng.cam.ac.uk/~rwp/stradx/
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Figure A.2: Stradx v6.0 interface

window at the top of Figure A.2. It is important that the patient is as still as possible,
and that the clinician moves the probe with a steady motion. Each of the data sequences
in this thesis could be recorded within a single breath hold.

Review Once the data has been recorded, B-scans can be reviewed in the review window
of Figure A.2, and their relative positions examined in the outline window. If much
movement is evident from the data, or the sweep did not cover the required volume, the
data is re-acquired at this stage.

Segmentation This is performed by the clinician on a subset of the recorded B-scans, in the
review window of Figure A.2. The cross-sections are displayed in 3D wire-frame format
as they are drawn, in the outline window. This provides feedback on both the shape and
the spacing of the cross-sections, allowing the clinician to concentrate the segmentations
on areas with the most complex shape.

Volume measurement As the cross-sections are completed, a real-time volume estimate is
calculated using cubic planimetry. This is shown in the outline window of Figure A.2.

Surface visualisation A surface can be visualised from the current set of cross-sections by
opening the surface window of Figure A.2. The time taken to display the surface is
approximately ten seconds, dependent on the complexity of the data and the number of
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cross-sections. A secondary estimate of the volume is then calculated from this surface,
and displayed in the same window.

Refinement The surface visualisation often reveals unexpected features, which, when the data
is reviewed, are discovered to be the result of incorrect segmentation. In this case, the
segmentation can be edited, and the volume measurement and surface recalculated from
the new cross-sections.

These steps are described in more detail, together with the other visualisation algorithms
implemented in Stradx, in HTML documentation. This documentation is available with the
software on the internet, and on the CDROM described in Appendix E.
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Algorithms used in volume
measurement

B.1 Area from parametric cubic splines

Given two curves, defined parametrically:

[

xi(t) yi(t)
]

=
[

t3 t2 t 1
]













xi3 yi3

xi2 yi2

xi1 yi1

xi0 yi0













where 0 ≤ t ≤ 1

If each curve is connected to the other by two straight lines joining the start points, t = 0, and
the end points, t = 1, the enclosed area A (shown in Figure B.1) can be calculated from [182]:

A =
∣

∣

∣

∣

∫ 1

t=0
~s · d~ω

∣

∣

∣

∣

(B.1)

where ~s and ~ω are defined in Figure B.1, and each can be calculated as follows:
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Figure B.1: Swept area between cubic splines. A is the swept area between parametric
cubic splines [x1(t), y1(t)] and [x2(t), y2(t)]. ~s(t) is a vector normal to the line joining the curves
at the same value of t, and ~ω(t) is the position vector of the centre of that line.
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Hence the area A is:
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where the coefficients c5, . . . , c0 can be derived from the coefficients of equations (B.3) and (B.2),
as follows:

c5 = xs3xω2 + ys3yω2

c4 = xs3xω1 + xs2xω2 + ys3yω1 + ys2yω2

c3 = xs3xω0 + xs2xω1 + xs1xω2 + ys3yω0 + ys2yω1 + ys1yω2

c2 = xs2xω0 + xs1xω1 + xs0xω2 + ys2yω0 + ys1yω1 + ys0yω2

c1 = xs1xω0 + xs0xω1 + ys1yω0 + ys0yω1

c0 = xs0xω0 + ys0yω0 (B.5)

B.2 Volume from geometric surface

The volume of a closed, triangulated surface can be calculated by summing the projected volumes
of each triangle, shown in Figure B.2, across the whole surface. This is a variant of Gauss’
theorem [90]. The area of a triangle, with vertices defined by the position vectors ~a, ~b and ~c, is
given by:

area =
1
2

(

~b− ~a
)

× (~c− ~a) (B.6)

Hence the projected area A in the direction of projection n̂ is:
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1
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)

· n̂ (B.7)

The distance from the centre of the triangle to its projection, l, is:
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1
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· n̂ (B.8)

Hence the enclosed projected volume is:
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Figure B.2: Volume of a triangulated surface. The volume of any closed surface can be
calculated from the sum of the enclosed volumes of each projected triangle, as shown above.
The choice of projection direction n̂ is arbitrary, as is the location of the origin o, provided these
are the same for all triangles in the surface.

The summation of this volume across all the triangles in the surface gives the total enclosed
volume of the surface.

If the surface is clipped by two or fewer planes, the volume enclosed by the surface within
the planes can also be calculated using equation (B.9). In this case, the projection direction n̂
must be parallel to each of these planes:

n̂ =































{0, 0, 1} no planes

n̂1 × (n1z, n1x, n1y) one plane, normal to n̂1

n̂1 × n̂2 two planes, normal to n̂1 and n̂2

(B.10)
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Geometric algorithms

Some of the methods described in this thesis involve algorithms which are particularly awk-
ward to implement correctly and efficiently in software. Where this is the case, pseudo-C-code,
together with a brief outline of the algorithm, have been included in this Appendix.

C.1 Discrete representation of a cross-section

Manual tracing of the object cross-sections in a B-scan results in a list of connected points
defining the object border. In order to use disc-guided interpolation to reconstruct a surface
from these cross-sections, a binary image is required, where each pixel is set to ‘1’ only if it
is inside the border. The conversion to this representation is similar to the ‘point in polygon’
problem described for instance by O’Rourke [139], except this must be evaluated for all the
pixels in a binary image containing the cross-section.

This conversion can be efficiently achieved by first discretising the object border, and then
‘filling in’ the inside of the border in a raster scan of the image. During the raster scan, the
discretised border image is replaced with an inside-outside ‘state’; this state is initialised as
‘outside’, then toggled each time a border pixel is encountered. Hence the edge of the image is
always set to ‘outside’ (i.e. a value of zero), and pixels are set to ‘inside’ (i.e. a value of one)
if they are enclosed by an odd number of boundaries. Borders within borders, for instance two
concentric circles, thus generate a hole within the object.

The initial discretisation of the object border must be calculated with care, to ensure that
the final raster scan generates the desired result. As a border crosses each row of the image, only
one pixel must be marked in this row, even if the border passes through several pixels; otherwise
the inside-outside state will be incorrectly toggled more than once during the scan of this row.
However, all the pixels through which the border passes are a part of the object. A similar
dilemma arises for borders which are on top of each other — in this case the inside-outside state
must not be toggled (the two coincident borders represent a very thin object), but the border
pixels are a part of the object, as before.

This problem can be overcome by incrementing the pixel at the point where the border
crosses an image row, by one; whereas all other pixels through which the border passes are
incremented by two. An example of such a calculation is shown in Figure C.1. As the border is
discretised, these numbers are accumulated at each pixel. Points at which the border direction
changes from up to down, or vice versa, also need an additional increment, since they effectively
represent two border edges. In the final raster scan of the image, only odd numbers cause the
inside-outside state to be toggled, but all non-zero pixels are set to ‘1’ in the final image.
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Figure C.1: Conversion of an object border to a binary image. Shaded squares are
the non-zero pixels after discretisation of the object border. Only odd values cause the inside-
outside state to be toggled during the raster scan. After this scan, all the border pixels, and
those marked with a ‘1’ above, are ‘inside’ the object.

This method works reliably, irrespective of the direction (clockwise or anti-clockwise) in
which the boundary is drawn, the complexity of the shape, the number of self intersections, or
the number of sub-objects (i.e. objects enclosed within holes within other objects). If there is
more than one object, all the object borders are discretised, before the final raster scan.

/∗ Convert the closed contour defined by ‘vertex[vertices]’ to a discrete ∗/
/∗ inside-outside representation in ‘image[height][width]’, which is initially blank ∗/
prev x = vertex[vertices-1].x; /∗ Find the previous vertex - in a closed contour, ∗/
prev y = vertex[vertices-1].y; /∗ the last vertex is connected to the first ∗/
v = 2; /∗ Work out if the y-value was ∗/
while ( prev y == vertex[vertices-v].y ) v++; /∗ increasing or ∗/
if ( prev y > vertex[vertices-v].y ) up = TRUE; /∗ decreasing ∗/
else up = FALSE;
for (v=0; v<vertices; v++) { /∗ Loop through all vertices ∗/

new x = vertex[v].x; /∗ Get the new vertex ∗/
new y = vertex[v].y;
if ( new y == prev y ) y inc = 0; /∗ Work out which way to increment y ∗/
else if ( new y > prev y ) y inc = 1;
else y inc = -1;
if ( new x == prev x ) x inc = 0; /∗ ... and x ∗/
else if ( new x > prev x ) x inc = 1;
else x inc = -1;
if ( y inc == 0 ) { /∗ If this is a horizontal line ∗/

for (x=prev x; x 6=new x; x+=x inc) {
image[new y][x] += 2; /∗ just mark pixels which it passes through ∗/

}
} else { /∗ This is not a horizontal line ∗/

if ( (up == 1)∧(y inc == 1) ) { /∗ If this is a turning point ∗/
image[prev y][prev x] += 1; /∗ additional increment for this point ∗/
up = !up; /∗ ... and reverse direction ∗/
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}
f = (new x - prev x)/(new y - prev y); /∗ Calculate gradient of border ∗/
next x = prev x;
for (y=prev y; y 6=new y; y+=y inc) { /∗ Loop through all y values, ∗/

this x = next x; /∗ calculating which x values the line passes through ∗/
mid x = prev x + (y-prev y+y inc/2.0)∗f;
next x = prev x + (y-prev y+y inc)∗f;
image[y][this x] += 1; /∗ Mark the point at which border crosses this y value ∗/
for (x=this x; x 6=next x; x+=x inc) {

if ( (x∗x inc) ≤ (mid x∗x inc) ) image[y][x] += 2; /∗ And also mark where ∗/
if ( (x∗x inc) ≥ (mid x∗x inc) ) image[y][x] += 2; /∗ it passes through ∗/

}
if ( mid x == next x ) image[y][next x] += 2;

}
}
prev y = new y; /∗ Update the previous contour vertex ∗/
prev x = new x; /∗ for the next time ∗/

}
inside = 0; /∗ Having discretised the contour, now fill in the middle ∗/
for (y=0; y<height; y++) { /∗ Scan image, row by row ∗/

for (x=0; x<width; x++) {
inside = inside ∧ (image[y][x]%2); /∗ If a crossing point, change ‘inside’ ∗/
if ( image[y][x] ) { /∗ make sure that points on the contour ∗/

image[y][x] = 1; /∗ are always included ∗/
} else {

image[y][x] = inside; /∗ Otherwise, use current value of ‘inside’ ∗/
}

}
}

C.2 Topological checks for clustering

The topological checks described in Section 3.4.3, to determine whether a set of surface in-
tersections can be clustered to form one or more vertices, can all be performed using logical
operations on integers. Each of the edges of the tetrahedra are assigned a bit number equivalent
to the label, as shown in Figure 3.24. The topological cases A to E are described in Figure 3.25.
Gathering surface intersections from a single surface can be done using the hexadecimal masks
in Table C.1. Finding holes (i.e. areas with no surface intersections, surrounded by a connected
surface) can be done in the same manner. Additional masks in Table C.2 are needed to check
for the ‘flat surface’ topological case.

/∗ Topological check to see if intersections around a sample point can be clustered ∗/
/∗ ‘intersections’ is a bit field containing the surface intersections ∗/
/∗ ‘distance[p]’ gives the sampled distance field at the point ‘p’ ∗/
if ( intersections == 0x0000 ) return; /∗ Quick exit if no intersections ∗/
surfaces = 0; /∗ Initialise number of surfaces, and ∗/
for (s=0; s<6; s++) surface[s] = 0; /∗ intersections for each surface ∗/
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Table C.1: Nearest edge masks. If the edges 0 . . . 13 in Figure 3.24 are assigned bit positions
0 . . . 13, then the masks below give the nearest edges. If the current edge is 2 units, there are
four neighbours, else if

√
3 units there are six neighbours.

Edge 0 1 2 3 4 5 6
No. Neighbours 6 4 6 4 6 4 6
Nearest edges 0x321A 0x2015 0x24B2 0x0251 0x006F 0x00D4 0x03B8

Edge 7 8 9 10 11 12 13
No. Neighbours 6 4 6 4 6 4 6
Nearest edges 0x0D64 0x0AC0 0x1949 0x2884 0x3780 0x2A01 0x1C07

Table C.2: ‘Flat surface’ topology masks. The masks give the vertices of all the outer edges,
i.e. those marked in grey in Figure 3.24. The first check for a ‘flat surface’ is that there are
intersections on both of the adjacent edges, and on neither of the opposite edges.

Edge 0-1 0-3 0-4 0-9 0-12 0-13 1-2 1-4
Adjacent edges 0x0003 0x0009 0x0011 0x0201 0x1001 0x2001 0x0006 0x0012
Opposite edges 0x2010 0x0210 0x000A 0x1008 0x2200 0x1002 0x2010 0x0005

Edge 1-13 2-4 2-5 2-7 2-10 2-13 3-4 3-6
Adjacent edges 0x2002 0x0014 0x0024 0x0084 0x0404 0x2004 0x0018 0x0048
Opposite edges 0x0005 0x0022 0x0090 0x0420 0x2080 0x0402 0x0041 0x0210

Edge 3-9 4-5 4-6 5-6 5-7 6-7 6-8 6-9
Adjacent edges 0x0208 0x0030 0x0050 0x0060 0x00A0 0x00C0 0x0140 0x0240
Opposite edges 0x0041 0x0044 0x0028 0x0090 0x0044 0x0120 0x0280 0x0108

Edge 7-8 7-10 7-11 8-9 8-11 9-11 9-12 10-11
Adjacent edges 0x0180 0x0480 0x0880 0x0300 0x0900 0x0A00 0x1200 0x0C00
Opposite edges 0x0840 0x0804 0x0500 0x0840 0x0280 0x1100 0x0801 0x2080

Edge 10-13 11-12 11-13 12-13
Adjacent edges 0x2400 0x1800 0x2800 0x3000
Opposite edges 0x0804 0x2200 0x1400 0x0801
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cluster = TRUE; /∗ and assume we will be able to cluster ∗/
if ( intersections == 0x3FFF ) cluster = FALSE; /∗ Topological case A ∗/
else {

all edges = intersections ∧ 0x3FFF; /∗ Search for surface holes ∗/
done edges = 0x3FFF; /∗ by looping through edges ∗/
todo edges = 0x0001;
while ( !(all edges & todo edges) ) todo edges �= 1;
while ( todo edges ) {

i = 0;
while ( !((1 � i) & todo edges) ) i++; /∗ Find first edge in list ∗/
done edges ∨ = (1 � i); /∗ don’t look at this edge again ∗/
todo edges |= (all edges & nearest edges[i]); /∗ add near edges to list ∗/
todo edges &= done edges; /∗ but not if already done them ∗/

}
/∗ If there are still edges to check, there is more than one hole ∗/
if ( all edges & done edges ) cluster = FALSE; /∗ Topological case B ∗/
if ( cluster ) {

all edges = intersections; /∗ Search for surfaces in a similar ∗/
while ( all edges ) { /∗ manner as for surface holes ∗/

done edges = 0x3FFF;
todo edges = 0x0001;
while ( !(all edges & todo edges) ) todo edges �= 1;
while ( todo edges ) {

i = 0;
while ( !((1 � i) & todo edges) ) i++; /∗ Find first edge in list ∗/
done edges ∨ = (1 � i); /∗ don’t look at this edge again ∗/
todo edges |= (all edges & nearest edges[i]); /∗ add near edges to list ∗/
todo edges &= done edges; /∗ but not if already done them ∗/

}
all edges &= done edges;
surface[surfaces++] = done edges ∧ 0x3FFF; /∗ Record surface intersections ∗/

}
if ( surfaces == 1 ) { /∗ Check for flat surfaces, if only one surface ∗/

for (i=0; i<36; i++) { /∗ For each edge ∗/
if ( !(adjacent edge[i] & ∼done edges) && /∗ If all adjacent edges in surface ∗/

!(opposite edge[i] & done edges) ) { /∗ but neither opposite edges ∗/
/∗ Test each of the adjacent edges and opposite edges to edge i ∗/
a1 = 0; /∗ Find first adjacent edge ∗/
while ( (1 � a1) & ∼adjacent edge[i] ) a1++;
a2 = a1+1; /∗ and second adjacent edge ∗/
while ( (1 � a2) & ∼adjacent edge[i] ) a2++;
o1 = 0; /∗ Find first opposite edge ∗/
while ( (1 � o1) & ∼opposite edge[i] ) o1++;
o2 = o1+1; /∗ and second opposite edge ∗/
while ( (1 � o2) & ∼opposite edge[i] ) o2++;
if ( ( ((distance[a1]≥0) ∧ (distance≥0)) || /∗ Check if both intersections ∗/
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(abs(distance[a1]) ≤ abs(distance[o1]) && /∗ are near a1 ∗/
abs(distance[a1]) ≤ abs(distance[o2])) ) &&

( ((distance[a2]≥0) ∧ (distance≥0)) || /∗ Or if both intersections ∗/
(abs(distance[a2]) ≤ abs(distance[o1]) && /∗ are nearer a2 ∗/
abs(distance[a2]) ≤ abs(distance[o2])) ) ) {

cluster = FALSE; /∗ Topological case C ∗/
break;

}
}

}
}

}
}
/∗ If cluster is TRUE, can cluster intersections on each surface, which are stored ∗/
/∗ in surface[surfaces] - i.e. Topological case D or E ∗/

C.3 Intersection of a polygon with a set of planes

This function is required for the multiple-sweep framework of Chapter 4, in order to calculate
which part of a dividing plane to shade in the ‘outline’ window, and which area to cross-hatch
in the ‘review’ window. In the former case, it is initialised with a polygon approximating to a
disc, and in the latter with a rectangle marking the edge of the current B-scan.

The set of dividing planes splits space into partitions. Each partition is defined by which
side of each of the planes it is on, and can be represented by an integer, with one bit per dividing
plane. The (convex) polygon is intersected with each dividing plane in turn, traversing all the
vertices each time. The ‘distance to plane(x,y,z,i)’ function returns the distance of the point
(x, y, z) to dividing plane i.

/∗ Perform intersection of polygon with one partition, defined by dividing planes ∗/
/∗ Initial polygon has ‘p1’ vertices, at locations ‘x1[]’, ‘y1[]’ and ‘z1[]’ ∗/
for (i=0; i<dividing planes; i++) { /∗ Loop through all planes ∗/

d1 = distance to plane( x1[p1-1], y1[p1-1], z1[p1-1], i ); /∗ Distance for last vertex ∗/
if ( !(partition & (1�i)) ) d1 = -d1; /∗ positive if inside partition ∗/
p2 = 0; /∗ Initialise new polygon ‘p2’ ∗/
for (v=0; v<p1; v++) { /∗ Loop through all vertices ∗/

d1 = distance to plane( x1[v], y1[v], z1[v], i ); /∗ Distance for this vertex ∗/
if ( !(partition & (1�i)) ) d2 = -d2; /∗ positive if inside partition ∗/
if ( d1 > 0 ) { /∗ Check for an intersection with line from ‘p1-1’ to ‘v’ ∗/

if ( d2 < 0 ) { /∗ Just gone outside partition - need new vertex ∗/
x2[p2] = (d1 ∗ x1[v] - d2 ∗ x1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
y2[p2] = (d1 ∗ y1[v] - d2 ∗ y1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
z2[p2] = (d1 ∗ z1[v] - d2 ∗ z1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
p2++;

} else { /∗ Still inside partition - keep this vertex ∗/
x2[p2] = x1[v];
y2[p2] = y1[v];
z2[p2] = z1[v];
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p2++;
}

} else if ( d2 > 0 ) { /∗ Just gone inside partition - need this and new vertex ∗/
x2[p2] = (d1 ∗ x1[v] - d2 ∗ x1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
y2[p2] = (d1 ∗ y1[v] - d2 ∗ y1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
z2[p2] = (d1 ∗ z1[v] - d2 ∗ z1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
p2++;
x2[p2] = x1[v];
y2[p2] = y1[v];
z2[p2] = z1[v];
p2++;

}
d1 = d2; /∗ Keep record of last distance to plane ∗/

}
copy polygon( p2, x2, y2, z2, &p1, &x1, &y1, &z1 ); /∗ Update original polygon ∗/

}

C.4 Clipping a surface to a set of planes

A triangulated surface can be clipped to a given partition (defined by a set of dividing planes,
as in the previous section), by clipping each of the triangles in turn to each dividing plane in
turn. Each time a triangle is clipped by a plane, one or two new triangles are created — all of
these new triangles must be tested against the remaining dividing planes. Up to twice as many
triangles can be created, from each original triangle, as there are dividing planes.

/∗ Intersect triangle ‘t’, with vertices ‘t.a’, ‘t.b’ and ‘t.c’, with a partition ∗/
new tris = 1; new tri[0] = t; /∗ Initialise list of triangles ∗/
for (i=0; i<dividing planes; i++) { /∗ Loop through all planes defining partition ∗/

add tris = 0;
for (j=0; j<new tris; j++) { /∗ Loop through all triangles in current list ∗/

t = new tri[j]; /∗ Get new triangle ∗/
da = distance to plane( t.a.x, t.a.y, t.a.z, i ); /∗ and distance to plane ∗/
db = distance to plane( t.b.x, t.b.y, t.b.z, i ); /∗ for each vertex, ∗/
dc = distance to plane( t.c.x, t.c.y, t.c.z, i ); /∗ checking sign ∗/
if ( !(partition & (1�i)) ) { da = -da; db = -db; dc = -dc; }
abi = 1; aci = 1; bci = 1; /∗ Find intersections with each edge ab, ac and bc ∗/
if ( da > 0 ∧ db > 0 ) { /∗ Check edge ab ∗/

ab.x = (da ∗ t.b.x - db ∗ t.a.x) / (da - db); /∗ store intersection ∗/
ab.y = (da ∗ t.b.y - db ∗ t.a.y) / (da - db); /∗ if there is one ∗/
ab.z = (da ∗ t.b.z - db ∗ t.a.z) / (da - db);

} else abi = 0;
if ( da > 0 ∧ dc > 0 ) { /∗ Check edge ac ∗/

ac.x = (da ∗ t.c.x - dc ∗ t.a.x) / (da - dc); /∗ store intersection ∗/
ac.y = (da ∗ t.c.y - dc ∗ t.a.y) / (da - dc); /∗ if there is one ∗/
ac.z = (da ∗ t.c.z - dc ∗ t.a.z) / (da - dc);

} else aci = 0;
if ( db > 0 ∧ dc > 0 ) { /∗ Check edge bc ∗/
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bc.x = (db ∗ t.c.x - dc ∗ t.b.x) / (db - dc); /∗ store intersection ∗/
bc.y = (db ∗ t.c.y - dc ∗ t.b.y) / (db - dc); /∗ if there is one ∗/
bc.z = (db ∗ t.c.z - dc ∗ t.b.z) / (db - dc);

} else bci = 0;
if ( da < 0 ) index = (abi�2)|(aci�1)|(bci); /∗ Form index from type of ∗/
else index = ∼((abi�2)|(aci�1)|(bci)); /∗ intersection, and sign ∗/
switch ( index ) {
case 0: /∗ No intersections - triangle entirely outside partition ∗/

for (k=j+1; k<(new tris+add tris); k++) new tri[k-1] = new tri[k];
new tris -= 1; j -= 1;
break;

case 1: /∗ ab and ac intersection - one new triangle ∗/
new tri[j] = form triangle( new tri[j].a, ab, ac );
break;

case 2: /∗ ab and bc intersection - two new triangles ∗/
new tri[j] = form triangle( new tri[j].a, ab, new tri[j].c );
new tri[new tris+add tris] = form triangle( new tri[j].c, ab, bc );
add tris++;
break;

case 3: /∗ ac and bc intersection - one new triangle ∗/
new tri[j] = form triangle( new tri[j].c, ac, bc );
break;

case 4: /∗ ac and bc intersection - two new triangles ∗/
new tri[j] = form triangle( new tri[j].a, new tri[j].b, ac);
new tri[new tris+add tris] = form triangle( new tri[j].b, bc, ac );
add tris++;
break;

case 5: /∗ ab and bc intersection - one new triangle ∗/
new tri[j] = form triangle( new tri[j].b, bc, ab );
break;

case 6: /∗ ab and ac intersection - two new triangles ∗/
new tri[j] = form triangle( new tri[j].b, new tri[j].c, ab );
new tri[new tris+add tris] = form triangle( new tri[j].b, ac, ab );
add tris++;
break;

case 7: /∗ No intersections - triangle entirely inside partition ∗/
break;

}
}
new tris += add tris; /∗ Update number of triangles, then check next plane ∗/

}



Appendix D

Non-ultrasound software
implementations

In addition to implementation of the algorithms described in this thesis in an ultrasound ap-
plication, several have also been implemented in more general purpose software. As with the
ultrasound software, these are freely available from the internet1, and are also included on the
CDROM described in Appendix E. A brief description of each application is given here. Full in-
structions in HTML, and example data (where appropriate) are also contained on the CDROM.

D.1 IsoSurf — surface visualisation for parallel data

IsoSurf (ISOSURFace extraction) implements the surface interpolation and visualisation algo-
rithms in Chapter 3, in a framework suitable for regular voxel data. The binary input data is
first read, then thresholded at a user-defined value, resulting in a set of binary cross-sections.
These cross-sections can optionally be filtered using a morphological opening and/or closing with
a disc size appropriate to the sampling resolution. This operation ensures that the contours do
not contain features that are smaller than the sampling resolution.

Surface triangulation, using regularised marching tetrahedra, is performed at a user-defined
resolution. If this resolution is greater than the inter-plane spacing (the z resolution), then
additional planes are interpolated, using disc-guided interpolation. Shape-based interpolation
can optionally be used in place of disc-guided interpolation, in order to compare results. The
triangulated surface can be saved in OOGL2 (‘.off’), or VRML3 (‘.wrl’) format for rendering
with an appropriate 3D graphics viewer.

D.2 EqnSurf — visualisation of surfaces of equations

EqnSurf (EQuatioN isoSURFace visualisation) is an implementation of regularised marching
tetrahedra for visualising mathematical functions. The functions are supplied as a text string,
with the characters ‘x’, ‘y’ and ‘z’ in place of the variables in each of the three dimensions. This
function is evaluated over a user specified volume, defined by its centre and range from this
centre point. The isosurface at a user specified threshold is extracted from this volume, and
displayed, as in Figure D.1.

1http://svr-www.eng.cam.ac.uk/~gmt11/software/software.html
2Object Oriented Graphics Library
3Virtual Reality Modeling Language

http://svr-www.eng.cam.ac.uk/~gmt11/software/software.html


Appendix D.3. VolMorph — volume morphing of surfaces 157

Figure D.1: Visualisation of equation surfaces. The triangulated surface can be used both
for rendering, and calculating intersections with each axis.

Figure D.2: Volume morphing of surfaces. Two views of the user interface are shown.

The viewpoint, and position of the light source, can be rotated by using the mouse buttons.
The grids can also be moved by clicking on them, and dragging. In addition to rendering the
triangulated surface, it can also be used to calculate the intersection with each of the planes
defined by the axes, also shown in Figure D.1. This calculation is updated in real time, such
that the intersection changes as the axes are moved.

D.3 VolMorph — volume morphing of surfaces

VolMorph (VOLume MORPHing of surfaces) implements the algorithms and user interface
described in Chapter 5. Surfaces are input in OOGL (‘.off’) format, and can be output as either
OOGL, VRML (‘.wrl’), or as sequences of images.



Appendix E

Description of CDROM

A CDROM has been included with this thesis. This contains the thesis itself in PDF1 format,
movies that expand on some of the figures within the thesis, and software implementations as
described in Appendices A.2, D.1, D.2 and D.3.

The thesis, movies and software on the CDROM can be accessed with an internet browser,
from index.html, in the root directory. The movies are in the ‘movies’ directory, in both
Quicktime2 and MPEG formats, named with the figure to which they refer. For instance, the
movie relating to Figure 3.19d is in the file ‘movies/figure3 19d.mov’ (Quicktime version) and
‘movies/figure3 19d.mpg’ (MPEG version). The software is available for Windows (98 and
NT), Irix (6.3 and above) and Linux, save for Stradx, which is only available for Irix and Linux.

1Portable Document Format c©2000 Adobe Systems Incorporated
2 c©2000 Apple Computer Inc.
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[144] U. G. Pöhls and A. Rempen. Fetal lung volumetry by three-dimensional ultrasound.
Ultrasound in Obstetrics and Gynecology, 11(1):6–12, January 1998.

[145] R. W. Prager, A. H. Gee, and L. Berman. Stradx: real-time acquisition and visualisation
of freehand 3D ultrasound. Medical Image Analysis, 3(2):129–140, 1999.

[146] R. W. Prager, R. N. Rohling, A. H. Gee, and L. Berman. Rapid calibration for 3-D
free-hand ultrasound. Ultrasound in Medicine and Biology, 24(6):855–869, 1998.

[147] D. H. Pretorius, T. R. Nelson, R. N. Baergen, E. Pai, and C. Cantrell. Imaging of placental
vasculature using three-dimensional ultrasound and color power doppler: a preliminary
study. Ultrasound in Obstetrics and Gynecology, 12(1):45–49, July 1998.

[148] D. T. Puff, D. Eberly, and S. M. Pizer. Object-based interpolation via cores. Proceedings
of SPIE, 2167:143–150, 1994.

[149] A. Rahmouni, A. Yang, C. M. C. Tempany, T. Frenkel, J. Epstein, P. Walsh, P. K.
Leichner, C. Ricci, and E. Zerhouni. Accuracy of in vivo assessment of prostatic volume
by MRI and transrectal ultrasonography. Journal of Computer Assisted Tomography,
16(6):935–940, November 1992.

[150] V. Ranjan and A. Fournier. Shape transformations using union of spheres. Technical Re-
port TR-95-30, Imager Computer Graphics Laboratory, Department of Computer Science,
University of British Columbia, 1995.

[151] V. Ranjan and A. Fournier. Matching and interpolation of shapes using unions of circles.
Computer Graphics Forum, 15(3):C–129–C–142, August 1996.

[152] R. N. Rankin, A. Fenster, D. B. Downey, P. L. Munk, M. F. Levin, and A. D. Vellet.
Three-dimensional sonographic reconstruction: Techniques and diagnostic applications.
American Journal of Roentgenology, 161(4):695–702, October 1993.

[153] S. N. Rasmussen. Liver volume determination by ultrasonic scanning. British Journal of
Radiology, 45:579–585, August 1972.

[154] S. P. Raya and J. K. Udupa. Shape-based interpolation of multidimensional objects. IEEE
Transactions on Medical Imaging, 9(1):32–42, March 1990.

[155] M. Reddy. SCROOGE: Perceptually-driven polygon reduction. Computer Graphics Fo-
rum, 15(4):191–203, October 1996.

[156] M. Riccabona, D. H. Pretorius, T. R. Nelson, D. Johnson, and N. E. Budorick. Three-
dimensional ultrasound: display modalities in obstetrics. Journal of Clinical Ultrasound,
25(4):157–167, May 1997.

[157] B. Robert, B. Richard, and J.-M. Nicolas. An interactive tool to visualize three-dimensional
ultrasound data. Ultrasound in Medicine and Biology, 26(1):133–142, January 2000.

[158] R. N. Rohling. 3D freehand ultrasound: reconstruction and spatial compounding. PhD
thesis, Cambridge University, 1999.

[159] R. N. Rohling, A. H. Gee, and L. Berman. Three-dimensional spatial compounding of
ultrasound images. Medical Image Analysis, 1(3):177–193, April 1997.



BIBLIOGRAPHY 170

[160] R. N. Rohling, A. H. Gee, and L. Berman. Automatic registration of 3-D ultrasound
images. Ultrasound in Medicine and Biology, 24(6):841–854, July 1998.

[161] R. N. Rohling, A. H. Gee, and L. Berman. A comparison of freehand three-dimensional
ultrasound reconstruction techniques. Medical Image Analysis, 3(4):339–359, 1999.

[162] K. Rosenfield, P. Boffetti, J. Kaufman, R. Weinstein, S. Razvi, and J. M. Isner. Three-
dimensional reconstruction of human carotid arteries from images obtained during noninva-
sive B-mode ultrasound examination. The American Journal of Cardiology, 70(3):379–384,
August 1992.

[163] C. F. Ruff, S. W. Hughes, and D. J. Hawkes. Volume estimation from sparse planar images
using deformable models. Image and Vision Computing, 17(8):559–565, June 1999.

[164] D. Ruprecht and H. Müller. Deformed cross-dissolves for image interpolation in scientific
visualization. The Journal of Visualization and Computer Animation, 5(3):167–181, July
1994.

[165] A. Salustri and J. R. T. C. Roelandt. Ultrasonic three-dimensional reconstruction of the
heart. Ultrasound in Medicine and Biology, 21(3):281–293, 1995.

[166] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii. Function representation
of solids reconstructed from scattered surface points and contours. Computer Graphics
Forum, 14(4):181–188, October 1995.

[167] R. L. Schild, T. Wallny, R. Fimmers, and M. Hansmann. Fetal lumbar spine volumetry by
three-dimensional ultrasound. Ultrasound in Obstetrics and Gynecology, 13(5):335–339,
May 1999.

[168] P. Schnider, P. Birner, A. Gendo, K. Ratheiser, and E. Auff. Bladder volume determina-
tion: portable 3-D versus stationary 2-D ultrasound device. Archives of Physical Medicine
and Rehabilitation, 81(1):18–21, January 2000.

[169] C. M. Sehgal, G. A. Broderick, R. Whittington, R. J. T. Gorniak, and P. H. Arger. Three-
dimensional US and volumetric assessment of the prostate. Radiology, 192(1):274–278,
July 1994.

[170] R. Shahidi, R. Tombropoulos, and R. P. Grzeszczuk. Clinical applications of three-
dimensional rendering of medical data sets. Proceedings of the IEEE, 86(3):555–568, March
1998.

[171] W.-S. V. Shih, W.-C. Lin, and C.-T. Chen. Morphologic field morphing: Contour model-
guided image interpolation. International Journal of Imaging Systems and Technology,
8(5):480–490, 1997.

[172] M. Sramek and W. E. Kaufman. Alias-free voxelization of geometric objects. IEEE
Transactions on Visualization and Computer Graphics, 5(3):251–267, July 1999.

[173] H. Steiner, A. Staudach, D. Spitzer, and H. Schaffer. Three-dimensional ultrasound in
obstetrics and gynaecology: technique, possibilities and limitations. Human Reproduction,
9(9):1773–1778, September 1994.



BIBLIOGRAPHY 171

[174] M. K. Terris and T. A. Stamey. Determination of prostate volume by transrectal ultra-
sound. The Journal of Urology, 145(5):984–987, May 1991.

[175] S. Tong, H. N. Cardinal, R. F. McLoughlin, D. B. Downey, and A. Fenster. Intra-
and inter-observer variability and reliability of prostate volume measurement via two-
dimensional and three-dimensional ultrasound imaging. Ultrasound in Medicine and Bi-
ology, 24(5):673–681, 1998.

[176] J. W. Trobaugh, D. J. Trobaugh, and W. D. Richard. Three-dimensional imaging with
stereotactic ultrasonography. Computerized Medical Imaging and Graphics, 18(5):315–323,
September 1994.

[177] P. M. Tuomola, A. H. Gee, R. W. Prager, and L. Berman. Body-centred visualisation for
freehand 3D ultrasound. Ultrasound in Medicine and Biology, 26(4):539–550, June 2000.

[178] G. Turk and J. F. O’Brien. Shape transformation using variational implicit functions.
In Siggraph 99: Computer Graphics Proceedings, pages 335–342, Los Angeles, California,
August 1999.
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