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Abstract

Freehand 3D ultrasound is particularly appropriate for the measurement of organ volumes.
For small organs, which can be fully examined with a single sweep of the ultrasound probe, the
results are known to be much more accurate than those using conventional 2D ultrasound.
However, large or complex shaped organs are difficult to quantify in this manner because
multiple sweeps are required to cover the entire organ. Typically, there are significant regis-
tration errors between the various sweeps, which generate artifacts in an interpolated voxel
array, making segmentation of the organ very difficult. This report describes how sequential
freehand 3D ultrasound can be used to measure the volume of large organs without the need
for an interpolated voxel array. The method is robust to registration errors and sweep orien-
tation, as demonstrated in simulation and also using in vivo scans of a human liver, where a
volume measurement precision of ±5% is achieved.
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1 Introduction

1.1 Motivation

Accurate measurement of organ volume is an application where three-dimensional (3D) ul-
trasound can provide a real benefit. Volume measurement is important in several anatomical
areas, for instance the heart [12], foetus [7], placenta [14], kidney [11], prostate [1], bladder
and eye [6]. Traditionally, volumes have been estimated with 2D ultrasound, but it is gen-
erally accepted that 3D ultrasound can provide much greater accuracy, although it is also
acknowledged that more needs to be done to make such methods clinically acceptable [26].
Greater measurement accuracy can enable the tracking of smaller volume changes, particu-
larly important in assessing the progress of tumours under treatment. Volume measurement
by 3D ultrasound is approaching the accuracy only previously attainable through Computed
Tomography (CT) or Magnetic Resonance Imaging (MRI). This is of practical benefit, since
ultrasound is less expensive, more widely available and, in comparison to CT, less damaging
to the patient. However, it has generally not been possible to use 3D ultrasound to examine
anatomy which is larger then the width of a single B-scan, since this would require multiple
sweeps to cover the entire organ.

There are several cases where the anatomy is too large, or the shape is too awkward, or
the direction of view is too restricted, to scan the entire volume in a single sweep. For instance
the foetus beyond mid-term is often too large or awkwardly positioned to scan in this way.
Tumours, too, can grow to be larger than will fit into a single B-scan, or if they are located
beneath the lower ribs (e.g. in the liver) can be impossible to scan in one motion of the probe.
The liver itself is also in this category, though there is less clinical justification for being able
to measure the volume of the liver accurately1. The liver does, however, provide an excellent
test case for using ultrasound in this context, since it is large, has a relatively complex shape,
and its position beneath the lower ribs constrains the direction of insonification.

There have been several attempts in the past to use a primitive form of 3D ultrasound —
where the position of each B-scan is recorded manually — to measure liver volume [4, 5, 9, 20].
The earliest of these used a freehand scanning technique [20], although the accuracy of the
volume measurements was limited by the large number of hand calculations and inaccurate
B-scan localisation. The remainder used parallel transverse slices, with which it is difficult
to examine the entire liver. In all cases, it was not possible to include the entire liver cross-
section in all of the B-scans — approximations to the shape of missing sections were required.
It is only recently that freehand scanning techniques have again been applied to liver volume
measurement [13] and foetal liver volumes [25].

In addition to providing accurate measurements, to be clinically useful, it is crucial that
any volume measurement system is also:

• relatively fast — ideally the assessment should be performed with the patient still
present, as this enables repeat scanning should this be found to be necessary after
processing the data.

• easy to understand and use.

• transparent — it is vital in a clinical setting that any artifacts in the data due to the
1Assessment by palpation of the approximate liver volume, by contrast, is a standard part of an abdominal

examination.
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acquisition and display alone are clearly identifiable as such and do not detract from,
nor are confused with, the ‘real’ data.

1.2 Existing techniques

Systems which allow the construction and visualisation of 3D data from ultrasound have
been widely investigated in the last two decades [8, 17, 30]. Such systems can be categorised
into freehand, where the clinician is free to move the probe in any manner, and mechanical
systems. Mechanical systems in general consist of a probe assembly which moves the probe
along a pre-defined path, such that a volume is scanned, the whole assembly being held fixed
during acquisition [17]. The size of volume is therefore restricted by what can physically be
held in good acoustic contact with the skin surface. In order to acquire larger volumes, it
would be necessary to attach a position sensor to the whole assembly, and acquire in several
positions — to our knowledge, no such systems are currently available.

The restriction in acquired volume also applies to 2D transducer arrays [16], for much the
same reason as for mechanically located probe assemblies.

1.3 Freehand 3D ultrasound

Freehand 3D ultrasound preserves one of the inherent advantages of ultrasound over CT and
MRI; namely, the ability for the clinician to move the probe in an unrestricted manner —
the probe position is sensed remotely, often by use of a magnetic position sensor [18]. Hence
there is no inherent limit on the size of the volume that can be scanned. Both this and
the flexibility of insonification direction make freehand 3D ultrasound an ideal technique for
scanning large organs such as the liver. Since the data generated from such scans is irregular,
it is generally first interpolated to a regular voxel array, in order to reduce the complexity
of further processing. There are several techniques which can successfully generate this voxel
array from single sweeps [24]. However, most of these techniques are very simple (in order
to process the large amount of data in an acceptable time), and if applied unaltered to data
which is from multiple sweeps of the probe, can produce undesirable results. Figure 1(a), for
instance, shows two sweeps from a liver examination which have been interpolated using the
voxel nearest neighbour [24] interpolation. The poor image quality is due to a combination of
treating the black regions around each B-scan as ‘real’ data, and misregistration of the data
itself.

Both these problems become much more apparent when using multiple sweeps — in partic-
ular, misregistration is much worse between data sweeps than within them. This is primarily
a result of movement of the organ under examination with respect to the position reference
frame, due to varying probe pressure from one sweep to the next. This misregistration has
been studied in the context of spatial compounding (a technique to reduce the noise in ul-
trasound images) [3, 22, 23]. The data from each sweep must be registered before it can be
compounded, which is a time consuming and often poorly constrained problem.

Combining data from multiple ultrasound sweeps has also been successfully achieved for
use in an ultrasound simulator [2]. Creating a good data set for simulation is, however, a
somewhat different problem to that of examining a patient. The techniques of image warping
and blending used to register the data are both time consuming and inappropriate for use in
an unsupervised clinical context, since the warping algorithm can make changes to the data
which are not justified by the physics of the acquisition. The simplest, and possibly most
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(a) Nearest neighbour on multiple sweeps (b) Also using dividing planes

Figure 1: Interpolation from multiple sweeps. Performing simple nearest neighbour
interpolation on multiple sweeps generates results as in (a). (b) is the result of using additional
planes to separate the sweeps.

appropriate, way to combine data from multiple sweeps in a clinical context is to use only
one sweep in any one part of the interpolated volume, as in Figure 1(b). The data from
each sweep can now be clearly seen; however, it is still very difficult to segment from these
interpolated images, due to the registration artifacts — for instance at the posterior edge of
the liver.

1.4 Sequential freehand 3D ultrasound

Recently, we have proposed an alternative approach to freehand 3D ultrasound, which by-
passes the voxel array stage. In sequential freehand 3D ultrasound, the data is visualised
and analysed directly from the original B-scans and positions — see Figure 2. Any-plane
slicing, non-planar slicing, panoramic imaging, volume estimation and surface rendering can
be performed without the use of an intermediate voxel representation [10, 18, 19, 28]. The
sequential approach offers several advantages:

• When reslicing, the data is resampled only once, from the B-scan pixels to the slice
pixels. The conventional approach requires two resampling stages, from the B-scan
pixels to the voxel array, then from the voxel array to the slice pixels. Since resampling
usually involves data approximation, more accurate visualisation is possible by avoiding
one resampling process.

• Reslicing can be performed at the full resolution of the B-scans, without the significant
memory overhead of a high resolution voxel array.

• Visualisation and data analysis can be performed in real time, as the data is being ac-
quired, since the sequential visualisation and volume measurement algorithms reference
each B-scan only once, in the order in which they are acquired.
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Figure 2: Volume and surface estimation in sequential freehand 3D ultrasound.
Conventional freehand 3D ultrasound systems adopt the left hand route, through the voxel-
based representation. The sequential approach avoids this by performing pixel classification
in the original B-scans, from which volumes and surfaces can be estimated directly.

• Segmentation (for volume measurement and surface rendering) is performed on the B-
scans themselves, instead of parallel slices through the voxel array. The B-scans are
high resolution and exhibit no reconstruction artifacts, making them relatively easy to
interpret for manual or assisted segmentation. The same cannot be said of slices through
the voxel array.

1.5 Original contribution

In this paper, we present an extension of the sequential paradigm for freehand ultrasound
data acquired from multiple sweeps. We adopt a simple framework which does not require
registration of the data, yet is capable of faithful reslices and accurate volume measurements.
Segmentation of the data, which is required for measuring volume accurately, is performed
in the original B-scans — this is much simpler for the clinician than segmenting interpolated
data, especially in the presence of interpolation artifacts like those in Figure 1(a), or registra-
tion artifacts like those in Figure 1(b). Only a handful of segmentations are required to give
an accurate volume estimate. The accuracy of the method is verified mathematically and by
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simulation, and tested in vivo by repeated observations of two subjects’ livers. The method
is, however, generic and can be used for any large or awkward-to-scan object.

So far as we are aware, only one other freehand 3D ultrasound system exists which uses
data from multiple sweeps in order to calculate organ volume, without constructing a voxel
array [13]. In this system, points at the edge of the organ are selected from the original
B-scans, and a piecewise smooth subdivision surface is fitted to these points, subject to some
smoothness criterion. The volume can then be estimated from this surface. Our approach
has several advantages over this system:

• The method of combining data from multiple sweeps allows reslicing of the data in
addition to volume measurement and surface extraction.

• The volume estimation method can calculate volume directly from the cross-sections
(there is no need to extract the organ surface), fast enough to be updated immediately
as the cross-sections are drawn.

• Our method has also been proven to give accurate results with only a handful of seg-
mented cross-sections [28], a result which is confirmed for multiple sweep data here.

• The surface reconstruction method is a sequential interpolation technique which is guar-
anteed to pass through the actual cross-sections, rather than approximating to them,
and places no constraint on the topology of the surface. This has the advantage of
remaining faithful to the data, but the disadvantage of looking less pretty, since there
is no smoothness constraint on the surface.

2 Method

In-vivo ultrasound data was recorded using a Toshiba Powervision 70002 with a 3.75MHz
convex curvilinear array probe. A Polhemus FASTRAK3 magnetic field position sensor was
mounted on this probe. The position signal from this, in addition to the video output of
the ultrasound machine, were then fed to a Silicon Graphics Indy workstation4 (roughly
equivalent in processing power to a 200Mhz Intel Pentium II) with a video acquisition card.
Acquisition of the ultrasound images and position readings, calibration of the system, and all
segmentation and processing of the data were performed using our own software, Stradx, v5.4
of which is freely available on the internet5. A future release will include all the functionality
described in this paper. The calibration process gave accuracies of typically ±1mm in all
directions.

To assess the in vivo precision of the system, ten examinations were performed on the
livers of each of two healthy subjects. For each subject, five of these examinations involved
two ultrasound sweeps, as in Figure 3(a), and the other five involved three sweeps as in
Figure 4(a). The actual orientation of these sweeps varied somewhat between examinations.
Each complete examination was performed in a single breath hold (roughly 20 seconds).

Simulated data was generated by ‘scanning’ mathematically defined shapes for which the
volume was known precisely, then processed in the same way as the in vivo data. These scans

2Toshiba America Medical Systems, Tustin, California
3Polhemus Incorporated, Colchester, Vermont
4Silicon Graphics Incorporated, Mountain View, California
5http://svr-www.eng.cam.ac.uk/∼rwp/stradx/
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(a) Orientation of B-scans (b) Segmentation (c) Typical B-scan

Figure 3: Liver examination using two sweeps. The viewing direction in (b) is the same
as in (a). The position of the dividing plane shown in (b) is based on the sweep orientation.
Cross-hatching in the B-scan, as in (c), indicates areas which are better covered by a B-scan
from another sweep. One longitudinal and one horizontal sweep is used.

(a) Orientation of B-scans (b) Segmentation (c) Typical B-scan

Figure 4: Liver examination using three sweeps. The figures and orientation are as in
Figure 3. In this case, the liver is covered by three overlapping longitudinal sweeps.
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Figure 5: Volume measurement from multiple sweeps. The multiple sweep data is
acquired and invalid B-scans (i.e. those between sweeps) marked. Dividing planes (which sep-
arate the sweep data) are calculated automatically, but can be manually adjusted if necessary.
Cross-sections are then outlined in the original B-scans — only a handful are required to give
an accurate volume estimate.

Partition 0

B
Sweep

Partition 3

Dividing
Plane 1

Partition 2 Partition 1

Plane 0
Dividing

Part of dividing plane separating sweeps

Dividing plane

KEY

Volume swept by one motion of probe

Sweep A

Figure 6: Definition of terms for multiple sweeps. Sweep A and B are separated by two
dividing planes 0 and 1. These planes form four partitions of space 0 . . . 3. In this case sweep
A is used in partitions 0, 2 and 3, sweep B is used in partition 1.

could be generated with various sweep patterns and orientations, and both hand unsteadiness
and registration errors could also be modelled. Registration and segmentation are the most
dominant source of error in all freehand 3D ultrasound systems — the ability to eliminate them
from experiments allows an assessment of the accuracy inherent to the volume measurement
algorithm itself.

The entire process of volume measurement is outlined in Figure 5. Once the ultrasound
(or simulated) data had been acquired, the orientation of the B-scans could be displayed
in an ‘outline’ window, as in Figures 3(a) and 4(a). These scans have been registered to a
computer generated manikin. The clinician can then review the scans in a ‘review’ window,
as in Figures 3(c) and 4(c). B-scans which are in between the valid sweeps, for instance where
the probe has been lifted from the skin surface temporarily, are then marked. Each sweep
of data is thus defined as a contiguous set of B-scans separated by scans which have been
marked as invalid.

Once the sweeps have been defined, a set of ‘dividing planes’ is automatically generated
to partition space such that only one sweep of data is used in each partition — see Figure 6
for a definition of these terms. Dividing planes are displayed as discs in the ‘outline’ window,
Figures 3(b) and 4(b), and can also be edited manually if required.
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The dividing planes having been defined, the clinician can then segment the area of interest
in the ‘review’ window. Any region which is not in a partition of space for which its sweep
is being used, is cross-hatched. The result of this is that the clinician can clearly see which
data is relevant, and which data is better covered by another B-scan. Segmentation can
then be performed manually using a mouse. Segments must either be closed or end in cross-
hatched regions, which is easily ensured by automatically closing a contour if either the start
or end point is outside a cross-hatched region. Typical B-scans with cross-hatching and
open contours are shown in Figures 3(c) and 4(c), together with the result of a complete
segmentation (roughly 20 cross-sections) in (b).

Volume measurement is performed from these cross-sections in each partition of space,
where if necessary incomplete cross-sections are closed by the dividing planes defining the
partition. The total volume is the sum of the absolute volumes in each partition. Surface
reconstruction is also performed in each partition of space, and each surface is clipped to the
dividing planes which make up that partition. The total surface (which is not guaranteed to
be closed) is the union of these surfaces. Volume can also be estimated from each surface,
provided that it is only clipped by a maximum of two dividing planes (which is usually the
case in practice).

Each step in this process is outlined in more detail in Section 3. It is fundamental to this
system that the apparent complexity is hidden from the clinician behind a carefully designed
user interface. The important features of this interface are outlined in Section 4.

3 System details

3.1 Definition of sweeps

The only restriction on the scanning pattern for each of the sweeps is that the sweep must
pass into and out of the object under investigation, and the side of the scan plane which first
enters the object must also be the first side to leave it. This means that the freehand nature
of the acquisition process during each sweep is preserved, in that the B-scans can have any
orientation and spacing, and can even be overlapping. Currently, multiple sweeps are recorded
in one sequence, and the number of sweeps determined after recording by marking B-scans in-
between each valid sweep. This has the advantage of enabling recording during a single breath
hold. However, the sweeps could equally be separated by pausing the acquisition process
between each sweep, which would then make the marking of invalid B-scans unnecessary,
although it is likely that the examination could not then be completed in a single breath
hold.

3.2 Positioning of dividing planes

Initially, one dividing plane is placed between each pair of sweeps (redundant planes are
removed later), up to a maximum of 32. This limit allows each partition of space to be
labelled with an integer, where bit i defines which side of dividing plane i that partition
exists in6. In most practical situations only one to three planes are required to separate the
data — the worst case processing time is exponential in the number of planes.

6There is an inherent redundancy in this representation, since for more than three planes, it is not possible
to partition space into 2n partitions, where n is the number of planes. However, this simple representation
improves the calculation speed for the usual case of only a few planes.
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Figure 7: Calculation of dividing plane position. Sweep A is a linear sweep, and B is a
fan sweep. (a) The corner points of the extreme scans and the average centre point for each
sweep are calculated. (b) The dividing plane is positioned at the average location of the two
sweep sides which are most nearly orientated perpendicular to the vector ~v joining the sweep
centres.

The position of each dividing plane is based on the corners of the extreme B-scans in each
sweep and the centre of the sweep: for sweep A in Figure 7(a), these are the points a0 . . . a7
and ga respectively. The vector from the centre of one sweep to the other, ~v, is compared
with the orientation of each of the average planes through {a0, a1, a2, a3}, {a0, a4, a5, a1},
{a1, a5, a6, a2}, {a5, a4, a7, a6}, {a3, a2, a6, a7} and {a4, a0, a3, a7}. That plane for which the
dot product of its normal with ~v is greatest is selected for defining the new dividing plane.
In the case of Figure 7(b), the planes defined by {b1, b5, b6, b2} and {a4, a5, a6, a7} are used.
The dividing plane is then defined by ~p · n̂− o = 0, where ~p is any point on the plane, and o
and n̂ are defined by equation (1):

n̂a = norm (( ~a4 − ~a5 − ~a6 + ~a7)× ( ~a4 + ~a5 − ~a6 − ~a7))

n̂b = norm
((

~b1 − ~b5 − ~b6 + ~b2

)

×
(

~b1 + ~b5 − ~b6 − ~b2

))

n̂ = norm (n̂a + n̂b)

o =
1
8

(

~a4 + ~a5 + ~a6 + ~a7 + ~b1 + ~b5 + ~b6 + ~b2

)

· n̂ (1)

where norm indicates vector normalisation.
Once all the planes have been defined, the next step is to decide which sweep should be

used in which partition of space. This is done by considering for each partition (of which
there are up to 2n, where n is the number of planes), which sweep has its centre farthest
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inside (or least outside) that partition. This can be done by calculating ls,p:

ls,p =
1

Ns

Ns
∑

i=1

min
1≤j≤D

(dij) (2)

where s is the sweep, p is the partition, Ns is the number of B-scans in sweep s and D is
the number of dividing planes. dij is the perpendicular distance of the centre of B-scan i to
dividing plane j, where the sign is positive if the centre is the same side of that plane as the
partition. The sweep with the largest value of ls,p is the one used for partition p.

Redundant planes can be found by considering, for each partition, whether the same sweep
is used in that partition as in the one which is the opposite side of the plane. If this is the
case for all partitions, then the plane does not separate any sweeps and can be removed.

After the number and position of the dividing planes has been established, they can
be manually adjusted, if necessary, with feedback in both the 3D ‘outline’ window and the
‘review’ window. This is explained in Section 4.

3.3 Reslicing

Once dividing planes have been defined, they can be used to reslice the data (i.e. view it on
arbitrary planes). The reslice algorithm is as explained in [18], save that for each point in
the reslice, its partition is calculated, and only B-scans from the sweep used in that partition
are considered for interpolation to the reslice plane. An example of the result of using one
dividing plane has already been demonstrated in Figure 1(b) — the misregistration of the
data can still be seen, but no longer detracts from the useful information in the B-scans.

3.4 Volume measurement from cross-sections

Volume measurement from parallel cross-sections (i.e. multiplying area by slice thickness),
in this context sometimes called step-section planimetry, is in widespread use. Less widely
used is a more general version of this same formula for measuring volume from non-parallel
sequential cross-sections [29]:

v =

∣

∣

∣

∣

∣

N
∑

i=2

1
2

(~si + ~si−1) · (~ωi − ~ωi−1)

∣

∣

∣

∣

∣

(3)

where v is the volume obtained from N cross-sections which have vector areas ~s1 . . . ~sN and
centroids ~ω1 . . . ~ωN .

This is a very flexible equation which can be applied to highly non-parallel, even overlap-
ping B-scans and hence it is appropriate for freehand 3D ultrasound. It is also straightforward
to extend the trapezoidal assumption in equation (3) to cubic interpolation, which gives a
flexible and accurate volume estimate from a handful of cross-sections: cubic planimetry is
studied in much more detail in [28].

In this case, we need to calculate the volume in each partition of space, then sum these
to give the total volume. It is possible to examine what effect this will have on the volume
estimate by considering a set of cross-sections cut by a single dividing plane, as in Figure 8.
We assume for the moment that the dividing plane passes through all of the cross-sections.
Note that the vector areas ~s and centroids ~ω in each partition are related to the true values
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Figure 8: Calculation of volume in each partition. The dividing plane splits the cross-
sections 1 . . . 4 into partitions A and B. The object volume can be calculated from equation (3)
with ~ω1 . . . ~ω4 and ~s1 . . . ~s4, or from the sum of the similar values with subscript a and b, in
partitions A and B respectively.

as follows:

~si = ~sai + ~sbi, ŝi = ŝai = ŝbi (4)

|~si| ~ωi = | ~sai| ~ωai + | ~sbi| ~ωbi (5)

The total volume of the object, calculated from the volume in each partition using equa-
tion (3), is given by7:

v =
1
2

4
∑

i=2

{( ~sai + ~sai−1) · ( ~ωai − ~ωai−1) + ( ~sbi + ~sbi−1) · ( ~ωbi − ~ωbi−1)} (6)

If we define lai as the ratio of partition A to the whole cross-sectional area, | ~sai| / |~si|, and
~αai as the vector distance between the centroid of partition A and the whole cross-section

centroid, ~ωi − ~ωai, for any cross-section i, this leads to the substitutions:

~sai = lai~si

~sbi = (1− lai) ~si

~ωai = ~ωi − ~αai

~ωbi = ~ωi +
lai

1− lai
~αai (7)

Substituting equations (7) into equation (6) and rearranging leads to:

v =
1
2

4
∑

i=2

{

(~si + ~si−1) · (~ωi − ~ωi−1) + (lai − lai−1)
[

~si · ~αai−1

1− lai−1
+

~si−1 · ~αai

1− lai

]}

(8)

7In fact, we use the cubic planimetry version of this formula [28], which gives more accurate results — the
linear version is examined here in order to make the maths more accessible.
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The first half of equation (8) represents the volume calculated from equation (3) applied
to the whole cross-sections, without using the dividing plane. The second part therefore
represents the error in the volume estimate introduced by splitting the cross-sections into two
parts and performing the volume calculation on each part. There are two interesting points
to note from this expression.

Firstly, the error is dependent on terms like ~si · ~αai−1. Since ~si is by definition a vector
normal to the plane i, and ~αai−1 is by definition a vector lying within the plane i − 1, if i
and i− 1 are parallel, the error will be zero. This is no surprise, since equation (3) reduces to
area × slice thickness for the case of parallel B-scans; and we would not expect this formula
to be affected by summing volumes over several sections of the object in this way.

Secondly, the second term in equation (8) scales with (lai − lai−1), which can be interpreted
as the difference in the area ratio into which the cross-sections on sequential B-scans are cut
by the dividing plane. Hence, if the dividing plane cuts all the cross-sections with the same
area ratio, the error will once again be zero. This scenario will tend to happen for dividing
planes which are orthogonal to the B-scans.

The result of this is that equation (6) gives volumes close to that of equation (3) in
all situations except where the B-scans are very non-parallel and the dividing plane passes
through these B-scans at an acute angle — which happens rarely in practice. This observation
is consistent with the results of the simulated scanning experiments in Section 5.

In practice, the main error introduced by using dividing planes is that of partial voluming,
i.e. where a part of the object is missed from the volume calculation entirely. In Figure 8,
where the dividing plane cuts through all the cross-sections, this is not a problem. However,
this is often not the case in practice, and the inclusion of dividing planes, especially at acute
angles to the B-scans, will tend to increase slightly the effect of partial voluming, since the
volume calculation for a partition cannot proceed past the last cross-section which intersects
that partition.

3.5 Surface reconstruction from cross-sections

While surface reconstruction of the segmented organ gives a less accurate volume than the
method described in the previous section, it is useful for verification of the segmentation and
hence also the volume estimate. The method used is a variant of shape based interpola-
tion [21], as described in [28], followed by triangulation by Regularised Marching Tetrahe-
dra [27]. The result is a sequential surface estimator which is robust to varying topologies
and can handle non-parallel cross-sections. The triangulation method is designed to generate
triangles of good aspect ratio, which reduces the number of triangles and improves the display
of the surface.

This method needs some adjustment for multi-sweep scans, since the cross-sections are
not generally closed in this case, but a closed shape is required in order to calculate the
signed distance field used in shape based interpolation. Cross-sections which are not closed
are joined at their end-points, which lie entirely outside of the partition in which the data
is used. Then, after the surface is interpolated and triangulated, triangles lying outside
the relevant partition are removed, and those which intersect the partition are clipped to the
dividing planes surrounding the partition. The clipping requires some care, since it is possible
for triangles to intersect more than one dividing plane, in which case they must be clipped to
all such planes — this is done by a recursive algorithm described in Appendix A.2.

The surface is extracted for each partition, using in each case the sweep most appropriate
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(a) Segmentation and planes (b) B-scan review window

Figure 9: Editing dividing planes. The data is from the same examination as in Figure 3,
although a more complex arrangement of dividing planes has been used in this case. Planes
being edited are marked in red in both ‘outline’ and ‘review’ windows, and both windows are
updated as the plane is moved.

to that partition, as defined by equation (2). This results in a set of surfaces, which together
make up the entire object. Although the surfaces are not in general closed, edges are guar-
anteed to lie on dividing planes. Examples of such surfaces are included in Figure 10 for
simulated scans and Figure 13 for scans of a human liver. As with the reslice, errors due to
misregistration are clearly apparent, but do not detract from the rest of the data.

It is also possible to calculate a secondary estimate of volume from this set of surfaces,
providing each surface intersects no more than two dividing planes. This is based on Gauss’
theorem [15], save that the direction of calculation is constrained to be parallel to both
intersected dividing planes, as explained in Appendix A.3.

4 System interface

4.1 Selecting B-scans

A specific B-scan can be selected at any time, either by using the slider in the ‘review’ or
‘outline’ window, or by clicking on the B-scan outline (or segmentation if there is one) in the
‘outline’ window. This selection changes the current B-scan in both windows. Thus it is easy
to mark those B-scans which are not valid (as described in Section 3.1), by first selecting the
B-scan, then toggling the ‘valid’ state with a key press.
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4.2 Editing dividing planes

The number and position of the dividing planes is calculated automatically from the number
and position of sweeps, as described in Section 3.2. However, they can also be edited in the
‘outline’ window. Figure 9 shows an example of a more complex dividing plane arrangement
from the same data as in Figure 3. There are two points of interest in the display of these
planes.

Firstly, dividing planes are inherently infinite — since it is not possible to show the
orientation of an infinite plane, all planes are clipped to a sphere, centred at the mid-point
of the data and large enough to contain all of it. Clipping all the planes to the same sphere
also guarantees that the displayed discs will meet at their edges, as in Figure 9(a). Secondly,
also as in this figure, dividing planes are only rendered opaque where they separate data from
two different sweeps: in other areas only the outer edge of the disc representing that plane
is rendered. This results in the number of displayed surfaces being dependent only on the
number of sweeps, and not on the number of dividing planes — in this figure there is only
one surface, since there are only two sweeps. Rendering is achieved by clipping the disc
representing each plane to each partition, resulting in a set of convex polygons, using the
algorithm in Appendix A.1.

A particular plane can be edited by selecting it with a right mouse click (whereupon it is
drawn in red), then moved by clicking and dragging (one button rotates, the other translates).
Planes can also be inserted and deleted. As the plane is being moved, the sweep used in any
given partition is recalculated using equation (2), and the opaque shading of the planes is
also updated. This means that as the plane is moved it is immediately obvious which part
is being used to separate data (i.e. the opaque part of the plane), and whether the plane is
being used at all — if not it will be shown as a red circle with no opaque part.

In addition, as the plane is being moved, the position of its intersection with the current B-
scan in the ‘review’ window is also updated, i.e. the red line and cross-hatching in Figure 9(b).
This is useful for showing whether the plane intersects the actual B-scan data, rather than
just the rectangular recorded video window.

4.3 Drawing cross-sections

Cross-sections are drawn in the ‘review’ window. Any part of the review window which is
in a partition for which data from another sweep is being used is cross-hatched. This means
that it is clear which part of the B-scan is better covered by data from another sweep, as in
Figure 9(b). The regions to cross-hatch can be determined by the same algorithm used to
calculate the opaque regions of the dividing plane discs (see Appendix A.1), initialised with
a rectangle representing the B-scan rather than a disc.

Contours can be drawn in one of two modes: either by holding the mouse button down
and dragging, or by marking points with the left button, the final point being marked with the
right button. Once the last point has been marked (or the mouse button has been released, if
using the former mode), the contour is joined, unless both the start and end points lie within
the cross-hatched region, in which case the contour is left open. This ensures that contours
are either closed, or closed by the dividing planes — which fulfils a requirement of the volume
measurement and surface reconstruction algorithms in Section 3. In both the ‘outline’ and
‘review’ windows, cross-sections are coloured cyan where they lie in partitions for which the
sweep is being used, and dark blue otherwise. Once again, this makes it clear which part of
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(a) Ellipsoid (b) Box (c) Concave object (d) Branching object

Figure 10: Simulated objects. Objects (a) to (d) are shown as surface reconstructions
from multiple sweeps as in Figure 11(b), (c), (g) and (h) respectively. The box (b) violates
the usual assumption of smoothness. (c) and (d) exhibit features typically found in human
organs.

the cross-section is going to be used in the volume and surface calculations.

5 Results

5.1 Simulated examinations of geometric objects

In order to verify the volume measurement and surface reconstruction techniques, without
introducing errors common to all systems due to registration and segmentation, several objects
were “scanned” in simulation, using the tool described in Section 2. These objects are shown
(reconstructed from multiple sweep scans) in Figure 10.

Each object was precisely segmented by thresholding the simulated B-scans, using a range
of cross-sections between 4 and 23 per sweep, in each of the eight sweep patterns described
in Figure 11. These sweep patterns where chosen to be representative of actual clinical
situations; for instance, scanning between ribs.

The pixel size in all cases was 0.012cm, and the average volume of the objects was 5.4cm3,
leading to inherent volume inaccuracy due to the sampling resolution of approximately±0.7%.
As discussed in Section 3.4, the position of the first and last cross-sections can cause a partial
voluming effect — in order to minimise this effect, the first and last cross-sections were chosen
at all times to be close to the edge of the object being scanned.

Volume measurements were made from the cross-sections by cubic planimetry (see Sec-
tion 3.4), and also by linear planimetry, and by calculating the volume from the interpolated
surface. The latter two methods are in much more common usage than the first, and serve
as a comparison with the cubic planimetry technique.

Table 1 contains the results for each object and for each sweep pattern. In each case, the
total number of cross-sections required for the cubic planimetry estimate to be within ±2%
of the real volume was calculated. This is shown in the top four lines of the table — where all
the experiments on an object gave volumes within ±2%, the lowest number of cross-sections
investigated is shown. The remaining rows of Table 1 show the accuracy of the other two
volume measurement methods for the number of cross-sections detailed in the top four rows.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: Simulated ultrasound sweeps. (a) to (h) are the sweep patterns used to test the
volume measurement accuracy on simulated objects. Each B-scan is drawn as a ‘goal post’,
where the ‘crossbar’ is at the top of the B-scan. Here all are shown with a segmentation from
the ‘glove’ object. Dividing planes are calculated automatically from the sweep position and
orientation.
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Sweep: (a) (b) (c) (d) (e) (f) (g) (h)
No. of scans for Ellipsoid <12 13 24 <16 17 21 22 <17
±2% accuracy Box <12 16 15 <18 19 <18 19 <19

Concave <12 <12 18 17 17 18 16 18
Branching 16 13 16 17 22 22 18 19

Accuracy of linear Ellipsoid >4.8 5.9 3.8 >5.8 7.3 6.9 5.4 >7.2
planimetry volume Box >1.5 3.5 7.7 >1.5 5.6 >8.8 4.4 >5.7
at this point, ±% Concave >5.7 >7.7 4.1 6.4 7.9 6.7 7.4 6.8

Branching 1.0 5.2 5.2 3.0 6.5 5.3 5.3 5.9
Accuracy of volume Ellipsoid >7.0 7.7 1.5 >9.3 9.3 1.8 4.0 >9.0
from surface at Box >1.6 4.0 2.0 >1.5 4.4 >0.6 0.5 >4.0
this point, ±% Concave >12.0 >11.3 2.5 9.0 10.7 4.7 6.2 5.8

Branching 7.8 12.6 4.7 10.8 10.5 2.5 7.0 7.7

Table 1: Simulation results. The table shows the total number of cross-sections, using
sweep configurations (a) to (h), required for the cubic planimetry volume to be within ±2%
of the actual volume. The accuracy of the volume as calculated from linear planimetry and
the surface interpolated from these cross-sections is also shown for comparison.

2% was selected as a test point since it is far enough from the resolution limit (0.7%) not to be
overly affected by it, but still more accurate than the entire in vivo system, as demonstrated
in Section 5.2.

It is clear from this table that volume measurements to an accuracy of within ±2% are
possible for all the objects described in Figure 10 and sweep patterns described in Figure 11.
Whilst there is some variation in the number of cross-sections required to obtain this accuracy,
typically only 7 or 8 cross-sections are required per sweep (sweep patterns (a) to (c) contain
two sweeps, the remainder contain three). The only exception to this, where 12 cross-sections
are required, is for sweep pattern (c). This is a good example of the case described in
Section 3.4, where the cross-sections are non-parallel, and the dividing plane cuts through
them at a highly acute angle, leading to larger errors in the volume estimate.

In all cases, with the single exception of the branching object with sweep (a), the linear
planimetry accuracy is worse than that of cubic planimetry — typically greater than ±5%.
This is similar to our previous observation with single sweep data [28], and indicates that
those results can be carried through to the multiple sweep case presented here.

The accuracy of the volume calculated from the surface representation is generally slightly
poorer than that of linear planimetry, with a greater variability across shape and sweep
pattern. However, the similarity of the volume measurements to that of cubic planimetry
suggests that there were no gross errors in either the surface interpolation or the volume
calculation algorithms. This is backed up by the surfaces themselves, a sample of which are
shown in Figure 10.

5.2 In vivo examination of human liver

The in vivo precision of this volume measurement method can be estimated by considering
multiple examinations of the same organ. It was not possible to verify actual in vivo accuracy,
since we did not have access to a secondary measurement method (e.g. CT or MRI). We have
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Figure 12: Liver volume for two subjects. The first five observations used two sweeps, and
the second five used three sweeps. Volumes were calculated using cubic planimetry. Dashed
lines show the mean, and dotted lines the 95% confidence intervals.

previously demonstrated that the same system is accurate to within ±7% when applied to in
vivo data from single sweeps [28].

The equipment and method used is described in Section 2. Typically, 20 cross-sections
were outlined in each case, with visual feedback from the ‘outline’ window and the interpolated
surface to assist in cases where it was not obvious where the cross-section should be. This
whole process (from scanning to volume measurement) took approximately 30 minutes per
data set, the vast majority of time being spent on manual segmentation. For the purpose of
this experiment, the actual volume measurement was hidden during segmentation, so there
could be no chance of increasing or decreasing the size of the cross-sections in an unconscious
attempt to make the volumes similar across the same subject.

Figure 12 shows the results for both subjects, and the mean and 95% confidence interval
in each case (assuming a normal distribution). The volume of the liver of subject 1 was
1391± 90ml (6.5%) and that of subject 2 was 1037± 61ml (5.9%). The first five observations
were from examinations using two sweeps, and the second using three sweeps. Considered
separately, the volume for the two sweep examination of subject 1 was 1401 ± 74ml (5.3%)
and for subject 2 was 1027 ± 52ml (5.1%), and that for the three sweep examination for
subject 1 was 1381± 100ml (7.2%) and for subject 2 was 1046± 62ml (5.9%). These results
indicate that the overall precision of the system is approximately ±7%, and that using two
sweeps was in this case better than three, giving a precision of approximately ±5%. It is not
clear whether this improvement was due to the use of fewer sweeps (and hence fewer dividing
planes) or the improved definition of the liver boundary in the sagittal (as in the right hand
sweep of Figure 3(a)), rather than horizontal (as in all other sweeps in Figures 3 and 4),
scanning planes.

Surfaces reconstructed from each of the examinations of Figure 12 are shown in Figure 13,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 13: Reconstructed surfaces of the human liver. The left hand two columns
are from subject 1, and the right from subject 2. The left hand column of each of these is
constructed using two sweeps, and the right using three.



6 CONCLUSIONS 21

looking along the longitudinal axis to the inferior side of the liver, such that the scan-head
was at the top of the surfaces, i.e. the same orientation as in Figures 3 and 4. Several things
are apparent from these surfaces.

Firstly, although there is considerable variation due to both the scanning pattern and
segmentation, all the livers can be clearly categorised as being from subject 1 or 2. Variation
in the surfaces is caused by probe pressure at the top (the curve of the probe can be clearly
seen in all the surfaces, for instance Figures 13(b) and (d)), and also difficulty in segmenting
the liver from the gall bladder and inferior caval and portal veins, especially given the sparsity
of the cross-sections. The fanning action used in most of the sweeps also tended to result in
oblique incidence at the edges of the liver, particularly in the right lobe. This made it difficult
to segment the first and last cross-sections of that sweep, aggravating the partial voluming
effect, and in many cases parts of the right lobe were missing from the volume calculation
entirely. In addition, some B-scans, for instance the one in Figure 3(c), missed part of the
right lobe entirely, and in this case the segmentation had to be estimated from the remaining
data.

6 Conclusions

We have presented a novel method for measuring the volume of large organs using 3D ultra-
sound. That it is an inherently accurate method is demonstrated by simulation across several
very different objects and sweep patterns — accuracies better than ±2% where achieved in
all cases, using only 7 or 8 cross-sections per sweep. In vivo precision has been demonstrated
on examinations of the human liver to be as good as ±5% in the two sweep case. Since
none of the algorithms make topological assumptions about the organ under investigation,
the technique is equally appropriate in other areas, e.g. obstetrics.

Most of the residual error is due to misregistration of the data and inaccurate manual
segmentation. In allowing the cross-sections to be drawn on the original B-scans, this method
reduces the complexity of segmentation. In addition, the method is robust to organ movement
along the dividing planes caused by probe pressure — further work is required to determine
how significant this type of misregistration is.

The use of dividing planes allows reslices through multiple sweep data in only 0.2 sec-
onds or so, and the estimation of surfaces from cross-sections in 10 seconds or so. In both
these situations, features due to misregistration are clearly visible to the clinician, without
detracting from the ‘real’ information in the data. Although this leads to reslices and surfaces
which appear less smooth than those generated by warping [2] or smooth surface approxima-
tion [13], the displayed information is more faithful to the original data, with no unsupervised
suppression of inevitable artifacts.
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A Appendix

A.1 Intersection of a convex planar polygon with a partition

This function is required in order to calculate which part of a dividing plane to shade in the
‘outline’ window, and which area to cross-hatch in the ‘review’ window. In the former case,
it is initialised with a polygon approximating to a disc, and in the latter with a rectangle
marking the edge of the current B-scan. The ‘distance to plane(x,y,z,i)’ function returns the
distance of the point (x, y, z) to dividing plane i.

/∗ Perform intersection of polygon with one partition, defined by dividing planes ∗/
/∗ Initial polygon has p1 vertices, at locations x1[], y1[], z1[] ∗/
for (i=0; i<dividing planes; i++) { /∗ For all dividing planes ∗/

d1 = distance to plane( x1[p1-1], y1[p1-1], z1[p1-1], i ); /∗ Distance for last vertex ∗/
if ( !(partition & (1�i)) ) d1 = -d1; /∗ check sign against partition ∗/
p2 = 0; /∗ Initialise new polygon p2, x2[], y2[] ∗/
for (v=0; v<p1; v++) { /∗ and loop through vertices ∗/

d1 = distance to plane( x1[v], y1[v], z1[v], i ); /∗ Distance for this vertex ∗/
if ( !(partition & (1�i)) ) d2 = -d2; /∗ check sign against partition ∗/
if ( d1 > 0 ) { /∗ Check for an intersection with line from (p1-1) to (v) ∗/

if ( d2 < 0 ) { /∗ Just gone outside partition - need new vertex ∗/
x2[p2] = (d1 ∗ x1[v] - d2 ∗ x1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
y2[p2] = (d1 ∗ y1[v] - d2 ∗ y1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
z2[p2] = (d1 ∗ z1[v] - d2 ∗ z1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
p2++;

} else { /∗ Still inside partition - keep this vertex ∗/
x2[p2] = x1[v]; y2[p2] = y1[v]; z2[p2] = z1[v];
p2++;

}
} else if ( d2 > 0 ) { /∗ Just gone inside partition - need this and new vertex ∗/

x2[p2] = (d1 ∗ x1[v] - d2 ∗ x1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
y2[p2] = (d1 ∗ y1[v] - d2 ∗ y1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
z2[p2] = (d1 ∗ z1[v] - d2 ∗ z1[(v-1+p1)%p1]) / (d1 - d2) + 0.5;
p2++;
x2[p2] = x1[v]; y2[p2] = y1[v]; z2[p2] = z1[v];
p2++;

}
d1 = d2; /∗ Keep record of last distance to plane ∗/

}
copy polygon( p2, x2, y2, z2, &p1, &x1, &y1, &z1 ); /∗ Update original polygon ∗/

}

A.2 Clipping a surface to a partition

A triangulated surface can be clipped to a given partition by clipping each of the triangles
in turn to each dividing plane in turn. The function must be recursive, since triangles may
intersect more than one dividing plane. The ‘distance to plane(x,y,z,i)’ function is as in the
previous section.
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/∗ Intersect triangle t, whose vertices are t.a, t.b and t.c, with this partition ∗/
/∗ List of new tris new triangles returned in new tri[] ∗/
new tris = 1; new tri[0] = t; /∗ Initialise list of triangles ∗/
for (i=0; i<dividing planes; i++) { /∗ Loop through all planes ∗/

add tris = 0;
for (j=0; j<new tris; j++) { /∗ Loop through all triangles in current list ∗/

t = new tri[j]; /∗ Get new triangle ∗/
da = distance to plane( t.a.x, t.a.y, t.a.z, i ); /∗ and distance to plane ∗/
db = distance to plane( t.b.x, t.b.y, t.b.z, i ); /∗ for each vertex, ∗/
dc = distance to plane( t.c.x, t.c.y, t.c.z, i ); /∗ checking sign ∗/
if ( !(partition & (1�i)) ) { da = -da; db = -db; dc = -dc; }
abi = 1; aci = 1; bci = 1; /∗ Find intersections with each edge ab, ac and bc ∗/
if ( da > 0 ∧ db > 0 ) { /∗ Check edge ab ∗/

ab.x = (da ∗ t.b.x - db ∗ t.a.x) / (da - db);
ab.y = (da ∗ t.b.y - db ∗ t.a.y) / (da - db);
ab.z = (da ∗ t.b.z - db ∗ t.a.z) / (da - db);

} else abi = 0;
if ( da > 0 ∧ dc > 0 ) { /∗ Check edge ac ∗/

ac.x = (da ∗ t.c.x - dc ∗ t.a.x) / (da - dc);
ac.y = (da ∗ t.c.y - dc ∗ t.a.y) / (da - dc);
ac.z = (da ∗ t.c.z - dc ∗ t.a.z) / (da - dc);

} else aci = 0;
if ( db > 0 ∧ dc > 0 ) { /∗ Check edge bc ∗/

bc.x = (db ∗ t.c.x - dc ∗ t.b.x) / (db - dc);
bc.y = (db ∗ t.c.y - dc ∗ t.b.y) / (db - dc);
bc.z = (db ∗ t.c.z - dc ∗ t.b.z) / (db - dc);

} else bci = 0;
if ( da < 0 ) index = (abi�2)|(aci�1)|(bci); /∗ Form index from type of ∗/
else index = ∼((abi�2)|(aci�1)|(bci)); /∗ intersection, and sign ∗/
switch ( index ) {
case 0: /∗ No intersections - triangle entirely outside partition ∗/

for (k=j+1; k<(new tris+add tris); k++) new tri[k-1] = new tri[k];
new tris -= 1; j -= 1;
break;

case 1: /∗ ab and ac intersection - one new triangle ∗/
new tri[j] = form triangle( new tri[j].a, ab, ac );
break;

case 2: /∗ ab and bc intersection - two new triangles ∗/
new tri[j] = form triangle( new tri[j].a, ab, new tri[j].c );
new tri[new tris+add tris] = form triangle( new tri[j].c, ab, bc );
add tris++;
break;

case 3: /∗ ac and bc intersection - one new triangle ∗/
new tri[j] = form triangle( new tri[j].c, ac, bc );
break;

case 4: /∗ ac and bc intersection - two new triangles ∗/
new tri[j] = form triangle( new tri[j].a, new tri[j].b, ac);
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new tri[new tris+add tris] = form triangle( new tri[j].b, bc, ac );
add tris++;
break;

case 5: /∗ ab and bc intersection - one new triangle ∗/
new tri[j] = form triangle( new tri[j].b, bc, ab );
break;

case 6: /∗ ab and ac intersection - two new triangles ∗/
new tri[j] = form triangle( new tri[j].b, new tri[j].c, ab );
new tri[new tris+add tris] = form triangle( new tri[j].b, ac, ab );
add tris++;
break;

case 7: /∗ No intersections - triangle entirely inside partition ∗/
break;

}
}
new tris += add tris; /∗ Update number of triangles ∗/

}

A.3 Volume estimation from a clipped surface

The volume of the surface can be calculated from the triangulation provided that the surface
is everywhere closed, except on the dividing plane, and only bordered by at most two dividing
planes. This is a variant of Gauss’ theorem [15]. The ‘cross product(a,b)’, ‘dot product(a,b)’,
‘normalise(a,b)’, ‘add points(a,b)’ and ‘subtract points(a,b)’ all perform vector operations on
the two vectors a and b.

/∗ Calculate volume within partition ∗/
volume = 0; /∗ Initialise calculated volume to zero ∗/
if ( data in partition( partition ) ) { /∗ Check for any data in this partition ∗/

important planes = 0; /∗ Calculate number of bordering planes ∗/
for (i=0; i<dividing planes; i++) {

if ( data in partition( partition∧(1�i) ) ) { /∗ Plane is bordering if there is data ∗/
normal[important planes++] = plane normal( i ); /∗ on other side of the plane ∗/

}
}
switch ( important planes ) { /∗ Calculate projection direction ∗/
case 0: /∗ No bordering planes - direction arbitrary ∗/

vector.x = 0; vector.y = 0; vector.z = 1;
break;

case 1: /∗ One bordering plane - direction within this ∗/
vector.x = normal[0].z; vector.y = normal[0].x; vector.z = normal[0].y;
vector = cross product( normal[0], vector );
vector = normalise( vector );
break;

case 2: /∗ Two bordering planes - direction parallel to both ∗/
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vector = cross product( normal[0], normal[1] );
vector = normalise( vector );
break;

default:
return -1; /∗ More than two bordering planes - calculation not possible ∗/

}
volume = 0.0; /∗ Initialise partition volume ∗/
for (i=0; i<triangles; i++) { /∗ Loop through all triangles ∗/

t = triangle[i]; /∗ triangle vertices are t.a, t.b and t.c ∗/
ac = subtract points( t.c, t.a ); /∗ Calculate area of triangle in plane ∗/
ab = subtract points( t.b, t.a ); /∗ normal to vector ∗/
p = cross product( ab, ac );
v = dot product( p, vector )/2;
p = add points( t.a, add points( t.b, t.c ) )/3; /∗ multiply by ∗/
volume += v ∗ dot product( p, vector ); /∗ projected distance along vector ∗/

}
return volume;

} else {
return 0; /∗ There is no data in this partition ∗/

}
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