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Abstract

Pulse-echo ultrasound display relies on many assumptions which are known to be incorrect. De-
parture from these makes interpretation of conventional ultrasound images difficult, and 3D visu-
alisations harder still. For instance, sound attenuation is not simply a function of depth, and this
leads to shadowing and enhancement. Attempts to reduce such artefacts by estimating attenuation
locally have been frustrated by large statistical variations and the influence of scatterer type. Hence
estimates are not of sufficiently high resolution or are only applicable in well specified scatterer dis-
tributions. In this paper we examine the mathematical framework for attenuation measurement from
pulse-echo ultrasound, concentrating on the effect of the type of scatterer on existing techniques, and
propose a less scatterer-sensitive alternative. We also present novel techniques for handling the large
statistical fluctuations, based on combined assumptions of monotonicity and smoothness. Shadow-
ing and enhancement correction algorithms are tested on in vitro data, using a real time 3D RF
ultrasound acquisition system developed for this purpose. The in vitro results support the analysis
of scatterer type sensitivity, and this leads to visible differences in attenuation estimates from each
technique. Nevertheless, it is possible to reduce the statistical variations sufficiently to allow the
correction of shadowing and enhancement.
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1 Introduction

It is well known that medical ultrasound images contain many artefacts due to the complex nature
of sound transmission and reflection in anatomical structures. One such group of artefacts is due
to the varying attenuation of sound in the medium. We typically only display the magnitude of
the reflected signal at the transducer over time, which can be interpreted as depth assuming a
constant speed of sound. However, this is affected by the attenuation properties of the tissue above
as well as the backscatter (reflection) at the indicated depth. Reduction in signal amplitude is
typically compensated by providing a manual estimate of the attenuation, in the form of a time-
gain-compensation (TGC) curve. In practice, a set of gain sliders corresponding to different tissue
depths are moved until a given image looks relatively homogeneous.

The assumption underlying TGC, that the attenuation is uniform across the image at a given
depth, is frequently violated. Ultrasound images show dark regions (shadowing) below highly at-
tenuating tissue which has been under-compensated, and light regions (enhancement) below less
attenuating tissue which has been over-compensated. So long as their origin is understood, shadow-
ing and enhancement are not altogether a bad thing — in effect they are indicators of the relative
attenuation of tissue (something which is otherwise not displayed). These can in some cases have
clinical significance, for instance in detecting liver disease (Bevan and Sherar, 2001) or certain tu-
mours (Tu et al., 2003), or even for monitoring temperature change (Tyréus and Diederich, 2004).

Nevertheless, there are several motivating factors for removing such artefacts. Firstly, they
complicate the interpretation of ultrasound images. Even if attenuation is clinically significant, would
it not be better to display material backscatter and attenuation properties separately, rather than
having to infer them from inconsistencies in the image? In addition, the ability to infer attenuation
from ultrasound images is reliant on the traditional B-scan visualisation: as 3D ultrasound gains in
popularity, so does the ability to view US data in different ways, making such artefacts much harder
to spot. Secondly, images containing artefacts make downstream processing (for instance registration
or segmentation) much harder. Images of backscatter and attenuation which are more representative
of actual tissue properties are likely to be easier to handle and at the same time provide additional
information for such algorithms.

1.1 Reduction of shadowing and enhancement

Approaches to the reduction of ultrasound shadowing and enhancement can be loosely split into
those which directly aim to make images more homogeneous, and those whose aim is to provide
quantitative data by separate measurement of backscatter and attenuation coefficients. There have
also been attempts to detect rather than reduce shadows (Drukker et al., 2003), although in this
case it was really signal dropout rather than shadowing per se that was being detected. In the
homogeneous approach, for instance by Xiao et al. (2002), the image is first classified into different
tissue types before imposing uniform gain within each class. Such approaches are clearly dependent
on a certain level of natural homogeneity in the data, and have the potential to falsely ‘correct’
shadows or enhancements where this assumption does not hold.

O’Donnel and H. F. Reilly (1985) and Bridal et al. (2000) employ an alternative approach which
also relies on classification. If a region in the image is known to be from tissue with the same
properties, and time gain compensation has not been used (or has been calibrated for), then the
attenuation can be estimated directly from the slope of the log amplitude with depth. If this can
be measured with sufficient locality, the original ultrasound image can be corrected for the known
attenuation, resulting in a quantitative backscatter image. However, as in the previous methods,
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such techniques are hampered by the necessity to have sufficiently homogeneous regions for the
classification to be successful, and are based on assumptions which are not necessarily true for real
images. Similar approaches are employed by Walach et al. (1989); Valckx et al. (2000); Knipp et al.
(1997).

Rather than assuming homogeneity in the images, Hughes and Duck (1997) make the less con-
straining assumption that the attenuation at any given point is linearly related to the magnitude
of backscatter. Under this assumption, the image can be compensated by appropriate integration
of the received sound amplitude. Although there are situations where this relationship is not valid
(in particular for certain kinds of tumours), it is evident from images successfully corrected by this
technique that the assumptions hold in many cases. Clearly the method is not capable of providing
an independent attenuation image.

However, there is an alternative independent way to measure attenuation. Conventional ultra-
sound images are visualisations of the amplitude of the sound received back at the transducer from
a high frequency focused pulse transmitted into the medium. Under certain conditions, it is possi-
ble to estimate the attenuation by looking at the spectrum of the radio-frequency (RF) ultrasound,
rather than simply the amplitude, and it is on this that the remainder of this paper will concentrate.
There has already been significant work in this area, much of which was reported some twenty years
ago. It is therefore prudent to start by reviewing some of the main issues which have limited the
development and application of these techniques.

1.2 Estimation of attenuation from backscattered spectra

One of the difficulties in using the RF spectrum to estimate attenuation is the trade off in frequency
and time resolution implied in using short-time Fourier transforms (Fink et al., 1983; Flax et al.,
1983). This has led to the investigation of auto-regressive techniques for measuring model parame-
ters, for instance centre frequency, with better resolution than the conventional Fourier approach, at
least in simulation (Baldeweck et al., 1995; Girault et al., 1998). In practice, however, it is not the res-
olution with which the spectrum can be measured which is the limiting factor, but the characteristics
of the signal itself. Fully developed ultrasound backscatter follows a Rayleigh distribution (Prager
et al., 2003) which is characterised by large variations in both phase and amplitude about a mean
value. Typically it is necessary to use a considerable number of data points to give a good estimate
of the mean. The spectra of such signals show a similar distribution. This statistical variation is
generally much larger than the small changes which we need to measure to estimate attenuation.

A second difficulty is due to the conditions under which attenuation can be estimated from spec-
tral properties: namely that diffraction and refraction can be ignored, and the scatterer type (and
hence the frequency dependence of backscatter) is constant throughout the sample. Although the
latter of these restrictions does allow for variation in the magnitude of backscatter, in practice the
frequency dependence changes with different tissue types, and this tends to be a more limiting as-
sumption than the former. Hence much of the work on attenuation estimation has been demonstrated
on simulated data, or phantoms where the backscatter properties are closely controlled (Knipp et al.,
1997). Attempts have been made to correct for overlying layers with different characteristics (thus
modelling the effect of skin) (Lu et al., 1995) or to spot discontinuities in the received spectra (thus
detecting boundaries of tissue with varying scatterer types) (Gorce et al., 2002).

It should be noted that all of the above techniques are designed to detect attenuation from pulse-
echo ultrasound systems, i.e. from backscattered signals. If the aim is to measure attenuation directly,
rather than correct conventional images, there is an alternative through transmission technique which
uses a separate receiver at the opposite side of the sample from the transmitting transducer. Clearly
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this physical layout limits the application of the technique, but, in the right application, it can
generate much better attenuation estimates than from pulse-echo systems (Damilakis et al., 2002).

The primary aims of this paper are to investigate the effect of scatterer type on the estimation
of attenuation, and also to investigate ways of efficiently handling the large statistical fluctuations
that are present in such estimates. The hope is that this will increase the locality and applicability
of attenuation measurement, and hopefully enable its use in calculating backscatter images in real
pulse-echo ultrasound data.

We will start in Section 2 by re-examining two existing techniques based on centre frequency
and the slope of the calibrated spectra, noting the effect of scatterer type on each technique and
extending the latter to cope with differences. Then we will show how such techniques can be used to
correct the conventional ultrasound B-scan. In Section 3 we will outline a new technique for coping
with the statistical variations in spectral estimates of attenuation. We will also describe the real
time 3D RF acquisition system we have developed to allow us to acquire the necessary ultrasound
data. Finally Section 4 contains the results of applying this technique on different test objects.

2 Analysis of attenuation and backscatter in pulse-echo systems

Before analysing the effects of attenuation and backscatter, we need a model for the pulse-echo
ultrasound system. Firstly we simplify the system by ignoring the effects of diffraction and refraction,
and make the usual assumption that the backscatter is only a very small percentage of the transmitted
sound (i.e. the Born approximation). Under these assumptions, the backscattered signal, S, received
at the ultrasound probe held in a particular position over a particular sample, is a function of location
x, y and frequency f . This can be represented by:

S(x, y, f) = P (x, y, f)A(x, y, f)B(x, y, f) (1)

where P (x, y, f) describes the transmitted pulse, and is dependent only on the probe design and
settings, A(x, y, f) describes the cumulative attenuation of the sample, and B(x, y, f) the backscatter
of the sample. In essence, the Born approximation allows us to model the system as a simple
multiplication (in the frequency domain) of the pulse and backscatter characteristics. Ignoring
diffraction and refraction allows us to assume that P is independent of the sample being scanned.

According to Nicholas et al. (1982), the backscatter can be modelled as a power of f :

B(x, y, f) = B0(x, y)fz (2)

where z varies from 0 for specular reflection to 4 for Rayleigh scattering, and is typically in the range
1 to 2 for human tissue.

For most tissues (but not for ultrasound contrast agents (Chen et al., 2002)), we can additionally
assume that the attenuation in Neper is linearly proportional to frequency (Flax et al., 1983), hence:

A(x, y, f) = e−α(x,y)f (3)

where α(x, y) is the total cumulative round trip attenuation in the sample from the probe face to
depth y. For homogeneous samples, α

2y is generally quoted in Neper/MHz/cm, and is typically in
the range 0.3 to 0.7 in human tissue.
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2.1 Attenuation from measurement of centre frequency

If we make the assumption that the pulse generated by the probe is approximately Gaussian, with
centre frequency f0 and variance σ2, then:

P (x, y, f) = P0(x, y)e
−[f−f0(x,y)]2

2σ(x,y)2 (4)

Putting eqs. (2) to (4) in eq. (1) gives:

S(x, y, f) = P0(x, y)B0(x, y)e
−[f−f0(x,y)]2

2σ(x,y)2 e−α(x,y)ffz (5)

i.e. at a particular location, x, y:

S(f) = P0B0e
−(f−f0)2

2σ2 e−αffz (6)

= P0B0e
−α

(
f0−ασ2

2

)
e
−[f−(f0−ασ2)]2

2σ2 fz (7)

∝ e
−[f−(f0−ασ2)]2

2σ2 fz (8)

It can be seen that the attenuation effectively reduces the centre frequency of the received signal
by ασ2. Following Flax et al. (1983), in order to analyze the effect of the backscatter term, it is
convenient to express fz as an exponential, noting that since we are only interested in proportionality,
we can drop any scaling factors which are not functions of frequency, f :

fz = ez ln(f) = e

[
z ln f0+z ln

(
1+

f−f0
f0

)]

≈ f0
ze

z

[
f−f0

f0
− (f−f0)2

2f0
2 +O

(
(f−f0)3

f3
0

)]

∝ e
z

f0
2

[
2ff0− f2

2

]
(9)

Combining eq. (9) with eq. (8) leads to:

S(f) ∝ e

{
− f0

2+zσ2

2σ2f0
2

[
f2− 2f0(f0

2−ασ2f0+2zσ2)
f0

2+zσ2 f

]}

(10)

which in turn implies that:

S(f) ∝ e
−(f−f ′0)

2

2σ′2 (11)

where:

σ′2 = σ2 f0
2

f0
2 + zσ2

(12)

f ′0 =
f0

(
f0

2 − ασ2f0 + 2zσ2
)

f0
2 + zσ2

= f0 − ασ2

(
f0

2

f0
2 + zσ2

)
+

zσ2

f0

(
f0

2

f0
2 + zσ2

)

= f0 − ασ′2 +
zσ′2

f0
(13)
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Hence the attenuation α reduces the centre frequency f0
′ of the received response, and the scatter

power z increases the centre frequency and reduces the bandwidth σ′. Note that eq. (13) is not the
same as was given by Flax et al. (1983)1.

We can therefore calculate an estimate of the attenuation αe at a point x, y by comparing the
centre frequency of the response from the sample with that from a non-attenuating uniform phantom.
It is not practical to obtain an estimate of bandwidth σ′ from the sample itself, hence we use σ, the
transducer bandwidth2. Denoting phantom measurements with a subscript p, we have:

αe =
f0
′
p − f0

′

σ2
(14)

= α
σ′2

σ2
+

zp
σ′p

2

σ2 − z σ′2
σ2

f0
+ O

(
(f0 − f)3

f3
0

)

≈ α +
zp − z

f0
+ O

(
zσ2

f2
0

)
+ O

(
(f0 − f)3

f3
0

)
(15)

Note that if the phantom contains scatterers which are nearly Rayleigh (zp ≈ 4), then σ′p < σ′ < σ,
and in all likelihood z < zp, which results in the second term partially compensating for reduction
in value of the first term due to the change in bandwidth. This means that the attenuation estimate
is likely to be somewhat better than is implied by the simplified equation.

2.2 Attenuation from spectral division

An alternative, which does not require the assumption of eq. (4) that the pulse is Gaussian, is to
divide the sample spectrum, S, by one from a non-attenuating uniform phantom, Sp, in which case:

S(x, y, f)
Sp(x, y, f)

=
A(x, y, f)B(x, y, f)

Ap(x, y, f)Bp(x, y, f)
(16)

since we have already stated that P (x, y, f) is independent of the sample being scanned.
Combining with eq (3) and (2), and taking the natural logarithm, gives (at a particular location

x, y):

ln

(
S(f)
Sp(f)

)
= ln

(
B0

B0p

)
− αf + (z − zp) ln f (17)

= a + bf + c ln f (18)

If we ignore differences in the frequency dependence of backscatter z between the phantom and
the sample, then the attenuation is given simply by the negative of the slope of this function in
frequency, b. This can be found by linear regression of a0 + b0f , and is the method employed
by Knipp et al. (1997). If s are the measured data (i.e. the log of the measured spectrum divided by
the calibration spectrum at location x, y) at frequencies f , then the least-squares solution is:

b0 =
k1

k0

a0 =
∑

s− b0
∑

f∑
1

(19)

1Equation (30) in (Flax et al., 1983) is not a valid simplification of equation (29).
2Another possibility would be to use the measured bandwidth from the phantom, σ′p.
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where

k0 =
∑

f2 − (
∑

f)2∑
1

k1 =
∑

fs−
∑

f
∑

s∑
1

(20)

and all the summations are taken over all the available data points, i.e. all frequencies within the
bandwidth of the ultrasound signal.

We now extend the analysis to see how real differences in backscatter over frequency affect this
measurement, by evaluating b0 using eq. (19), with s described by eq. (17). This leads to an error in
b0 (and hence attenuation estimation):

αe = α + (zp − z)

∑
f ln f −

∑
f
∑

ln f∑
1

∑
f2 − (

∑
f)2

∑
1

(21)

We can estimate this error by taking the summations to be over a range (f0− fb) . . . (f0 + fb), where
f0 is the centre frequency, and fb is half the bandwidth of the pulse. In the limit as df tends to zero,
then:

∑
1 =

∫ f0+fb

f0−fb

1 = 2fb

∑
f =

∫ f0+fb

f0−fb

f = 2f0fb

∑
f2 =

∫ f0+fb

f0−fb

f2 = 2f2
0 fb +

2
3
f3

b

∑
ln f =

∫ f0+fb

f0−fb

ln f = −2fb + f0 ln
(

f0 + fb

f0 − fb

)
+ fb ln [(f0 + fb)(f0 − fb)]

∑
f ln f =

∫ f0+fb

f0−fb

f ln f = −f0fb +
1
2

(
f2
0 + f2

b

)
ln

(
f0 + fb

f0 − fb

)
+ f0fb ln [(f0 + fb)(f0 − fb)]

Hence, if the fractional bandwidth, λ = fb
f0

:

αe = α + (zp − z)
6λ + 3(λ2 − 1) ln

(
1+λ
1−λ

)

4f0λ3

αe = α +
(zp − z)

f0
+ O

(
λ5

)
(22)

Eq. (22) reduces to eq. (15) in the limit, i.e. the effect of actual differences in backscatter is similar
in both cases. However, eq. (22) is far more precise, and in practice, the centre frequency estimate
is less affected by differences in backscatter.

2.3 Attenuation and backscatter power from spectral division

Equation (17) demonstrates that the attenuation α and backscatter power z are not linearly related,
and hence can be found simultaneously by regression of a1 + b1f + c1 ln f to the spectrally divided
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data s as in the previous section. This leads to a new technique in which the coefficients b1 and c1,
which are estimates of (−α) and (z − zp) respectively, can be found from:

c1 =
k0k4 − k1k3

k0k2 − k3
2

b1 =
k1 − k3c1

k0

a1 =
∑

s− b1
∑

f − c1
∑

ln f∑
1

(23)

where k0 and k1 are defined in eq. (20), and:

k2 =
∑

(ln f)2 − (
∑

ln f)2∑
1

k3 =
∑

f ln f −
∑

f
∑

ln f∑
1

k4 =
∑

s ln f −
∑

s
∑

ln f∑
1

(24)

This new technique potentially allows the estimation of attenuation in tissues which have different
scatterer types.

2.4 Using attenuation to provide a backscatter image

The motivation for estimating the attenuation in the sample is to provide an image which has uniform
gain for regions with uniform backscatter properties, i.e. B(x, y, f). Ultrasound B-scans are images
of the amplitude of the sound received at the transducer, integrated across all frequencies within
the bandwidth of the probe, SI(x, y). We therefore require an estimate of BI(x, y), the integrated
backscatter of the sample:

BI(x, y) =
∫ f0+fb

f0−fb

S(x, y, f)
P (x, y, f)A(x, y, f)

(25)

In practice, we need to use short-time Fourier transforms to calculate the frequency dependence
of S. This process, followed by integration across frequency, generates a backscatter image which has
very different noise characteristics than a conventional B-scan3. Ideally, we would like to preserve
the original B-scan in every respect other than to correct the gain, since the particular patterns of
speckle can themselves be clinically useful. We have already seen in eq. (12) that, if we assume
the pulse is Gaussian, the bandwidth is not affected by attenuation, and only slightly modified by
changes in the frequency dependence of backscatter. If we ignore these changes to bandwidth, and
note that shifts in the centre frequency will have no effect on the integrated backscatter, then, using
eq. (7):

BI(x, y) ≈ SI(x, y)

PpI(x, y)e
−αe(x,y)

(
fp0(x,y)−αe(x,y)σp(x,y)2

2

) (26)

where PI is the gain of the probe integrated over frequency, and the subscript p denotes values
measured in an appropriate phantom.

3This is equally true if we use the spectral division method to estimate B0 directly.
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(a) (b) (c) (d) (e)

Figure 1: Generating a backscatter image. The top row shows data from a homogeneous calibra-
tion phantom with known attenuation, the lower row from a stuffed olive embedded in a minimally
attenuating medium (jelly mixed with flour). (a) B-scans of each data set. (b) The raw estimate
of cumulative attenuation. (c) Derived cumulative attenuation after enforcing monotonicity and
smoothness constraints. (d) Backscatter image. (e) An estimate of the local attenuation coefficient
can also be derived from (c).

Eq. (26) can be further simplified if we note that changes in f0 and σ across the field of view
of the probe will be small compared to errors in the measurement of αe. In many probes it is also
acceptable to ignore the variation of integrated gain PI in the x (lateral) direction, in which case:

BI(x, y) ≈ SI(x, y)

PpI(y)e
−αe(x,y)

(
fp0−αe(x,y)σp2

2

) (27)

Hence in order to correct the B-scan, we need PI , f0 and σ, which are considered fixed for a
given probe design and settings, and both the received signal SI and attenuation estimate αe from
the sample being scanned. Figure 1 demonstrates the process, for a scan of a homogeneous phantom
and an olive embedded in jelly mixed with flour. The steps in deriving the estimate of cumulative
attenuation (c) from the raw data (b) are outlined in Section 3.

Figure 1(e) shows the local attenuation coefficient βe of the sample. This can be derived from
the cumulative attenuation estimate αe:

βe =
1
2

dαe

dy
(28)

where the factor of two appears since αe is accumulated over twice the depth y. In practice αe is
a very noisy estimate, and this noise will be amplified by taking the differential. However, note
that we do not need to calculate βe if we only want to provide a corrected backscatter image, as in
Figure 1(d).
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Figure 2: Experimental and simulated calibration curves. A homogeneous phantom with
known attenuation was scanned many times with a 5-10MHz ultrasound probe. The spectrum was
averaged and corrected for attenuation at each frequency. Magnitude (a) and centre frequency (b)
across the probe bandwidth were estimated from this data and compared with simulations. The
probe had a tighter focus than the simple simulation predicts, but nevertheless both curves show the
same form of variations in both magnitude and frequency.

3 Method

3.1 Measurement of calibrated spectra

All the techniques described in Section 2 require calibration of the ultrasound probe to calculate
Sp(x, y, f), from which PI(y), f0 and σ can also be derived. This can be estimated from multiple
scans of a homogeneous phantom (J. M. Kofler and Madsen, 2001). Each vector in each scan is
Fourier transformed and averaged — typically 50 scans each containing 128 vectors are sufficient to
give a good estimate. The same sampling and window length are used as when calculating S(x, y, f)
from the sample. Typically, for a 5-10MHz probe, we sample and pass-band filter the signals at
66.6MHz, then convert to baseband (using a notional centre frequency of 6.5MHz) and decimate
by a factor of four. The window length is set to 12 cycles of the centre frequency, which gives a
reasonable trade-off between time and frequency resolution.

Sp is first corrected for the known attenuation of the phantom, by direct application of eq. (3), thus
effectively setting αp = 0. For the spectral division technique, the spectrum is then averaged in the
x (lateral) direction, and the same resulting Sp(y, f) used for each vector in eq. (17). The integrated
gain PI(y), average centre frequency f0 and bandwidth σ are calculated from this averaged spectrum,
and these values used in eq. (27). Figure 2(a) shows an experimental PI(y) curve compared to a
simulation using the same probe settings in Field II4 (Jensen, 1996). Having estimated the calibration
values, we simply need to know S(x, y, f) for each scan which we intend to correct.

For the centre frequency technique, we need a method for determining the centre frequency in
the sample f0

′ and in the calibration phantom f0
′
p at each depth y. It can be seen from both the

4http://www.es.oersted.dtu.dk/staff/jaj/field/

http://www.es.oersted.dtu.dk/staff/jaj/field/
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Figure 3: Centre frequency estimation. The graph shows several estimates of centre frequency
from one vector from a scan of a homogeneous attenuating phantom, with a 5-10MHz ultrasound
probe. For each estimate, both the measured frequency and a least-squares linear fit are shown.
It is clear that although all the frequency estimation techniques follow a similar pattern, there is
considerable difference in estimation of attenuation from each. These differences are significant even
in the least-squares estimates.

experimental and simulated centre frequency estimates in Figure 2(b) that this varies slightly with
depth. Whereas f0 is only used as a scaling factor in eq. (27), and this variation can be safely ignored,
in eq. (14) the expected differences between frequencies are of the same order as the variation with
depth. Hence, a different value of f0

′
p is used at each depth in eq. (14).

There are a variety of ways to measure f0. It can be estimated from the first non-zero location
at which the complex auto-correlation of the analytic RF signal has zero phase. This can be done
very efficiently by slight adaptation of an algorithm used in elastography to estimate relative time
shifts between similar RF signals (Pesavento et al., 1999). Alternatively we can calculate the centroid
(within an appropriate bandwidth) of the local spectrum of the signal. Both of these are shown in
Figure 3, for a typical RF vector from the homogeneous phantom.

It is immediately obvious from this figure that the variation of f0 is very large, since we are
estimating it from a backscattered signal with approximately Rayleigh statistics. A better way to
estimate f0 is to take the average of two centroids, one for the spectrum weighted with a gain
in dB which increase linearly in frequency, and one with an equal and opposite linear decrease in
frequency. In broad terms, this makes the estimate more reliant on the location of the band edges
of the backscattered spectrum, rather than the values at the mid-band. Such an estimate is also
shown in Figure 3 — the standard deviation of the signals is 0.55MHz for the phase zero and centroid
estimates, but only 0.44MHz for the average weighted centroid estimate.

3.2 Reducing fluctuations in the attenuation estimate

We have already noted that there is a much larger variation in either the centre frequency or spectral
division based methods for estimating attenuation than the quantity being measured. We therefore
need some very strong prior information in order to extract the real attenuation value from the
apparent value due to the statistical variation of backscatter. However, since we are measuring
cumulative attenuation, we can make the assumption that this must increase monotonically with
depth. This is always true when using eq. (23), but only the case for eq. (14) and eq. (19) if we
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(a) Calibration phantom
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(b) Olive phantom

Figure 4: Monotonic smoothing of frequency estimates. The frequency centroid estimate
(shown dotted) is first smoothed by calculating the best monotonic data fit (dashed). This controls
the knot locations from which a cubic B-spline is interpolated. Knots are placed at the centre of each
horizontal line, and at the ends of each discontinuity if it is a significant proportion of the bandwidth.
(a) Shows results for a uniform attenuating phantom, and (b) for an attenuating olive embedded in
low-attenuation jelly.

assume that z is everywhere similar to the value in the calibration phantom zp.
A least-squares best fit monotonic function y(t) can be found for noisy data x(t) by using the

up-and-down blocks or pool adjacent violators algorithm of Kruskal (1964). This is a very efficient
algorithm (tending to 0(n2) for n values, but in nearly all realistic cases much closer to O(n)) based
on the observation that groups of data values which are not monotonic in the correct sense are
most optimally replaced by a simple average. The implementation used here is not the same as the
conventional one of Barlow et al. (1972), and is included in Appendix A.

One of the characteristics of this algorithm is that it tends to generate staircase like functions with
large flat regions, especially where the input data has a large variance compared to the monotonic
trend, as is the case here (see Figure 4). However, we expect the cumulative attenuation to be smooth
as well as monotonically increasing (hence the frequency should be reducing). We can construct a
smooth monotonic estimate by fitting an approximating spline to the monotonic function, where the
flat ‘steps’ determine the location and number of knots; a similar concept was used by Hildenbrand
and Hildenbrand (1986). In effect, the size of each step gives an indication of how well the original
data fitted the monotonic model, and hence how closely we can justify the spline approximation
fitting the data.

Here we place one knot in the centre of each step, and additional knots at the edges of steps if the
subsequent drop is greater than a one quarter of the bandwidth of the probe. The approximation is
achieved using cubic B-splines, which have the desirable property that they are continuous in both
first and second derivatives. The solid lines in Figure 4 show the final results, with black circles
indicating the knot locations in each case. The continuity of the spline leads to smoothing of both
the cumulative attenuation αe and the attenuation coefficient βe.

Even with a careful definition of centre frequency, monotonic regression and spline approximation,
the cumulative attenuation estimates still contain noise, which is evident when comparing those for
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(a) (b) (c) (d)

Figure 5: Reducing variation in the raw attenuation estimate. (a) is the original estimate,
(b) after monotonic regression, (c) after spline approximation in the axial direction and (d) after
median filtering in the lateral direction.

each vector side by side, as in Figure 5(c). This lateral variation can be reduced by using a short
range median filter in the lateral direction as a final step once αe has been estimated for each vector
independently. The end result is shown in Figure 5(d), and as a grey scale image in Figure 1(c).

4 Results

Two ultrasound phantoms were used to test the attenuation estimation algorithms. The first con-
tained a homogeneous material with Rayleigh backscatter (z = 4 in eq. (2)) and a uniform attenu-
ation of 0.4 dB/cm/MHz (J. M. Kofler and Madsen, 2001). This was also used for generating the
calibration spectra. The second contained a stuffed olive embedded in raspberry jelly mixed with
a concentration of flour. The jelly was set in two stages, with a different concentration of flour in
each, such that the lower layer had greater backscatter than the higher. The olive had a greater
attenuation than the surrounding jelly, which results in a shadow in the resulting ultrasound images,
for instance the lower image of Fig. 1(a).

3D RF ultrasound data sets were acquired for each test object, using the real time RF acquisition
system described in Appendix B. Ultrasound visualisations were generated using one of five methods:

BSCAN The conventional B-scan display of received amplitude.

SCATTER Attenuation correction using the method of Hughes and Duck (1997) which assumes
that the attenuation is proportional to the backscatter.

CENTRE FREQ Attenuation correction using eq. (14), with the average weighted centroid esti-
mate of centre frequency.

SPEC DIV Attenuation correction using spectral division by eq. (19).

SPEC DIV Z Attenuation correction using spectral division with estimation of backscatter power
by eq. (23).

All of the CENTRE FREQ, SPEC DIV and SPEC DIV Z methods employed the monotonic and
smoothness constraints outlined in Section 3. All methods have been implemented in Stradx software,
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(a) (b) (c) (d) (e)

Figure 6: Volumes used for assessing homogeneity. Backscatter data based on each attenua-
tion estimation method were assessed by considering the variance of small volumes over which the
sample was known to be homogeneous. (a) The calibration phantom was assumed to be entirely
homogeneous. The olive phantom was split into four distinct regions: (b) the background above the
olive, (c) the olive (excluding the centre), (d) the background below the olive and (e) the lower layer
with greater backscatter. Within each volume, backscatter data was averaged over a small range to
minimise the influence of speckle, then the variance of this average calculated over the entire volume.
Typical averaged data for one slice through each volume is shown within the outlined region in each
figure.

and run in real time, at about 4-5 frames per second on a 3 GHz Pentium 4 CPU. The Fourier
Transforms were implemented using the FFTW library5 of Frigo and Johnson (1998).

The efficacy of each method was assessed by calculating the variation of gain over a large scale
in volumes of 3D data known to be of a homogeneous material, as demonstrated in Figure 6. The
gain variation over a small scale is due to speckle and was removed by appropriate averaging of
the data. If attenuation estimation is successful, the display of homogeneous materials should itself
be homogeneous. In addition, the attenuation estimate should not add significant variation to the
corrected images.

4.1 Calibration phantom

Attenuation correction in the calibration phantom should be ideal for all methods, since there is no
change in backscatter power between calibration spectra and the scan, and the scatter and attenua-
tion are constant across the sample. The top row of Figure 7 shows that all methods produce images
which are more homogeneous than BSCAN. Nevertheless, the noise in the attenuation estimation
procedures adds variance to the images, and this is essentially what is measured for the non-BSCAN
cases in Table 1.

Clearly, the SCATTER method exhibits the lowest noise levels, followed by CENTRE FREQ
and SPEC DIV, then SPEC DIV Z. This is as expected from the analysis in Section 2 — for a
homogeneous sample, SCATTER is simply an estimate of the slope of the gain with depth, which
is very stable. CENTRE FREQ and SPEC DIV both involve essentially simple estimates of fre-
quency. SPEC DIV Z requires estimation of an additional parameter, and hence introduces more
noise. However, all images are visually acceptable, and have lower variance than the original BSCAN.

5http://www.fftw.org

http://www.fftw.org
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(a) (b) (c) (d) (e)

Figure 7: Backscatter with varying methods of attenuation estimation. The top row shows
data from the calibration phantom, the bottom row from the olive phantom. (a) Shows a conven-
tional BSCAN of the olive phantom. (b) to (e) show backscatter images with different attenuation
estimation methods: (b) SCATTER, (c) CENTRE FREQ, (d) SPEC DIV and (e) SPEC DIV Z. (c)
to (e) all employ the same monotonicity and smoothness constraints.

Table 1: Homogeneity of backscatter for each attenuation estimate. The table shows the
standard deviation of the brightness of the local average backscatter values for each volume and each
method. The units are arbitrary but comparable, since the overall gain was held constant over the
measurements such that all backscatter values fell within the displayable brightness range.

Attenuation estimate
BSCAN SCATTER CENTRE FREQ SPEC DIV SPEC DIV Z

Calibration phantom 11.47 3.33 5.52 5.54 8.06
(Fig. 6(a))
Above olive 4.45 5.09 8.79 5.33 11.56
(Fig. 6(b))
Olive 17.91 11.00 15.58 14.56 16.85
(Fig. 6(c))
Below olive 20.89 10.47 7.80 14.94 8.44
(Fig. 6(d))
Lower layer 33.36 18.61 9.01 21.29 12.05
(Fig. 6(e))
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4.2 Olive phantom

The olive phantom is a better test of the system, since it has different, and less well constrained,
properties than the calibration object. Four test volumes were chosen in each case, shown in Fig-
ure 6(b) to (e), to test different properties of each method. Volume (b) is already homogeneous in
BSCAN, and hence highlights noise in the other methods. The olive, volume (c), has a slight gain
variation, which is not significant but should ideally be correctable. The other regions below the
olive, (d) and (e), exhibit strong shadows which it is our specific aim to correct. The location of the
four regions above each other also allows assessment of how independently each can be corrected.
This is particularly important given the considerable smoothing required to reduce the variation in
the attenuation estimates.

As with the calibration phantom, SCATTER exhibits the lowest variance in regions where the
inherent assumptions are valid, e.g. above the olive and in the olive itself. However, the correction is
poor in the lower regions, which still show strong shadows. SPEC DIV has a similar performance,
doing well in regions where BSCAN was already fairly homogeneous, but less well elsewhere. It is
notable that SPEC DIV is always worse than SCATTER, despite the latter apparently being reliant
on more (potentially incorrect) assumptions.

The SPEC DIV Z method performs much better than SPEC DIV in regions with strong shad-
owing, since it can account for variations in scatterer type. However, it is a more noisy estimate,
and this noise degrades the performance in the other regions.

The CENTRE FREQ method performs remarkably well in all circumstances; it has relatively
low noise, but is not as biased as SCATTER or SPEC DIV. This is the result of the analysis noted
earlier that, although eq. (15) is the same as eq. (22) in the limit, the simplification is significantly
less valid in the former case. In practice the additional terms in eq. (15) are important, and tend to
improve the CENTRE FREQ estimate. Visually, SPEC DIV Z appears to have the lowest bias, but
the lower measurement noise in CENTRE FREQ results in a better performance.

4.3 3D visualisation of olive phantom

Figure 8 is a 3D visualisation of the olive phantom which demonstrates the difficulty which shadowing
and enhancement causes in such data. The reslice parallel to the skin surface (shown as a horizontal
plane in the figure) appears as a fluid filled loop in an otherwise homogeneous material. It is only
when this is corrected that it becomes clear that the centre is a separate material (the olive) and
there is actually no fluid at all.

Figure 9 demonstrates the additional ability to display images of attenuation coefficient, defined
in eq. (28). Whilst these are undoubtedly very noisy, the olive shows up very clearly as having higher
attenuation than the surrounding material.

Both these examples also demonstrate the robustness of the presented algorithm (CENTRE FREQ
in this case), in that the reslices are based on several hundred images, all processed independently.
The homogeneity of the reslices is an indication of the consistency of the gain adjustment in each of
the original images.

5 Conclusion

It has been shown that correction of shadowing and enhancement artefacts is possible in in vitro data,
at near real time rates, using spectral methods of attenuation estimation. The monotonicity and
smoothness constraints are sufficient to reduce the estimation noise in all techniques to a level which
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(a) BSCAN method (b) CENTRE FREQ method

Figure 8: 3D visualisations of olive phantom. In each case one of the recorded frames of US
data and an orthogonal reslice are shown in 3D on the left. On the right are the same reslice images,
interpolated from all of the 150 recorded frames.

(a) Backscatter coefficient (b) Attenuation coefficient

Figure 9: Attenuation and backscatter of olive phantom. The data is presented in the same
format as in Figure 8.
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results in acceptable visualisations after attenuation correction has been applied. This represents a
significant step toward achieving accurate automatic gain correction on in vivo data.

The bias in each technique can be linked to sensitivity to scatterer type — this is demonstrated in
both the in vitro results and the theoretical analysis. Using centre frequency currently represents the
best trade-off between bias and measurement noise. The spectral division method with estimation
of backscatter power shows promise as a low bias estimator, but requires more constraints to reduce
the level of noise in the estimate.

The 3D RF system which we have set up will allow us to investigate the use of overlapping 3D
RF data for imposing the additional constraints which are necessary to further reduce the noise in
these measurements.
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Girault, J.-M., Ossant, F., Ouahabi, A., Kouamé, D., Patat, F., May 1998. Time-varying autoregres-
sive spectral estimation for ultrasound attenuation in tissue characterization. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control 45 (3), 650–659.

Gorce, J.-M., Friboulet, D., Dydenko, I., D’hooge, J., Bijnens, B. H., Magnin, I. E., Dec. 2002. Pro-
cessing radio frequency ultrasound images: a robust method for local spectral features estimation
by a spatially constrained parametric approach. IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control 49 (12), 1704–1719.

Hildenbrand, K., Hildenbrand, W., 1986. On the mean income effect: data analysis of the U.K. family
expenditure survey. In: Hildenbrand, W., Mas-Colell, A. (Eds.), Contributions to mathematical
economics. North Holland.

Hughes, D. I., Duck, F. A., 1997. Automatic attenuation compensation for ultrasonic imaging. Ul-
trasound in Medicine and Biology 23 (5), 651–664.

J. M. Kofler, J., Madsen, E. L., 2001. Improved method for determining resolution zones in ultrasound
phantoms with spherical simulated lesions. Ultrasound in Medicine and Biology 27 (12), 1667–1676.

Jensen, J. A., 1996. Field: A program for simulating ultrasound systems. Medical and Biological
Engineering and Computing 34, Supp. 1 (1), 351–353.

Knipp, B. S., Zagzebski, J. A., Wilson, T. A., Dong, F., Madsen, E. L., 1997. Attenuation and
backscatter estimation using video signal analysis applied to B-mode images. Ultrasonic Imaging
19 (3), 221–233.

Kruskal, J. B., 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29,
115–129.

Lu, Z. F., Zagzebski, J. A., Madsen, E. L., Dong, F., 1995. A method for estimating an overlying
layer correction in quantitative ultrasound imaging. Ultrasonic Imaging 17 (4), 269–290.

Nicholas, D., Hill, C. R., Nassiri, D. K., 1982. Evaluation of backscattering coefficients for excised
human tissues: principles and techniques. Ultrasound in Medicine and Biology 7, 7–16.

O’Donnel, M., H. F. Reilly, J., May 1985. Clinical evaluation of the B′-Scan. IEEE Transactions on
Sonics and Ultrasonics SU-32 (3), 450–457.

Pesavento, A., Lorenz, A., Siebers, S., Emmert, H., 2000. New real-time strain imaging concepts
using diagnostic ultrasound. Physics in Medicine and Biology 45 (6), 1423–1435.

Pesavento, A., Perrey, C., Krueger, M., Ermert, H., Sep. 1999. A time-efficient and accurate strain
estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans-
actions on Ultrasonics, Ferroelectrics and Frequency Control 46 (5), 1057–1067.

Prager, R. W., Gee, A. H., Berman, L., 1999. Stradx: real-time acquisition and visualisation of
freehand 3D ultrasound. Medical Image Analysis 3 (2), 129–140.

Prager, R. W., Gee, A. H., Treece, G. M., Berman, L., 2003. Decompression and speckle detection
for ultrasound images using a homodyned k-distribution. Pattern Recognition Letters 24 (4–5),
705–713.



A MONOTONIC REGRESSION 19

Taxt, T., Jul. 2001. Three-dimensional blind deconvolution of ultrasound images. IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control 48 (4), 867–871.

Treece, G. M., Gee, A. H., Prager, R. W., Cash, C. J. C., Berman, L. H., Apr. 2003. High definition
freehand 3D ultrasound. Ultrasound in Medicine and Biology 29 (4), 529–546.

Tu, H., Varghese, T., Madsen, E. L., Chen, Q., Zagzebski, J. A., 2003. Ultrasound attenuation
imaging using compound acquisition and processing. Ultrasonic Imaging 25 (4), 245–261.
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Appendices

A Monotonic regression

The following is a memory and time efficient implementation of the up-and-down blocks algorithm
by Kruskal (1964) for regression of a piecewise linear monotonic function y to data x:

/∗ return a length n output vector y which is the best monotonic fit to x
if (sense = 1), y will be monotonically increasing
if (sense = -1), y will be monotonically decreasing ∗/

void monotonic regression( int n; float ∗x, float ∗y, int sense )
{

int i, j; /∗ i is the current data length, j the range of the current mean ∗/
float sum; /∗ the current sum over the range j ∗/

sum = x[0]; j = 1; /∗ initialise sum and range j ∗/
for (i=1; i<n; i++) { /∗ add one value at a time, enforcing monotonicity from 0..i ∗/

if ( (x[i] - sum/j)∗sense < 0 ) { /∗ is x[i] consistent with the current mean? ∗/
sum += x[i]; j++; /∗ NO - extend range j of mean forward by one ∗/
while ( (j≤i) && ((y[i-j] - sum/j)∗sense > 0) ) { /∗ is the mean consistent with y[i-j]? ∗/

sum += x[i-j]; j++; /∗ NO - extend range j of mean back until it is ∗/
}
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} else { /∗ YES - no need to extend range j of mean ∗/
sum /= j; /∗ calculate mean value ∗/
for (; j>0; j--) y[i-j] = sum; /∗ set y to mean from i-j..i-1 ∗/
sum = x[i]; j = 1; /∗ re-initialise sum and range j ∗/

}
}
sum /= j; /∗ calculate mean value ∗/
for (; j>0; j--) y[i-j] = sum; /∗ set y to mean from i-j..n-1 ∗/

}

B Real time RF acquisition system

Attenuation estimation using the methods outlined in Section 2 relies on the ability to acquire
RF ultrasound data. This needs to be high resolution, since the RF data is acquired before log-
compression, and so that adjustments in gain after acquisition do not simply amplify noise in the
signal. Ideally we would like to be able to acquire 3D RF data, since one of the aims of shadowing
and enhancement correction is to make visualisations from 3D data easier to interpret.

Ultrasound RF analysis reported in the literature is often based on single frames acquired at only
8-bit sampling resolution, with several minutes delay to download the data to an external PC (Watson
et al., 2000). A 3D RF system using 16-bit acquisition at 20MHz has been reported (Taxt, 2001),
but not in real-time. Similarly a real-time system using 12-bit acquisition at 30 MHz has been
reported (Pesavento et al., 2000), but not in 3D. Commercial RF systems have until recently been
neither real-time nor 3D. The system we have developed, Stradx6 (Prager et al., 1999), is based on the
freehand scanning protocol, where the probe is moved by hand whilst being tracked by an external
position sensor. RF ultrasound frames and their respective positions are temporally matched, and
the resulting 3D data stored in real time. 2D backscatter images can be displayed in real time, and
3D visualisation and analysis can be performed immediately after acquisition. The non-RF version
of this system has recently been shown to have a positional accuracy of ±0.6 mm (Treece et al.,
2003).

Analogue RF ultrasound signals are digitised after focusing and time-gain compensation, but
before log-compression and envelope detection, using a Gage Compuscope CS141007 14-bit digitiser.
The required signals are shown in Figure 10: we use a Dynamic Imaging Diasus8 ultrasound machine.
Whole frames are stored in on-board Gage memory, before transferring to PC memory at 75 Mb/s.
On average 30-60 frames can be acquired per second.

RF phase and amplitude precision were assessed by scanning a planar target at 2cm depth, in
a water bath, with a 5-10MHz probe. 100 frames of data were recorded, keeping the probe and
target still, using 50 and 100 MHz asynchronous, and 66 MHz synchronous sampling rates. Typical
magnitude and phase images are shown in Figure 11(a) and (b): the rectangle in each case indicates
the area within which data was analysed. Figure 11(c) shows a clear improvement in inter-vector
precision when using synchronous acquisition.

Intra-vector signal variation also showed a dramatic improvement using synchronous acquisition.
The standard deviation was ±0.2◦ phase, ±1.7 bits amplitude (66 MHz synchronous), compared
to ±6.4◦, ±4.2 bits (100 MHz asynchronous) and ±13.2◦, ±5.5 bits (50 MHz asynchronous). The

6http://mi.eng.cam.ac.uk/~rwp/stradx/
7http://www.gage-applied.com
8http://www.dynamicimaging.co.uk

http://mi.eng.cam.ac.uk/~rwp/stradx/
http://www.gage-applied.com
http://www.dynamicimaging.co.uk
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Figure 10: Connections between the ultrasound machine and the PC. Two signals are
required in addition to the received RF ultrasound: one showing the frame start, and one the valid
receive portion of the RF signal. If in addition the ultrasound clock is available, this can be used to
synchronise the sampling, which greatly improves the repeatability. The diagram shows the general
case of multiple transmit focii: in practice, only one transmit focus was used throughout this work.
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Figure 11: The effect of sampling on inter-vector variation. A flat surface was repeatedly
scanned in a water bath: (a) shows the magnitude, and (b) the phase from a typical scan, zoomed x10
in the vertical direction. Magnitude and phase values where analysed within the rectangle shown in
each image. (c) The typical phase variation across vectors for each sampling method. Some residual
variation is expected since the surface will not be precisely smooth.

acquisition was notionally 14-bit, with an effective dynamic range of 11.7 bits, hence the magnitude
variation for synchronous acquisition was within the noise floor of the analogue to digital converter.
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