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Abstract

Ultrasound strain imaging is becoming increasingly popular as a way to measure stiffness variation in
soft tissue. Almost all techniques involve the estimation of a field of relative displacements between
measurements of tissue undergoing different deformations. These estimates are often high resolution,
but some form of smoothing is required to increase the precision, either by direct filtering or as
part of the gradient estimation process. Such methods generate uniform resolution images, but
strain quality typically varies considerably within each image, hence a trade-off is necessary between
increasing precision in the low quality regions and reducing resolution in the high quality regions.
We introduce a smoothing technique, developed from the nonparametric regression literature, which
can avoid this trade-off by generating uniform precision images. In such an image, high resolution is
retained in areas of high strain quality but sacrificed for the sake of increased precision in low quality
areas. We contrast the algorithm with other methods on simulated, phantom and clinical data, for
both 2D and 3D strain imaging. We also show how the technique can be efficiently implemented
at real time rates with realistic parameters on modest hardware. Uniform precision nonparametric
regression promises to be a useful tool in ultrasound strain imaging.
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1 Introduction

It seems likely that some form of ultrasonic strain imaging will be adopted into routine clinical
practice, within a decade, to support a still unestablished set of diagnostic tasks, primarily within
the broad category of soft tissue examinations. Applications discussed in the academic literature
have included detection of soft tissue tumours (Garra et al., 1997; Regner et al., 2006; Svensson
and Amiras, 2006), discrimination without biopsy between complex cysts and malignant breast
lesions (Barr, 2006), monitoring of atherosclerosis (de Korte et al., 1998, 2000), detection and grading
of deep vein thrombosis (Emelianov et al., 2002), assessment of skin pathologies (Vogt and Ermert,
2005) and evaluation of myocardial fitness (Kaluzynski et al., 2001).

There are currently a variety of techniques for generating strain images using ultrasound, and
it is not yet clear which of these techniques will be most appropriate for each of these applications.
However, the majority of techniques involve the local estimation of tissue displacement by comparing
radio frequency (RF) ultrasound data acquired at differing tissue deformation states. The tissue
deformation can be induced in a variety of ways: in the remainder of this paper, we will focus on
quasi-static ultrasound strain imaging, where the tissue is deformed by varying the contact pressure
between the probe and the skin surface. However, the algorithms we develop apply equally to
other strain imaging techniques. Many methods have been proposed for displacement estimation,
e.g., (Alam et al., 1998; Céspedes and Ophir, 1993; Céspedes et al., 1995; Lindop et al., 2007,
2008e; Lubinski et al., 1999; Maurice and Bertrand, 1999; O’Donnell et al., 1994; Pesavento et al.,
1999; Pinton et al., 2006; Sumi, 1999; Viola and Walker, 2003; Zhu and Hall, 2002). Such methods
typically produce high resolution displacement estimates, however the measurement quality can vary
enormously across a single image, for instance due to variation in signal strength or decorrelation
caused by non-axial movement.

In quasi-static strain imaging, displacement estimation is followed by gradient estimation in
the axial direction. Simple differencing of consecutive samples (Ophir et al., 1991) amplifies the
high-frequency components of the measurement noise. Hence differencing is often achieved by more
complex techniques such as piecewise-linear least squares regression (PLLSR) (Kallel and Ophir,
1997), moving-average filtering (O’Donnell et al., 1994) and staggered strain estimation (Srinivasan
et al., 2002). All such linear techniques can be interpreted as simple differencing followed by filtering
with fixed kernel coefficients. Indeed, we have previously shown that, except in the case where the
entire data set genuinely consists of noisy measurements from a single linear trend (in which case
PLLSR is the optimal filter), simple differencing followed by filtering with a Gaussian-shaped kernel
can achieve lower estimation noise than these methods at the same resolution (Lindop et al., 2008b).

Since both the displacement tracking and filtering techniques make use of kernels with fixed size,
subsequent strain images have fixed resolution but variable quality. However, this variation can be
quantified, since it is straightforward to obtain a reasonable estimate of the precision (inverse of
measurement variance) of each measurement (Lindop et al., 2008a). Strain images require some
form of normalisation to convert the strain into a displayable range, and to reduce variation that is
simply a result of variation in the applied stress (Lindop et al., 2008c). The precision of the displayed
strain value depends both on the displacement estimation precision and on the normalisation value
used at each point in the image. Both of these factors can vary within each image, leading to large
variations in precision which can make strain images hard to interpret.

In order to prevent confusion due to the display of low precision strain data, images are often
suppressed once the overall precision falls below a fixed threshold (Jiang et al., 2007). However,
strain images with low overall precision can still contain high precision regions, and this is exploited
by techniques which combine multiple images, using local strain precision information to ensure the
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best data in each image contributes more to the final result. Such data still contains regions of low
precision, but these can be masked by use of a suitable colour wash (Lindop et al., 2008c).

We present here a method for producing strain images with uniform precision and varying reso-
lution, rather than uniform resolution and varying precision. Such images may be easier to interpret:
lack of precision in strain images leads to regions which falsely appear to have strong fine-scale
stiffness variation, whereas lack of resolution leads to high levels of blurring, which is more easily
interpreted. In this case, a colour wash can be additionally used to suppress areas with very low
resolution (rather than low precision as before). Whether this approach is indeed better is clearly
somewhat subjective, hence the results are mostly presented in visual form, so readers can judge for
themselves.

In Section 2 we describe the principle behind non-uniform smoothing of strain data, followed by
details of our implementation, since computational issues are important in the context of real-time
applications. Section 3 contains an analysis of the resolution and precision of the subsequent strain
estimates, leading to a formulation for uniform output precision. In Section 4, we compare the
technique with PLLSR and Gaussian filtering, including simulations, phantom studies and clinical
examples, for both 2D and 3D strain data. General conclusions are drawn from these results in
Section 5.

2 Method

To provide a more general framework for smoothing strain images, we follow the roughness penalty
approach to nonparametric regression (NPR) (Green and Silverman, 2004). It should be noted,
however, that the resulting equations can be arrived at from a variety of directions, for instance
variable-kernel smoothing (Silverman, 1984), which lead to different interpretations of largely the
same parameters. Since we are considering regression in the context of image filtering, we want an
approach which allows user control over the extent of filtering (equivalent to the window length in
PLLSR, for example) whilst automating the local smoothing properties. NPR is a good candidate for
this, since it depends on settings which may be thought of as data weights (which can be automatically
chosen for uniform precision) and a smoothing strength (which can be controlled to adjust the level
of precision).

In principle, since NPR is a linear operation, we could apply it either before differencing the
displacement data, or after, on the strain data. However, there are two key reasons in practice why
it makes more sense to apply it to strain data:

• Strain data varies with the amount of applied stress. Since we really want to visualise stiffness,
strain data needs some form of normalisation before it can be usefully displayed, loosely equiv-
alent to dividing through by an estimate of applied stress. Hence this also results in a change
in data precision: low stress areas are then correctly identified as having lower precision even
though the displacement precision may have been high1. Applying NPR at this stage allows us
to identify such regions correctly, resulting in far better images if the applied stress was highly
non-uniform due to poor probe movement.

• In order to produce a high quality display, strain data is often persisted over a sequence of
images. This persistence must be over normalised strain in order to ensure the image levels

1This is easier to see in the limit of no applied stress — in this case the displacement precision is very high, since
there is no deformation, but the displayed precision must be very low, since it is not possible to measure stiffness if
there was no deformation at all.
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are consistent. If we filter the data before persistence, we would be persisting images with
inconsistent resolution, and this produces very undesirable results. For correct persistence, we
need to keep the resolution constant, and only perform variable resolution NPR on the final
persisted data, just before display.

That said, for very good quality data, with no persistence and an ideal probe motion which does
not require normalisation, slightly better results are possible by applying NPR to displacement data.
This topic is discussed in more detail by Lindop et al. (2008d).

2.1 Principle

NPR is described most simply as an optimisation problem. A regression curve (in one dimension) or
a surface (in two or more dimensions) is found by minimising a particular cost function (Whittaker,
1923). A first group of terms, known as the data penalty, expresses the cost of a poor fit between
raw and regressed strain. A second group of terms, known as the roughness penalty, ensures that
a relatively low cost is incurred by simple surfaces, such as planes, whereas a relatively high cost is
incurred by complicated surfaces, such as those containing large numbers of sharp peaks and troughs.
The continuous form of the roughness penalty is an integral over the entire surface of the square of
appropriate surface derivatives. We consider two particular cost functions:

C1 =
∫∫

w1 (ŝ− ś1)
2 + r1

[(
∂ś1
∂x

)2

+
(

∂ś1
∂y

)2
]

dxdy (1)

C2 =
∫∫

w2 (ŝ− ś2)
2 + r2

[(
∂2ś2
∂x2

)2

+
(

∂2ś2
∂y2

)2
]

dxdy (2)

where x and y denote lateral and axial distance (it is assumed that strain is measured in the axial
direction), ŝ and ś are the raw and regressed strain data respectively, which are multiplied by data
weights, w. For C1, The roughness penalty consists of squared partial first derivatives in the x and
y directions, whereas C2 contains squared partial second derivatives. Hence C1 penalises strain data
which is not reasonably constant, whilst C2 penalises strain data which is not reasonably smooth.
In both cases r, the smoothing strength, controls the degree of ‘reasonableness’ in the previous
statements2.

In practice, we do not have a continuous description of the raw strain data, and we do not require
a continuous function for the regressed strain. Our aim is simply to replace the raw data with a
filtered version of the data. In this case, a discretised form of eqs. (1) and (2) can be expressed in
matrix form:

C ≈(́s− ŝ)TW(́s− ŝ) + rśTMTMś (3)

where W is now a diagonal matrix of data weighting factors, with one entry per data point. ŝ and ś
are vectors listing the raw and regressed strain data respectively. For C ≡ C1, M ≡ M1 is a matrix
which extracts every first difference, in both x and y directions, and this is weighted by the constant
r ≡ r1. For C ≡ C2, M ≡ M2 lists every second difference; further details are given in Appendix A.

A formula for the regression surface is found by setting ∇C = 0, differentiating with respect to
the value at every point on the regression surface, ś, which gives

(W + rMTM)́s = Wŝ. (4)
2If the image scale is not the same in each direction, different values of r are used to weight each partial derivative,

in order to maintain equal smoothing.
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The form of the regressed data ś is therefore dependent on the data penalty W and roughness
penalty M. Setting W to a constant multiplied by the identity matrix results in a simple sum-of-
squared error data penalty and will produce uniform smoothing, but allowing the components of
the leading diagonal of W to vary will result in non-uniform smoothing. The roughness penalty
M should reflect how we expect the strain data to behave: M ≡ M1 represents strain which is
approximately constant, at least locally, and M ≡ M2 represents strain which is expected to vary
smoothly. Both of these constraints might be useful for real data, and both are tested in Section 4.

2.2 Implementation

Solving eq. (4) involves inversion of the (W + rMTM) matrix combination either by direct or
iterative means. For non-uniform smoothing, the data weights W themselves depend on the data,
and hence this inversion must be repeated every time an image is filtered. Efficient NPR in 1D was
first described by Reinsch (1967). In this case (W + r1M1

TM1) is a symmetric positive definite
tri-diagonal matrix and (W + r2M2

TM2) is penta-diagonal, and in both cases direct inversion is
easily achieved by either the Thomas algorithm or band-limited Cholesky decomposition (George
and Liu, 1981).

In 2D, however, the matrices are of size NxNy×NxNy, where Nx, Ny is the size of each image, and
the mid-band for M1 is of width 2Nx +1 (or 2Ny +1, dependent on the ordering of the data in ś) and
for M2 of width 4Nx + 1. This makes direct inversion for 2D or 3D data impractical for a real-time
system, and we need instead to use an iterative method. In Section 4 we compare the performance of
the point Gauss-Seidel method (Varga, 2000), the method of conjugate gradients (Press et al., 2002)
and both the multigrid and full multigrid techniques, described in more detail in Appendix B.

Most iterative techniques benefit from a good initial guess at the solution. A pseudo-1D method
can be used to provide such a guess at very low computational cost, by performing smoothing in
each of the directions independently:

(W + rMx)́sx = Wŝ

(W + rMy )́s1D = Wśx (5)

where ś1D is the pseudo-1D solution and Mx and My represent roughness penalties in each direction
independently, such that Mx + My = MTM. Expanding eq. (5) and substituting for M gives

(W + rMx)W−1(W + rMy)́s1D = Wś

∴ (W + rMTM + r2MxW−1My)́s1D = Wś (6)

By comparison to eq. (4), eq. (6) contains the additional term r2MxW−1My. This tends to generate
small, high frequency errors in the regressed strain data, leaving the low frequency content remarkably
close to the full 2D solution. Since iterative schemes are typically much better at reducing high
frequency than low frequency errors, using ś1D as an initial guess for ś is particularly successful.

Equation (4) and the pseudo-1D initialisation in eq (5) have been presented in 2D, but they are
both trivially extensible to 3D strain data.

3 Analysis

We have seen that NPR can be used to provide non-uniform smoothing of the strain data, but we
would like to know how to set the data weight W so as to provide exactly the right non-uniform
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smoothing to generate a uniform precision image. To do this, we examine how the resolution varies
with varying data weight w, assuming that the underlying strain is largely constant, and the raw
strain estimates are independent and of high resolution. We then briefly consider the effects of
violating these assumptions in practice.

3.1 Resolution

Since NPR is a linear operation, the regressed strain data at each point can be calculated as a weighted
sum of some kernel coefficients with the original data. These kernel coefficients are different for every
data point in the regressed data set, however if we assume uniform smoothing (i.e. W = wI), with
w not too large, and only consider data away from the edges of the image, we can model NPR as
a convolution with an effective kernel H(ωx, ωy) (Silverman, 1984). Now let ŝ be a continuous raw
strain measurement with spatial frequencies ωx, ωy:

ŝ = cos(ωxx + ωyy)

hence the regressed strain data is approximated by

ś = |H| cos(ωxx + ωyy + ∠H)

where we abbreviate H ≡ H(ωx, ωy) for concision. Substituting these terms into eq. (2) gives

C2 =
∫ ∫ (

w(1− |H|)2 + r2(ω4
x + ω4

y) |H|2
)

cos2(ωxx + ωyy + ∠H) dxdy,

and differentiating with respect to |H| leads to the kernel values at minimum C2:

∂C2

∂ |H| = 0 = w(|H| − 1) + r2(ω4
x + ω4

y) |H|

∴ |H(ωx, ωy)| = 1
1 + r2

w

(
ω4

x + ω4
y

) (7)

The equivalent result for C1 is:

|H(ωx, ωy)| = 1
1 + r1

w

(
ω2

x + ω2
y

) (8)

The equivalent kernel for NPR is therefore a low pass filter, with cut-off frequency in both the
axial and lateral directions of (w/r1)(1/2) for NPR with C1 and (w/r2)(1/4) for NPR with C2. The
resolution in each direction will be proportional to (r1/w)(1/2) for C1 and (r2/w)(1/4) for C2, assuming
that NPR is responsible for the resolving limit, i.e. the raw strain data before NPR has a sufficiently
high resolution.

This relationship is empirically verified in Fig. 1, with plots showing the equivalent kernel over
the axial dimension for six examples of different smoothing strengths, all using C2. The smoothing
strengths are expressed in terms of a constant scale factor, a. The coefficients are found by calculating
the response to an impulse in the centre of the image, with a uniform data weight. An indication of
kernel width can be derived from these kernel coefficients, and this is plotted against r

1/4
2 to confirm

the expected relationship.
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Figure 1: C2 NPR resolution with uniform smoothing. (a) Normalised effective NPR kernels over
the axial dimension for various smoothing strengths, r2. (b) Kernel width against r

1/4
2 , confirming

the expected relationship.

3.2 Precision

Assuming the raw strain data contains independent measurements from the same relatively homoge-
neous strain distribution, the regressed strain data precision will scale with the size of the equivalent
NPR kernel, which is effectively acting to average the raw strain values3. The 2D kernel has a size
proportional to the square of the 1D kernel width, shown in Fig. 1. For raw data with precision p,
the precision of the regressed data for NPR using C2 will be (r2/w)(1/2)p, whereas for C1 it will be
(r1/w)p.

This implies, for 2D kernels, that we can keep the precision of the regressed data constant by
setting each of the diagonal elements of W to a value w(x, y) related to the precision p(x, y) of the
corresponding raw data. For NPR with C1, w(x, y) = p(x, y) and with C2, w(x, y) = p(x, y)2, in
which case the precision of the entire regressed image will scale with r1 and r2

(1/2) respectively.
A similar analysis in 3D shows that we should set w(x, y) = p(x, y)(2/3) for C1 NPR and w(x, y) =

p(x, y)(4/3) for C2 NPR to maintain uniform precision in this case.

3.3 Deviations from the simple model

Real strain data is of course not homogeneous, and neighbouring strain measurements are unlikely
to be completely independent of each other. We briefly consider here some of the effects of these
violations of the assumptions we have been making in the previous sections.

• We assume that the windows used for estimating each displacement are small, which has the
effect of ensuring that the raw resolution is as high as possible. Since we are attempting to
apply a filter which is optimal in the sense of minimising a defined cost, we want to avoid
any other filtering which will presumably be less optimal. In addition, clearly NPR can only
improve precision in the data by reducing the resolution, hence it makes sense to have as high a

3Applying NPR to smooth displacement data before taking differences produces a slightly different result, which is
analysed in Lindop et al. (2008d).
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resolution as possible in the raw data. In practice, the size of displacement tracking windows is
set just large enough to avoid major ‘peak-hopping’ errors when combined with a good tracking
strategy (Chen et al., 2009).

• Displacement window overlap will introduce dependencies between displacement estimates,
which will affect the uniformity of precision of the regressed data. In practice a low degree of
overlap seems to have little visual effect on the regressed data.

• Since strain is calculated by differencing the displacement data, there is inevitably some de-
pendence between neighbouring strain estimates. It would be possible to include this in our
analysis by setting off-diagonal elements of W to the appropriate covariance between the strain
estimates, but we do not investigate this possibility here.

• We assume that a local estimate of the raw strain precision p is available: clearly NPR can
only generate a uniform precision image where the raw precision is known. In our experience,
raw precision estimates based on correlation and on residual phase variance (see Appendix C)
both generate useful NPR images.

4 Experiments

We test NPR with both C1 and C2 cost functions, in 2D and 3D, on simulated, phantom and
clinical data. PLLSR and precision-weighted Gaussian filtering are used as comparisons, though
these are clearly uniform resolution rather than uniform precision filters. In every test, displacement
measurements are calculated using Weighted Phase Separation (WPS) (Lindop et al., 2008e), with
the tracking strategy described by Treece et al. (2006). Displacement locations are adjusted using
Amplitude Modulation Correction (Lindop et al., 2007) and interpolated to a regular grid as described
by Treece et al. (2008)4. Displacement precision is calculated from the reciprocal of a weighted
variance of phase differences between pre- and post-deformation RF-windows, see Appendix C.

2D equal aspect ratio windows were used for displacement tracking, of length between 6 and 8
cycles of the ultrasound probe centre frequency. Window overlap was typically between 10 and 20
percent of the window length.

For NPR and precision-weighted Gaussian filtering, strain is calculated by differencing adjacent
displacement estimates, and the precision adjusted accordingly. The strain data is normalised to
account for variations in probe movement, and the precision updated to affect this normalisation.
For the clinical examples only, the normalised strain data is persisted with a per-pixel weighting
across a few frames to improve the raw precision. These normalisation and persistence operations
are as described by Lindop et al. (2008c). Filtering is then applied to the persisted, normalised strain
data, immediately prior to display.

PLLSR is itself a technique for calculating strain from displacement data, which in doing so
incorporates some filtering of the data. Hence this is applied to the displacement data, and the
precision values updated appropriately. Normalisation, persistence (for the clinical examples) and
display of the strain data are then performed without any further filtering.

Normalised strain images are displayed in grey, with black representing zero strain, and white
representing twice the average image strain. A red colour wash is used to represent regions of low
precision (for the raw, PLLSR and Gaussian filtered images) or low resolution (for the NPR images).

4This step only results in a small improvement in displacement accuracy, since we are using fairly small windows
for displacement tracking.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 2: NPR precision with non-uniform smoothing. A simulated strain sequence is constructed
with SNR which is varied laterally by adjusting scatterer density, and axially due to the single
transmit and receive focus. (a) Raw high resolution strain image, with (d) corresponding precision
image. (b) C1 NPR strain image with (e) corresponding precision image. (c) C2 NPR strain image
with (f) corresponding precision image. The precision images are the result of Gaussian-filtering the
squared errors.

The threshold for this colour wash varies for each of the figures in order to reveal pertinent features
of the underlying filtered strain distribution.

4.1 Simulation studies

Simulated data were produced using Field II (Jensen, 1996) with parameters to mimic a 5-10MHz
linear array probe with 127 elements. Pre-deformation scatterer fields representing tissue with uni-
form echogenicity were constructed with 106 scatterers distributed throughout a 50 × 50 × 6 mm
volume, scanned over a 40× 40 mm image region.

Figure 2 contains results for a simulation of a homogeneous material with 1% strain. The signal-
to-noise ratio varies throughout the data due to a lateral increase in scatterer density from left to
right, and a single axial transmit and receive focus at the vertical centre of the image5. Local strain

5This data set was previously used to test a parametric method for non-uniform smoothing: see Fig. 11 in (Lindop
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precision is measured by filtering the squared strain error with a Gaussian kernel, in order to visualise
the extent of variation. Precision images are grey, with black representing high precision and white
low precision, on a consistent scale over all of the figures.

The non-uniform precision of the raw strain data is visible in Fig. 2(a) and confirmed in the
precision image of Fig. 2(d). Uniform precision NPR is then applied, using both C1 and C2, in order
to improve the precision of the whole image to match the high precision region at the centre right
of the raw strain image. Although some variation in precision is still evident in Figs. 2(e) and (f), it
is clearly far more uniform here than in the original raw strain data. The filtered strain images in
Fig. 2(b) and (c) show how this has been achieved in each case. As expected, NPR using C1 imposes
homogeneity in the data, but not smoothness, which results in a uniform strain image in which fine
scale features are still visible. NPR using C2 imposes smoothness but not homogeneity, so the strain
image is indeed smoother, if only slightly, but there is also a greater range of strain values than with
C1.

Figure 3 contains results for a simulation with diagonal bands of width 2 mm and zero axial
strain separated by a band of width 2 mm at the 2% background strain. White noise was added to
reduce the SNR to 20 dB.

The raw strain image in Fig. 3(a) contains good strain measurements at the vertical centre where
the ultrasound signal is well focused, but poor measurements at the top and bottom of the image.
Using either PLLSR (Fig. 3(b)) or Gaussian filtering (Fig. 3(c)) improves the precision, but resolution
is lost at the centre of the image before the precision at the top and bottom is improved sufficiently
to clearly see the detail. In contrast, NPR (Fig. 3(d) to (f)) is able to smooth the low precision image
areas without unduly affecting the resolution at the centre of the image. As with Fig. 2(c) and (e),
the differences in style between C1 and C2 NPR are clearly visible in the strain images.

Figure 3(f) is an example of NPR with C2 applied to the displacement data rather than the
strain data. This is a situation where we can work directly with the displacement data, since the
deformation is ideal, and the data is of sufficient quality not to need any persistence over multiple
strain images. With simulated data such as this, NPR performs slightly better on displacements
than on strain.

4.2 Phantom studies

Several test objects were scanned using a Dynamic Imaging Diasus ultrasound machine6 with a 5-10
MHz probe focused at 20 mm depth. Frames consisted of 127 A-lines at 0.3 mm pitch, sampled at 66.7
MHz using a Gage7 CompuScope 14200 analogue-to-digital converter. The spacing of RF-samples
was 0.0115 mm, assuming a sound speed of 1540 ms−1.

Two phantoms were used. The first was a simple in-house phantom constructed from half an
olive embedded in agar mixed with aluminium oxide powder. This has some advantages in that the
object of interest is not spherical, and the background scattering is less regular than commercial
phantoms, though the material properties are unknown. The second phantom was a commercially
available breast biopsy phantom, CIRS model 052A8, containing randomly positioned stiff inclusions
which were also visible in ultrasound B-mode images. Raw strain data for scans of the half-olive
phantom contained 127× 291 samples, for the CIRS phantom the data contained 127× 437 samples.

et al., 2008a).
6Dynamic Imaging Ltd., no longer in business.
7Gage Applied Technologies, Illinois, USA http://www.gage-applied.com.
8Computerized Imaging Reference Systems, Inc, Virginia, USA http://www.cirsinc.com.

http://www.gage-applied.com
http://www.cirsinc.com
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 3: Simulated strain data with diagonal features. (a) Raw high resolution strain data. The
remaining images are filtered using (b) PLLSR, (c) Gaussian filtering, (d) C1 NPR, (e) C2 NPR and
(f) C2 NPR applied to displacement, rather than strain, data. In each case the smoothing strengths
have been manually optimised to give the best balance between good resolution at the centre and
reasonable precision at the top and bottom.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 4: Strain images of the half-olive phantom. (a) The raw high resolution strain image and
associated B-mode image, showing poor signal quality regions at the left and bottom. The remaining
images show lightly filtered (middle row) and heavily filtered (bottom row) versions of the strain data.
(b) and (c) use PLLSR, (d) and (e) use Gaussian filtering, (f) and (g) use C1 NPR, (h) and (i) use
C2 NPR.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 5: Strain images of the CIRS breast biopsy phantom. (a) The raw high resolution strain
image and associated B-mode image, showing good B-mode signal quality, but poor strain quality in
the centre due to inappropriate rotational motion of the probe. The remaining images show lightly
filtered (middle row) and heavily filtered (bottom row) versions of the strain data. (b) and (c) use
PLLSR, (d) and (e) use Gaussian filtering, (f) and (g) use C1 NPR, (h) and (i) use C2 NPR.
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(g)

(h)
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Figure 6: Strain images of the CIRS breast biopsy phantom. (a) The raw high resolution strain
image and associated B-mode image, showing good B-mode and strain signal quality. The remaining
images show lightly filtered (middle row) and heavily filtered (bottom row) versions of the strain
data. (b) and (c) use PLLSR, (d) and (e) use Gaussian filtering, (f) and (g) use C1 NPR, (h) and
(i) use C2 NPR.
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Three scanning sequences are shown, two of the CIRS phantom, and one of the half-olive phantom,
corresponding to three substantially different noise scenarios in freehand quasi-static strain imaging.
In Fig 4, the half olive is scanned with a predominantly axial movement of the ultrasound probe,
however, the probe contact with the phantom is poor at the right of the images, resulting in very
low ultrasound signal strength in this region. The olive is also highly attenuating, and this generates
severe shadowing artifacts in the inferior region. In Fig 5, the ultrasound signal strength is good
throughout the data, however, the probe movement is predominantly rotational, about an axis
orthogonal to the image plane roughly at the top centre of the images. This results in a high degree
of variation in the applied stress field, and no axial strain in a vertical line down the centre of the
image. In contrast, Fig. 6 is a scan with good ultrasound signal strength and good probe motion.

Each of these scans is processed with the four filters (PLLSR, precision-weighted Gaussian, NPR
with C1 and NPR with C2), and two levels of filtering. Lighter filtering was set at a level, for each
filter, which preserved as much of the raw image resolution as possible whilst presenting a useful
image. Heavier filtering was set at a level deemed to be the highest which could sensibly be applied
without over-distorting the object of interest. These levels are clearly subjective: the images are
intended to give insight into the filtering properties at extreme filtering settings.

Figure 4(b) and (c) show that PLLSR can generate unexpected artifacts in the presence of noise.
Some noise features in the raw data (for instance the bright-dark band to the left of the olive)
become spread over a much wider area after filtering. Similar effects in the noisy region at the
bottom-right of the heavily filtered image contribute to a presentation of the noise which is in some
places smooth and in others has quite strong features: these could easily be misinterpreted as genuine
strain discontinuities. Gaussian filtering in Fig. 4(d) and (e) performs better in this region, but at
the cost of significant blurring of the olive, making it appear larger than in reality. Neither PLLSR
nor Gaussian filtering suppress the noise sufficiently with light filtering. The NPR results of Fig. 4(f)
to (i) all manage to preserve the important detail in the raw strain image whilst suppressing the
noisy regions very successfully. Light filtering preserves the raw resolution over the olive but smooths
the noise, and even with heavy filtering, the shape and size of the olive are largely preserved. Heavy
filtering with C1 tends to produce a more continuous background (as expected) but at the cost of
a slight change in strain level — the olive appears less stiff (lighter) in Fig. 4(g). NPR with C2 is
better at preserving absolute strain levels in this case.

In Fig. 5, neither PLLSR nor Gaussian filtering cope well with the vertical band of zero strain
(and hence very low precision) down the centre of the image. In both cases, to differing extents, a
sharp vertical feature is still visible in the filtered data, even with heavy filtering. Both forms of
NPR effectively ignore the data at the centre of the image, and smooth over this region. NPR with
C1 in Fig. 5(f) and (g) works particularly well in this case; even with light filtering, the noise in the
central region is very well suppressed.

Fig. 6 contains higher quality raw data and in this case all filtering algorithms produce reasonable
strain images, particularly with light filtering. Differences can still be seen in the small noisy regions
at the bottom left and underneath the inclusion — these are better suppressed in Fig. 6(f) and (h)
than in Fig. 6(b) and (d). However, at heavy filtering there is a noticeable variation in the size of the
stiff inclusion. PLLSR in Fig. 6(c) makes the inclusion appear significantly smaller, whilst Gaussian
filtering in (e) makes it appear significantly larger. In contrast, in both NPR methods, the inclusion
remains much the same size, if anything NPR with C1 tending towards the inner edge of the low
precision white band around the inclusion, and NPR with C2 tending towards the outer edge.

The phantom data in Figs. 4, 5 and 6 was also used to test convergence for various methods of
solving eq. (4). Six iterative methods were investigated:
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Figure 7: Convergence for C1 NPR algorithms. Convergence times are shown, on a log-log scale, for
various solution strategies with different initial guesses. The left column is for light smoothing, the
right column for heavy smoothing. (a) and (d) correspond to Fig. 4(f) and (g) respectively, (b) and
(e) correspond to Fig. 5(f) and (g), and (c) and (f) correspond to Fig. 6(f) and (g). The horizontal
line shows the point at which further improvement is no longer visible in the strain images. The
multigrid solution far outperforms the alternatives, though the difference between full multigrid and
multigrid with a pseudo-1D initial guess is only slight.
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Figure 8: Convergence for C2 NPR algorithms. Convergence times are shown, on a log-log scale, for
various solution strategies with different initial guesses. The left column is for light smoothing, the
right column for heavy smoothing. (a) and (d) correspond to Fig. 4(h) and (i) respectively, (b) and
(e) correspond to Fig. 5(h) and (i), and (c) and (f) correspond to Fig. 6(h) and (i). The horizontal
line shows the point at which further improvement is no longer visible in the strain images. The
multigrid solutions far outperform the alternatives, with the pseudo-1D initial guess consistently the
best performer.
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• Full Multigrid This is an iterative scheme which starts by solving the problem directly on a
very coarse grid, and hence does not require initialisation, see Appendix B.

• Multigrid (1D) Solution using the multigrid framework, and the pseudo-1D initialisation in
eq. 5, see Appendix B.

• Gauss-Seidel (zero) Red-Black Gauss-Seidel iterations (Varga, 2000), with a zero initial
guess.

• Gauss-Seidel (1D) Red-Black Gauss-Seidel iterations, and the pseudo-1D initialisation in
eq. 5.

• Conj. Grad. (zero) The conjugate gradient algorithm (Press et al., 2002), with no precondi-
tioning9, and a zero initial guess.

• Conj. Grad. (1D) The conjugate gradient algorithm, and the pseudo-1D initialisation in
eq. 5.

Convergence time was measured on a 2.16 GHz Core2 CPU10, with the software running single-
threaded. For comparison, the time for a direct solution using Cholesky decomposition ranged from
15 seconds (for C1 on the smaller half-olive phantom data set) to 4 minutes (for C2 on the larger
CIRS phantom data sets). For the Multigrid solutions, one point is plotted after each V-cycle. For
the other solutions, one point is plotted after each ten iterations.

The RMS Error shown on each of the graphs in Figs 7 and 8 is the root-mean-squared difference
between the current and correct solution. The correct solution was calculated by direct Cholesky
decomposition, then subsequent multigrid iterations to improve the rounding accuracy of the result,
until there was no further improvement in the residual error. The differences these iterations made
on the direct solution were imperceptible in the strain images. The error was calculated over the
entire image, except for those pixels which had a precision which had been set to zero due to the
lack of a displacement match, for instance right at the base of each image. These areas are shown
in red in Figs. 4, 5 and 6. A solid horizontal line on each graph corresponds to an error of less than
half of one image grey level, assuming 255 levels of grey in the data. This is the approximate error
at which further convergence results in no visible change to the strain image.

Figure 7 contains convergence results for NPR using C1, on all three data sets, with both light
(left column) and heavy (right column) smoothing. Both the Full Multigrid and Multigrid (1D)
methods perform remarkably well on this data, producing an image visually indistinguishable from
the correct solution within only two iterations, or at most 27 ms. This represents a little over 25%
of the total time to convert raw RF data to the displayed strain image. There is little to choose
between the two: Full Multigrid performs slightly better than Multigrid (1D) with heavy smoothing,
and vice-versa for light smoothing. The other methods with the pseudo-1D initialisation perform
reasonably well, but can take up to 1 second to converge. The poor performance of the remaining
methods serves to demonstrate how important the pseudo-1D initialisation is.

Figure 8 contains results for NPR using C2. The convergence is slower than in Fig. 7, since
we are now solving a higher order problem. The Full Multigrid and Multigrid (1D) methods are
still clearly the best, however now Multigrid with the pseudo-1D initialisation is consistently the
better performer of the two, producing a visually correct solution within at most 68 ms. At worst,

9In practice, the most obvious choice of preconditioning with the main diagonal of (W + MT M) decreases the
number of iterations to convergence, but increases the elapsed time.

10Intel corporation, http://www.intel.com

http://www.intel.com
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this represents nearly 50% of the total time to convert raw RF data to the displayed strain image.
The distinction between light and heavy smoothing is more pronounced than with C1, with light
smoothing needing only one iteration whereas heavy smoothing requires several. The pseudo-1D
initialisation is particularly good in the case of light smoothing — itself giving a solution which is
visually indistinguishable from the correct one. Hence all methods which make use of it are instantly
successful. Heavy smoothing is more problematic for both Conj. Grad. and Gauss-Seidel methods
where convergence is very slow indeed.

4.3 Clinical examples

Clinical data was recorded using a Terason T300011 ultrasound scanner with a 38 mm linear array
wideband probe with centre frequency 7.75 MHz. RF data sampled at 40 MHz was streamed via a
software driver to the in-house Stradwin12 application displaying live B-mode and strain images side
by side. All images are of 4 cm depth, with one transmit focus roughly half way down the image.

Figures 9 and 10 contain clinical data from examinations of the breast, thyroid and testis. In each
case, a typical B-mode image is shown together with a strain image using precision-weighted Gaussian
filtering, and NPR using C1. The strain images are precision-persisted across several frames, then
filtering is applied after persistence. A red colour wash is used to suppress areas of low precision in
the Gaussian filtered images, or low resolution in the NPR images.

Real clinical data13 contains greater variation of ultrasound signal strength, significantly less ideal
stress distributions (due to anatomical movement not related to probe contact pressure) and is less
homogeneous than the phantom data in Section 4.2. It is not at all clear that NPR filtering with C1,
which seeks to impose continuity on the strain data, should be successful on such images. However,
the NPR images in Figs. 9 and 10 show clear advantages over the Gaussian filtered images. Borders
between regions of different strain in good precision areas are well represented, whilst regions of
apparently rapidly changing strain due to low precision measurement are well suppressed.

4.4 3D strain imaging

NPR has been presented in 2D for clarity, but both the matrix equation (4), pseudo-1D initialisation
in eq. (5) and multigrid method are easily extended to 3D. In fact, processing time only increases
by a factor of 3Nz/2, where Nz is the number of frames of data in the elevational (out of plane)
direction. 3D scans were performed using a RSP 6-12 MHz14 linear array probe with an integral
stepper motor connected to a Dynamic Imaging Diasus ultrasound machine, with RF acquisition and
motor control coordinated with Stradwin software. 3D strain processing details are as described in
our previous work (Treece et al., 2008).

Figure 11 shows a 3D scan of the half-olive phantom described in Section 4.2. The strain data
contained 127×345×120 samples. NPR processing, using a mixture of C1 and C2

15, took 6.7 seconds,
11Terason Ultrasound, Massachusetts, USA, http://www.terason.com.
12Available free from http://mi.eng.cam.ac.uk/~rwp/stradwin.
13This clinical data is also available in a database currently populated with more than two hundred files acquired

through ongoing studies into 2D and 3D freehand quasi-static strain imaging at Addenbrooke’s Hospital (Cambridge,
UK). Ethical approval was granted by the Cambridgeshire 3 Research Ethics Committee for the anonymized data
to be disseminated to the wider research community. Research access to this database can be arranged by emailing
stradwin-info@eng.cam.ac.uk. Patients are made aware of this at the time of obtaining informed consent. Anatomical
sites currently available include head and neck, breast, testis, kidney, liver and uterus.

14GE Healthcare Bio-sciences AB, Uppsala, Sweden, http://www.gehealthcare.com.
15This is easily achieved by using M = r1M1 + r2M2, where both types of smoothing were given equal precision by

setting r2 = r2
1. In this case we cannot guarantee precisely uniform precision, since W needs to be set to a different

http://www.terason.com
http://mi.eng.cam.ac.uk/~rwp/stradwin
stradwin-info@eng.cam.ac.uk
http://www.gehealthcare.com
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 9: Clinical breast images. (a) B-mode image of a breast fibroadenoma, (c) strain image using
Gaussian filtering and (e) using C1 NPR. (b) B-mode image of a breast invasive carcinoma with
surrounding ductal carcinoma in situ, (d) strain image using Gaussian filtering and (f) using C1

NPR. In both cases the NPR strain images show the mass better delineated, whilst also suppressing
distracting strain noise in the remainder of the image. For Gaussian filtering the red colour wash
indicates lack of data precision, whereas with NPR it indicates lack of resolution.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 10: Clinical thyroid and testicular images. (a) B-mode image of a thyroid benign follicular
adenoma, (c) strain image using Gaussian filtering and (e) using C1 NPR. (b) B-mode image showing
scrotal calcification, (d) strain image using Gaussian filtering and (f) using C1 NPR. The improvement
due to NPR is similar to Fig. 9. For Gaussian filtering the red colour wash indicates lack of data
precision, whereas with NPR it indicates lack of resolution.
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(a)

(b) (c)

Figure 11: 3D data from the half olive phantom. Each image shows three orthogonal views and a
combined 3D view. (a) B-mode data, (b) strain data using Gaussian filtering and (c) using C1 and
C2 NPR. For Gaussian filtering the red colour wash indicates lack of data precision, whereas with
NPR it indicates lack of resolution.
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(a)

(b) (c)

Figure 12: 3D data from a clinical breast examination. Each image shows three orthogonal views
and a combined 3D view. (a) B-mode data for a possible invasive ductal carcinoma, (b) strain data
using Gaussian filtering and (c) using C1 and C2 NPR. For Gaussian filtering the red colour wash
indicates lack of data precision, whereas with NPR it indicates lack of resolution.
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out of a total 26.8 seconds for generating 3D strain data from the raw RF. Precision-weighted Gaus-
sian filtering took 3.2 seconds out of a total of 23.2 seconds. The NPR result is clearer, particularly
towards the top of the data, and in the shadow region under the olive.

Figure 12 is a clinical 3D scan from a breast examination. Here the patient was scanned with 2D
strain imaging first to establish the general area of interest before a 3D scan was performed. The
strain data contained 127 × 352 × 80 samples. NPR was again applied with a mixture of C1 and
C2, in this case taking only 3.8 seconds out of a total of 20.4 seconds. Precision-weighted Gaussian
filtering took 2.2 seconds out of a total of 18.7 seconds. Two low strain (black) regions are very
obvious in the strain images, in an area unrelated to the larger black region in the B-mode image
(which was what initially drew the clinicians attention). However, the presentation is confused in the
Gaussian-filtered image of Fig. 11(b) by the existence of a large fine scale pattern of strain variation
apparent in most of the views. The NPR image in Fig. 11(c) draws attention much more clearly to
the real low strain region.

5 Conclusions

We have presented a class of algorithms which can, under certain assumptions, generate strain images
with uniform precision but varying resolution. Even when these assumptions are violated, NPR
produces images which, though not of exactly uniform precision, still have useful properties: this is
demonstrated by the phantom and clinical data sets. Local variation in smoothing is automated,
but a single meaningful parameter remains, which directly sets the precision of the filtered data,
assuming this is greater than the precision of the raw data. We have developed two specific examples
which seek either to impose continuity or smoothness on the strain data, however in practice there
may well be other constraints which better model the expected strain behaviour and could be placed
in the same framework.

We have demonstrated that NPR using both the C1 and C2 constraints can easily be performed in
real time on standard computer hardware, by using the multigrid framework with an initial guess at
the solution based on a pseudo-1D algorithm. There are some advantages and disadvantages of both
constraints. C1 reliably converges to the correct solution in less than 30 ms in even the fairly large
data sets we have tested, however it can modify the strain level if heavy smoothing is applied. C2

is better at preserving absolute strain levels, but leaves homogeneous regions slightly less constant,
and can take longer to converge. However, the efficiency of both algorithms is such that they can
still be applied in only a few seconds to fairly large 3D data sets.

Strain images filtered with NPR have a promising appearance when compared to PLLSR or
precision-weighted Gaussian filtering, with well defined borders between different strain regions, and
good suppression of noise. In addition, NPR seems to preserve the size of stiff objects better than
the alternatives tested, which could be important if assessment of size between strain and B-mode
images is a clinical factor. Initial clinical examples indicate that the theory still produces useful
images even on real data which is significantly more noisy and less homogeneous. However, further
clinical studies will be necessary to properly assess the benefits of uniform precision as opposed to
uniform resolution strain imaging.

function of the precision in each case, so we set W for C1 smoothing.
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Appendices

A Matrices

2D strain data on the regression surface are expressed as a vector of length NxNy,

śT =
[
ś(1,1) ś(1,2) . . . ś(1,Ny) ś(2,1) . . . ś(Nx,Ny)

]
.

M1 and M2 are 2(NxNy − Nx − Ny) × NxNy matrices defined such that the vector Mś lists first
and second differences respectively, throughout the grid of strain data. For example

M2ś =




(2ś(2,1) − ś(3,1) − ś(1,1))
...

(2ś(Nx−1,Ny) − ś(Nx,Ny) − ś(Nx−2,Ny))
(2ś(1,3) − ś(1,4) − ś(1,2))

...
(2ś(Nx,Ny−1) − ś(Nx,Ny) − ś(Nx,Ny−2))




Solving for the optimal regression surface involves the inversion of eq. (4). For C2, the matrix
W + rM2

TM2 is a key part of this expression. Owing to its sparsity, matrix multiplication is never
applied directly. Simultaneous equations arising from this matrix associated with coordinates (x, y),
away from the edge of the regression surface, have the form

(
w(x,y) + 12r

)[
ś(x,y)

]

−4r
[
ś(x+1,y) + ś(x−1,y) + ś(x,y+1) + ś(x,y−1)

]

+r
[
ś(x+2,y) + ś(x−2,y) + ś(x,y+2) + ś(x,y−2)

]

= w(x,y)ŝ(x,y)

B Multigrid implementation

Multigrid describes a framework for solving inverse problems rather than a black-box solution — the
details of this framework vary with each application. No attempt is made to explain the multigrid
or full multigrid framework here, but sufficient application-specific details are given to implement
multigrid in this case given general knowledge of the framework (Briggs et al., 2000; Press et al.,
2002).

Crucial to the technique are restriction and prolongation operators, for transferring the residual
error to and from coarser grids. For NPR using C1, the equations are only second order, and in
this case we can use simple bi-linear interpolation for prolongation, and its adjoint full weighting
for restriction. These are described by stencils. For prolongation, the stencil shows the result in
the fine grid of prolongating a digital impulse in the coarser grid. For restriction, the stencil shows
the weightings applied to the fine grid to generate a data point on the coarse grid. For coarse grids
which are exactly half the resolution of the finer grid, a symmetric restriction stencil should be set
to 1

4 of the prolongation stencil for 2D processing, 1
8 for 3D processing. The prolongation stencil for

bi-linear interpolation in 2D is:

1
4




1 2 1
2 4 2
1 2 1


 (9)
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NPR using C2 requires the solution of a fourth order equation, and for this we need smoother
prolongation and restriction operators. We base these on the Catmull-Rom spline (Catmull and Rom,
1974), which has the useful property in this case of ensuring, for prolongation, that the second order
difference of intermediate samples is the exact bi-linear interpolation of the second order difference of
the surrounding samples in the coarser grid. In 1D, the intermediate data point is given by applying
the following weightings to the coarser grid data:

1
16

[ −1 9 9 −1
]

(10)

The full prolongation stencil for 2D is hence

1
256




1 0 −9 −16 −9 0 1
0 0 0 0 0 0 0
−9 0 81 146 81 0 −9
−16 0 146 256 146 0 −16
−9 0 81 146 81 0 −9
0 0 0 0 0 0 0
1 0 −9 −16 −9 0 1




(11)

The same restriction operators were used to restrict the data weights W to each grid level. These
operations can easily be implemented as 1D convolutions in each of the x and y directions.

Multiple V-cycles were used, with Red-black Gauss-Seidel (Varga, 2000) as the smoothing oper-
ator on each grid, except for the coarsest grid (of at least 6× 6), where a direct solution was found
using band-limited Cholesky decomposition. For NPR using C1, there were 4 iterations of smoothing
at each smoothing stage of the V-cycle. For NPR using C2, with heavy smoothing, a larger number
of smoothing iterations were potentially required at each stage to ensure rounding errors were suf-
ficiently damped. Hence the iteration count was initialised to 4, then increased by 4 whenever the
residual error decreased by less than 1% over a whole V-cycle.

C Weighted phase variance

It was shown by Lindop et al. (2008a) that, under certain simplifying assumptions, the precision p of
the displacement data can be estimated from the complex cross-correlation ρ of matched displacement
windows in the pre- and post-deformation data. For two matched signals r1e

iθ1 and r2e
iθ2

p ≈ ρ

1− ρ
(12)

where ρ = <
[∑

r1r2e
i(θ1−θ2)

√∑
r2
1

∑
r2
2

]
(13)

In practice, this calculation is only valid for reasonably high correlations, and a slight modification
is made to ensure that low correlations lead to sufficiently low precision values

pρ =
{ 3ρ−2

1−ρ ρ > 2
3

0 otherwise
(14)

When tracking displacements using Weighted Phase Separation (WPS) (Lindop et al., 2008e),
the windows are matched by directly minimising a weighted sum of phase differences between pre-
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and post-deformation data. In this case, the weighted variance of the residual phase differences
σθ between each sample of the matched windows is an alternative measure of the quality of the
displacement estimate. If the phase difference is weighted by the product of the envelope of each
signal r1r2, then

σθ =
∑

r1r2 (θ1 − θ2)
2

∑
r1r2

(15)

However, this can be related to eq. (13) by assuming that the residual phase differences θ1 − θ2

will be small, and re-writing

ρ ≈ <
[∑

r1r2 + i
∑

r1r2 (θ1 − θ2)− 1
2

∑
r1r2 (θ1 − θ2)

2

√∑
r2
1

∑
r2
2

]
(16)

The second term in the numerator of eq. (16) is imaginary, and in any case will by definition be
zero for matched windows, hence

ρ ≈
∑

r1r2√∑
r2
1

∑
r2
2

−
∑

r1r2 (θ1 − θ2)
2

2
√∑

r2
1

∑
r2
2

(17)

If we also assume that the signal envelopes r1 and r2 are similar, i.e.
√∑

r2
1

∑
r2
2 ≈

∑
r1r2, then

we have
ρ ≈ 1− σθ

2
(18)

By substituting this into eq. (14) we can now relate precision to the weighted residual phase variance:

pθ =
{ 2−3σθ

σθ
σθ < 2

3

0 otherwise
(19)

This is useful since eq. (19) can be calculated more efficiently than eq. (14) when using WPS,
and is a more direct measure of the residual error in this form of displacement tracking.
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