
Imaging the femoral cortex: thickness,
density and mass from clinical CT

G.M. Treece, K.E.S. Poole and A.H. Gee

CUED/F-INFENG/TR 665
29 April 2011

Cambridge University Engineering Department
Trumpington Street

Cambridge CB2 1PZ
England

Corresponding e-mail: gmt11@eng.cam.ac.uk



1

Abstract

There is growing evidence that focal thinning of cortical bone in the proximal femur may predispose
a hip to fracture. Detecting such defects in clinical CT is challenging, since cortices may be significantly
thinner than the imaging system’s point spread function. We recently proposed a model-fitting technique to
measure sub-millimetre cortices, an ill-posed problem which was regularized by assuming a specific, fixed
value for the cortical density. In this paper, we develop the work further by proposing and evaluating a
more rigorous method for estimating the constant cortical density, and extend the paradigm to encompass
the mapping of cortical mass (mineral mg/cm2) in addition to thickness. Density, thickness and mass
estimates are evaluated on sixteen cadaveric femurs, with high resolution measurements from a micro-
CT scanner providing the gold standard. The results demonstrate robust, accurate measurement of peak
cortical density and cortical mass. Cortical thickness errors are confined to regions of thin cortex and are
bounded by the extent to which the local density deviates from the peak, averaging 20% for 0.5 mm cortex.

1 Introduction

Hip fractures are the most common cause for acute orthopaedic hospital admission in older people (Parker
and Johansen, 2006), with their annual incidence projected to rise worldwide from 1.7 million in 1990 to
6.3 million in 2050 (Sambrook and Cooper, 2006). Bone mineral density (BMD) is currently the imaging
biomarker of choice for assessing an individual’s fracture risk, but although it is specific (Johnell et al., 2005;
Kanis et al., 2008) it lacks sensitivity (Kanis et al., 2008; Kaptoge et al., 2008; Sanders et al., 2006), missing
the majority who go on to fracture. There is now growing evidence that focal, structural weaknesses may
predispose a hip to fracture (Mayhew et al., 2005; Poole et al., 2010; de Bakker et al., 2009) and there is a
consequent need to develop novel imaging methods capable of detecting such weaknesses, with multi-detector
computed tomography (MDCT) the favoured modality (Bouxsein and Delmas, 2008).

While trabecular bone undoubtedly plays some role, it is the distribution of cortical bone that is believed to
be critical in determining a femur’s resistance to fracture (Holzer et al., 2009; Verhulp et al., 2008). Compres-
sive cracking of the cortex in the femoral neck or trochanter is often the first point of failure (de Bakker et al.,
2009; Carpenter et al., 2005; Mayhew et al., 2005). Unfortunately, thin laminar structures such as the femoral
cortex are not accurately depicted in clinical CT because of the images’ limited spatial resolution. Conse-
quently, straightforward thickness estimation techniques, such as those based on thresholding (Buie et al.,
2007; Hangartner, 2007) or some measure of full-width half-maximum (Prevrhal et al., 1999, 2003), are un-
reliable when the cortex is thin in relation to the imaging resolution. With normal bore, clinical CT scanners,
such methods are increasingly inaccurate below around 2.5 mm (Dougherty and Newman, 1999; Hangartner
and Gilsanz, 1996), with errors exceeding 100% for sub-millimetre cortices (Prevrhal et al., 2003).

We have recently proposed a more sophisticated technique that produces good estimates of cortical thick-
ness down to 0.3 mm (Treece et al., 2010). In common with other attempts at deblurring medical images
of laminar structures (Streekstra et al., 2007), we adopt restrictive models of both the object being scanned
and the imaging system, and then attempt to fit these models to the observed data. This process is inevitably
ill-posed, since a dense, thin, blurred cortex might appear identical to a less dense, less thin, blurred cortex. It
is therefore necessary to incorporate some prior knowledge about either the density or the blur, and we found
in Treece et al. (2010) that assuming a specific, fixed value for the density was more successful than assuming
a constant blur. We subsequently applied this technique to show precisely where in the proximal femur new
bone is laid down following two years’ treatment with bone anabolic drugs (Poole et al., 2011).

In this paper, we present a significant extension of this work to encompass not only thickness, but also
density and mass estimation. In Section 2, we review the theory behind constant density thickness estimation
and develop a more rigorous approach to establish the critical density on which the method relies. In so doing,
we discover an alternative technique for thickness estimation, and show how both variants may be trivially



2 2 METHOD

Figure 1: Cortical thickness estimation from clinical CT data. Given a prior segmentation of the proximal
femur (green contour, top left), CT values are examined along short lines (cyan, top left) that straddle the
cortex and are perpendicular to it. The sampled CT values are shown in cyan in the bottom panel. Cortical
thickness is estimated by assuming, in this example, a constant cortical density ŷ1 of 1611 HU. The Levenberg-
Marquardt algorithm (More, 1977) is then used to find the imaging blur σ, tissue density ycd

0 , trabecular density
ycd
2 and thickness tcd that best explain the data. The solution, and the idealised data yblur that it implies, are

shown in red in the lower panel. By repeating this process at a large number of points, the cortical thickness
can be mapped across the entire surface (top right).

extended to measure cortical mass in addition to thickness. The methods are evaluated in Section 3 with the
aid of sixteen cadaveric femurs which were imaged in a high resolution, peripheral quantitative CT (pQCT)
system to establish ground truth thickness and mass. Section 3 also includes some simulations to confirm
the causes of the subtle effects observed in the cadaveric studies. In Section 4, we discuss the relative merits
of mass and thickness estimation, and how best to estimate density, in the illuminating context of our earlier
work on anabolic drug responses. Finally, we draw some conclusions in Section 5.

2 Method

2.1 Estimating cortical thickness and mass in blurred data

Figure 1 illustrates the process of cortical thickness estimation, as implemented in our free-to-download Strad-
win software1. Given a prior segmentation of the proximal femur, the CT data is sampled along short lines
perpendicular to the femoral surface, at a large number of points on the surface. The lower panel in Figure 1

1http://mi.eng.cam.ac.uk/˜rwp/stradwin

http://mi.eng.cam.ac.uk/~rwp/stradwin
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shows the data from one such point (cyan), along with the model that best explains the data (red). In this
model, the underlying density distribution y(x, t) along the line is assumed to be

y(x, t) = y0 + (y1 − y0)H

(
x+

t

2

)
+ (y2 − y1)H

(
x− t

2

)
(1)

where y0, y1 and y2 are the CT values in the surrounding tissue, cortex and trabecular bone respectively, H is
the unit step function, t is the cortical thickness and x is measured from the centre of the cortex. The impulse
response g(x) of the imaging system (image blur) is taken to be Gaussian with standard deviation σ,
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and hence the step response h(x) of the imaging system is
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Combining equations (3) and (1) gives the blurred cortex yblur(x, t) as
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All that remains is to find the model parameters that minimize the sum of squared errors between yblur and
the actual CT data. As mentioned previously, this is an ill-posed problem that requires regularization, and
we have achieved good results by adopting a fixed value ŷ1 for the cortical density (Treece et al., 2010). The
underlying assumption is that y1 does not vary significantly at different points on the proximal femur, at least
in comparison with the much larger variation in cortical thickness. In all our work to date, we have estimated
ŷ1 from regions of thick cortex, typically below the lesser trochanter on the femoral shaft, where the apparent
peak density is not affected by the imaging blur.

We are now in a position to elaborate in more detail the aims and objectives of this paper. Firstly, we wish
to further test the validity of the constant density assumption by measuring true density in high resolution
(i.e. very low blur) CT scans of cadaveric femurs. While we have previously shown that cortical thickness
estimates are relatively insensitive to the value of ŷ1 (Treece et al., 2010), it would nevertheless be informative
to examine how y1 varies with location on the proximal femur, and by how much. Secondly, we will develop
and assess a more rigorous method for estimating ŷ1 using all the available data, not just a single measurement
at a region of thick cortex. Finally, given that underestimating ŷ1 results in overestimating thickness t, we
investigate whether we can measure cortical mass per unit area more accurately than thickness alone. A mass
estimate of this nature is essentially the product of ŷ1 and t, though we additionally need to convert image
density (HU) to mineral density (mg/cm3) using the calibration phantom included in every quantitative CT
examination (Cann, 1988). Although the resulting measure has units mg/cm2, we shall refer to it loosely as
“mass” in the remainder of this paper. Dougherty and Newman (1999) speak of cortical mass as a potentially
useful indicator of regional bone strength.

In the mathematical notation adopted throughout this paper, superscripts denote the estimation technique.
Thus, tcd is the cortical thickness estimate obtained using the constant density technique, and mcd = tcdŷ1
is the corresponding mass estimate. As Figure 2 (right) shows, the fitted model also produces estimates of
the tissue density ycd

0 , the trabecular density ycd
2 , and the average background density ycd

b = (ycd
0 + ycd

2 )/2.
For comparison, we also consider the full-width half-maximum measure of cortical thickness (Prevrhal et al.,
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Figure 2: The constant density and half-max estimation techniques. The upper two sub-figures illustrate the
simple case where y0 = y2, with a thin, dense cortex (red rectangle, top right) that appears less thin and less
dense under image blur (blue). The constant density technique starts with an estimate ŷ1 of the true cortical
density, and then finds the other model parameters that minimize the sum of squared errors between the data
(blue) and yblur (red curve). Details of the optimization process can be found in Treece et al. (2010). In this
case the fit is perfect, since the simulated data is a pure Guassian, but see Figure 1 for typical clinical data. The
half-max technique uses a similar optimization process, except the true cortical density is assumed to be yhm

1 ,
the apparent peak density. The edges of the fitted cortex then coincide with the half-way points between yhm

b

and yhm
1 . The shaded areas are equivalent to the areas under the red Gaussians and are therefore approximately

equal: the half-max area is actually around 6% smaller because the incorrect model does not precisely explain
the data. This mass preservation property lies behind the hybrid constant density/half-max approach. When
y0 < y2 (lower two sub-figures), the apparent density peak lies some distance to the right of the actual cortex.
While the half-max model still fits well to produce the thm estimate, the red areas are no longer equivalent
since the half-max area is predicated on a y0-y2 transition at the wrong location. This leads to significant
overestimation of mass and thickness in the hybrid approach, by approximately 60% in this case.
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1999, 2003), which we shall henceforth abbreviate to the “half-max” method2. This estimates the thickness
by looking at the half-way points between the apparent peak density yhm

1 and each of the background densities
yhm
0 and yhm

2 . In practice, we estimate these parameters by optimizing a model fit, in exactly the same way as
for constant density, except we fix y1 at the apparent peak density yhm

1 instead of ŷ1: see Figure 2 (left).
The half-max method is known to produce highly inaccurate thickness estimates when the cortex is thin,

since even the narrowest density spike is blurred to the extent of g(x). For the straightforward case where
y0 = y2, it is trivial to deduce that thm → 2.35σ in the limit of small t. However, as previous studies
have observed (Dougherty and Newman, 1999), the apparent extra mass of the cortex over and above the
background is preserved under blur, and we might seek to exploit this property to improve the half-max
estimate. For the simple case where the background is constant, so y0 = y2 = yb (Figure 2, top), mass
preservation implies

tcd(ŷ1 − ycd
b ) = thm(yhm

1 − yhm
b ) (5)

Given ŷ1, we can therefore adjust the half-max thickness estimate and also obtain a mass estimate, resulting
in a hybrid constant density/half max technique:

tcd-hm = thm (y
hm
1 − yhm

b )

(ŷ1 − yhm
b )

(6)

mcd-hm = tcd-hmŷ1 (7)

The situation is not so straightforward when y0 < y2. Applying equation (5) in this case is equivalent to
preserving the areas shaded red in Figure 2 (bottom), but the half-max area is predicated on the cortex being
centred at the apparent density peak, whereas the cortex is actually located a little to the left of this, as in
Figure 2 (bottom right). By shifting the y0-y2 step in the half-max area to the left, we would obtain an area
that is indeed preserved under blur, but we have no way of knowing the required correction a priori, since it
depends on the true cortical thickness t. Equations (6) and (7) therefore represent a best guess, though they
clearly overestimate mass and thickness in situations like Figure 2 (bottom).

2.2 Estimating cortical density in blurred data

The constant density and hybrid techniques require an estimate ŷ1 of the true cortical density y1. Our early
approach was to sample the peak density at a region of thick cortex, but considering all the blurred data, and
not just a single datum, should increase the accuracy and precision of the estimate. According to the model in
equation (4), and noting that erf(x) = −erf(−x), the apparent density at the centre of the cortex is given by

ypeak = yblur(0, t) = yb + (y1 − yb) erf

(
t

2
√
2σ

)
(8)

Equation (8) describes the expected distribution of apparent peak density ypeak with thickness t, given yb, y1
and σ. If we could plot the observed distribution, by measuring apparent peak density and thickness at each
point on the surface, we could then estimate yb, y1 and σ by minimizing the differences between the two
distributions. In contrast with our earlier approach, we would be making use of all the data and might expect
a reasonable estimate even when there are no regions of cortex sufficiently thick to reveal the true density y1
in the blurred data.

The details of the algorithm are as follows. The first step is to use the half-max technique to measure
apparent thickness thm, apparent peak density yhm

1 and background density yhm
b at all points on the femoral

2The reader is referred to Treece et al. (2010) for further comparisons with the alternative thresholding approach (Buie et al., 2007;
Hangartner, 2007), which is less precise than the half-max method when the cortex is thick, and increasingly prone to missing the
cortex altogether when it is thin.
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(a) ŷ1 = 1571± 7HU
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(b) ŷ1 = 1744± 25HU

Figure 3: Estimating the cortical density. For representative low resolution CT data sets, the graphs show
the observed distribution of apparent peak density with thickness (dots), and the best fit model according
to equation (8) (black line). For each bin, the mean (black dots) and ± one standard deviation (grey dots)
of the observations are displayed. The three model parameters are found by minimizing the sum of the
squared differences between the mean observations and the model. (a) In this case, there is sufficient data
to constrain the model parameters within a narrow range. (b) This scan did not extend far enough below the
lesser trochanter to encounter thick cortical bone, so there is more uncertainty in the model parameters.

surface. These observations are grouped into N bins indexed by the product p(i) = thm(yhm
1 − yhm

b ), i ∈
{1 . . . N}, and the average value yhm

1 (i) is recorded in each bin. Estimates ŷb, ŷ1 and σ̂ are then refined by
minimizing the sum of the squared errors ε(i) between the observed and expected distributions at each bin i:

t(i) =
p(i)

(ŷ1 − ŷb)
(9)

ypeak(i) = ŷb + (ŷ1 − ŷb) erf

(
t(i)

2
√
2σ̂

)
(10)

ε(i) = yhm
1 (i)− ypeak(i) (11)

Equation (9) converts the bin index p(i) into an estimate of true thickness t(i) using the hybrid technique
of equation (6). Equation (10) calculates the expected apparent peak density ypeak(i) for this thickness. Fi-
nally, equation (11) calculates the difference between the observed and expected peak densities. These three
equations define the errors which we minimize by Levenberg-Marquardt optimization (More, 1977) to obtain
optimal estimates ŷb, ŷ1 and σ̂. A typical outcome is shown in Figure 3(a), indicating good agreement be-
tween the observations and the model. However, when the acquired data extends less far down the femur, or
when the bone is osteoporotic, there may be insufficient thick cortex to fully constrain the model: such a case
is shown in Figure 3(b). Scenarios (a) and (b) may be distinguished objectively by calculating the standard
error of fit for the model parameter ŷ1. In (a) ŷ1 = 1571 ± 7HU, in (b) ŷ1 = 1774 ± 25HU. The ranges
are 95% confidence intervals, which are equal to twice the standard error of fit assuming the data is normally
distributed and representative of the population (Press et al., 2002). It is, however, necessary to decide sub-
jectively how much uncertainty to tolerate in any particular study. When the confidence intervals exceed this
limit, the safest course of action is simply to exclude the scan from cortical thickness analysis.
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(a) high resolution Xtreme pQCT
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Figure 4: High and low resolution data. For the straightforward case of uniform background (y0 = y2 = yb),
these figures illustrate the expected effects of Guassian blur on half-max thickness estimates and apparent
peak density. (a) High resolution Xtreme pQCT. (b) Low resolution MDCT. Each curve is labelled with the
corresponding true cortical thickness (mm). Note the different scales on the two distance axes.

2.3 Evaluation

Sixteen cadaveric femurs were scanned in air at both high and low resolutions. The high resolution data
was acquired on an Xtreme pQCT machine (Scanco Medical AG, Brüttisellen, Switzerland) at 82µm/pixel
in-plane resolution and 82µm slice thickness. In these scans, the appearance of all but the thinnest cortices is
largely unaffected by blur. We can therefore treat simple half-max thickness and density estimates, obtained
from this high resolution data, as a gold standard. The half-max method is unbiased as long as the cortex is
sufficiently wide compared with the imaging blur (Prevrhal et al., 1999), a condition that is satisfied down
to around 0.4mm thickness: see Figure 4(a). The low resolution data was acquired on a Siemens Somatom
Sensation 64 MDCT machine (Siemens AG, Erlangen, Germany) at 589µm/pixel in-plane resolution and
1 mm slice thickness. This is typical of clinical scanning conditions and serves as a test bed for the constant
density and hybrid estimation methods. Image blur is far more severe, as shown in Figure 4(b).

Several precautions are necessary when comparing cortical measurements in corresponding high and low
resolution data. First, the two femoral surfaces must be aligned using some sort of registration technique:
we use the iterative closest point algorithm described in Treece et al. (2010). Thickness and mass estimates
are made at every vertex of the low resolution surface mesh, using CT values sampled on 18 mm lines (the
cyan lines in Figure 1) oriented along the corresponding surface normals. These measurement locations and
directions are then mapped onto the aligned high resolution surface, allowing us to compare the same number
of thickness and mass estimates, taken at the same locations and using the same surface normals.

The next precaution concerns the spatial localization of the high and low resolution estimates. Figures 5(a)
and (b) show corresponding patches of cortex from high and low resolution scans respectively. High resolution
thickness estimates would vary rapidly from the top to the bottom of the image, picking up every small
detail of the irregular cortex. This detail is blurred out in the low resolution data: thickness estimates at
any particular location, however well adjusted for trans-cortical blur, are always going to reflect the average
cortical thickness in the vicinity of the estimation location, not the particular thickness at that location. We
therefore blur the high resolution data in one dimension only, parallel to the cortex, as shown in Figure 5(c),
before estimating thickness and mass. Note that this blur does not compromise estimation accuracy, only
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(a) high resolution (b) low resolution (c) blurred high resolution

Figure 5: Blurring of high resolution data to match low resolution thickness localization. (a) High resolution
data, (b) corresponding low resolution data and (c) the blurred high resolution data used in the comparisons.
The extent of the smoothing kernel is chosen to match the spatial resolution of the low resolution data.

estimation localization, which is exactly what is required for a meaningful comparison between the high and
low resolution data.

The final precaution concerns the sometimes ambiguous nature of the endocortical surface. Figure 6(a)
shows some high resolution data where the location of the y1-y2 transition is far from clear. Is this a wide cor-
tex encompassing a low density pore, or a narrow cortex with a nearby trabecular peak? For a fair comparison
between the high and low resolution estimates, we must ensure that the two measurements opt for the same
interpretation. We encourage this behaviour when fitting the model to the high resolution data, by blurring the
error between the observed and modelled data within the Levenberg-Marquardt algorithm. Again, the extent
of the blur is chosen to match the spatial resolution of the low resolution data. In the example in Figure 6(a),
blurring the optimization error causes the algorithm to converge to the alternative solution, as it does with the
low resolution data. There is little effect when the cortex is well defined, as in Figure 6(b).

What we have described is a refinement of the evaluation protocol described in our earlier study (Treece
et al., 2010), where we (correctly) attributed extreme errors to mismatched normals or different interpretations
of the endocortical surface, and excluded outliers from the subsequent error analysis. With our new evaluation
protocol, we no longer see extreme errors and outlier rejection is not required. In the next section, we present a
series of experiments and results that utilize this protocol to: validate the derived distribution of apparent peak
density with thickness across all sixteen femurs; compare subsequent thickness and mass estimates from the
various estimators with the gold standard high resolution measurements; quantify typical intra-subject cortical
density variation; and correlate the observed density variations with thickness estimation errors. Some of the
results are best presented as colour maps on a representative (“canonical”) femur surface. To obtain these
visualizations, each of the sixteen individual surfaces was first warped onto the canonical surface using a
nonrigid, free form deformation. Having established a common morphology, the sixteen sets of results could
then be averaged to show typical distributions across the femoral surface.

3 Experiments and results

3.1 Density variation and estimation in low and high resolution data

Figure 7(a) shows how cortical density varies with thickness in the sixteen cadaveric femurs. Since these
measurements were made using the half-max method on the high resolution data, they can be trusted down to
around 0.7 mm, beyond which Figure 4(a) shows blur affecting the apparent peak density. The sharp density
reduction at the far left of the distribution can therefore be attributed to measurement error. Above 0.7 mm,
we observe fairly constant density where the cortex is relatively thick, but some decline below 3 mm. This is
not a measurement artefact but a feature of the bones.
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(a) ambiguous endocortical surface
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(b) unambiguous endocortical surface

Figure 6: Consistent interpretation of the endocortical boundary in high and low resolution data. By blurring
the error when fitting a model to the high resolution data, we encourage the same interpretation of the endo-
cortical boundary as with the low resolution data. (a) The top graph shows sample data through a cortex from
a high resolution scan, along with the best fit half-max model without error blurring. The bottom graph shows
the same data after blurring as in Figure 5, and the best fit half-max model after blurring the optimization
error. While the cortical extent is different, reflecting the alternative interpretation of the ambiguous data,
the edge localization accuracy is unaffected. (b) When the cortex is well defined, neither of these blurring
operations has a significant impact on the measured thickness.

Figure 7(b) shows a similar plot, but this time with the corresponding cortical densities observed in the
low resolution data. As anticipated in Figure 4(b), image blur starts affecting the apparent peak density
below around 3.5mm, but the distribution appears to follow the form of equation (8) (c.f. Figure 3) and
we can therefore expect successful estimation of ŷ1 using the model-fitting approach of Section 2.2. This
hypothesis is confirmed in Figure 8, which shows the stability of the σ̂ and ŷ1 estimates as progressively
more measurements, starting from the top of the femoral head, are fed into the model-fitting procedure. The
estimates are highly variable when too few observations are used, but both σ̂ and ŷ1 have converged to stable
values by the time measurements are incorporated from just below the lesser trochanter. Adding yet more
data from lower down the femoral shaft appears to make very little difference for these sixteen femurs. With
marginally sufficient data, the model-fitting procedure tends to overestimate ŷ1 by a few percent — see the
cyan band above the lesser trochanter in Figure 8(c). While Figure 8 reflects the healthy norm, osteoporotic
specimens may need scanning a little lower before sufficiently thick cortex is encountered to fully constrain
the model parameters. Unreliable solutions are not an undetectable hazard: on the contrary, they are readily
identified by examining the confidence intervals, as demonstrated in Figures 8(b) and (d).

3.2 Mass and thickness estimation using optimized density

Figure 9 summarises the performance of constant density thickness estimation. It is apparent, at first sight,
that the low resolution thickness estimates in (b) are good surrogates for the gold standard, high resolution
measurements in (a). As expected, estimation errors (d) are correlated with true cortical density (c). We
have already seen in Figure 7(a) that the cortical density is not perfectly constant: at least in these sixteen
femurs, it tends to drop off where the cortex is thinner. We can now see in Figure 9(c) where these less dense
regions of cortex are located. Furthermore, since Figure 9(c) is normalized by the high resolution density that
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(a) high resolution density
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(b) low resolution density

Figure 7: Distribution of apparent peak density with cortical thickness. All sixteen femurs contributed to
the data in these graphs. (a) The high resolution distribution, with density and thickness estimated using the
half-max method. (b) The y-axis now shows the corresponding peak CT values from the low resolution data.

(a) normalized σ̂ (b) 95% confidence for σ̂ (c) normalized ŷ1 (d) 95% confidence for ŷ1

Figure 8: How much data is required to estimate image blur and cortical density? The algorithm described in
Section 2.2 was run repeatedly on all sixteen femurs, starting with just a little data from the top of the femur,
then adding in progressively more data down to below the lesser trochanter. After each run, the estimates σ̂
and ŷ1 were normalized by their “correct” values obtained using all the available data. The colour maps in (a)
and (c) show the mean of the normalized estimates (a “correct” value being one), mapped onto the canonical
femur to show how much data contributed to the estimate. (b) and (d) show the corresponding mean 95%
confidence intervals, again normalized by the final values obtained using all the available data. For these
sixteen femurs, the maps in (a) and (c) have settled to one below the lesser trochanter, indicating that the
femur must be scanned at least this far for reliable estimation of density and blur. (b) and (d) confirm that the
95% confidence intervals are good indicators of estimation precision for σ̂ and ŷ1.
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(a) high resolution, half-max thickness (b) low resolution, constant density thickness

(c) high resolution, normalized density (d) low resolution, thickness error

Figure 9: Illustrative results displayed on the canonical femur. Measurements on each of the sixteen femurs
were expressed in the canonical morphology and then averaged. (a) Gold standard cortical thickness, calcu-
lated using the half-max method on the high resolution data. (b) Constant density thickness estimation from
the low resolution data, with ŷ1 estimated using the method described in Section 2.2. (c) Cortical density in the
high resolution data, normalized by the high resolution density that corresponds to ŷ1. (d) The low resolution,
constant density thickness estimation error, expressed as a percentage of the gold standard thickness.
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(d) overestimation factor

Figure 10: Cortical thickness estimation in low resolution data. Data from all sixteen femurs contributed to
these graphs. True thickness was measured in the high resolution data using the half-max method.

corresponds to ŷ1, it appears that ŷ1 is biased towards the peak cortical density, which is a good estimate of
the actual density at many locations on the femur but an overestimate at others. Figure 9(d) confirms that
overestimating y1 leads to underestimation of thickness by roughly the same factor. These errors are not very
apparent in Figures 9(a) and (b) because they are confined to regions of thin cortex. An error of, say, 30% in
1 mm cortex is fairly inconsequential in the context of the 0–4 mm dynamic range.

Figure 10 compares the performance of the constant density approach with the half-max and hybrid al-
ternatives. The shortcomings of the half-max method are clear in Figure 10(a), with increasingly inaccurate
estimates below 2.5mm. This is consistent with the performance anticipated in Figure 4(b), as is the asymp-
totic measurement of 2 mm for vanishingly thin cortex. In contrast, the constant density and hybrid methods
perform relatively well. Figure 10(d) indicates very little estimation error until 3 mm, which is where we know
the constant density assumption starts to break down. From 3 mm down to 0.5mm there is no catastrophic
failure: median errors peak at around 20%, mirroring the 20% density reduction apparent in Figure 7(a). Be-
low 0.5mm, the pixel dimensions of the raw CT data approach the limit for effective sampling of the blurred
cortex, with unavoidable consequences for the estimation error. The apparently superior performance of the
hybrid method in the 0.5–3 mm range owes much to chance. The cadaveric femurs were scanned in air, with
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(c) overestimation factor

Figure 11: Cortical mass estimation in low resolution data. Data from all sixteen femurs contributed to these
graphs. True mass was measured in the high resolution data using the half-max method.

y0 � y2. We have seen in Figure 2 (bottom) how the hybrid method is bound to overestimate thickness in
such circumstances, and this fortuitously ameliorates the underestimation caused by too high a value of ŷ1.

Figure 11 shows how mass estimation is far less sensitive to any variation in the cortical density. Gaussian
blurring is area preserving, so as long as the blurred y0-y1-y2 pulse fits the data well, the area under the pulse
will be the same as the area under the data, providing a good mass estimate irrespective of the particular value
of ŷ1. When y0 6= y2, there is the added requirement that the fitted pulse coincide with the true location of
the cortex, otherwise the mass estimate is corrupted by a y0-y2 transition at the wrong location. All these
observations are borne out in Figure 11, where we see mass estimation apparently unaffected by the variation
in cortical density. The hybrid method overestimates mass for thin cortices, as predicted in Figure 2 (bottom,
y0-y2 transition at the wrong location), and both techniques eventually fail when the cortex is undersampled.

To validate the preceding claims of cause and effect, we simulated idealised cortical sections with a
thickness-density relationship based on that observed in Figure 7(a), and two sets of y0/y2 values that simulate
scanning in air and in vivo. Subsequent mass and thickness estimation results can be found in Figure 12. Con-
sistent with the observations in Figure 2, the hybrid method produces larger estimates than the constant density
method in air, but slightly smaller estimates in vivo. There is an excellent match between Figures 12(a,b) and
the experimental results in Figures 10 and 11. Where there are discrepancies, they are easily explained. The
low thickness sampling breakdown happens further to the left in the simulations, since these were conducted
with a smaller pixel dimension. By increasing the pixel size we have observed the breakdown point moving
to the right, and it is for this reason that we are confident that this is nothing more than a sampling effect. The
actual hybrid results appear to lie somewhere between the air and in vivo simulations, but this is consistent
with the cadaveric femurs not being perfectly clean. Any soft tissue attached to the periosteal surface will
increase y0 above −1000HU, closer to the assumed in vivo value of 0 HU.

We therefore have good reason to commend Figures 12(c) and (d) as accurate predictors of likely in
vivo performance. For cortical mass estimation, the constant density method outperforms the hybrid method
since it is better able to model the observed data. In vivo the difference is relatively small, corresponding to
the discrepancies between the red and blue curves in Figure 2 (top left). The story is much the same when
estimating thickness, though both techniques are affected by an increasingly inappropriate value of ŷ1 below
3 mm. While it would be straightforward to correct the thickness estimates by exploiting prior knowledge of
the thickness-density relationship, we have no evidence to suggest that the distribution observed in Figure 7(a)
generalises beyond the sixteen specimens examined here. In the absence of any such evidence, we must accept
thickness errors that are bounded by the extent to which the local density deviates from the peak density.

Although the hybrid method is slightly less accurate, it is significantly faster than the constant density
approach. The former requires just one pass through the data to measure thm, yhm

1 and yhm
b at all points on the

femoral surface, and then calculate ŷ1, as described in Section 2.2. The half-max estimates can then be cor-
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(a) thickness estimation in air
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(b) mass estimation in air
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(c) thickness estimation in vivo
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(d) mass estimation in vivo

Figure 12: Simulated thickness and mass measurements. To facilitate comparison of these simulations with
Figures 10(d) and 11(c), the blur was set to approximate that of the low resolution scans (σ = 0.85mm),
as was the mapping from HU to mg/cm3. In all cases, the true cortical density y1 was modelled as varying
linearly from 1300 HU at zero thickness to 1750 HU at 3 mm, thereafter remaining at 1750 HU. The various
thickness and mass estimation techniques assumed ŷ1 = 1750HU. (a) and (b) simulate imaging in air, with
y0 = −1000HU and y2 = 300HU. (c) and (d) simulate imaging in vivo, with y0 = 0HU and y2 = 300HU.



15

rected, immediately, using equations (6) and (7). In contrast, the constant density approach requires a second
pass through the data to estimate tcd and mcd using the just calculated value of ŷ1. To put this observation into
perspective, it takes 10 seconds to map cortical thickness at 6500 locations (more than sufficient for a single
femur) using a single core of a 2.67 GHz Intel Core i7 processor and the hybrid method, and twice as long for
the constant density approach.

4 Discussion

It remains to discuss the relative merits of cortical mass and thickness estimation, and to comment on the
benefits of estimating ŷ1 using the method described in Section 2.2, in comparison with our earlier approach
of sampling regions of thick cortex below the lesser trochanter. Both of these themes are best addressed in the
context of an example, so we here revisit our work on cortical thickening following two years’ treatment with
recombinant human parathyroid hormone, hPTH(1-34). In Poole et al. (2011), CT scans of 65 osteoporotic
women were analysed at baseline and 24 months, with cortical thickness estimated using the constant density
technique and ŷ1 sampled from regions of thick cortex. All the resulting measurements were mapped onto
the canonical femur for subsequent cohort analysis, producing the images in Figure 13(c)3. Statistically
significant regions of thickened cortex were identified by statistical parametric mapping (SurfStat, Worsley
et al. (2009)). The resulting vertex p-maps (Figure 13, yellow/orange) are sensitive to focal effects, while the
cluster p-maps (cyan/blue) are sensitive to distributed effects. The reader is referred to Poole et al. (2011)
for a full description of this work. Here, we augment the study with constant density cortical thickness maps
based on the new method of estimating ŷ1 (Figure 13(d)), as well as cortical mass maps using both density
estimation methods (Figures 13(a) and (b)).

The first point to note is the insensitivity of the cortical mass maps to the density estimate ŷ1. This
confirms the findings in Section 3 and reinforces the message that measuring cortical mass, using the various
techniques described in this paper, is a relatively safe undertaking. A good estimate of ŷ1 is not required,
and it does not matter how much y1 varies across the femur in reality. However, there are some drawbacks.
Firstly, it is necessary to know the calibration relating HU to mineral mg/cm3. More significant, though, is
the danger of disregarding potentially significant density effects. For example, for the 65 individuals analysed
here, baseline cortical density was 1185.1 ± 67.9mg/cm3 (mean ± one standard deviation), whereas at 24
months it was 1133.6 ± 78.1mg/cm3. A paired t-test confirms that these densities are significantly different
(p < 4.9 × 10−13). This is not surprising: hPTH(1-34) functions by increasing bone remodeling and hence
porosity (Burr et al., 2001; Sato et al., 2004; Arlot et al., 2005). Consequently, in those regions where the mass
increases in Figures 13(a) and (b), it is reasonable to postulate a far more significant increase in thickness,
since density has decreased. However, unlike the mass maps, the cortical thickness maps in Figures 13(c) and
(d) must be approached with some caution. There is the underlying assumption of constant cortical density:
might a regionally fluctuating density undermine the apparent statistically significant results? Perhaps the
regional mass increases correlate with density, not thickness? This seems unlikely: we know that average
density has decreased, so we would be hypothesising a density increase in the regions most affected by
hPTH(1-34), counteracted by an even greater decrease in the unaffected regions, in direct contradiction to
how the drug is known to work. Nevertheless, Figures 13(c) and (d) show changes in cortical thickness
assuming constant density in any one scan, and must be interpreted as such.

A more subtle but equally important consideration is the possibility of measurement bias affecting the
thickness maps. Figures 13(c) and (d) differ because the new density estimates, obtained by model fitting, in-
dicate around 2% more density reduction than the old estimates, obtained by sampling regions of thick cortex

3Figure 13(c) is in fact slightly different from the corresponding figure in Poole et al. (2011), since we now use an improved
smoothing algorithm when mapping onto the canonical femur.
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(a) Change in cortical mass, ŷ1 estimated from regions of thick cortex

(b) Change in cortical mass, ŷ1 estimated as in Section 2.2

(c) Change in cortical thickness, ŷ1 estimated from regions of thick cortex

(d) Change in cortical thickness, ŷ1 estimated as in Section 2.2

Figure 13: Cortical mass and thickness effects following two years’ treatment with hPTH(1-34). Measure-
ments from 65 subjects were mapped onto the canonical femur and averaged. The statistical parametric maps
(right) indicate significant regions of mass increase (a,b) or thickening (c,d). Vertex effects are based on the
magnitude of peaks corrected for multiple comparisons, while the cyan/blue areas are connected clusters of
vertices exceeding an uncorrected p-value of 0.001.
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below the lesser trochanter. Might either or both of these methods be biased? Any systematic measurement
bias that affects the baseline and 24 month density estimates to different degrees will manifest themselves
as false thickness effects. So extreme care must be taken when interpreting any small, apparent thickness
differences: bear in mind that a 10% thickness increase in 1 mm cortex is only 100µm, and we are inferring
this information from clinical CT scans with a point spread function of around 3 mm. In this instance, there
is a known source of bias: the 24 month scans extended, on average, 4.5 mm lower down the femur than the
baseline scans. This means that the baseline scans are more susceptible to imprecise ŷ1 estimates (caused by
a lack of sufficiently thick cortical bone) than the 24 month scans. Referring to Figure 3(b), it is clear that
sampling the thickest available cortex will tend to underestimate the true, peak cortical density: had there been
more data, and the samples extended further to the right, we would have encountered higher density values.
In contrast, the model-fitting approach tends to overestimate ŷ1 when there is marginally sufficient data, as
demonstrated clearly in Figure 8(c).

So Figures 13(c) and (d) most likely represent lower and upper bounds on the true cortical thickness effect,
and we are sanguine that the difference is only around 2%, despite the difficulties posed by this challenging
study. Although all the scans extended below the lesser trochanter – some only just so – these were severely
osteoporotic women with pathologically thin cortices. Furthermore, the point spread function of the CT
system was around 3 mm, compared with 2 mm for the cadaveric studies. Nevertheless, the mean confidence
interval for ŷ1 was ±14.8HU and the worst case was ±38.0HU: we therefore decided to include all 65
subjects in the cortical thickness analysis.

In summary, the merits of the new density estimation method are twofold. Compared with our previous
approach of sampling the density in regions of supposedly thick cortex, the new technique makes use of all
the available data. It can therefore produce estimates of ŷ1 that correctly exceed the peak density observed
anywhere in the imaged cortex. When there is insufficient data to fully constrain the model, it does tend to
overestimate density just as the old technique tends to underestimate. This brings us to the second advantage:
the new method furnishes a confidence interval for ŷ1, allowing objective inclusion or exclusion of particular
scans. Our experience with the hPTH(1-34) study suggests that exclusion should rarely be necessary.

5 Conclusions

Cortical mass and thickness can be mapped across the proximal femur using either a constant density approach
or a hybrid half-max/constant density approach. The former is more accurate but requires two passes through
the data compared with a single pass for the latter. When a suitable calibration phantom is included in the
scan, cortical mass can be measured in mg/cm2 to high accuracy. Cortical thickness estimation requires a
good estimate of the cortical density, which is assumed to be constant at all points on the femur. While the
model-fitting method presented in this paper estimates this density in a manner that can be considered optimal,
in that it exploits all the available data, thickness estimates are nevertheless biased when there is any variation
in the actual cortical density. In many studies, it may therefore be advisable to base any firm deductions
on observations of cortical mass alone, unless the study involves comparison of two groups with different
densities, in which case cortical thickness analysis, when applied with care, may well reveal more significant
group-dependent effects.

Acknowledgments

Ken Poole is supported by the Arthritis Research Campaign, the Evelyn Trust and the NIHR Cambridge
Biomedical Research Centre. The cadaveric femurs were from the Melbourne Femur Collection Research
Tissue Bank of the Victorian Institute of Forensic Medicine, with kind permission of Professor John Clement.



18 REFERENCES

References

Arlot, M., Meunier, P. J., Boivin, G., Haddock, L., Tamayo, J., Correa-Rotter, R., Jasqui, S., Donley, D. W.,
Dalsky, G. P., Martin, J. S., Eriksen, E. F., 2005. Differential effects of teriparatide and alendronate on
bone remodeling in postmenopausal women assessed by histomorphometric parameters. Journal of Bone
and Mineral Research 20 (7), 1244–1253.

Bouxsein, M. L., Delmas, P. D., Aug. 2008. Considerations for development of surrogate endpoints for an-
tifracture efficacy of new treatments in osteoporosis: A perspective. Journal of Bone and Mineral Research
23 (8), 1155–1167.

Buie, H. R., Campbell, G. M., Klinck, R. J., MacNeil, J. A., Boyd, S. K., Oct. 2007. Automatic segmentation
of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone
analysis. Bone 41 (4), 505–515.

Burr, D. B., Hirano, T., Turner, C. H., Hotchkiss, C., Brommage, R., Hock, J. M., 2001. Intermittently ad-
ministered human parathyroid hormone (1-34) treatment increases intracortical bone turnover and porosity
without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. Journal of Bone
and Mineral Research 16 (1), 157–165.

Cann, C. E., Feb. 1988. Quantitative CT for determination of bone mineral density: a review. Radiology
166 (2), 509–522.

Carpenter, R. D., Beaupre, G. S., Lang, T. F., Orwoll, E. S., Carter, D. R., 2005. New QCT analysis approach
shows the importance of fall orientation on femoral neck strength. Journal of Bone and Mineral Research
20 (9), 1533–1542.

de Bakker, P. M., Manske, S. L., Ebacher, V., Oxland, T. R., Cripton, P. A., Guy, P., Aug. 2009. During
sideways falls proximal femur fractures initiate in the superolateral cortex: Evidence from high-speed
video of simulated fractures. Journal of Biomechanics 42 (12), 1917–1925.

Dougherty, G., Newman, D., Jul. 1999. Measurement of thickness and density of thin structures by computed
tomography. Medical Physics 26 (7), 1341–1348.

Hangartner, T. N., Mar. 2007. Thresholding technique for accurate analysis of density and geometry in QCT,
PQCT and µCT images. Journal of Musculoskeletal and Neuronal Interactions 7 (1), 9–16.

Hangartner, T. N., Gilsanz, V., 1996. Evaluation of cortical bone by computed tomography. Journal of Bone
and Mineral Research 11 (10), 1518–1525.

Holzer, G., von Skrbensky, G., Holzer, L. A., Pichl, W., 2009. Hip fractures and the contribution of cortical
versus trabecular bone to femoral neck strength. Journal of Bone and Mineral Research 24 (3), 468–474.

Johnell, O., Kanis, J. A., Oden, A., Johansson, H., Laet, C. D., Delmas, P., Eisman, J. A., Fujiwara, S., Kroger,
H., Mellstrom, D., Meunier, P. J., 3rd, L. J. M., O’Neill, T., Pols, H., Reeve, J., Silman, A., Tenenhouse, A.,
2005. Predictive value of BMD for hip and other fractures. Journal of Bone and Mineral Research 20 (7),
1185–1194.

Kanis, J. A., Burlet, N., Cooper, C., Delmas, P. D., Reginster, J. Y., Borgstrom, F., Rizzoli, R., 2008. Euro-
pean guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis
International 19 (4), 399–428.



REFERENCES 19

Kaptoge, S., Beck, T. J., Reeve, J., Stone, K. L., Hillier, T. A., Cauley, J. A., Cummings, S. R., 2008. Prediction
of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study
of osteoporotic fractures. Journal of Bone and Mineral Research 23 (12), 1892–1904.

Mayhew, P. M., Thomas, C. D., Clement, J. G., Loveridge, N., Beck, T. J., Bonfield, W., Burgoyne, C. J.,
Reeve, J., 2005. Relation between age, femoral neck cortical stability, and hip fracture risk. The Lancet
366 (9480), 129–135.

More, J. J., 1977. The Levenberg-Marquardt algorithm: Implementation and theory. In: Watson, A. (Ed.),
Numerical Analysis. Lecture Notes in Mathematics 630, Springer-Verlag, pp. 105–116.

Parker, M., Johansen, A., 2006. Hip fracture. British Medical Journal 333 (7557), 27–30.

Poole, K. E., Mayhew, P. M., Rose, C. M., Brown, J. K., Bearcroft, P. J., Loveridge, N., Reeve, J., 2010.
Changing structure of the femoral neck across the adult female lifespan. Journal of Bone and Mineral
Research 25 (3), 482–491.

Poole, K. E. S., Treece, G. M., Ridgway, G. R., Mayhew, P. M., Borggrefe, J., Gee, A. H., 2011. Targeted
regeneration of bone in the osteoporotic human femur. PLoS ONE 6 (1), e16190.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., 2002. Numerical recipes in C: The art of
scientific computing, 2nd Edition. Cambridge University Press.

Prevrhal, S., Engelke, K., Kalander, W. A., Mar. 1999. Accuracy limits for the determination of cortical width
and density: the influence of object size and CT imaging parameters. Physics in Medicine and Biology
44 (3), 751–764.

Prevrhal, S., Fox, J. C., Shepherd, J. A., Genant, H. K., Jan. 2003. Accuracy of CT-based thickness measure-
ment of thin structures: Modeling of limited spatial resolution in all three dimensions. Medical Physics
30 (1), 1–8.

Sambrook, P., Cooper, C., 2006. Osteoporosis. The Lancet 367 (9527), 2010–2018.

Sanders, K. M., Nicholson, G. C., Watts, J. J., Pasco, J. A., Henry, M. J., Kotowicz, M. A., Seeman, E.,
2006. Half the burden of fragility fractures in the community occur in women without osteoporosis. when
is fracture prevention cost-effective? Bone 38 (5), 694–700.

Sato, M., Westmore, M., Ma, Y. L., Schmidt, A., Zeng, Q. Q., Glass, E. V., Vahle, J., Brommage, R., Jerome,
C. P., Turner, C. H., Apr. 2004. Teriparatide [PTH(1-34)] strengthens the proximal femur of ovariectomized
nonhuman primates despite increasing porosity. Journal of Bone and Mineral Research 19 (4), 623–629.

Streekstra, G. J., Strackee, S. D., Maas, M., ter Wee, R., Venema, H. W., Sep. 2007. Model-based cartilage
thickness measurement in the submillimeter range. Medical Physics 34 (9), 3562–3570.

Treece, G. M., Gee, A. H., Mayhew, P. M., Poole, K. E. S., Jun. 2010. High resolution cortical bone thickness
measurement from clinical CT data. Medical Image Analysis 14 (3), 276–290.

Verhulp, E., van Rietbergen, B., Huiskes, R., 2008. Load distribution in the healthy and osteoporotic human
proximal femur during a fall to the side. Bone 42 (1), 30–35.

Worsley, K., Taylor, J., Carbonell, F., Chung, M., Duerden, E., Bernhardt, B., Lyttelton, O., Boucher, M.,
Evans, A., 2009. Surfstat: A Matlab toolbox for the statistical analysis of univariate and multivariate sur-
face and volumetric data using linear mixed effects models and random field theory. NeuroImage 47 (Sup-
plement 1), S102–S102, Organization for Human Brain Mapping, 2009 Annual Meeting.


	Introduction
	Method
	Estimating cortical thickness and mass in blurred data
	Estimating cortical density in blurred data
	Evaluation

	Experiments and results
	Density variation and estimation in low and high resolution data
	Mass and thickness estimation using optimized density

	Discussion
	Conclusions

