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Abstract

The local structure of the proximal femoral cortex is of net& since both fracture risk, and the effects
of various interventions aimed at reducing that risk, asoeisited with cortical properties focused in
particular regions rather than dispersed over the wholeebdviuch of the femoral cortex is less than
3mm thick, appearing so blurred in clinical CT that its atensity is not apparent in the data, and
neither thresholding nor full-width half-maximum techueg are capable of determining its width. Our
work on cortical bone mapping showed how to produce morerate@stimates of cortical thickness by
assuming a fixed value of the cortical density for each hipwéier, although cortical density varies
much less over the proximal femur than thickness, what litlriation there is leads to errors in thickness
measurement. In this paper, we develop the cortical bong@mggpechnique by exploiting local estimates
of imaging blur to correct the global density estimate, thtmviding a local density estimate as well as
more accurate estimates of thickness. We also considerunegasnt of cortical mass per unit surface
area and the density of trabecular bone immediately adjacdhe cortex. Performance is assessed with
ex vivo clinical QCT scans of proximal femurs, with true veduderived from high resolution HRpQCT
scans of the same bones. We demonstrate superior estiroatlookness than is possible with alternative
techniques (accurady.12 + 0.39 mm for cortices in the range 1-3 mm), and that local cortieaisity
estimation is feasible for densities 800 mg/cn.

1 Introduction

Hip fractures are the most common cause of acute orthopaedic hospitakexmiisolder peopleRarker
and Johanser2006. An individual’s fracture risk is currently assessed using bone miinkerzsity (BMD).
Although BMD is specific Johnell et al. 2005 Kanis et al, 2008 it lacks sensitivity Kanis et al, 2008
Kaptoge et al.2008 Sanders et 812006, missing the majority who go on to fracture. There is now growing
evidence that focal, structural weaknesses may predispose a hipttodr§layhew et al, 2005 Poole et al.
201Q de Bakker et a).2009. The distribution of both trabecular and cortical bone is critical in determgiain
femur’s resistance to fracturelglzer et al, 2009 Verhulp et al, 2008 Poole et al.2012. Drug treatment and
exercise regimes targeted at reducing fracture risk result in changek are focused in particular regions
rather than dispersed over the whole bobang et al, 2014 Poole et al.2011). Accurate measurement of
local cortical structure is hence important in assessing fracture risknandoring interventions.

However, measurement of the thickness and volumetric density of the t®nekstraightforward. Thin
laminar structures are not accurately depicted in clinical CT because iofitiges’ limited spatial resolution.
Consequently, simple thickness estimation techniques, like those based simttirey Buie et al, 2007
Hangartner2007) or some measure of full-width half-maximurrevrhal et al.1999 2003, are unreliable
when the cortex is thin in relation to the imaging resolution. With normal bore, dififascanners, such
methods are increasingly inaccurate below 3 ndoygherty and Newmari999 Hangartner and Gilsanz
1996, with errors exceeding 100% for sub-millimetre corticBsevrhal et al.2003. In very thin cortices,
the ‘thickness’ measured using these techniques is just the width of the inidgingnd the ‘density’ (i.e. the
maximum CT value) is in fact a measure of cortical mass per unit surfaagrmgécnt, henceforth abbrevi-
ated as simply ‘mass’), not cortical density (mgfm

Cortical bone mapping is a recently proposed technique which does altnwede estimation of cortical
thickness Treece et @).201Q 2012 based on an estimate of cortical density which is presumed to be constant
for each hip. Density varies much less over the proximal femoral cortexttiiekness, which explains the
good results for thickness measurement when making this assumption. étpway deviation from the
presumed constant density value results in an error in the thickness estitaat®, we would like to be able
to estimate the variation of density over the cortex: this would improve the thislestsnates as well as
provide an independent measure of density.



2 2 METHOD

There is already a sizeable literature on cortical thickness and density wstirfram clinical CT. To
this body of knowledge, this paper adds refinements that are rather bubtlmdoubtedly effective. The
content of this paper is therefore of necessity both fairly broad (inrdadperform a fair comparison with
existing techniques) and technically detailed (in order to thoroughly explainature and reasoning behind
the innovations). With an increasing number of studies reliant on corticadunements, it is important to
have a thorough understanding of the accuracy and limitations of the teelsrigat are used to make such
measurements, and this is what this paper sets out to do. In S2cti@motivate and describe two variations
of cortical bone mapping that provide independent estimates of cortinaltgeit each measurement point.
The accuracy and precision of these estimates, as well as those foralcthitikness, mass and trabecular
density, are assessed in Sectbmlongside other estimates from alternative techniques. We discuss our
findings in Sectior before drawing some conclusions in Secton

2 Method

It was shown inTreece et al(2012) that the variation of CT datag,,,(z) across the cortex can be modelled as:

your(@) = o + 2 5 Yo [1 +erf <xa_\/§0>] + 2 5 s [1 +erf (xa_\/'?)] 1)

wherez is the distance across the cortgy,y; andy» are CT values in surrounding tissue, within the cortex,
and for the trabecular compartment respectivelyandz; are the locations of the periosteal and endocortical
surfaces respectively, andis the standard deviation of the assumed Gaussian imaging blur.

Model-based cortical thickness estimation involves fitting this function to thebCilidatac(z) at each
measurement point, by optimisation of the model paramétgrs, , y2, zo, 1, o} until yy,.(x) matches:(x).

In Treece et al(201Q 2012, good results were achieved by presetting the cortical depsiyd leaving the
other parameters to be optimised by the fitting algorithm. A more standard déatonw@pproach would be
to preset the imaging blur, but in this instance this is less successful as will be shown in SegtiQthers

have used a similar model but allowed all parameters to be optinfisddiél et a.2012), an approach which
we will show in SectiorB gives low bias but unfortunately poor precision.

Most techniques in current use are not model-based. They tend toeéntiolsholding, either at some
fixed level Buie et al, 2007 Hangartner2007) or at half the local peak CT value, the latter resulting in a
full-width half-maximum (FWHM) measuremeri®fevrhal et a].1999 2003. Thresholding at a fixed value
is known to be sensitive to the chosen level, and will fail to include the cottalkiéit is too thin. The FWHM
approach (which can be implemented using the model-based approaate$eitipngy; to the observed CT
peak valuer,.,) overcomes this problem, but leads to massive overestimation of corticahésiskor thin
cortices Pougherty and Newmari999 Hangartner and Gilsanz996).

We summarise these approaches (other than thresholding at a fixediuatue)eft-most four columns
of Fig. 1. For concision, they are henceforth referred to as:

nothing preset A model-based fit with all parameters found by optimisation.
FWHM A Full-Width Half-M aximum model-based fit witly = cpeacand all other parameters optimised.

preset blur A model-based fit withr = ¢4, whered, is a prior estimate of the imaging blur, and all other
parameters optimised.

CBM v1 The constant densitgorticalBoneM apping estimate describedTineece et a2010 2012, which
is a model-based fit withh; = y; and all other parameters optimised. This technique is implemented in
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Figure 1. An overview of the six cortical parameter estimation algorithms testtdsirpaper. Many of
these algorithms share similar stagds. the local model fitting was described Treece et al(2010 and
is summarised in the graph above. Each algorithm fits the same model, but startsffierent parameters
preset to specific values, the remaining being optimig&adhe calculation of a global cortical density is
described inTreece et al(2012, and this procedure can be adapted to also estimate the globalblsee
AppendixA). C: a new method for adjusting the presumed cortical dengity give a local estimatg;,, is
described in Sectio@.1 D: a new method for estimating a global dengjty¢) which varies with thickness
is described in Sectio®.2
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Figure 2: Estimating local cortical density, using the global blur,. In all cases, the simulated actual
cortical density is 1000 HU but the presumed cortical dengitys set to 1400 HU. The simulated density
variation is given by the black lines: solid lines show the blurred CT valueseas dashed lines show the
underlying true variation. The light grey curves show the initial modelfit(x), with the dotted curve
showing the fit after correcting to 6,4. 11, is then calculated using egd)(and the two CT values shown
as circles. The final model fit with the new density value is shown in dark g at very thin thickness
(t < 1 mm) there is little difference betweenandcs,; and hence the correction has limited effect. (b) for thin
cortices { mm < ¢ < 3mm) the correction improves the thickness estimate. (c) for thick cortices3(mm),
the correction effectively results in the FWHM value, which is a good estimatésrdomain.

Stradwirt, our in-house software which is available for free download.

We are also interested in the peak CT valig. as predicted by the model,,.(xz). We can find this by

positioning the cortex, with thicknessatz = 0 (i.e.zy = —& andz; = §). Setting the differential of eq1}
to zero then gives the location of the peak:
2 _
Lpeak — 1 In <y1 yO) (2)
t Y1 — Y2
and the correct peak value is thgp. = Yo (Zpea) With 29 = =5, 21 = L.

For the purposes of estimating the global cortical dengitiyn Treece et al(2012, the peak is presumed
to occur atr = 0, a reasonable simplification provided that the background ldygls). } are similar:

t
eak ~ Yzero = ur 0 = + - f = 3
Ypeak = Yzero = Your(0) = Y + (y1 — o) €x <2\/§U> ®3)

wherey, = % Estimation ofy; involves fitting eq. B) to the data but starts with repeated fitting/qf.(x)
to ¢(x) (in order to estimate the values#©f each model-fit also providing a local estimate of the imaging blur
o. A global estimater, is derived from these local estimates using the method described in App&ndix

2.1 Local estimation of density

Although CBM v1 provides better thickness estimates than FWHM, it offelscal estimate of the cortical
density, sincey; is preset to a constant for each bone. Hence there is an error in measuring thickness if

1




2.2 Global estimation of density variation with thickness 5

the real cortical density at the measurement point is not equgl.tdt would be of benefit to reduce this
error while also measuring changes in density over the cortex. Whethenitjiig¢ be possible depends on
the thickness of the cortex. For thick cortices as in @) (t > 40, or about 3mm for typical clinical
resolution), cortical density and thickness can be resolved unambigudius cortex is thick enough for its
actual density to be apparent in the CT data. For thinner cortices, althloeigiortical mass is preserved, the
imaging blur makes it difficult to distinguish to what extent this mass is the resathijher density or a
higher thickness. For very thin cortices as in Fi(p) (typicallyt < 1 mm), any cortex with the same mass,
regardless of the relative contribution from thickness or density, will theksame in the blurred CT data.

Hence it is trivial to distinguish thickness and density in thick cortices, andssible to do so (without
prior information) in very thin cortices. However, in the mid-range, which gdal of cortical values in the
proximal femur, it is possible to deduce the relative contributions of densiytliickness by looking at the
modelled imaging blur. If we overestimate the density £ v;), as in Fig.2(b), the modelled value af will
compensate by being greater than the real imagingdyuin contrast, if we underestimate the densityyill
compensate by being less thép Having initially fitted a model using some presumed dengitywe can
use these observations to give us a heval estimate of the actual density at each point.

We could simply compare from the CBM v1 estimate with the global imaging bhiy, and adjustj;
accordingly. Howevely is not only sensitive to errors in the presumed cortical density, it is alsctafi by
the presence of small pores in the cortex. These tend to be located dinewuttical edges and once blurred
by the imaging system result in shallower slopes in the CT dat® which are modelled as larger values
of 0. We hence choose to use peak CT values (which are as far as possibléhé cortical edges) when
adjusting for cortical density:

Cpeak - max{yo, y2}
Ypeak — max{y07 yQ}

Equation ) shows how we calculate the new cortical density estimatethis is a well-motivated heuristic
rather than a precise mathematical model. First, the CBM v1 algorithm is used wifirébety; density
value. Then this value is adjusted according to ). \herec,.. is the maximum value observed in the CT
data at this location, ang..is the predicted maximum valug,,(z...) evaluated using the CBM v1 results
for {yo, y1, y2, xo = —%, T = %} but replacings with the global estimaté;. y,..tells us what the peak CT
value is if we use the correct imaging blur in the model: hence the ratio betwiseamiththe observed peak
cpeax tells us by how much we need to adjyst Model-fitting is then repeated using = y1,.

We henceforth refer to this algorithm &BM v2 since it is a modification of the CBM v1 algorithm.
An overview is given in the fifth column of Fidl, where stag€ is the novel adjustment given in egt)(
Examples are given in Fi@, demonstrating that a reasonable estimate of local density can indeedéedch
for relatively thin cortices. For thick cortices, the adjustment corrects Bid €1 preset density to the actual
density seen in the data.

Yo = (Y1 — max{yo, y2}) + max{yo, y2 } (4)

2.2 Global estimation of density variation with thickness

While the CBM v2 algorithm has the potential to improve both density and thiclestsaates for thick and
relatively thin cortices, it offers no improvement over the CBM v1 algoritlemthe very thin cortices of
Fig. 2(a). In this case, there is no indication in the shape of the CT dafaof what the density should be.
However, it was noted iffreece et al(2012 that there might be a trend for cortical density to increase with
thickness in the human proximal femur. If such a trend exists, and we eait isethe data, then we can
replace our initial constant density estimgtewith a new estimatg (¢) that varies with thickness. For thick
and relatively thin cortices, the estimate can still be adjusted locally as in CBMovever for very thin
cortices, this less biased initial estimate should result in more accurate muastse
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Figure 3: Estimating global cortical densify(¢) as a function of thickness. (a) shows estimation0ls
explained inTreece et al(2012), where the cortex is presumed to have a constant density which is bhyrred
the imaging system, resulting in an apparent reduction with thickness which islleshtly eq. 8). (b) The
new technique explained in Secti@m® allows the density to vary linearly with thickness up to a pajpt
The imaging blur in this case is fixed &j.

In order to estimatg; (¢), we return to the procedure for estimatigigas outlined inTreece et al(2012.
In this procedure, FWHM measurements are made at many locations araufetrtar. After adjustment,
these measurements provide many pairétof....; data points. The function in ec8)(is fitted to this data,
giving global estimates af1, v, (the average background density) andThis is summarised in Fig(a).
However, we have already noted that we can obtain an estiwpatéthe imaging blur, not from the global
model-fit in eq. 8), but by using eq.X) on all the individual data measurements: see AppeAdiar details.

In the case of a cortex which is genuinely a constant density irrespettiieeknessg ands,; do indeed
return the same value, as would be expected. However, we have semctiogpacross many studies of the
proximal femur thats is usually greater thas,;, sometimes by up to a factor of two. To understand this
difference, we note that the initial slope of the curve in Bgwhich is substantially an error function (erf),
is largely dependent on the value®in eq. @). However, if the cortical density is actually increasing with
thickness, this would also affect the slope of this curve. Hence the largaiue is the combination of the
actual imaging blur; and the trend we have previously noted for density to vary with thickness.

Itis not possible to simultaneously estiméatand a varying density function, since these both have similar
effects on the model in eq3). However, if we preset = 4,4, we can then afford to replagg with a simple
piecewise function of thickness, which is linear up to some thickngssnd constant thereafter, giving the
modified equation:

Ys (t—tm) +ym ift <ty
Ym otherwise

Yzero = Yb + (yl (t) — yb) erf <2\/>7520fd> s where U1 (t) = { (5)

In this case the model contains four free parameltgssy,,, ys, tm } rather than three in eg@){ys, y1,0}. A
typical fit is shown in Fig3(b) on the same data as in FR&(a).

Implementation of this algorithm, henceforth term@BM v3, requires an additional model fit at each
location, since we first have to find the approximate thickness at each resssu location (using the max-
imum densityy,,), then we can adjust our presumed densityit@) before continuing as in CBM v2. This
procedure is summarised in the sixth column of Higvhere stag® is the novel application of egb).



3 Experimentsand results

3.1 Simulations

We investigated the effect of the local density correction for CBM v2 if(4doy using eq. 1) to simulate the
CT data variatiorz(z) through ideal cortices, i.e. with perfectly constant density and no psuesunded by
material which is also at a constant (but lower) density. These corticesblgred with a Gaussian kernel
with ¢ = 0.71 mm (FWHM of 1.67 mm), which is reasonably typical of a good clinical CT systdine
cortices were up to 6 mm thick.

We then obtained cortical thickness estimates using the CBM v1 and v2 algariffirisswas repeated
multiple times, with different initial density estimatgs, ranging from an 80% underestimate to an 80%
overestimate of the actual simulated density. The presumed imagingiluthe CBM v2 algorithm was set
to the actual simulated blur. The results are shown in#ig.

3.2 Comparing HRpQCT and QCT data

Moving on from simulations, we examined data from a study ethically apprbydtie Medical University

of Vienna, comprising cadaveric proximal femurs from 18 females and 1&smédmean age 77 years (range
59-96 years). Both left and right femurs were stripped of soft tissuenerged in a saline solution and, after
vacuum to remove air bubbles, scanned using both HRpQCT and QGHeFdetails of this data have been
published previouslyall'Ara et al, 2013ha). The QCT data was scanned using a Brillianceseanner at

120 kV, with voxel size).33 x 033 x 1.0 mm?, and converted from Hounsfield Units to density using a BDC
calibration phantorh The reference HRpQCT data was scanned using an XTrefne€ihner, with voxel
size0.082 x 0.082 x 0.082mm?, and converted to density using the manufacturer-provided phantom with
some adjustments as detailed in AppenBixThis gave a total of 70 matching high and low-resolution data
sets from 35 subjects.

Each of the femurs was semi-manually segmented in the QCT data using in$toabein software, and
surface meshes created with uniform triangle size and sfapede et a).1999. Cortical measurements as
described in the previous section were performed at all vertices in thedeemjen directions consistent with
the surface normal at that point. Cortical thicknesgensityy; and mass$ x y; were recorded at each point,
at a total of 772,054 separate locations, about 11,000 per femur. Weeatsded the» density value, which
corresponds to the average trabecular density just inside the cortex.

Each QCT-derived surface was registered with the correspondipgd@R data by minimising the mean
squared distance between matched points from the QCT and HRpQCT raéishesrigid body transforma-
tion with separate scale factors in the three principal directions. This tranafion was used to import the
QCT-derived surface into the HRpQCT reference frame, so that mexasats could be made in the HRpQCT
data at exactly the same locations, and in exactly the same directions, as theemesis in the QCT data.

Reference HRpQCT measurements of cortical thickness, density andaeessnade using the estab-
lished FWHM algorithm, which is accurate on this data down to a cortical thiskoe8.3 mm. These mea-
surements were adjusted slightly to compensate for the use of a peak valoicdl density rather than a
mean value, as explained in Appen@ixAt each location, HRpQCT data was averagarhllel to the cortex
as described ifireece et al(2012), such that each estimate’s spatial localization was consistent with the QCT
data, while preserving the HRpQCT resolutibnough the cortex.

2Philips, Germany
3QMR Gmbh, Germany
4Scanco Medical AG, Switzerland
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Figure 4. Thickness and density estimation errors with varying initial degsitya) and (b) show density
and thickness estimation errors, respectively, for the CBM v1 algorithsorited inTreece et al(2010. (c)
and (d) are the equivalent graphs for the CBM v2 algorithm describ8edtion2.1 If ¢ is correct (i.e. zero
error on the vertical axis), then density and thickness estimates aretcimreall thickness values in both
cases. In CBM vl, the errors roughly scale with errorgiinif 4 is too large, then the estimated density is
(by definition) too large and the estimated thickness is too small. In CBM v24ges ¢sed to replace the
presety; estimate with the loca);, value. For thick corticest(> 3 mm) this results in accurate estimation
whatever the initial value off;. For thinner corticesi(mm < ¢ < 3mm) estimation is significantly less
dependent omy; than in the CBM vl algorithm. For very thin cortices € 1 mm), the two algorithms are
similar, with both relying on a correct initial density estimate.



Table 1: Cortical thickness, cortical density, cortical mass and trabredalssity estimation errors for very thifn.g mm < ¢t < 1.0mm),
thin (1.0mm < ¢ < 3.0mm) and thick 8.0mm < ¢ < 6.0 mm) cortices. Values are expressed as Hiagrecision (std), with positive bias
indicating overestimation. Success rate is expressed as the overalitageeef measurements for which the model-fit procedure was sudcess
and hence some parameters were estimated, even if these estimates wereegtt Processing times are for all measurements from a singl
femur (= 11,000 measurements), running on a single core of a 2.67 GHz Intel Core i79smce

=

e1ep 100 pue [ DOAHH Buiedwo) z'e

quantity thickness algorithm
range (mm) FWHM preset blur  nothing preset CBM vl CBM v2 CBM v3
cortical thickness 3.0<¢t<6.0 0.04+0.25 0.08+0.26 0.08£0.25 —0.09 +0.32 0.04£0.25 0.04£0.25
(mm) 1.0<t<3.0 0484+0.37 0.514+0.46 —0.01+0.88 —0.24 £0.32 0.124+0.39 0.26 = 0.40
03<t<1.0 1.06+0.37 2.35+1.46 0.584+1.07 —-0.24+0.14 -0.154+0.23 0.04+0.31
cortical density 3.0<t<6.0 —-29+£ 110 —474+119 —44 +£ 105 11+ 124 —26 £ 109 —27+ 109
(mg/cm?) 1.0<t<3.0 —-1704+137 —16541159 —59 £+ 244 195 £ 217 —26 £ 178 —89 + 160
03<t<10 —-378+166 —373+182 —241 + 300 462 4+ 259 193 +£331  —30 4264
cortical mass 30<t<6.0 —-534+59.2 -—-75+62.0 —8.24+59.5 —9.7+64.9 —6.84+60.6 —6.5+£61.2
(mg/cm?) 1.0<t<3.0 8.6 £26.5 9.5 4+29.0 8.0 £ 28.3 7.5£25.3 8.0 £25.8 8.7+ 26.1
03<t<10 11.8+£16.3 58.9+£60.3 18.4 £+ 28.9 0.6+10.4 1.4+11.1 29+ 11.7
trabecular density 3.0 <t < 6.0 —50 £ 76 —57£381 —53 £ 76 —51+83 —51+75 —48+ 74
(mg/cm?) 1.0<t<3.0 —20 + 61 —24 + 67 —25+ 64 —20 £ 60 —19 458 —20 £ 61
03<t<1.0 2+31 —24+60 —2435 3£30 3+30 3£30
success rate (%) 0.3<t<6.0 97.8 66.7 92.7 97.6 97.8 98.2
processing (secs) 0.3<t<6.0 34 60 56 71 85 93
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3.3 Aggregate ex vivo results

Figure5 shows aggregate results for the measurement of cortical thickf)essn(g all six algorithms. These
plots summarise a very large number of measurements expressed adliyalsaisity functions: the different
shades of grey show the expected distribution of thickness measuremeafsdrticular confidence interval.
Hence the ‘p=0.68’ region is similar to a one-standard-deviation rangagthihese distributions are clearly
not normal, nor even unimodal. Another way of expressing this is that the ghmw the density of points
on a scatter plot of all pairs of true vs. estimated measurements from the GBlRa@ QCT data. An ideal
estimator would be a thin diagonal line.

The bias in thickness estimation (the most probable thickness estimate forataahtlickness) for all
algorithms is summarised in Fi§(a), with Fig.8(b) giving the distribution of the (HRpQCT) thickness values
that were successfully estimated in the QCT data (i.e. the model-fit was sfidcegen if the parameters were
wrong). Note that there are more thickness estimates for lower thicknésse®ne at all below 0.3 mm.

Figure6 summarises cortical density,() estimation in exactly the same way as in Figand the bias of
each algorithm is again summarised in F8¢c), with the distribution of true density values in FB(d). As
would be expected, cortical density is generally high, with relatively fewsmeaments at lower values.

It was noted in Sectio that density estimation is highly dependent on cortical thickness, and faésce
important to look at how the density estimation error varies with true corticalribigk This is presented in
Fig. 7, with the true (HRpQCT) minus the estimated (QCT) density onth&is, so an ideal estimator would
be a thin horizontal line af = 0. Once again the bias is summarised for all algorithms in &igj).

For the sake of concision, we report only a few of the cortical masg{) results in Fig9. All algorithms
estimate cortical mass relatively well, with the two extremes of performancensindwigs.9(a) and (b). The
bias of all algorithms is presented in Fc) and the mass distribution in Fig(d).

Estimation of trabecular densityy) is straightforward and very similar results are obtained with all
algorithms, summarised in Fig0. As with cortical density, we include a plot of trabecular density error
against thickness in Fid.0(c), to see to what extent this measure is dependent on cortical thickness

Numerical summaries of all these results are collated in TablEollowing on from the discussion in
Section2, we are expecting different behaviour for thiekx 3 mm), thin  mm < ¢ < 3 mm) and very thin
(t < 1 mm) cortices, and hence estimation errors are presented for each ofittmaimns separately.

3.4 Spatial distribution of ex vivo results

The previous section examines performance as a function of corticah#sskbut it does not give a sense of
how the errors vary over a typical proximal femur. To elucidate this, westered each of the QCT-derived
surfaces to a canonical femur, using a nonrigid registration techniquedieahin our in-house wxRegSarf
software and described fBee and Treec014). This allowed us to map the cortical parameters from each
subject to the same surface, and hence present estimation bias as aragaawrer this surface.

Cortical thickness estimation bias is shown in Hidy. with cortical density in Figl2. The mean thickness
and density are also shown for context. As previously noted, corticad avestrabecular density errors were
similar for the various algorithms, so a reduced set of results is preserfegl kB,

4 Discussion

Looking first at cortical thickness, Fid is consistent with previous result$réece et a).2012 in that
FWHM dramatically overestimates small thicknesses while CBM v1 only slightly iestienates these. We

Shttp://mi.eng.cam.ac.uk/ ~ahg/wxRegSurf/
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previously stated (without providing specific evidence) that presettingrtaging blur in the model was not
very successful, and the results in Figb) support this claim. Indeed, this technique often fails to fit the
model at all, as can be seen in Fig&h) and (d) and the very low success rate in Tablé'he most likely
explanation for this is that the model needs to adjust the imaging blur to acfautensity errors or the
presence of pores, and hence will often fail to fit when it is preventad tloing so.

The results for the nothing preset algorithm also agree with previous (RPakdel et al.2012), in that
the bias is considerably reduced compared to FWHM and also comparedito CBlowever, when applied
to real data the precision of the method is poor, as is evident irbkigy. particularly at low thickness. This
is due to the well understood ambiguity between thickness and density foroitiices {Treece et a).2012).
Consequently, the success rate (Tables low compared with alternative algorithms. For very thin cortices,
Tablel shows that both the accuracy and precision of this technique are poor.

The two new algorithms behave much as expected from the discussion innfS&cBoth CBM v2 and
CBM v3 improve slightly the precision over CBM v1 for thick cortices, retugmiasults which, from Tabl,
are seen to be very similar to FWHM in this domain. For thinner cortices, bothmetivods reduce the bias
present in CBM v1, at a cost of marginally worse precision, though CBMarforms the best. For very thin
cortices, CBM v2 behaves largely as CBM v1, since it is unable to refingéehsity estimates in this domain,
whereas CBM v3 does manage to improve the thickness bias even for dtesee=cases.

The spatial distribution of thickness errors in Fig.shows that, for the proximal femur, measurements are
dominated by the performance on thin cortices. Here FWHM and presetialomatically overestimate thick-
ness, and even the nothing preset algorithm shows large regionsrettimeation around the femoral head.
Errors in CBM v1 are fairly stable underestimates. CBM v2 gives qualitgtthe best performance, with the
most grey (very low bias) regions and a reasonable balance betwederestimation and overestimation.

Turning to cortical density estimation, it is immediately clear from Bithat these are considerably less
precise estimates than for thickness. For the highest densities (whichlsentb e at thicker cortices),
estimates are fairly good for all techniques, but at all other densities tHéNFAhd preset blur algorithms
underestimate the density significantly. The nothing preset algorithm doéflyshgtter, giving relatively
unbiased results abou®00 mg/cn?, although once again the precision of this technique is noticeably less
good. CBM v1 makes the assumption that the density is constant, though teedsvdifierent for each tested
femur. Fig.6(d) underlines that this value lies towards the top of the densities encodiinieiee data.

In contrast to CBM v1, the two new algorithms make some attempt to estimate vagnsgyd CBM v2
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is relatively unbiased down to abagi0 mg/cm® which, considering the distribution in Fi§(d), accounts for
most of the cortex. However, it increasingly tends to overestimate wheedhdensity is low. The CBM v3
results are better in this regard, though there is a tendency to underestighaedensities. It is clear from
Fig. 8(c) that both these algorithms show fairly low bias, but for different dgmanges.

These results are easier to understand by looking at the distributiongifydemors with cortical thickness
in Fig. 7. For thick cortices, all algorithms estimate density successfully, and7fdy shows that the actual
cortical density does indeed tend to be fairly constant in this ddmafs the cortex becomes thinner, the
actual density tends to reduce and this causes overestimation in CBM v1 tiehibething preset, CBM v2
and CBM v3 algorithms are still able to provide reasonable estimates. Foithiargortices, the nothing
preset algorithm tends to mimic FWHM, but with considerably poorer precisidile CBM v2 behaves
similarly to CBM v1, as anticipated in Secti@n

The premise of the CBM v3 algorithm was that there is a trend for linear dansityase with thickness:
looking at Fig.7(f), the reality is no doubt a little more complex. The linear trend has suedbssbrrected
the bias for very thin cortices, but it has also introduced a slight until@@gon for thin cortices. This is
supported by the summary results in Tablérom which the CBM v3 algorithm in general seems to perform
better than the alternatives in estimating density. The spatial distribution a§@ver the proximal femur
in Fig. 12 also supports this view: again, CBM v3 seems the least biased for this cadgasities, with the
greatest area of low bias (grey) and a more constrained bias rangeerage

Cortical mass estimatiort ;) is much more consistent between algorithms, with Bignd Tablel
showing precise and unbiased results for thick and thin cortices. Howexgery thin cortices there is some
difference in performance, with all of the CBM algorithms showing redusiad and better precision in this
domain. This improvement also makes a noticeable difference when viewethevsurface of the proximal
femur in Figs.13(a) and (b). The CBM v2 result is clearly less biased than that for FWipHivticularly over
the femoral head where the cortex is very thin.

All algorithms estimate endocortical trabecular densigy) fairly accurately, as seen in Fig0 and Ta-
ble 1. Fig. 10(c) reveals that there is, however, a clear bias with cortical thickness.iSThnexpected: there
is no obvious reason why a cortex of different thickness shouldtatfiecestimate of the trabecular density
neighbouring the cortex. A possible explanation is that beam hardenihgcatter cause the ‘true’ HRpQCT
data to appear more dense than it actually is. We have attempted to correlFQCT beam hardening
within the cortex itself (see AppendB), but the correction does not apply to trabecular estimation immedi-
ately adjacent to the cortex. It is well known that areas surroundediog @f high density material appear
too dense as a result of beam hardening and sc&tas(and Fleischman2012. The QCT data is less
susceptible to this phenomenon since the high density cortices occupysfaf tég field of view.

4.1 Processingtime

Processing times for all techniques are relatively fast, taking typically jtesta minute to complete all sets
of measurements (cortical thickness, mass, density and endocortiGdulabdensity) on a typical femur
with 11,000 measurement locations. These times were measured on a laptogwidftware running single-
threaded on a 2.67 GHz Intel Core i7 processor, and do not include thtpeeorm the initial segmentation,
which is typically an additional 15 minutes. The processing time increase faCBM v2 and CBM v3
techniques is less than might be expected from the additional model-fittingaidped in Fig.1. This is
because for these additional steps, the model is initialised with the previguistyiged values, and hence
fewer iterations are required to find the new optima.

8Since CBM v1 presumes a constant density, this graph actually showstisétyddistribution with cortical thickness in the
HRpQCT data, albeit offset so that the maximum density is at zero.
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5 Conclusions

CBM v2 and CBM v3 both produce better estimates of cortical thickness emsitgl in the proximal femur
than previously published alternatives. CBM v2 is the preferred chorcebst applications. It is not predi-
cated on any supposed relationship between density and thicknesshakss achieving thickness accuracy
of 0.1240.39 mm and density accuracy ef26 4 178 mg/cn? for cortices in the range 1-3 mm. For very thin
(< 1 mm) cortices, CBM v3 offers superior accuracyddi4 & 0.31 mm for thickness and-30 + 264 mg/cn?
for density, though this assumes a particular relationship between thickmeésiensity which appears to hold
for the human proximal femur but may not generalise to other targets. Ahigabs are capable of measuring
cortical mass and endocortical trabecular density fairly reliably, thougtCBM techniques do offer more
precise mass estimation for very thin cortices.

Compared with CBM v1, the two new variants offer reduced thickness bidsiso local estimates of
cortical density which are relatively unbiased above 800 mg/cithe imprecision of the cortical density
estimates suggests that density is fundamentally more difficult to estimate tharedsckn
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A Estimation of imaging blur in QCT data

In order to make use of the CBM v2 and CBM v3 algorithms, we need a relalsoastimate of the imag-
ing blur o4 for each QCT data set. This blur varies in all dimensions as well as with spatation, the
major variation being between the blur within each image slice (in-planedluand that orthogonal to the
slice (out-of-plane blurg,). Some pertinent information is usually stored in DICOM files, though this is not
sufficient to completely describe the in-plane/out-of-plane variation.ldnepblur is determined by the re-
construction kernel rather than the pixel size, but kernels are ontyded by name rather than extent. Also,
although the recorded slice thickness does relate to the full-width half-maxistiobenselectivity, further
image processing in the reconstruction stage may lead to out-of-plane Ihliats ave larger than this.

We therefore need to estimatg in each data set, and we can do this at the same time as the cortical
density is estimated by looking atas well agj; as we fit the model in eql] to each point on the femoral
cortex. This parameter tells us the apparent imaging blur at each locatiarh we can record along with
the anglex that the measurement line made with the imaging planes. The variatewih «, for three
different QCT data sets, is shown as a distribution of measurement poirits IMFThese measurements are
clearly very noisy, but the in-plane and out-of-plane differencespparent. To estimatg ando, from this
data, we need a model of haw depends on these parameters. One which we have found fits well is:

o4 = \/(O'Z' cosa)? + (0, sin ) (6)

This model is fitted to the measured data using a least-squares regressigting in estimates; and
d,. Since this measurement process uses the FWHM algorithm (we do natgwettke cortical density so
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Figure 14: Estimation of the imaging blur in QCT data. The graphs show estimaessian blurs from
fitting the model in eq.X) to multiple locations across the surface of the femur in three sample QCT tigta se
with DICOM pixel sizes and slice thicknesses given at the top of eactefi@lur is plotted radially, with the
angle corresponding to the measurement direction with respect to the imagg slich that the horizontal
axis shows in-plane blur and the vertical axis shows out-of-plane bhlue. sblid line is the result of fitting
the model in eq.q) to these individual measurements. The values in the axis labels are tespmding
FWHM estimates of; ando,,.

cannot use one of the CBM algorithms), particular weight is given;testimates which come from cortices
with large apparent peak density valugsak since ther estimate is most accurate at these points. At other
locations,o will be underestimated as explained in Sectibbh Hence the fitted models seen in Figt are
towards the outer extents of the point clouds. Subsequently, whendolar astimates,; is required, we
simply apply eq. §) with the known measurement angieand the estimated values &f andg,,.

B Calibration of gold standard HRpQCT data

We need to pick an established algorithm as a gold standard against whianhpaie the various techniques
introduced in this paper, and FWHM is the obvious candidate since it is knoywerform well as long as
the cortex is sufficiently thick in comparison to the imaging blur. For the HRpQ&®& dsed in this paper,
this corresponds to a thickness greater than 0.3 mm. However, our implemefdEid/HM involves setting
y1 to the apparent peak in the CT dafa). At this resolution, the cortex is not observed as having uniform
density: there are variations due to very small pores and also due to nlegsenihin the imaging process.
Hence the peak CT value is an overestimatg,aind this leads to a consequent underestimate of the cortical
thickness. This bias can be removed by using the nothing preset algordthkRHQCT data, this effectively
setsy; to the average of the observed CT data within the cortex. However, thistalgdas more parameters
to estimate and is therefore less precise than FWHM. We therefore use ARG orithm as our HRpQCT
gold standard, but correct the bias by calibration against the nothisgtmkgyorithm, as shown in Fig5(a).
Conversion between Hounsfield Units and cortical density is largely asthigy the calibration phantom
provided by the manufacturer of the scanner. However, the calibragiosities are low compared to typical
cortical densities. It has previously been noted that calibration in s@ctasgos is problematic: extrapolation
of the low density calibration curve is imprecise, and there are also probl@gmé®am hardening artefacts
at higher densitiesHgjardo et al.2009. This was indeed the case in our study, with low trabecular densi-
ties showing a good match between QCT and HRpQCT, whereas high cadeitsities did not. Since all
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Figure 15: Correction of HRpQCT FWHM thickness and density valugsOfehigh resolution data, since
we cannot use the CBM algorithms as a gold standard, the most reliable @eiadWHM, whereas the
least biased is nothing preset. By running both algorithms on all the data froimt¢he high resolution data,
calibration curves are fitted which allow the bias to be removed from the FWedlts. Note that these
adjustments are very small, less than nearly all the precision values in Talie The calibration provided
by the manufacturer for the HRpQCT data is based on low densities ar@@ag/cn?. Calibration for
higher cortical densities is achieved by matching the data with the QCT valudgdio cortices { > 3 mm),
for which the imaging blur is not problematic and all algorithms agree. The a#tiorcurve was designed to
match the manufacturer’s calibration at low densities, and the single calibpationfor thick cortices.

algorithms tested could very easily measure density in QCT data for thick yrdiied all returned the same
results in this domain, the 3 mm cortical densities were matched between QCT and HRpQCT, yielding an
additional calibration point. Previous studies have also had to calibrate tbhigim densities separatelpghr

et al, 2012. The final calibration curve, shown in Fig5(b), matched the manufacturer’s calibration at low
density and the additional calibration point at high density. It must be adkdged, however, that this is
unlikely to correct for all beam hardening issues, and some imprecisionamitin.



