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Abstract

The local structure of the proximal femoral cortex is of interest since both fracture risk, and the effects
of various interventions aimed at reducing that risk, are associated with cortical properties focused in
particular regions rather than dispersed over the whole bone. Much of the femoral cortex is less than
3 mm thick, appearing so blurred in clinical CT that its actual density is not apparent in the data, and
neither thresholding nor full-width half-maximum techniques are capable of determining its width. Our
work on cortical bone mapping showed how to produce more accurate estimates of cortical thickness by
assuming a fixed value of the cortical density for each hip. However, although cortical density varies
much less over the proximal femur than thickness, what little variation there is leads to errors in thickness
measurement. In this paper, we develop the cortical bone mapping technique by exploiting local estimates
of imaging blur to correct the global density estimate, thusproviding a local density estimate as well as
more accurate estimates of thickness. We also consider measurement of cortical mass per unit surface
area and the density of trabecular bone immediately adjacent to the cortex. Performance is assessed with
ex vivo clinical QCT scans of proximal femurs, with true values derived from high resolution HRpQCT
scans of the same bones. We demonstrate superior estimationof thickness than is possible with alternative
techniques (accuracy0.12 ± 0.39mm for cortices in the range 1–3 mm), and that local cortical density
estimation is feasible for densities> 800mg/cm3.

1 Introduction

Hip fractures are the most common cause of acute orthopaedic hospital admission in older people (Parker
and Johansen, 2006). An individual’s fracture risk is currently assessed using bone mineral density (BMD).
Although BMD is specific (Johnell et al., 2005; Kanis et al., 2008) it lacks sensitivity (Kanis et al., 2008;
Kaptoge et al., 2008; Sanders et al., 2006), missing the majority who go on to fracture. There is now growing
evidence that focal, structural weaknesses may predispose a hip to fracture (Mayhew et al., 2005; Poole et al.,
2010; de Bakker et al., 2009). The distribution of both trabecular and cortical bone is critical in determining a
femur’s resistance to fracture (Holzer et al., 2009; Verhulp et al., 2008; Poole et al., 2012). Drug treatment and
exercise regimes targeted at reducing fracture risk result in changes which are focused in particular regions
rather than dispersed over the whole bone (Lang et al., 2014; Poole et al., 2011). Accurate measurement of
local cortical structure is hence important in assessing fracture risk andmonitoring interventions.

However, measurement of the thickness and volumetric density of the cortexis not straightforward. Thin
laminar structures are not accurately depicted in clinical CT because of theimages’ limited spatial resolution.
Consequently, simple thickness estimation techniques, like those based on thresholding (Buie et al., 2007;
Hangartner, 2007) or some measure of full-width half-maximum (Prevrhal et al., 1999, 2003), are unreliable
when the cortex is thin in relation to the imaging resolution. With normal bore, clinical CT scanners, such
methods are increasingly inaccurate below 3 mm (Dougherty and Newman, 1999; Hangartner and Gilsanz,
1996), with errors exceeding 100% for sub-millimetre cortices (Prevrhal et al., 2003). In very thin cortices,
the ‘thickness’ measured using these techniques is just the width of the imagingblur, and the ‘density’ (i.e. the
maximum CT value) is in fact a measure of cortical mass per unit surface area (mg/cm2, henceforth abbrevi-
ated as simply ‘mass’), not cortical density (mg/cm3).

Cortical bone mapping is a recently proposed technique which does allow accurate estimation of cortical
thickness (Treece et al., 2010, 2012) based on an estimate of cortical density which is presumed to be constant
for each hip. Density varies much less over the proximal femoral cortex than thickness, which explains the
good results for thickness measurement when making this assumption. However, any deviation from the
presumed constant density value results in an error in the thickness estimate.Hence, we would like to be able
to estimate the variation of density over the cortex: this would improve the thickness estimates as well as
provide an independent measure of density.
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There is already a sizeable literature on cortical thickness and density estimation from clinical CT. To
this body of knowledge, this paper adds refinements that are rather subtlebut undoubtedly effective. The
content of this paper is therefore of necessity both fairly broad (in order to perform a fair comparison with
existing techniques) and technically detailed (in order to thoroughly explain the nature and reasoning behind
the innovations). With an increasing number of studies reliant on cortical measurements, it is important to
have a thorough understanding of the accuracy and limitations of the techniques that are used to make such
measurements, and this is what this paper sets out to do. In Section2, we motivate and describe two variations
of cortical bone mapping that provide independent estimates of cortical density at each measurement point.
The accuracy and precision of these estimates, as well as those for cortical thickness, mass and trabecular
density, are assessed in Section3 alongside other estimates from alternative techniques. We discuss our
findings in Section4 before drawing some conclusions in Section5.

2 Method

It was shown inTreece et al.(2012) that the variation of CT datayblur(x) across the cortex can be modelled as:

yblur(x) = y0 +
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wherex is the distance across the cortex,y0, y1 andy2 are CT values in surrounding tissue, within the cortex,
and for the trabecular compartment respectively,x0 andx1 are the locations of the periosteal and endocortical
surfaces respectively, andσ is the standard deviation of the assumed Gaussian imaging blur.

Model-based cortical thickness estimation involves fitting this function to the actual CT datac(x) at each
measurement point, by optimisation of the model parameters{y0, y1, y2, x0, x1, σ} until yblur(x) matchesc(x).
In Treece et al.(2010, 2012), good results were achieved by presetting the cortical densityy1 and leaving the
other parameters to be optimised by the fitting algorithm. A more standard deconvolution approach would be
to preset the imaging blurσ, but in this instance this is less successful as will be shown in Section3. Others
have used a similar model but allowed all parameters to be optimised (Pakdel et al., 2012), an approach which
we will show in Section3 gives low bias but unfortunately poor precision.

Most techniques in current use are not model-based. They tend to involve thresholding, either at some
fixed level (Buie et al., 2007; Hangartner, 2007) or at half the local peak CT value, the latter resulting in a
full-width half-maximum (FWHM) measurement (Prevrhal et al., 1999, 2003). Thresholding at a fixed value
is known to be sensitive to the chosen level, and will fail to include the cortex at all if it is too thin. The FWHM
approach (which can be implemented using the model-based approach but presettingy1 to the observed CT
peak valuecpeak) overcomes this problem, but leads to massive overestimation of cortical thickness for thin
cortices (Dougherty and Newman, 1999; Hangartner and Gilsanz, 1996).

We summarise these approaches (other than thresholding at a fixed value)in the left-most four columns
of Fig. 1. For concision, they are henceforth referred to as:

nothing preset A model-based fit with all parameters found by optimisation.

FWHM A Full-Width Half-Maximum model-based fit withy1 = cpeakand all other parameters optimised.

preset blur A model-based fit withσ = σ̂d, whereσ̂d is a prior estimate of the imaging blur, and all other
parameters optimised.

CBM v1 The constant densityCorticalBoneMapping estimate described inTreece et al.(2010, 2012), which
is a model-based fit withy1 = ŷ1 and all other parameters optimised. This technique is implemented in
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Figure 1: An overview of the six cortical parameter estimation algorithms tested inthis paper. Many of
these algorithms share similar stages.A: the local model fitting was described inTreece et al.(2010) and
is summarised in the graph above. Each algorithm fits the same model, but starts with different parameters
preset to specific values, the remaining being optimised.B: the calculation of a global cortical densitŷy1 is
described inTreece et al.(2012), and this procedure can be adapted to also estimate the global blurσ̂d (see
AppendixA). C: a new method for adjusting the presumed cortical densityŷ1 to give a local estimatey1σ is
described in Section2.1. D: a new method for estimating a global densityŷ1(t) which varies with thickness
is described in Section2.2.
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Figure 2: Estimating local cortical densityy1σ using the global blurσ̂d. In all cases, the simulated actual
cortical density is 1000 HU but the presumed cortical densityŷ1 is set to 1400 HU. The simulated density
variation is given by the black lines: solid lines show the blurred CT values whereas dashed lines show the
underlying true variation. The light grey curves show the initial model fityblur(x), with the dotted curve
showing the fit after correctingσ to σ̂d. y1σ is then calculated using eq. (4) and the two CT values shown
as circles. The final model fit with the new density value is shown in dark grey. (a) at very thin thickness
(t < 1mm) there is little difference betweenσ andσ̂d and hence the correction has limited effect. (b) for thin
cortices (1mm≤ t < 3mm) the correction improves the thickness estimate. (c) for thick cortices (t > 3mm),
the correction effectively results in the FWHM value, which is a good estimate inthis domain.

Stradwin1, our in-house software which is available for free download.

We are also interested in the peak CT valueypeak as predicted by the modelyblur(x). We can find this by
positioning the cortex, with thicknesst, atx = 0 (i.e.x0 = − t

2
andx1 = t

2
). Setting the differential of eq. (1)

to zero then gives the location of the peak:

xpeak =
σ2

t
ln

(

y1 − y0

y1 − y2

)

(2)

and the correct peak value is thenypeak = yblur(xpeak) with x0 = − t
2
, x1 = t

2
.

For the purposes of estimating the global cortical densityŷ1 in Treece et al.(2012), the peak is presumed
to occur atx = 0, a reasonable simplification provided that the background levels{y0, y2} are similar:

ypeak ≈ yzero = yblur(0) = yb + (y1 − yb) erf

(

t

2
√
2σ

)

(3)

whereyb =
y0+y2

2
. Estimation ofŷ1 involves fitting eq. (3) to the data but starts with repeated fitting ofyblur(x)

to c(x) (in order to estimate the values oft), each model-fit also providing a local estimate of the imaging blur
σ. A global estimateσ̂d is derived from these local estimates using the method described in AppendixA.

2.1 Local estimation of density

Although CBM v1 provides better thickness estimates than FWHM, it offers nolocal estimate of the cortical
density, sincey1 is preset to a constant̂y1 for each bone. Hence there is an error in measuring thickness if

1http://mi.eng.cam.ac.uk/ ˜ rwp/stradwin
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the real cortical density at the measurement point is not equal toŷ1. It would be of benefit to reduce this
error while also measuring changes in density over the cortex. Whether thismight be possible depends on
the thickness of the cortex. For thick cortices as in Fig.2(c) (t > 4σ, or about 3 mm for typical clinical
resolution), cortical density and thickness can be resolved unambiguously: the cortex is thick enough for its
actual density to be apparent in the CT data. For thinner cortices, althoughthe cortical mass is preserved, the
imaging blur makes it difficult to distinguish to what extent this mass is the result ofa higher density or a
higher thickness. For very thin cortices as in Fig.2(a) (typicallyt < 1mm), any cortex with the same mass,
regardless of the relative contribution from thickness or density, will lookthe same in the blurred CT data.

Hence it is trivial to distinguish thickness and density in thick cortices, and impossible to do so (without
prior information) in very thin cortices. However, in the mid-range, which is typical of cortical values in the
proximal femur, it is possible to deduce the relative contributions of density and thickness by looking at the
modelled imaging blur. If we overestimate the density (ŷ1 > y1), as in Fig.2(b), the modelled value ofσ will
compensate by being greater than the real imaging blurσ̂d. In contrast, if we underestimate the density,σ will
compensate by being less than̂σd. Having initially fitted a model using some presumed densityŷ1, we can
use these observations to give us a newlocal estimate of the actual density at each point.

We could simply compareσ from the CBM v1 estimate with the global imaging blur̂σd, and adjustŷ1
accordingly. However,σ is not only sensitive to errors in the presumed cortical density, it is also affected by
the presence of small pores in the cortex. These tend to be located aroundthe cortical edges and once blurred
by the imaging system result in shallower slopes in the CT datac(x), which are modelled as larger values
of σ. We hence choose to use peak CT values (which are as far as possible from the cortical edges) when
adjusting for cortical density:

y1σ = (ŷ1 −max{y0, y2})
cpeak−max{y0, y2}
ypeak−max{y0, y2}

+max{y0, y2} (4)

Equation (4) shows how we calculate the new cortical density estimatey1σ: this is a well-motivated heuristic
rather than a precise mathematical model. First, the CBM v1 algorithm is used with the presetŷ1 density
value. Then this value is adjusted according to eq. (4), wherecpeak is the maximum value observed in the CT
data at this location, andypeak is the predicted maximum valueyblur(xpeak) evaluated using the CBM v1 results
for {y0, ŷ1, y2, x0 = − t

2
, x1 =

t
2
} but replacingσ with the global estimatêσd. ypeak tells us what the peak CT

value is if we use the correct imaging blur in the model: hence the ratio between this and the observed peak
cpeak tells us by how much we need to adjustŷ1. Model-fitting is then repeated usingy1 = y1σ.

We henceforth refer to this algorithm asCBM v2 since it is a modification of the CBM v1 algorithm.
An overview is given in the fifth column of Fig.1, where stageC is the novel adjustment given in eq. (4).
Examples are given in Fig.2, demonstrating that a reasonable estimate of local density can indeed be achieved
for relatively thin cortices. For thick cortices, the adjustment corrects the CBM v1 preset density to the actual
density seen in the data.

2.2 Global estimation of density variation with thickness

While the CBM v2 algorithm has the potential to improve both density and thicknessestimates for thick and
relatively thin cortices, it offers no improvement over the CBM v1 algorithm for the very thin cortices of
Fig. 2(a). In this case, there is no indication in the shape of the CT datac(x) of what the density should be.
However, it was noted inTreece et al.(2012) that there might be a trend for cortical density to increase with
thickness in the human proximal femur. If such a trend exists, and we can see it in the data, then we can
replace our initial constant density estimateŷ1 with a new estimatêy1(t) that varies with thickness. For thick
and relatively thin cortices, the estimate can still be adjusted locally as in CBM v2,however for very thin
cortices, this less biased initial estimate should result in more accurate measurements.
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Figure 3: Estimating global cortical densitŷy1(t) as a function of thickness. (a) shows estimation ofŷ1 as
explained inTreece et al.(2012), where the cortex is presumed to have a constant density which is blurredby
the imaging system, resulting in an apparent reduction with thickness which is modelled by eq. (3). (b) The
new technique explained in Section2.2 allows the density to vary linearly with thickness up to a pointtm.
The imaging blur in this case is fixed at̂σd.

In order to estimatêy1(t), we return to the procedure for estimatingŷ1 as outlined inTreece et al.(2012).
In this procedure, FWHM measurements are made at many locations around the femur. After adjustment,
these measurements provide many pairs of{t, yzero} data points. The function in eq. (3) is fitted to this data,
giving global estimates of̂y1, ŷb (the average background density) andσ̂. This is summarised in Fig.3(a).
However, we have already noted that we can obtain an estimateσ̂d of the imaging blur, not from the global
model-fit in eq. (3), but by using eq. (1) on all the individual data measurements: see AppendixA for details.

In the case of a cortex which is genuinely a constant density irrespectiveof thickness,̂σ andσ̂d do indeed
return the same value, as would be expected. However, we have seen in practice across many studies of the
proximal femur that̂σ is usually greater than̂σd, sometimes by up to a factor of two. To understand this
difference, we note that the initial slope of the curve in Fig.3, which is substantially an error function (erf),
is largely dependent on the value ofσ in eq. (3). However, if the cortical density is actually increasing with
thickness, this would also affect the slope of this curve. Hence the largerσ̂ value is the combination of the
actual imaging blur̂σd and the trend we have previously noted for density to vary with thickness.

It is not possible to simultaneously estimateσ̂ and a varying density function, since these both have similar
effects on the model in eq. (3). However, if we presetσ = σ̂d, we can then afford to replacey1 with a simple
piecewise function of thickness, which is linear up to some thicknesstm and constant thereafter, giving the
modified equation:

yzero = yb + (y1(t)− yb) erf

(

t

2
√
2σ̂d

)

, where y1(t) =

{

ys (t− tm) + ym if t < tm

ym otherwise
(5)

In this case the model contains four free parameters{yb, ym, ys, tm} rather than three in eq. (3) {yb, y1, σ}. A
typical fit is shown in Fig.3(b) on the same data as in Fig.3(a).

Implementation of this algorithm, henceforth termedCBM v3, requires an additional model fit at each
location, since we first have to find the approximate thickness at each measurement location (using the max-
imum densityym), then we can adjust our presumed density toŷ1(t) before continuing as in CBM v2. This
procedure is summarised in the sixth column of Fig.1, where stageD is the novel application of eq. (5).
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3 Experiments and results

3.1 Simulations

We investigated the effect of the local density correction for CBM v2 in eq.(4) by using eq. (1) to simulate the
CT data variationc(x) through ideal cortices, i.e. with perfectly constant density and no pores,surrounded by
material which is also at a constant (but lower) density. These cortices were blurred with a Gaussian kernel
with σ = 0.71mm (FWHM of 1.67 mm), which is reasonably typical of a good clinical CT system.The
cortices were up to 6 mm thick.

We then obtained cortical thickness estimates using the CBM v1 and v2 algorithms. This was repeated
multiple times, with different initial density estimateŝy1, ranging from an 80% underestimate to an 80%
overestimate of the actual simulated density. The presumed imaging blurσ̂d in the CBM v2 algorithm was set
to the actual simulated blur. The results are shown in Fig.4.

3.2 Comparing HRpQCT and QCT data

Moving on from simulations, we examined data from a study ethically approvedby the Medical University
of Vienna, comprising cadaveric proximal femurs from 18 females and 17 males of mean age 77 years (range
59–96 years). Both left and right femurs were stripped of soft tissue,submerged in a saline solution and, after
vacuum to remove air bubbles, scanned using both HRpQCT and QCT. Further details of this data have been
published previously (Dall’Ara et al., 2013b,a). The QCT data was scanned using a Brilliance642 scanner at
120 kV, with voxel size0.33× 033× 1.0mm3, and converted from Hounsfield Units to density using a BDC
calibration phantom3. The reference HRpQCT data was scanned using an XTremeCT4 scanner, with voxel
size0.082 × 0.082 × 0.082mm3, and converted to density using the manufacturer-provided phantom with
some adjustments as detailed in AppendixB. This gave a total of 70 matching high and low-resolution data
sets from 35 subjects.

Each of the femurs was semi-manually segmented in the QCT data using in-houseStradwin software, and
surface meshes created with uniform triangle size and shape (Treece et al., 1999). Cortical measurements as
described in the previous section were performed at all vertices in these meshes, in directions consistent with
the surface normal at that point. Cortical thicknesst, densityy1 and masst× y1 were recorded at each point,
at a total of 772,054 separate locations, about 11,000 per femur. We alsorecorded they2 density value, which
corresponds to the average trabecular density just inside the cortex.

Each QCT-derived surface was registered with the corresponding HRpQCT data by minimising the mean
squared distance between matched points from the QCT and HRpQCT meshesafter a rigid body transforma-
tion with separate scale factors in the three principal directions. This transformation was used to import the
QCT-derived surface into the HRpQCT reference frame, so that measurements could be made in the HRpQCT
data at exactly the same locations, and in exactly the same directions, as the measurements in the QCT data.

Reference HRpQCT measurements of cortical thickness, density and masswere made using the estab-
lished FWHM algorithm, which is accurate on this data down to a cortical thickness of 0.3 mm. These mea-
surements were adjusted slightly to compensate for the use of a peak value ofcortical density rather than a
mean value, as explained in AppendixB. At each location, HRpQCT data was averagedparallel to the cortex
as described inTreece et al.(2012), such that each estimate’s spatial localization was consistent with the QCT
data, while preserving the HRpQCT resolutionthrough the cortex.

2Philips, Germany
3QMR Gmbh, Germany
4Scanco Medical AG, Switzerland
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Figure 4: Thickness and density estimation errors with varying initial densityŷ1. (a) and (b) show density
and thickness estimation errors, respectively, for the CBM v1 algorithm described inTreece et al.(2010). (c)
and (d) are the equivalent graphs for the CBM v2 algorithm described inSection2.1. If ŷ1 is correct (i.e. zero
error on the vertical axis), then density and thickness estimates are correct for all thickness values in both
cases. In CBM v1, the errors roughly scale with errors inŷ1: if ŷ1 is too large, then the estimated density is
(by definition) too large and the estimated thickness is too small. In CBM v2, eq. (4) is used to replace the
presetŷ1 estimate with the localy1σ value. For thick cortices (t > 3mm) this results in accurate estimation
whatever the initial value of̂y1. For thinner cortices (1mm ≤ t < 3mm) estimation is significantly less
dependent on̂y1 than in the CBM v1 algorithm. For very thin cortices (t < 1mm), the two algorithms are
similar, with both relying on a correct initial density estimate.
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Table 1: Cortical thickness, cortical density, cortical mass and trabecular density estimation errors for very thin (0.3mm ≤ t < 1.0mm),
thin (1.0mm ≤ t < 3.0mm) and thick (3.0mm ≤ t < 6.0mm) cortices. Values are expressed as bias± precision (std), with positive bias
indicating overestimation. Success rate is expressed as the overall percentage of measurements for which the model-fit procedure was successful
and hence some parameters were estimated, even if these estimates were not correct. Processing times are for all measurements from a single
femur (≈ 11, 000 measurements), running on a single core of a 2.67 GHz Intel Core i7 processor.

quantity thickness algorithm
range (mm) FWHM preset blur nothing preset CBM v1 CBM v2 CBM v3

cortical thickness 3.0 ≤ t < 6.0 0.04± 0.25 0.08± 0.26 0.08± 0.25 −0.09± 0.32 0.04± 0.25 0.04± 0.25
(mm) 1.0 ≤ t < 3.0 0.48± 0.37 0.51± 0.46 −0.01± 0.88 −0.24± 0.32 0.12± 0.39 0.26± 0.40

0.3 ≤ t < 1.0 1.06± 0.37 2.35± 1.46 0.58± 1.07 −0.24± 0.14 −0.15± 0.23 0.04± 0.31

cortical density 3.0 ≤ t < 6.0 −29± 110 −47± 119 −44± 105 11± 124 −26± 109 −27± 109
(mg /cm3) 1.0 ≤ t < 3.0 −170± 137 −165± 159 −59± 244 195± 217 −26± 178 −89± 160

0.3 ≤ t < 1.0 −378± 166 −373± 182 −241± 300 462± 259 193± 331 −30± 264

cortical mass 3.0 ≤ t < 6.0 −5.3± 59.2 −7.5± 62.0 −8.2± 59.5 −9.7± 64.9 −6.8± 60.6 −6.5± 61.2
(mg /cm2) 1.0 ≤ t < 3.0 8.6± 26.5 9.5± 29.0 8.0± 28.3 7.5± 25.3 8.0± 25.8 8.7± 26.1

0.3 ≤ t < 1.0 11.8± 16.3 58.9± 60.3 18.4± 28.9 0.6± 10.4 1.4± 11.1 2.9± 11.7

trabecular density 3.0 ≤ t < 6.0 −50± 76 −57± 81 −53± 76 −51± 83 −51± 75 −48± 74
(mg /cm3) 1.0 ≤ t < 3.0 −20± 61 −24± 67 −25± 64 −20± 60 −19± 58 −20± 61

0.3 ≤ t < 1.0 2± 31 −24± 60 −2± 35 3± 30 3± 30 3± 30

success rate (%) 0.3 ≤ t < 6.0 97.8 66.7 92.7 97.6 97.8 98.2

processing (secs) 0.3 ≤ t < 6.0 34 60 56 71 85 93
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3.3 Aggregate ex vivo results

Figure5 shows aggregate results for the measurement of cortical thickness (t) using all six algorithms. These
plots summarise a very large number of measurements expressed as probability density functions: the different
shades of grey show the expected distribution of thickness measurements for a particular confidence interval.
Hence the ‘p=0.68’ region is similar to a one-standard-deviation range, though these distributions are clearly
not normal, nor even unimodal. Another way of expressing this is that the plots show the density of points
on a scatter plot of all pairs of true vs. estimated measurements from the HRpQCT and QCT data. An ideal
estimator would be a thin diagonal line.

The bias in thickness estimation (the most probable thickness estimate for each actual thickness) for all
algorithms is summarised in Fig.8(a), with Fig.8(b) giving the distribution of the (HRpQCT) thickness values
that were successfully estimated in the QCT data (i.e. the model-fit was successful, even if the parameters were
wrong). Note that there are more thickness estimates for lower thicknesses, but none at all below 0.3 mm.

Figure6 summarises cortical density (y1) estimation in exactly the same way as in Fig.5, and the bias of
each algorithm is again summarised in Fig.8(c), with the distribution of true density values in Fig.8(d). As
would be expected, cortical density is generally high, with relatively few measurements at lower values.

It was noted in Section2 that density estimation is highly dependent on cortical thickness, and henceit is
important to look at how the density estimation error varies with true cortical thickness. This is presented in
Fig. 7, with the true (HRpQCT) minus the estimated (QCT) density on they-axis, so an ideal estimator would
be a thin horizontal line aty = 0. Once again the bias is summarised for all algorithms in Fig.8(e).

For the sake of concision, we report only a few of the cortical mass (t×y1) results in Fig.9. All algorithms
estimate cortical mass relatively well, with the two extremes of performance shown in Figs.9(a) and (b). The
bias of all algorithms is presented in Fig.9(c) and the mass distribution in Fig.9(d).

Estimation of trabecular density (y2) is straightforward and very similar results are obtained with all
algorithms, summarised in Fig.10. As with cortical density, we include a plot of trabecular density error
against thickness in Fig.10(c), to see to what extent this measure is dependent on cortical thickness.

Numerical summaries of all these results are collated in Table1. Following on from the discussion in
Section2, we are expecting different behaviour for thick (t > 3mm), thin (1mm≤ t < 3mm) and very thin
(t ≤ 1mm) cortices, and hence estimation errors are presented for each of thesedomains separately.

3.4 Spatial distribution of ex vivo results

The previous section examines performance as a function of cortical thickness, but it does not give a sense of
how the errors vary over a typical proximal femur. To elucidate this, we registered each of the QCT-derived
surfaces to a canonical femur, using a nonrigid registration technique embodied in our in-house wxRegSurf5

software and described inGee and Treece(2014). This allowed us to map the cortical parameters from each
subject to the same surface, and hence present estimation bias as a colourmap over this surface.

Cortical thickness estimation bias is shown in Fig.11, with cortical density in Fig.12. The mean thickness
and density are also shown for context. As previously noted, cortical mass and trabecular density errors were
similar for the various algorithms, so a reduced set of results is presented inFig. 13.

4 Discussion

Looking first at cortical thickness, Fig.5 is consistent with previous results (Treece et al., 2012) in that
FWHM dramatically overestimates small thicknesses while CBM v1 only slightly underestimates these. We

5http://mi.eng.cam.ac.uk/ ˜ ahg/wxRegSurf/
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Figure 5: Cortical thickness estimation errors. The graphs show the distribution of estimated QCT thick-
ness values plotted against the HRpQCT thickness values, hence the solid diagonal line represents perfect
estimation. These results are aggregates across all the measurement locations on all the femurs.
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(f) CBM v3

Figure 6: Cortical density estimation errors. The graphs show the distribution of estimated QCT density
values plotted against the HRpQCT density values, hence the solid diagonalline represents perfect estimation.
These results are aggregates across all the measurement locations on allthe femurs.
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Figure 7: Cortical density estimation errors against thickness. Complementary to Fig. 6, here density esti-
mation error is plotted against the HRpQCT thickness values.
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(b) HRpQCT thickness distribution
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(c) density estimation error
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(d) HRpQCT density distribution
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(e) density error with thickness

Figure 8: Summary results for cortical thickness and density. (a), (c) and (e) show the estimation bias for all
algorithms. (b) and (d) show the distribution of the HRpQCT thickness and density values: most of the cortex
is less than 2 mm thick, with density greater than 800 mg /cm3.
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(b) CBM v2 mass estimation
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(c) mass estimation error
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(d) HRpQCT mass distribution

Figure 9: Cortical mass estimation errors. In general, estimation of mass is muchmore straightforward and
there is less difference between algorithms. (a) and (b) show the two extreme sets of results, summarised in
(c) and with the underlying distribution in (d).
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(a) CBM v2 trabecular density
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(b) trabecular density error
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(c) density error with thickness
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(d) HRpQCT density distribution

Figure 10: Trabecular density estimation errors. Estimation of trabecular density is nearly identical for all
algorithms, with very little bias with density, as shown in (a) and (b). (c) plots theerrors against thickness,
showing that there is some bias with increasing thickness. The trabecular density distribution is shown in (d).
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(a) FWHM (d) CBM v1

(b) preset blur (e) CBM v2 (g) mean thickness

(c) nothing preset (f) CBM v3

Figure 11: Spatial distribution of cortical thickness errors on the proximalfemur. (a) to (f) show the bias in
thickness estimation for the various algorithms. (g) shows the variation in the mean cortical thickness.

(a) FWHM (d) CBM v1

(b) preset blur (e) CBM v2 (g) mean density

(c) nothing preset (f) CBM v3

Figure 12: Spatial distribution of cortical density errors on the proximal femur. (a) to (f) show the bias in
density estimation for the various algorithms. (g) shows the variation in the mean cortical density.
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(a) FWHM mass b) CBM v2 mass (c) mean mass

(d) FWHM trabecular density (e) CBM v2 trabecular density (f) mean trabecular density

Figure 13: Spatial distribution of cortical mass and trabecular density errors on the proximal femur. (a) to (c)
show results for cortical mass estimation, (d) to (f) for trabecular density estimation.

previously stated (without providing specific evidence) that presetting theimaging blur in the model was not
very successful, and the results in Fig.5(b) support this claim. Indeed, this technique often fails to fit the
model at all, as can be seen in Figs.8(b) and (d) and the very low success rate in Table1. The most likely
explanation for this is that the model needs to adjust the imaging blur to accountfor density errors or the
presence of pores, and hence will often fail to fit when it is prevented from doing so.

The results for the nothing preset algorithm also agree with previous work(Pakdel et al., 2012), in that
the bias is considerably reduced compared to FWHM and also compared to CBM v1. However, when applied
to real data the precision of the method is poor, as is evident in Fig.5(c), particularly at low thickness. This
is due to the well understood ambiguity between thickness and density for thin cortices (Treece et al., 2012).
Consequently, the success rate (Table1) is low compared with alternative algorithms. For very thin cortices,
Table1 shows that both the accuracy and precision of this technique are poor.

The two new algorithms behave much as expected from the discussion in Section 2. Both CBM v2 and
CBM v3 improve slightly the precision over CBM v1 for thick cortices, returning results which, from Table1,
are seen to be very similar to FWHM in this domain. For thinner cortices, both newmethods reduce the bias
present in CBM v1, at a cost of marginally worse precision, though CBM v2 performs the best. For very thin
cortices, CBM v2 behaves largely as CBM v1, since it is unable to refine thedensity estimates in this domain,
whereas CBM v3 does manage to improve the thickness bias even for these extreme cases.

The spatial distribution of thickness errors in Fig.11shows that, for the proximal femur, measurements are
dominated by the performance on thin cortices. Here FWHM and preset blurdramatically overestimate thick-
ness, and even the nothing preset algorithm shows large regions of overestimation around the femoral head.
Errors in CBM v1 are fairly stable underestimates. CBM v2 gives qualitatively the best performance, with the
most grey (very low bias) regions and a reasonable balance between underestimation and overestimation.

Turning to cortical density estimation, it is immediately clear from Fig.6 that these are considerably less
precise estimates than for thickness. For the highest densities (which tend also to be at thicker cortices),
estimates are fairly good for all techniques, but at all other densities the FWHM and preset blur algorithms
underestimate the density significantly. The nothing preset algorithm does slightly better, giving relatively
unbiased results above1000mg/cm3, although once again the precision of this technique is noticeably less
good. CBM v1 makes the assumption that the density is constant, though the value is different for each tested
femur. Fig.6(d) underlines that this value lies towards the top of the densities encountered in the data.

In contrast to CBM v1, the two new algorithms make some attempt to estimate varying density. CBM v2
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is relatively unbiased down to about800mg/cm3 which, considering the distribution in Fig.8(d), accounts for
most of the cortex. However, it increasingly tends to overestimate when the real density is low. The CBM v3
results are better in this regard, though there is a tendency to underestimate higher densities. It is clear from
Fig. 8(c) that both these algorithms show fairly low bias, but for different density ranges.

These results are easier to understand by looking at the distribution of density errors with cortical thickness
in Fig. 7. For thick cortices, all algorithms estimate density successfully, and Fig.7(d) shows that the actual
cortical density does indeed tend to be fairly constant in this domain6. As the cortex becomes thinner, the
actual density tends to reduce and this causes overestimation in CBM v1, whilethe nothing preset, CBM v2
and CBM v3 algorithms are still able to provide reasonable estimates. For verythin cortices, the nothing
preset algorithm tends to mimic FWHM, but with considerably poorer precision, while CBM v2 behaves
similarly to CBM v1, as anticipated in Section2.

The premise of the CBM v3 algorithm was that there is a trend for linear densityincrease with thickness:
looking at Fig.7(f), the reality is no doubt a little more complex. The linear trend has successfully corrected
the bias for very thin cortices, but it has also introduced a slight underestimation for thin cortices. This is
supported by the summary results in Table1, from which the CBM v3 algorithm in general seems to perform
better than the alternatives in estimating density. The spatial distribution of errors over the proximal femur
in Fig. 12 also supports this view: again, CBM v3 seems the least biased for this rangeof densities, with the
greatest area of low bias (grey) and a more constrained bias range in general.

Cortical mass estimation (t × y1) is much more consistent between algorithms, with Fig.9 and Table1
showing precise and unbiased results for thick and thin cortices. However, for very thin cortices there is some
difference in performance, with all of the CBM algorithms showing reducedbias and better precision in this
domain. This improvement also makes a noticeable difference when viewed over the surface of the proximal
femur in Figs.13(a) and (b). The CBM v2 result is clearly less biased than that for FWHM,particularly over
the femoral head where the cortex is very thin.

All algorithms estimate endocortical trabecular density (y2) fairly accurately, as seen in Fig.10 and Ta-
ble 1. Fig. 10(c) reveals that there is, however, a clear bias with cortical thickness. This is unexpected: there
is no obvious reason why a cortex of different thickness should affect the estimate of the trabecular density
neighbouring the cortex. A possible explanation is that beam hardening and scatter cause the ‘true’ HRpQCT
data to appear more dense than it actually is. We have attempted to correct forHRpQCT beam hardening
within the cortex itself (see AppendixB), but the correction does not apply to trabecular estimation immedi-
ately adjacent to the cortex. It is well known that areas surrounded by aring of high density material appear
too dense as a result of beam hardening and scatter (Boas and Fleischmann, 2012). The QCT data is less
susceptible to this phenomenon since the high density cortices occupy far less of the field of view.

4.1 Processing time

Processing times for all techniques are relatively fast, taking typically just over a minute to complete all sets
of measurements (cortical thickness, mass, density and endocortical trabecular density) on a typical femur
with 11,000 measurement locations. These times were measured on a laptop with the software running single-
threaded on a 2.67 GHz Intel Core i7 processor, and do not include the timeto perform the initial segmentation,
which is typically an additional 15 minutes. The processing time increase for theCBM v2 and CBM v3
techniques is less than might be expected from the additional model-fitting stepsoutlined in Fig.1. This is
because for these additional steps, the model is initialised with the previously optimised values, and hence
fewer iterations are required to find the new optima.

6Since CBM v1 presumes a constant density, this graph actually shows the density distribution with cortical thickness in the
HRpQCT data, albeit offset so that the maximum density is at zero.



20 REFERENCES

5 Conclusions

CBM v2 and CBM v3 both produce better estimates of cortical thickness and density in the proximal femur
than previously published alternatives. CBM v2 is the preferred choice for most applications. It is not predi-
cated on any supposed relationship between density and thickness, nevertheless achieving thickness accuracy
of 0.12±0.39mm and density accuracy of−26±178mg/cm3 for cortices in the range 1–3 mm. For very thin
(< 1mm) cortices, CBM v3 offers superior accuracy of0.04±0.31mm for thickness and−30±264mg/cm3

for density, though this assumes a particular relationship between thicknessand density which appears to hold
for the human proximal femur but may not generalise to other targets. All techniques are capable of measuring
cortical mass and endocortical trabecular density fairly reliably, though the CBM techniques do offer more
precise mass estimation for very thin cortices.

Compared with CBM v1, the two new variants offer reduced thickness bias and also local estimates of
cortical density which are relatively unbiased above 800 mg/cm3. The imprecision of the cortical density
estimates suggests that density is fundamentally more difficult to estimate than thickness.

Acknowledgments

The authors extend their sincere thanks to Dieter Pahr, of the Vienna University of Technology, for providing
the HRpQCT and QCT scans of the ex vivo femurs.

References

Boas, F. E., Fleischmann, D., Apr. 2012. CT artifacts: causes and reduction techniques. Imaging in Medicine
4 (2), 229–240.

Buie, H. R., Campbell, G. M., Klinck, R. J., MacNeil, J. A., Boyd, S. K., Oct. 2007. Automatic segmentation
of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone
analysis. Bone 41 (4), 505–515.

Dall’Ara, E., Luisier, B., Schmidt, R., Kainberger, F., Zysset, P., Pahr, D.,Jan. 2013a. A nonlinear QCT-based
finite element model validation study for the human femur tested in two configurationsin vitro. Bone 52 (1),
27–38.

Dall’Ara, E., Luisier, B., Schmidt, R., Pretterklieber, M., Kainberger, F., Zysset, P., Pahr, D., Nov. 2013b.
DXA predictions of human femoral mechanical properties depend on the load configuration. Medical En-
gineering & Physics 35 (11), 1564–1572.

de Bakker, P. M., Manske, S. L., Ebacher, V., Oxland, T. R., Cripton, P. A., Guy, P., Aug. 2009. During
sideways falls proximal femur fractures initiate in the superolateral cortex:Evidence from high-speed
video of simulated fractures. Journal of Biomechanics 42 (12), 1917–1925.

Dougherty, G., Newman, D., Jul. 1999. Measurement of thickness and density of thin structures by computed
tomography. Medical Physics 26 (7), 1341–1348.

Fajardo, R. J., Cory, E., Patel, N. D., Nazarian, A., Laib, A., Manoharan, R. K., Schmitz, J. E., DeSilva, J. M.,
MacLatchy, L. M., Snyder, B. D., Bouxsein, M. L., Jan. 2009. Specimensize and porosity can introduce
error intoµCT-based tissue mineral density measurements. Bone 44 (1), 176–184.



REFERENCES 21

Gee, A. H., Treece, G. M., Feb. 2014. Systematic misregistration and the statistical analysis of surface data.
Medical Image Analysis 18 (2), 385–393.

Hangartner, T. N., Mar. 2007. Thresholding technique for accurate analysis of density and geometry in QCT,
PQCT andµCT images. Journal of Musculoskeletal and Neuronal Interactions 7 (1), 9–16.

Hangartner, T. N., Gilsanz, V., 1996. Evaluation of cortical bone by computed tomography. Journal of Bone
and Mineral Research 11 (10), 1518–1525.

Holzer, G., von Skrbensky, G., Holzer, L. A., Pichl, W., 2009. Hip fractures and the contribution of cortical
versus trabecular bone to femoral neck strength. Journal of Bone and Mineral Research 24 (3), 468–474.

Johnell, O., Kanis, J. A., Oden, A., Johansson, H., Laet, C. D., Delmas, P.,Eisman, J. A., Fujiwara, S., Kroger,
H., Mellstrom, D., Meunier, P. J., 3rd, L. J. M., O’Neill, T., Pols, H., Reeve, J., Silman, A., Tenenhouse, A.,
2005. Predictive value of BMD for hip and other fractures. Journal of Bone and Mineral Research 20 (7),
1185–1194.

Kanis, J. A., Burlet, N., Cooper, C., Delmas, P. D., Reginster, J. Y., Borgstrom, F., Rizzoli, R., 2008. Euro-
pean guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporosis
International 19 (4), 399–428.

Kaptoge, S., Beck, T. J., Reeve, J., Stone, K. L., Hillier, T. A., Cauley, J.A., Cummings, S. R., 2008. Prediction
of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study
of osteoporotic fractures. Journal of Bone and Mineral Research 23 (12), 1892–1904.

Lang, T. F., Saeed, I. H., Streeper, T., Carballido-Gamio, J., Harnish, R. J., Frassetto, L. A., Lee, S. M. C.,
Sibonga, J. D., Keyak, J. H., Spiering, B. A., Grodinsky, C. M., Bloomberg, J. J., Cavanagh, P. R., accepted
in 2014. Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise
regimens. Journal of Bone and Mineral Research.

Mayhew, P. M., Thomas, C. D., Clement, J. G., Loveridge, N., Beck, T. J., Bonfield, W., Burgoyne, C. J.,
Reeve, J., 2005. Relation between age, femoral neck cortical stability, and hip fracture risk. The Lancet
366 (9480), 129–135.

Pahr, D. H., Dall’Ara, E., Varga, P., Zysset, P. K., Jul. 2012. HR-pQCT-based homogenised finite element
models provide quantitative predictions of experimental vertebral body stiffness and strength with the same
accuracy as models. Computer Methods in Biomechanics and Biomedical Engineering 15 (7), 711–720.

Pakdel, A., Robert, N., Fialkov, J., Maloul, A., Whyne, C., Dec. 2012. Generalized method for computation
of true thickness and X-ray intensity information in highly blurred sub-millimeter bone features in clinical
CT images. Physics in Medicine and Biology 57 (23), 8099–8116.

Parker, M., Johansen, A., 2006. Hip fracture. British Medical Journal 333 (7557), 27–30.

Poole, K. E. S., Mayhew, P. M., Collette, M., Brown, J. K., Bearcroft, P. J., Loveridge, N., Reeve, J., 2010.
Changing structure of the femoral neck across the adult female lifespan.Journal of Bone and Mineral
Research 25 (3), 482–491.

Poole, K. E. S., Treece, G. M., Mayhew, P. M., Vaculik, J., Dungl, P., Horák, M., Šťeṕan, J. J., 2012. Cortical
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A Estimation of imaging blur in QCT data

In order to make use of the CBM v2 and CBM v3 algorithms, we need a reasonable estimate of the imag-
ing blur σd for each QCT data set. This blur varies in all dimensions as well as with spatiallocation, the
major variation being between the blur within each image slice (in-plane blur,σi) and that orthogonal to the
slice (out-of-plane blur,σo). Some pertinent information is usually stored in DICOM files, though this is not
sufficient to completely describe the in-plane/out-of-plane variation. In-plane blur is determined by the re-
construction kernel rather than the pixel size, but kernels are only recorded by name rather than extent. Also,
although the recorded slice thickness does relate to the full-width half-maximumslice selectivity, further
image processing in the reconstruction stage may lead to out-of-plane blurs which are larger than this.

We therefore need to estimateσd in each data set, and we can do this at the same time as the cortical
density is estimated by looking atσ as well asy1 as we fit the model in eq. (1) to each point on the femoral
cortex. This parameter tells us the apparent imaging blur at each location, which we can record along with
the angleα that the measurement line made with the imaging planes. The variation ofσ with α, for three
different QCT data sets, is shown as a distribution of measurement points in Fig. 14. These measurements are
clearly very noisy, but the in-plane and out-of-plane differences areapparent. To estimateσi andσo from this
data, we need a model of howσd depends on these parameters. One which we have found fits well is:

σd =

√

(σi cosα)
2 + (σo sinα)

2 (6)

This model is fitted to the measured data using a least-squares regression, resulting in estimateŝσi and
σ̂o. Since this measurement process uses the FWHM algorithm (we do not yet know the cortical density so
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Figure 14: Estimation of the imaging blur in QCT data. The graphs show estimated Gaussian blurs from
fitting the model in eq. (1) to multiple locations across the surface of the femur in three sample QCT data sets,
with DICOM pixel sizes and slice thicknesses given at the top of each figure. Blur is plotted radially, with the
angle corresponding to the measurement direction with respect to the image slices, such that the horizontal
axis shows in-plane blur and the vertical axis shows out-of-plane blur. The solid line is the result of fitting
the model in eq. (6) to these individual measurements. The values in the axis labels are the corresponding
FWHM estimates ofσi andσo.

cannot use one of the CBM algorithms), particular weight is given toσd estimates which come from cortices
with large apparent peak density valuescpeak, since theσ estimate is most accurate at these points. At other
locations,σ will be underestimated as explained in Section2.1. Hence the fitted models seen in Fig.14 are
towards the outer extents of the point clouds. Subsequently, whenever ablur estimateσ̂d is required, we
simply apply eq. (6) with the known measurement angleα and the estimated values ofσ̂i andσ̂o.

B Calibration of gold standard HRpQCT data

We need to pick an established algorithm as a gold standard against which to compare the various techniques
introduced in this paper, and FWHM is the obvious candidate since it is knownto perform well as long as
the cortex is sufficiently thick in comparison to the imaging blur. For the HRpQCT data used in this paper,
this corresponds to a thickness greater than 0.3 mm. However, our implementation of FWHM involves setting
y1 to the apparent peak in the CT datac(x). At this resolution, the cortex is not observed as having uniform
density: there are variations due to very small pores and also due to noise inherent in the imaging process.
Hence the peak CT value is an overestimate ofy1 and this leads to a consequent underestimate of the cortical
thickness. This bias can be removed by using the nothing preset algorithm: for HRpQCT data, this effectively
setsy1 to the average of the observed CT data within the cortex. However, this algorithm has more parameters
to estimate and is therefore less precise than FWHM. We therefore use the FWHM algorithm as our HRpQCT
gold standard, but correct the bias by calibration against the nothing preset algorithm, as shown in Fig.15(a).

Conversion between Hounsfield Units and cortical density is largely achieved by the calibration phantom
provided by the manufacturer of the scanner. However, the calibration densities are low compared to typical
cortical densities. It has previously been noted that calibration in such scenarios is problematic: extrapolation
of the low density calibration curve is imprecise, and there are also problems with beam hardening artefacts
at higher densities (Fajardo et al., 2009). This was indeed the case in our study, with low trabecular densi-
ties showing a good match between QCT and HRpQCT, whereas high corticaldensities did not. Since all
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Figure 15: Correction of HRpQCT FWHM thickness and density values. (a) On high resolution data, since
we cannot use the CBM algorithms as a gold standard, the most reliable alternative is FWHM, whereas the
least biased is nothing preset. By running both algorithms on all the data pointsfrom the high resolution data,
calibration curves are fitted which allow the bias to be removed from the FWHM results. Note that these
adjustments are very small, less than nearly all the precision values in Table1. (b) The calibration provided
by the manufacturer for the HRpQCT data is based on low densities around 300 mg /cm2. Calibration for
higher cortical densities is achieved by matching the data with the QCT values for thick cortices (t > 3mm),
for which the imaging blur is not problematic and all algorithms agree. The calibration curve was designed to
match the manufacturer’s calibration at low densities, and the single calibrationpoint for thick cortices.

algorithms tested could very easily measure density in QCT data for thick cortices, and all returned the same
results in this domain, the> 3mm cortical densities were matched between QCT and HRpQCT, yielding an
additional calibration point. Previous studies have also had to calibrate low and high densities separately (Pahr
et al., 2012). The final calibration curve, shown in Fig.15(b), matched the manufacturer’s calibration at low
density and the additional calibration point at high density. It must be acknowledged, however, that this is
unlikely to correct for all beam hardening issues, and some imprecision willremain.


