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Abstract

The bitonic filter was recently developed to embody the novel concept of using signal bitonicity to differentiate from noise.
This is a combined linear/morphological operator, and the use of data ranking leads to good noise-reduction performance across
smooth and disjoint signals alike. However, for processing images, the spatial extent of the bitonic filter was locally constrained
to a fixed circular mask. Since natural images tend to have structure which varies over the image, a novel structurally varying
bitonic filter is presented, in which the mask is locally adaptive to the signal in the image, but does not follow patterns in the
noise. This new filter includes novel robust structurally varying morphological operations, for which an efficient implementation
is also developed, and a novel formulation of non-iterative directional Gaussian filtering. Data thresholds are also integrated
with the morphological operations, increasing noise reduction for low noise levels, and enabling the filter to be embodied in a
multi-resolution framework for better performance at high noise levels. The structurally varying bitonic filter is presented in
detail without presuming prior knowledge of morphological filtering, and compared to a number of high-performance linear
noise-reduction filters, to set this novel concept in context. These are all tested over a very wide range of noise levels, on a fairly
broad set of images, using conventional performance measures. The new filter is a considerable improvement on the fixed-mask
bitonic, outperforms anisotropic diffusion and image-guided filtering at all but extremely low noise levels, non-local means at
all noise levels, but not the block-matching 3D filter, except for very high noise. Nevertheless, the structurally varying bitonic
tends to have less characteristic residual noise in regions of smooth signal, and very good preservation of signal edges, though
with some loss of small scale detail when compared to the block-matching 3D filter. The efficient implementation means that
processing time, though slower than the fixed-mask bitonic filter, remains competitive.

1 Introduction

There are many situations in which a corrupting additive com-
ponent (noise) needs to be removed from an a priori un-
known digital signal, for instance a two-dimensional image.
Whilst this problem has no universal solution, natural and
synthetic images have features which are sufficiently differ-
ent from typical noise to enable the development of many
practically useful noise-reduction algorithms. The perfor-
mance and characteristics of such algorithms are critically
dependent on how they each define the difference between
‘noise’ and ‘signal’. Such definitions are wide-ranging, for
instance based on transformed domains (noise has higher
frequency), data level (signal has greater difference in data
value), pattern-matching (signal structure is more repeatable)
or even the historical record (signal is previously known).

In this context, the novel concept of using signal ‘bitonic-
ity’ for differentiation was recently proposed (Treece, 2016),
where the signal is deemed to be anything containing one
maximum or one minimum over a given spatial range. This
definition is crucially independent of data value, being based
instead on data ordering or rank: hence it applies equally to
both smooth and disjoint signals. The bitonic filter was de-
veloped as a combination of rank-based (robust morphologi-
cal openings and closings) and linear (Gaussian filtering) op-
erators, in order to remove non-bitonicity (noise) from cor-
rupted signals, with an initial application in medical com-
puted tomography (Treece, 2017). It was shown to have
good noise-reduction performance across a range of noise
levels, surpassing other morphology-based alternatives, and
even competing in some cases with more well known lin-
ear filters such as anisotropic diffusion (Weickert, 1998) or
non-local means (Buades et al., 2005), particularly for images
with varying noise levels.

Whilst, for one-dimensional signals, the spatial range over
which bitonicity is imposed is defined purely by the filter win-
dow length, for two-dimensional (2D) images, a 2D struc-
turing element or ‘mask’ defines which image pixels locally
contribute to the data ranking. In the bitonic filter, this mask
was fixed over an image to a circle with a chosen diameter.
Since the mask shape imposes a structure on the signal, and
yet the structure of the signal is not expected to be constant

over an image, it is clear that allowing the shape to vary could
offer significant performance improvements.

This concept of structurally varying morphological opera-
tions (also known as adaptive morphology) has been the sub-
ject of recent research (Ćurić et al., 2014) with well developed
mathematical foundations (Bouaynaya and Schonfeld, 2008).
There are a variety of ways to change the shape of the mask,
and Ćurić et al. (2014) helpfully note that the extent to which
the mask is allowed to shape itself to the data is related to
the noise reduction performance. Strong prior definitions of
shape are required if high noise reduction is desired, since
otherwise the mask can conform to the noise as well as the
signal. Pre-defined flat masks (Landström and Thurley, 2013)
are hence the most appropriate for inclusion in the bitonic fil-
ter, with ellipses the simplest extension from a circle. Having
defined the type of structurally varying mask, its orientation
and specific shape needs to be able to adapt to the image data.
The orientation is usually derived from the gradient, often in
the form of a structure tensor (Landström and Thurley, 2013;
Soille and Talbot, 2001; Tankyevych et al., 2009) also called
the average squared gradient (Verd-Monedero et al., 2011).
The local anisotropy can be used to control the shape, for in-
stance setting the aspect ratio of an ellipse (Landström and
Thurley, 2013).

It is the aim of this paper to develop the bitonic filter so that
it can make use of structurally varying masks. Structural vari-
ation is a relatively new development within mathematical
morphology, and, other than the median filter, mathematical
morphology itself is a less widely used technique than linear
image filtering, perhaps due to complexity in implementation
and analysis. Hence the paper covers sufficient detail to show
how the structurally varying bitonic can be implemented effi-
ciently, without presuming familiarity with the field. In order
to develop this filter, several extensions to structurally vary-
ing morphology are also proposed. Firstly, the bitonic fil-
ter unusually involves robust (not involving maxima or min-
ima) morphological openings and closings, and efficient im-
plementations of such operations do not exist. In addition,
a better definition of mask orientation is developed, making
use of trials over multiple masks rather than solely relying on
the structure tensor. The incorporation of data thresholds, and
the inclusion of the whole in a multi-resolution framework, is
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also demonstrated. For the new bitonic filter, an alternative to
the Gaussian filter which can structurally match the varying
morphological operations is also required.

Since the bitonic filter is a recent concept, its performance
is placed in context by comparison with a wide range of more
well known linear filters, on a range of images, across mul-
tiple levels of noise. It is seen that the structurally varying
bitonic can achieve competitive noise reduction, with prac-
tical processing times, across the entire noise range, though
with particularly promising results in very high noise.

2 Methods
The bitonic filter was analysed in detail in (Treece, 2016).
Briefly, it consists of a robust opening Ow,c and closing Cw,c
of a signal I(x) at location x:

rw,c(I(x)) = cthcentile
x∈w

{I(x)} (1)

Ow,c = rw,100−c(rw,c(I(x))) (2)
Cw,c = rw,c(rw,100−c(I(x))) (3)

where rw,c is a rank filter, w is the filter region (or mask in
2D), |w| is the window size (or number of elements in 2D)
and c the chosen centile, usually set to 10% for a bitonic filter
with a fixed circular mask. Setting c = 100% in eq. (1) would
return the maximum value (known as a dilation) and c = 0%
the minimum (known as an erosion), but in practice a small
non-zero centile value as in (Kass and Solomon, 2010) gives
more robust results in the presence of noise.

Opening and closing operations are not self-dual (symmet-
ric in data value), and do not preserve mean signal values. To
correct this defect, the operations are weighted, by consider-
ing their difference from the original signal. This difference
is filtered with a Gaussian linear filter, Gσ(x), with standard
deviation σ = 0.33l where l is the diameter of the mask in
2D:

εO = |Gσ (I(x)−Ow,c)| (4)
εC = |Gσ (Cw,c − I(x))| (5)

bw,c =
εOCw,c + εCOw,c

εO + εC
(6)

where εO and εC are smoothed opening and closing errors,
and bw,c is the output of the bitonic filter. The opening and
closing operations effectively detect bitonic signals, which
are removed from the original signal, leaving the Gaussian
to reduce any residual noise. This preserves bitonic signals,
but reduces noise in all regions, including across signal edges.

A slightly different formulation of eq. (6) is possible:

bw,c =
εnO (Cw,c − εC) + εnC (Ow,c + εO)

εnO + εnC
(7)

where n is a positive integer. n = 3 slightly improves the
performance, and is used in the remainder of this paper: n =
1 would result in the same expression as eq. (6). A typical
result of this bitonic filter is shown in Fig. 1(c) for the noisy
image in Fig. 1(a). For comparison, the result of applying
Gσ(I(x)) alone is in Fig. 1(b).

The following sections cover the extension of eq. (7) to the
structurally varying (SV) version. Section 2.1 discusses the

choice of masks, with appropriate centiles, and the efficient
implementation of robust SV versions of the openings and
closings in eqns. (2) and (3). Section 2.2 considers the in-
corporation of data thresholds into these operations, and the
subsequent extension of eq. (7) to a multi-resolution frame-
work. Section 2.3 develops an appropriate replacement for
the Gaussian filters in eqns. (4) and (5) which also exhibits
similar structural variation.

Section 2.4 explores better techniques for selecting the
mask shape and direction, and also addresses the practical
choices when applying such a technique to colour images.
Finally, Section 2.5 shows how these can be combined with
the filtering and morphological operations in the previous two
sections to implement an efficient SV bitonic filter. The ef-
fects of each of these stages are summarised in Fig. 1.

2.1 Structurally varying robust morphological
operations

2.1.1 Design of mask sets

Ellipses of varying orientation and aspect ratio have been
used in SV closing and opening operations before (Land-
ström and Thurley, 2013), with a flexible definition of shape
in terms of the two radial parameters. Implementation is im-
proved if the number of masks is restricted, and in any case
there is little point using masks which cover nearly identi-
cal sets of pixels. More orientations are required for thin-
ner masks, since the percentage overlap is smaller for a given
change in orientation. The maximum radius of the masks is
a positive integer r, such that the number of pixels along one
side of the square region containing all masks is l = 2r + 1.
More variations in shape (aspect ratio) are possible for larger
mask regions l. Hence the number of shapes stot, aspect ratio
as and number of orientations otot,s for shape s, are given by:

stot = min
{[r

4

]
+ 1, 2

}
(8)

as =
1.7 + (r + 0.3) s−1

stot−1
r + 2

(9)

otot,s = max {4 [0.4 (1− as) (r + 2)] , 1} (10)

Pixels in the l × l region are deemed to be in each mask if:(
rmajor

r + 0.25

)2

+

(
rminor

as (r + 0.25)

)2

≤ 1 (11)

where rmajor and rminor are the distance of a particular pixel
from the centre of the region, respectively along the major and
minor axes of the appropriately oriented ellipse. These are
both reduced by 0.25 (with a minimum of 0) in order to make
the sides of each ‘ellipse’ straighter, particularly for thinner
shapes.

The apparently minor details in eqns. (8) to (11) are im-
portant, since the exact shape of these masks, for instance the
avoidance of single-pixel protrusions, has a noticeable effect
on the output of the SV operations. An example for r = 6 is
given in Fig. 2, in which case stot = 3, as = { 1.78 ,

4.85
8 , 1}

and otot,s = {12, 4, 1}. These masks are never thinner than
three pixels, since thinner lines tend to amplify noise charac-
teristics in the image, as has been noted before (Landström
and Thurley, 2013).
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(a) 24 dB SNR (b) Gaussian (d) Anisotropic (orig) (f) Bitonic SV (aniso) (h) Bitonic SV

(c) Bitonic (e) Anisotropic (g) Bitonic SV (morph) (i) Bitonic SVT

Figure 1: Development of the structurally varying (SV) bitonic filter. (a) Section of a noisy image, filtered in all other images
with the same mask size. (b) Gaussian filter, also used in the fixed bitonic (c). (d) Anisotropic filter, with (e) improved corner
response, used in the SV bitonic. (f) SV bitonic, with mask selection based on anisotropic filtering, or (g) on morphological
operations and (h) a combination of both. (i) SV bitonic with additional data threshold.

Figure 2: Masks for SV morphology. This is the set of 17 masks for r = 6, l = 13, in which case there are three different
shapes s (in each row) and up to 12 different orientations (in each column). The numbers below each mask are the rank (from
0) for the equivalent centile cs (as ranks rather than percentages), followed by the adjusted cs from eq. (13), followed by the
total number of pixels |ws| in each mask. The three images on the right show the region covered by the sum of the masks in
each row.

2.1.2 Equivalent centiles for different mask shapes

For the fixed circular mask, a centile c = 10% is always
a good choice (Treece, 2016). For SV masks with thinner
shapes, any of the corresponding orientations could be cho-
sen for processing a particular pixel in an image. As shown
in Section 2.4, one way to select the appropriate orientation is
based on the output of rw,c in eq. (1), i.e. that which best fits
the data. In an image which only contains noise, there is no
underlying structure and hence there should be no preference
between mask shapes. However, if all masks used the same
centiles, the thinner masks would seem to fit the data better
simply because there are more orientations to try: effectively
these thin masks would over-fit to apparent structure in the
noise.

For a given set of masks applied to pure noise, it can be
calculated experimentally which centile for each fatter shape
(larger s) returns the same ranked value (on average) as for
the thinnest shape, presuming the best-fit orientation is used
each time. This relationship is a function of the centile c1

of the thinnest shape, and is also highly dependent on the
specific shapes, relative pixel overlap, and number of orienta-
tions. However, it is possible to express it as only a function
of c1 by normalisation according to the number of pixels in
each mask |ws|, in which case the centile cs for shape s is:

cs = p(c1)
1−

√
|w1|
|ws|

1−
√
|w1|+4
|ws|

(12)

where p(c1) is a polynomial in c1 (the centile for the thinnest
shape) explaining the remaining experimental relationship.
The ‘4’ in the denominator compensates for the discrete shape
differences with very small mask sizes. In practice, c1 = 4%
gives good results in all circumstances, in which case, for
mask sets following eqns. (8) to (11), p(c1) ≈ 6. The com-
pensated centiles for the specific shapes in Fig. 2 are hence
cs = {4, 8.5, 10}.

Equation (12) would result in an equal chance of fitting
any shape mask if there is no structure in the image, but in
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fact a fatter mask would be preferred for pure noise, since
the larger number of pixels in the mask will improve noise
reduction. To ensure this, a positive offset is added to cs for
fatter mask shapes (larger s). This offset needs to be larger
for smaller masks (smaller r) since the fewer pixels intro-
duces more variability into the ranking results when applied
to noise. cs is hence adjusted as follows:

cs = cs +
17√
r

s− 1

stot − 1
(13)

This is a well-motivated heuristic, based on experimental
results for the noise-ranking variability of masks following
eqns. (8) to (11). For the mask set in Fig. 2 it gives cs =
{4, 12, 17}. The numbers in brackets in Fig.2 show which
ranked value these centiles correspond to for each mask.

2.1.3 Histogram-based and sorting-based implementa-
tions

Ranking using fixed masks can be performed in nearly con-
stant time with respect to the mask region size l (Perreault
and Hébert, 2007), by keeping a sorted list as the mask moves
over the image and only updating those values which change
between locations. If the data is integer-valued, this list can
be stored and updated very efficiently as a histogram of data
values, and the rank output at a given centile calculated from
this histogram, rather than from a sorted list. For fixed masks,
the two ranking operations in each opening or closing can be
implemented identically.

For an SV opening or closing, the situation is more com-
plex. In the first or forward pass (inner ranking in eq. (3)), the
mask is different at every location. Updating a sorted list is
therefore no longer efficient, since there might be a dramatic
difference in image pixels covered by each mask between two
neighbouring locations. The reverse operation (outer ranking
in eq. (3)) is fundamentally different: it is no longer the mask
at the current pixel which matters, but whether the masks at
the surrounding pixels (used in the forward pass) contain the
current pixel. This reverse pass can be performed reason-
ably efficiently in cases where only the 0% (minimum) and
100% (maximum) centiles are being used, by refining the
output in tandem with the forward pass (Tankyevych et al.,
2009). Directional filtering, based on masks which are all
lines, can also be implemented efficiently (Soille and Talbot,
2001). However, this latter technique does not adapt easily to
other shapes, and neither technique is appropriate for robust
operations using non-extreme centiles.

Hence a whole new approach is needed for a robust SV
opening or closing with a fixed set of pre-determined masks.
This approach, summarised in Fig. 3, is based on initially
ranking the data using the convex hull of all the masks, and
then deducing the results for a particular mask at a given pixel
from this superset of sorted data. The convex hull mask can
be ranked efficiently since it is fixed, and the additional region
index preserves the original location of each sorted value.
Any values in the superset of sorted data can then be cor-
rectly associated with each mask, and processed appropri-
ately. Preserving the region index is easy for the sorting-
based implementation, but has a greater detrimental effect
on the histogram-based implementation. Whereas, for fixed
masks, the histogram count at each data value was stored and

either incremented (when adding a pixel to the sorted list) or
decremented (when removing), for SV masks a separate list
of region indices must be preserved at each data value, and
the correct indices removed.

Figure 4 (a) and (b) contain forward and reverse exam-
ples with real data: the small squares in the overlay show
the whole superset of sorted data, whilst the larger squares
show the data which determines the rank output for the cen-
tral pixel. It is apparent from this that, whilst the forward
operation is recognisable as one of the thin ellipse masks, the
reverse operation involves a far more complex mask shape
which is related to coverage from the surrounding pixels.

2.2 Combining thresholds with morphological
operations

2.2.1 Implementation of relative threshold limits

In noise reduction the variance of the noise is sometimes rea-
sonably well known (or can easily be discovered), and the lo-
cal range of data values that can be attributed to noise is hence
limited by some threshold value. For the best performance in
low noise, it is critical to make some use of this to preserve
structural discontinuities above this level. Morphological op-
erations do not make any specific use of such information, but
the opening and closing operations can be adapted to include
it.

The rank output at the correct centile is first selected from
the appropriate mask in the forward SV operation. Then, as-
suming a noise threshold t, if the output at this centile is more
than t away from the original data value at the current pixel,
then it is replaced by the closest centile in the mask which
is within t of the current pixel. This effectively changes the
mask shape to ignore pixels whose data values are more dif-
ferent than can be explained by noise, as can be seen in the
example of Fig. 4(c). In the reverse operation, pixels are only
considered if their forward centile was not changed by this
threshold, and the rank output at the required reverse centile
is also adjusted (as in the forward operation) if it is more than
t away from the value of the original image pixel. Once again,
this changes the effective mask shape, as seen in Fig. 4(d).

2.2.2 Multi-resolution operation using thresholds

Multi-resolution techniques, which entail processing differ-
ent versions of an input image at different resolutions, are an
obvious way to allow for larger masks without dramatically
increasing the processing time. These can involve iterations
on the residual image (the original minus the processed ver-
sion) at a lower resolution, like a Laplacian pyramid (Paris
et al., 2011). However the residual contains very little of the
image structure on which morphological operations rely, and
hence processing of the residual does not make sense for such
operations. A similar framework can still be used, but in this
case the threshold tn is lowered with each level n, and applied
to the reduced, processed image, rather than the residual. The
overall approach is shown in Fig. 5. Reduction of the im-
age to quarter size (half in each dimension) is achieved with
a restriction operator, as is typical in the multi-grid frame-
work (Briggs et al., 2000): a Catmull-Rom spline (Catmull
and Rom, 1974) is a good choice, since it preserves edges as
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Figure 3: Implementation of robust SV opening and closing. A Each mask is given a number (1 to 3 in the simple example
above), and an array of width l, a square region bounding all the masks, is initialised with a list of mask intersections at
each pixel. B Morphological operations proceed using the (fixed) convex hull of all these masks (shown in light grey), which
leads to very efficient ranking of all the image values within this area. An additional index is stored for each pixel, equal to
i× l+ j, where (i, j) is the zero-based image pixel location. This is retained in the ranked list of image values, and preserves
the location of the pixel even after ranking: subtracting the index from the top-left of the current region provides the location
of each image value relative to the region mask lists. Hence the output of the forward ranking operation for different masks,
with different centiles, can be calculated from the ranked superset. C For the reverse operation, ranking again starts using
the convex hull of the masks. The combination of the region index, and the per-image-pixel mask number from the forward
operation, can be used to restrict the output to outer pixels from a mask that included the current pixel.

much as possible in the lower-resolution image. Expansion
of the image is by an appropriately matched prolongation op-
erator. Both these operators, denoted by diagonal arrows in
Fig. 5, are very fast, but the combination is not lossless: to
account for this, the prolongated, restricted image, without
any further processing, is subtracted from the original before
adding in the lower level results.

The threshold t1 for the first level can be chosen accord-
ing to the expected noise variance, or set to the maximum
data value deviation in the image (i.e. 256 for an 8-bit im-
age). Subsequent thresholds tn are calculated from the ex-
pected reduction in noise due to the SV bitonic filter applied
at the previous level: this will be inversely proportional to fil-
ter length r, since the variance reduces approximately with
the size of the mask, hence:

tn ≈
tn−1
2.4r

(14)

where the 2.4 in the denominator accounts for the average SV
mask shape and combination of operations in eq. (7). Three
levels are typically sufficient, since tn reduces quite rapidly.
These do not add much to the overall processing time, since
although the filter radius r is constant (increasing the effec-
tive range of the filter at each level), images at lower levels
have only one quarter of the pixels. This version of the multi-
resolution SV bitonic is referred to as Bitonic MV1.

Once the lower levels have been processed, the results
are prolongated and added back into the previous result at
the higher level. Some additional noise reduction can be
achieved, particularly in high noise, by repeat application of
the SV bitonic at this level, but with tn+1, i.e. the threshold
from the lower level. This option, referred to as Bitonic MV2,
will hence tend to double the processing time.

2.3 Linear filtering with structural variation
The fixed bitonic in eq. (7) employs a Gaussian filter to
smooth the error and effectively give a mean image value
with which to properly adjust the weights for the closing and
opening operations. It is important that this filter extends over
a similar domain to the morphological operations, so for the
SV bitonic, a Gaussian-type filter is needed which will also
vary in direction, but over a fixed size domain.

2.3.1 Non-iterative anisotropic filtering

The desired filtering direction can be calculated from the well
known structure tensor T , or matrix of smoothed gradients
{gi, gj}, in horizontal i and vertical j directions, of I(x):

T =

[
Gσ(gi

2) 2Gσ(gigj)
2Gσ(gigj) Gσ(gj

2)

]
(15)

≡
[
Tii Tij
Tij Tjj

]
(16)

Following Van Vliet and Verbeek (1995), the local direction
φ(x) and degree of anisotropy γ(x) can be derived from the
eigenvalues λ1,2 of T :

λ1,2 =
1

2

(
Tii + Tjj ±

√
(Tii − Tjj)2 + Tij

2

)
γ(x) = 1− λ2

λ1
(17)

φ(x) =
1

2
tan−1

(
Tij

Tii − Tjj

)
(18)

where γ = 0 signifies low anisotropy (no dominant direc-
tion) and γ = 1 signifies high anisotropy (local gradients in
only one direction). φ is then the angle following the domi-
nant features in the image, i.e. the direction in which the filter
should be aligned. The spatial range of γ and φ is determined
by the extent of the Gaussian filter Gσ in eq. (15), which has
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(a) Bitonic SV Forward (c) Bitonic SVT Forward

(b) Bitonic SV Reverse (d) Bitonic SVT Reverse

Figure 4: Mask selection and ranking. The images show the
result of a robust SV bitonic operation, with the bottom-left
overlay containing the mask selection for the current pixel
(denoted with an arrow). (a) In the forward operation, the
whole region (small squares) is ranked, but only data within
the chosen mask (larger squares) considered further. (b) In
the reverse operation, data is considered whose masks cover
the current pixel. (c) Values beyond a data threshold from
the current pixel are discarded after choosing the mask in the
forward operation. (d) In the reverse operation, values are
only used if they derive from a mask centile which was not
affected by such thresholding, and are not themselves outside
of the data threshold.

σ = 0.33l as before in order to match the mask region size
l×l. Figure 6(b) shows φ(x) for the image in Fig. 6(a) filtered
with l = 13, and Fig. 6(c) the anisotropy γ(x).
γ and φ can be used to construct a Gaussian-like filter

Gσ,α(x) which follows the dominant direction, and whose
extent changes with anisotropy:

dy(x) = ||x− y| sin(∠(x− y)− φ(x))| (19)

Ωy(x) =
e−
|x−y|2

2σ2(
dy(x)γ(x)2

α2 + 1
)(

dx(y)γ(y)2

α2 + 1
) (20)

Gσ,α =

∑
y∈w

Ωy(x)I(x− y)∑
y∈w

Ωy(x)
(21)

where x is the current pixel location, and y a neighbouring
location within the window w of size l × l. The numerator
for the weighting Ωy(x), eq. (20), is just a Gaussian in the
distance between pixels at x and y, with standard deviation

σ. However, it is reduced by the denominator which takes
into account both the anisotropy γ(x) and the dominant im-
age direction, via dy(x). This is the perpendicular distance
between the pixel at y and a line from x drawn along the fil-
tering direction φ(x), and hence has a small value if x and
y lie along the line defined by φ(x). It is similar, at least
in concept, to the geometric weight used in a trilateral fil-
ter (Wong et al., 2004). Higher weights are associated with
pixels along such a line (low dy(x)) or when the anisotropy
is small (low γ(x)). The existence of both bracketed terms
in the denominator ensures that this must also be true for the
symmetric case of a line from y at φ(y) towards x. It is also
easy to introduce a threshold on |I(x) − I(y)| above which
Ωy(x) = Ωx(y) = 0.

The overall effect of anisotropy is set by α, which con-
trols the minimum width perpendicular to the main filtering
direction when γ(x) = 1. Higher values of α � 1 (or lo-
cally lower values of γ(x) � 1) will lead to Gσ,α ⇒ Gσ .
An example application of Gσ,α is in Fig. 1(d), in which
case α = 0.6 and σ is set to the same value as in the
isotropic Gaussian in Fig. 1(b). The result is similar to it-
erative anisotropic diffusion (Weickert, 1998), but the non-
iterative implementation allows the range of the filter to be
specifically controlled and removes any possibility of insta-
bility. It also has some similarity with another tensor-based
method (Baghaie and Yu, 2015), though this was used for im-
age interpolation rather than filtering.

If the anisotropy and direction of the Gaussian filter were
constant or changed slowly over I , very efficient implemen-
tation techniques involving appropriate shearing of the im-
age (Lampert and Wirjadi, 2006) could be used. However, in
this caseGσ,α isO(l2), hence less efficient than the separable
Gaussian Gσ which is O(l), but it can still be implemented
in reasonable time. The calculation of γ and φ is relatively
fast since these are filtered with Gσ . Many of the terms in
eq. (20) can be pre-calculated across an array covering either
the region w or the image I , by judicious use of trigonomet-
ric identities, leaving only a small number of simple opera-
tions to be performed for each {x,y} combination. In addi-
tion, since Ωy(x) ≡ Ωx(y), each weighting calculation can
be used twice. It may also be possible to speed this up fur-
ther, following the techniques presented in (Baek and Jacobs,
2010).

2.3.2 Improvement of response at corners

Careful consideration of the example in Fig. 1(d) shows that
Gσ,α introduces a slight diagonal blur where there are strong
corners in the image. This is due to the well known prob-
lem that the anisotropy γ will be small so long as the eigen-
values of the structure tensor matrix, eq. (15) are the same.
This is the desired behaviour in flat regions where they are
both small, but is not necessarily beneficial in corners where
they can both be large. Hence γ � 1 at the middle of the
corner, and also in the surrounding flat region, and the con-
sequent high Ωy(x) will cause inappropriate mutual blurring.
The prominent diagonal lines of low anisotropy (black) can
also be seen across the corners of the tennis racket strings in
Fig. 6(c).

This effect can be improved by a slight modification to
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Figure 5: Multi-resolution implementation of the bitonic filter using thresholds. At each level n, the bitonic filter operates
on a quarter-size image, with a reduced threshold tn, but with the same filter radius r in pixels, which means that the effective
filter range increases. The threshold is reduced to account for the reduced noise level due to the bitonic filter previously
applied at the higher level. Results from lower levels are expanded and added back in, taking into account the lossy nature of
reduction (restriction) and expansion (prolongation). Optionally, the bitonic filter is then re-run at this level, but with an even
lower threshold from the next level down.

(a) Fruits image (c) Anisotropy (original)

(b) Anisotropic orientation (d) Anisotropy (improved)

Figure 6: Determination of local anisotropy. The extent and
direction of anisotropy is shown for the image in (a). (b) The
filtering direction is perpendicular to the largest eigenvector
of the filtered structure tensor, with vertical as mid-grey and
horizontal as white/black. (c) The anisotropy is derived from
the difference between the maximum and minimum eigenval-
ues, with 1 represented as white and 0 as black. (d) Close to
the corners, both eigenvalues are large and hence anisotropy
is low, despite strong image gradients. This situation can be
improved by filtering at different stages: particularly note the
more consistent white lines near corners.

eq. (17):

γ(x) = 1− Gσ(λ2)

λ1
(22)

in which the smaller eigenvalue λ2 is smoothed to give a more
stable reference against which to compare the larger eigen-
value λ1. This removes the inappropriate blurring at corners,
as seen in Fig. 1(e), by providing a substantially less noisy
anisotropy, but with similar spatial resolution, as in Fig. 6(d).

2.4 Mask shape and orientation
Having defined a robust SV closing and opening, and an ap-
propriately matched linear filter, it remains to choose the par-
ticular mask orientation and shape for each pixel in I(x).

2.4.1 Masks from the structure tensor

The structure tensor has been used in SV opening and closing
before (Landström and Thurley, 2013), and is already the ba-
sis of the linear filtering in Section 2.3, hence it makes sense
to consider this technique first. All that is required is to map γ
and φ to particular shapes and orientations in the set of masks,
e.g. in Fig. 2. The mask shape is defined as:

s(x) = min

{[(
1− γ(x)

0.8

)
(stot − 1)

]
+ 1, 1

}
(23)

where s(x) is the shape number, starting from the thinnest, as
in eq. (8). The mask orientation o(x) is simply that from the
possible set, for the shape s(x), which most closely matches
φ(x). The resulting orientations and shapes for the masks in
Fig. 2 are shown in Fig. 7(a) and (b). The result of applying
this technique within an SV bitonic filter is in Fig. 1 (f).

2.4.2 Masks from morphological operations

Since the masks in Section 2.4.1 are based on orientations
from the smoothed structure tensor, they are resistant to noise
but do not adjust well to small details in the image. An alter-
native approach is to trial all possible masks during the initial
ranking of both the closing and opening operations, and select
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(a) Anisotropy orientation (b) Anisotropy shape

(c) Morphology orientation (d) Morphology shape

(e) Bitonic SV orientation (f) Bitonic SV shape

Figure 7: Mask selection for the SV bitonic filter. To select a
mask (in this example from the set in Fig. 2), both the shape
(row from Fig. 2) and orientation (column) must be specified.
The dominant direction from the structure tensor can deter-
mine the mask orientation (a) with anisotropy determining
the mask shape (b). Alternatively, the mask type can be cho-
sen from the morphological operations (c) and (d) by trialling
several masks and selecting the one which fits the data best.
A combination of both approaches is used in the SV bitonic
(e) and (f).

the mask whose output centile is closest to the median value
in the ranked superset of the convex hull of all the masks. This
effectively selects whichever mask fits best to the data: and
the adjusted centiles in Section 2.1.2 ensure that fatter masks
are preferred if there is no apparent structure in the image,
even when corrupted by noise.

Whilst trialling all masks may seem prohibitively slow, the
implementation in Section 2.1.3 means that a large number of
masks can be tested whilst incurring only a small processing
overhead. The resulting orientations and shapes for the masks
in Fig. 2 are shown in Fig. 7(c) and (d), and the result of this
technique within an SV bitonic filter is in Fig. 1(g).

2.4.3 Colour images and optimal combination of masks

The morphology-based masks have more detail than those
based on information from the structure tensor. However,
they are poorly defined at signal edges, since no mask, cen-
tred on such points, will fit the data well. Fortunately, these
are the locations at which the structure tensor defines the ori-
entation very well. A combination of the two methods is
hence achieved by starting with the morphological mask def-
inition, then replacing masks with the structure-tensor defini-
tion if this gives a thinner shape (smaller s), so long as the
anisotropy γ is greater than γmin:

γmin = min

{
1.05√
r
,

1.05√
2

}
(24)

which is an experimentally-derived noise threshold on the
anisotropy, dependent on the size r of the smoothing filter in
the structure tensor. This combination is shown in Fig. 7(e)
and (f), with the subsequent result for an SV bitonic filter in
Fig. 1(h).

Morphology-based masks can also improve γ and φ used
in the linear filter of Section 2.3. In this case, eq. (23) is
applied in reverse to calculate an effective anisotropy γs de-
rived from the morphology-based shape s. If the actual and
shape-derived anisotropy are below the expected noise floor,
i.e. γ < γmin and γs < γmin, then both the anisotropy and
orientation are replaced with the shape-derived versions. The
linear filter is applied after the SV opening and closing, and
hence the masks from the reverse pass in Fig. 3 are used for
this purpose.

The simplest way to process colour images is to apply the
morphological or linear operations to each colour channel
separately. However, using different masks and orientations
means that each channel can be smoothed in different direc-
tions, resulting in unsightly colour separation. It is hence nor-
mally better to define the masks and orientations once from
either a grey (for RGB) or lightness (for CIELAB or simi-
lar) image, then process all channels individually, but using
the same set of masks for all channels. For RGB images,
this has the added benefit of reducing the effect of noise on
the masks, since the grey image is a reduced-noise average of
the RGB channels. In most colour images, structure is largely
preserved in the grey version, and the reduction in noise more
than compensates for any otherwise small loss of structure.
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2.5 Structurally varying bitonic filter
The overall procedure for implementing the SV bitonic filter
is as follows:

1. Set the size of the filter r and initial centile for the
thinnest shape c1 (usually 4%). The mask set and cen-
tiles follow from eqns. (8) to (13).

2. Calculate γ(x) and φ(x) for the image I(x) (or the grey
version of I(x) if processing a colour image). Also cal-
culate an optimal set of mask shapes s(x) and orienta-
tions o(x) by trialling all possible masks in the initial
ranking of the opening and closing operations.

3. Use γ(x) and φ(x) to improve the masks in s(x) and
o(x), following Section 2.4.3.

4. Perform the robust SV opening and closing operations
on each image channel separately, similar to eqns. (2)
and (3), using the mask distributions given by s(x) and
o(x).

5. Use s(x) and o(x) to improve the anisotropy and orien-
tations in γ(x) and φ(x), following Section 2.4.3.

6. Calculate the smoothed errors for each channel, εO and
εC , with eqns. (4) and (5), but with Gσ,α instead of Gσ ,
and the anisotropy and orientations γ(x) and φ(x).

7. The smoothed errors are combined with the SV opening
and closing operations using eq. (7) with n = 3.

This is referred to as Bitonic SV, with an example in Fig. 1(h).
A data threshold can also be introduced, as in Section 2.2,

if the noise level is known or can easily be inferred. This is
referred to as Bitonic SVT, with an example in Fig. 1(i). If
thresholds are used it is also possible to embed the Bitonic
SVT in a multi-resolution framework, as discussed in Sec-
tion 2.2.2.

3 Results

3.1 Image noise reduction
The fixed bitonic filter was compared to various linear and
morphological filters in (Treece, 2016). Improved perfor-
mance was clearly demonstrated over the morphological fil-
ters, including the OCCO filter (Aptoula and Lefevre, 2007),
self-dual area-based grain filters (Caselles and Monasse,
2002; Monasse and Guichard, 2000), and self-dual levelling
based on reconstruction using a Gaussian mask (Maragos and
Evangelopoulos, 2007; Serra et al., 2013). The Bitonic SV is
instead compared to a range of high-performance linear fil-
ters, selected for the breadth of their approaches to noise re-
duction. In each case l (maximum diameter of the mask for
the bitonic) is used to set the parameter which most controls
the extent of the filter:

BM3D Block-matching1 (Dabov et al., 2007), with the pa-
rameter σ set to a variety of trial values, controlled by l,

1MATLAB BM3D v2.0 software from http://www.cs.tut.fi/

˜foi/GCF-BM3D/

and centred around the actual standard deviation of the
added noise. The profile was left at the default setting,
i.e. ‘normal’ (σ < 0.16), or ‘vn’ (σ ≥ 0.16).

NLM Non-local means filter, implemented using a fast al-
gorithm for MATLAB2 (Buades et al., 2005), with the
window and search length both set to l, and the filter
parameter h set to the standard deviation of the added
noise.

Diffusion Anisotropic diffusion (Perona and Malik, 1990),
implemented for MATLAB3, with number of iterations
set to l, the integration constant set to the standard de-
viation of the added noise, the gradient threshold set to
twice the standard deviation of the added noise, and the
wide-region conduction coefficient.

Guided Image-guided filter, implemented using the MAT-
LAB4 function imguidedfilter5 (He et al., 2013), with
the local neighbourhood size set to l, and the degree of
smoothing set to four times the added noise variance in
the image. This is very similar to the well-known bilat-
eral filter (Tomasi and Manduchi, 1998).

Anisotropic The anisotropic Gaussian filter described in sec-
tion 2.3, with σ = 0.33l and α = 0.6.

Bitonic Fixed bitonic filter as in eq. (7), with mask diameter
l, and c = 10%.

Bitonic T As above, but with added threshold t set to 2.8×
the standard deviation of the noise.

Bitonic SV Structurally varying bitonic filter, as described in
section 2.5, with c1 = 4%, α = 0.6 and mask region of
width l.

Bitonic SVT As above, but with added threshold t set to
2.8× the standard deviation of the noise.

Bitonic MV1 Multi-resolution version of the above, as de-
scribed in Section 2.2.2.

Bitonic MV2 As above, but including the additional optional
filter in Fig. 5.

Where necessary, additional parameters were set presum-
ing knowledge of the added noise, and chosen for optimal
signal to noise ratio (SNR) (and, in the case of Diffusion, rea-
sonable stability) at each noise level. However, only l was
optimised over individual images and noise levels for the best
SNR and SSIM performance in each case, the other parame-
ters being fixed over all images. The data was extended at the
image edges, either symmetrically or by repeating the edge
value, with similar results in both cases. SNR was calculated
using the MATLAB function psnr, whose mean-squared-error
is based on the matrix 2-norm.

2MATLAB file exchange: Fast Non-Local Means 1D, 2D Color and 3D
by Dirk-Jan Kroon, 28 Apr 2010

3MATLAB file exchange: Anisotropic Diffusion (Perona & Malik) by
Daniel Lopes,14 May 2007

4MATLAB R2014a, The MathWorks Inc., Natick, MA, 2000
5http://uk.mathworks.com/help/images/ref/

imguidedfilter.html

http://www.cs.tut.fi/~foi/GCF-BM3D/
http://www.cs.tut.fi/~foi/GCF-BM3D/
http://uk.mathworks.com/help/images/ref/imguidedfilter.html
http://uk.mathworks.com/help/images/ref/imguidedfilter.html
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Figure 8: Summarised results over the complete set of 23 im-
ages. Optimal filter performance (after optimisation of filter
extent l in each case) is averaged over each noise level in each
image. Increase in SNR is shown on the left, and percentage
reduction of residual SSIM (i.e. the difference from the ideal
SSIM value of 1) on the right.

A range of additive Gaussian noise values were tested,
giving signal-to-noise ratios (SNR) from ≈ 36 dB (very low
noise) to 0 dB (very high noise) in steps of 6 dB, since the
relative performance of each filter is expected to vary with
noise level. Structural similarity (SSIM) (Wang et al., 2004)
was included to evaluate image quality after noise reduction
as well as increases in SNR. A fairly large set (given the num-
ber of filters, noise levels, and investigated parameters) of
23 images was tested, including standard test images from
public-domain sites6, various high dynamic range (HDR) im-
ages all with the CC0 Creative Commons licence, and two
simple computer-generated images. Whilst the intention was
for these images to cover a fairly broad range of subjects, they
can only be properly considered a convenience sample.

Figure 8 summarises the results over all these images, and
all of the noise levels. It reveals the characteristic behaviour
of each technique, but does not show the variation across dif-
ferent types of image, nor the characteristic residual patterns
in the reduced-noise images. Hence Tables 1 and 2 contain
detailed results for a selection of these images, with the ac-
tual images in Figs. 9 to 12. These figures deliberately cover
a wide range of added noise levels, except for very low noise,
for which the visual differences are harder to discern.

3.2 Processing times

The processing times for the various algorithms are included
in Tables 1 and 2, for whichever value of l generated the best
SNR and SSIM results, measured using an i7-7500 CPU at
2.7 GHz. The Bitonic SV algorithm is of particular interest,
since both the anisotropic filter Gσ,α and the implementa-
tion of robust SV opening and closing are novel. Figure 17

6https://homepages.cae.wisc.edu/˜ece533/images/
and http://decsai.ugr.es/cvg/CG/base.htm

contains more details on the processing times for these algo-
rithms, all applied to a 512 × 512 colour image. Fixed and
robust SV openings are first considered, both for histogram-
based and sorting-based implementations, since whilst the
former is more efficient, the latter is necessary if the data is
not of integer type. The fixed opening is also implemented
in the SV framework, revealing the roughly 3 to 4× over-
head purely due to the framework, rather than the increased
number of trial masks. Subsequently adding trials of up to 32
masks (for l = 21) for the SV version adds a much smaller
overhead.

Both implementations of the key parts of the SV bitonic
are considered, demonstrating that the overall algorithm is
O(l1.5) for the histogram-based version and O(l2) for the
sorting-based version. Note that both of these performances
are acceptable, since l is the filter width, not the number of
elements in the filter mask, which is proportional to l2. All
filters in Fig. 17 are based on local windows, and hence also
scale with the number of pixels in the signal I(x).

4 Discussion
Development of the SV bitonic filter was motivated by the
novelty of differentiating signal and noise via bitonicity, and
the apparent gain from allowing the mask shape to vary with
the structure of the signal in an image. Figure 8 shows that
this is vindicated by the performance of Bitonic SV, which
is better than the original Bitonic for both SNR and SSIM,
at all noise levels, usually by a considerable margin. This is
particularly clear for the boat image in Fig. 9 with low-to-
medium noise and for the blue rocks image in Fig. 15 with
very high noise. The additional performance does come at an
increased, though still competitive, processing time. In the
previous work (Treece, 2016), Bitonic was only better than
NLM and Diffusion in a few specific cases, most notably for
varying noise, whereas Bitonic SV now outperforms both of
these linear alternatives for medium to high noise levels, pro-
ducing distinctly sharper images, as in Fig. 16.

In contrast, the addition of a data threshold to both Bitonic
and Bitonic SV has a strong effect on the performance in
lower noise scenarios. This is apparent in the numerical re-
sults in Tables 1 and 2, but particularly clear from the SSIM
results in Fig. 8. Both Bitonic T and Bitonic SVT offer
much better SSIM improvement at low noise than their non-
thresholded counterparts, but tend to the same performance
at higher noise. Bitonic SVT outperforms NLM at all noise
levels, and generates less distracting characteristic patterns.
This is clear in the synthetic shapes image in Fig. 10 but is
also apparent in natural images, for instance the monarch in
Fig. 14. In these examples Diffusion also generates a visually
pleasing result, though both this and Guided fail to do so at
most other noise levels. Guided is, however, extremely fast,
and does have good performance at the lowest noise levels.

The improvements in Bitonic SVT are not, however, suffi-
cient to achieve better SNR and SSIM results than BM3D,
which is the strongest performer, except at the highest
noise levels. Here, the addition of the Bitonic MV2 multi-
resolution framework to Bitonic SVT allows it to outperform
even BM3D (see Tables 1 and 2), though at the cost of dou-
bling the processing time. In contrast, Bitonic MV1 offers

https://homepages.cae.wisc.edu/~ece533/images/
http://decsai.ugr.es/cvg/CG/base.htm
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Table 1: Signal to noise ratio (SNR), Structural Similarity (SSIM) and processing times for images with added Gaussian
noise σ. The best three algorithms in each case are highlighted in bold, with the rank given by the superscript.

Noise σ 0.01 0.04 0.16 0.64
SNR SSIM Time SNR SSIM Time SNR SSIM Time SNR SSIM Time
dB secs dB secs dB secs dB secs

boat (512 x 512, grey)
Original 34.63 0.965 - 22.57 0.682 - 10.55 0.199 - −0.42 0.025 -
BM3D 35.821 0.9761 1.75 28.381 0.8901 1.92 22.151 0.7301 2.53 16.121 0.4992 2.58
NLM 34.63 0.965 0.12 27.552 0.8672 1.21 20.69 0.631 2.51 15.00 0.447 66.33
Diffusion 35.462 0.9722 0.48 27.01 0.859 0.33 20.39 0.638 0.11 15.71 0.484 0.60
Guided 35.103 0.968 0.06 26.91 0.857 0.04 19.19 0.526 0.04 12.47 0.172 0.08
Anisotropic 34.47 0.965 0.09 26.37 0.852 0.10 20.87 0.669 0.21 15.66 0.4923 0.68
Bitonic 34.47 0.965 0.17 25.97 0.825 0.16 19.98 0.638 0.18 15.63 0.482 0.23
Bitonic T 34.53 0.968 0.32 26.60 0.851 0.22 20.12 0.639 0.26 15.69 0.480 0.28
Bitonic SV 34.47 0.965 0.46 26.81 0.854 0.76 21.24 0.683 2.14 15.72 0.482 5.23
Bitonic SVT 34.94 0.9703 2.31 27.13 0.8643 1.29 21.27 0.683 2.36 15.72 0.482 5.32
Bitonic MV1 34.94 0.9703 2.31 27.133 0.864 1.58 21.373 0.6853 1.70 15.973 0.486 4.82
Bitonic MV2 34.94 0.9703 2.31 27.06 0.860 3.04 21.382 0.6912 3.60 16.082 0.5001 7.87

shapes (128 x 128, grey)
Original 36.75 0.943 - 24.72 0.601 - 12.75 0.190 - 1.78 0.023 -
BM3D 46.881 1.0001 0.08 39.001 0.9951 0.09 27.351 0.9121 0.13 17.781 0.6151 0.13
NLM 44.91 0.996 0.07 34.70 0.976 0.33 22.49 0.751 0.33 16.77 0.543 3.92
Diffusion 41.93 0.984 0.05 34.41 0.974 0.05 22.10 0.732 0.03 17.533 0.5923 0.05
Guided 43.22 0.993 0.01 30.88 0.898 0.00 21.42 0.526 0.01 14.49 0.179 0.03
Anisotropic 36.61 0.943 0.03 29.18 0.928 0.03 23.46 0.800 0.04 17.06 0.6082 0.07
Bitonic 40.78 0.988 0.03 30.61 0.916 0.02 22.01 0.715 0.03 17.11 0.586 0.03
Bitonic T 46.05 0.9992 0.04 33.69 0.977 0.04 22.03 0.715 0.04 17.33 0.572 0.04
Bitonic SV 43.32 0.997 0.10 34.87 0.976 0.11 25.34 0.871 0.26 17.08 0.520 0.34
Bitonic SVT 46.862 0.998 0.34 37.31 0.984 0.26 25.36 0.869 0.30 17.08 0.520 0.32
Bitonic MV1 45.55 0.997 0.31 38.033 0.9843 0.22 25.753 0.8853 0.41 17.16 0.542 0.40
Bitonic MV2 46.593 0.9983 0.68 38.972 0.9902 0.46 26.542 0.9082 0.43 17.572 0.579 0.42

house (256 x 256, grey)
Original 35.10 0.948 - 23.11 0.592 - 10.99 0.157 - 0.09 0.021 -
BM3D 37.951 0.9791 0.46 31.571 0.9231 0.49 25.601 0.8311 0.61 17.561 0.6252 0.56
NLM 36.11 0.969 0.10 30.322 0.8932 0.26 22.69 0.759 2.45 15.67 0.560 15.59
Diffusion 37.002 0.970 0.10 29.01 0.873 0.07 21.49 0.723 0.04 16.68 0.601 0.10
Guided 36.703 0.968 0.01 28.31 0.866 0.01 20.43 0.507 0.01 13.21 0.166 0.01
Anisotropic 34.95 0.946 0.03 28.60 0.868 0.06 22.60 0.765 0.13 16.26 0.6243 0.26
Bitonic 34.95 0.946 0.06 28.40 0.855 0.05 21.65 0.716 0.06 16.24 0.611 0.07
Bitonic T 36.15 0.969 0.06 28.45 0.873 0.06 21.44 0.722 0.08 16.66 0.595 0.06
Bitonic SV 35.55 0.960 0.12 29.54 0.878 0.29 23.80 0.797 1.25 16.81 0.599 1.41
Bitonic SVT 36.41 0.9702 0.62 29.60 0.8863 0.53 23.86 0.793 1.24 16.81 0.599 1.41
Bitonic MV1 36.41 0.9702 0.53 29.613 0.885 0.87 24.053 0.7973 1.21 17.353 0.621 1.20
Bitonic MV2 36.41 0.9702 0.53 29.56 0.885 1.65 24.402 0.8072 1.78 17.432 0.6541 2.37

varying (168 x 168, grey)
Original 13.14 0.565 -
BM3D 29.441 0.9681 0.24
NLM 18.85 0.752 0.02
Diffusion 18.79 0.734 0.01
Guided 19.08 0.748 0.00
Anisotropic 21.46 0.859 0.03
Bitonic 19.93 0.798 0.04
Bitonic T 19.93 0.798 0.03
Bitonic SV 24.05 0.922 0.40
Bitonic SVT 24.05 0.922 0.42
Bitonic MV1 24.643 0.9323 0.47
Bitonic MV2 25.392 0.9482 0.58
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Table 2: Signal to noise ratio (SNR), Structural Similarity (SSIM) and processing times for images with added Gaussian
noise σ. The best three algorithms in each case are highlighted in bold, with the rank given by the superscript.

Noise σ 0.01 0.04 0.16 0.64
SNR SSIM Time SNR SSIM Time SNR SSIM Time SNR SSIM Time
dB secs dB secs dB secs dB secs

fruits (512 x 512, colour)
Original 36.09 0.982 - 24.45 0.793 - 12.47 0.262 - 1.40 0.043 -
BM3D 38.631 0.9871 3.57 32.111 0.9361 3.31 26.661 0.8401 6.57 18.553 0.685 4.37
NLM 36.67 0.980 0.20 30.582 0.9242 2.64 25.23 0.806 14.44 17.55 0.651 192.48
Diffusion 37.692 0.9862 2.51 29.98 0.923 0.99 23.27 0.774 0.50 17.64 0.671 2.48
Guided 37.44 0.981 0.12 29.83 0.920 0.09 21.93 0.697 0.09 14.62 0.297 0.14
Anisotropic 36.29 0.982 0.17 29.48 0.919 0.24 24.26 0.812 0.66 18.17 0.684 1.70
Bitonic 36.29 0.982 0.47 29.14 0.908 0.46 22.94 0.775 0.51 17.69 0.671 0.70
Bitonic T 37.25 0.984 0.67 29.82 0.919 0.63 23.30 0.778 0.66 17.72 0.670 0.64
Bitonic SV 36.29 0.982 1.17 30.25 0.920 2.14 25.17 0.822 4.80 18.49 0.6873 8.51
Bitonic SVT 37.463 0.9863 3.22 30.51 0.9243 3.19 25.24 0.823 5.06 18.49 0.6873 8.53
Bitonic MV1 37.463 0.9863 3.17 30.553 0.923 3.83 25.423 0.8243 5.34 18.902 0.6912 8.08
Bitonic MV2 37.463 0.9863 3.15 30.38 0.924 5.39 25.512 0.8282 8.14 19.021 0.7001 13.95

monarch (512 x 768, colour)
Original 33.01 0.981 - 21.16 0.784 - 9.23 0.297 - −1.79 0.062 -
BM3D 37.471 0.9882 4.61 31.091 0.9691 4.98 23.931 0.9211 9.92 15.211 0.7571 6.66
NLM 35.13 0.986 1.26 27.85 0.9632 10.17 21.892 0.890 41.64 13.18 0.661 120.77
Diffusion 35.333 0.9891 3.85 27.84 0.956 2.32 19.81 0.839 0.80 13.54 0.710 3.06
Guided 35.702 0.987 0.16 27.25 0.948 0.13 18.26 0.739 0.14 10.93 0.328 0.21
Anisotropic 33.04 0.981 0.30 26.19 0.943 0.39 20.68 0.870 0.77 13.99 0.717 1.62
Bitonic 33.04 0.981 0.70 26.11 0.933 0.70 19.09 0.843 0.73 13.63 0.704 0.95
Bitonic T 34.47 0.987 0.86 27.19 0.953 0.94 19.46 0.847 1.04 13.63 0.704 0.89
Bitonic SV 33.12 0.985 1.40 27.10 0.956 3.59 21.56 0.895 5.76 14.16 0.725 8.86
Bitonic SVT 34.57 0.9873 4.21 27.88 0.960 4.86 21.60 0.896 7.31 14.16 0.725 8.88
Bitonic MV1 34.57 0.9873 4.11 27.933 0.960 5.12 21.82 0.8963 7.70 14.752 0.7293 8.68
Bitonic MV2 34.57 0.9873 4.13 28.022 0.9613 10.69 21.873 0.9002 12.02 14.743 0.7472 17.21

blue rocks (730 x 1024, colour)
Original 34.23 0.984 - 22.45 0.817 - 10.54 0.343 - −0.51 0.060 -
BM3D 37.241 0.9931 8.84 29.221 0.9571 9.04 22.761 0.8391 18.44 15.813 0.6221 18.88
NLM 35.22 0.987 7.69 26.93 0.938 7.49 21.363 0.782 41.16 14.76 0.560 369.29
Diffusion 35.702 0.990 7.18 26.69 0.927 2.82 19.84 0.738 1.45 15.05 0.588 7.25
Guided 35.623 0.988 0.34 26.56 0.925 0.23 19.05 0.691 0.24 12.22 0.310 0.50
Anisotropic 34.31 0.984 0.81 25.70 0.912 0.94 20.88 0.783 2.63 15.31 0.600 4.48
Bitonic 34.31 0.984 1.74 24.86 0.893 2.12 19.59 0.731 2.62 15.14 0.587 2.36
Bitonic T 35.10 0.990 2.82 26.21 0.922 2.71 19.75 0.737 2.83 15.14 0.587 2.53
Bitonic SV 34.31 0.984 3.63 26.25 0.921 4.64 21.16 0.798 11.10 15.40 0.600 22.20
Bitonic SVT 35.32 0.9902 16.61 27.17 0.9402 8.81 21.19 0.800 11.97 15.40 0.600 22.47
Bitonic MV1 35.32 0.9902 16.55 27.202 0.9403 11.20 21.32 0.8033 12.54 15.882 0.6103 21.02
Bitonic MV2 35.32 0.9902 16.46 27.183 0.939 22.23 21.432 0.8062 20.64 16.021 0.6222 35.70

south sound (680 x 1024, colour)
Original 34.52 0.974 - 22.80 0.721 - 10.78 0.180 - −0.30 0.023 -
BM3D 40.631 0.9901 9.81 34.871 0.9681 10.93 29.071 0.9371 18.51 19.323 0.832 12.17
NLM 38.343 0.985 7.09 32.842 0.9622 74.91 26.81 0.912 132.89 18.87 0.816 538.52
Diffusion 37.81 0.9882 6.87 31.69 0.958 5.16 24.68 0.895 3.55 18.67 0.829 7.36
Guided 38.512 0.986 0.25 30.63 0.948 0.23 22.07 0.728 0.27 13.88 0.281 0.29
Anisotropic 36.76 0.985 0.39 31.13 0.954 0.97 25.90 0.910 2.48 19.12 0.8492 6.46
Bitonic 36.61 0.983 1.56 30.55 0.951 1.98 24.81 0.895 2.11 19.04 0.845 3.17
Bitonic T 37.67 0.9873 2.54 31.04 0.953 2.51 24.87 0.892 2.71 18.81 0.832 2.28
Bitonic SV 36.90 0.983 4.15 31.90 0.958 6.68 26.63 0.9183 17.85 19.26 0.846 28.77
Bitonic SVT 37.53 0.986 8.17 31.94 0.958 11.56 26.58 0.916 18.84 19.26 0.846 28.75
Bitonic MV1 37.53 0.986 8.05 31.98 0.958 11.66 27.043 0.917 17.25 19.842 0.8483 30.88
Bitonic MV2 37.53 0.986 8.09 32.133 0.9593 19.25 27.122 0.9202 34.15 19.981 0.8551 44.74
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(a) No added noise (c) Diffusion (e) Guided (g) Bitonic (i) Bitonic SV

(b) 16.5 dB SNR (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 9: Results for noise in (b) added to section of ‘boat’ image in (a): see Table 1 for further details.

(a) No added noise (c) Diffusion (e) Guided (g) Bitonic (i) Bitonic SVT

(b) 24.7 dB SNR (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 10: Results for noise in (b) added to ‘shapes’ image in (a): see Table 1 for further details.
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(a) No added noise (c) Diffusion (e) Guided (f) Bitonic (i) Bitonic SVT

(b) 11.0 dB SNR (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 11: Results for noise in (b) added to section of ‘house’ image in (a): see Table 1 for further details.

(a) No added noise (c) Diffusion (e) Guided (g) Bitonic (i) Bitonic SV

(b) Varying noise (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 12: Results for noise in (b) added to ‘varying’ image in (a): see Table 2 for further details.
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(a) No added noise (c) Diffusion (e) Guided (g) Bitonic (i) Bitonic SVT

(b) 12.5 dB SNR (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 13: Results for noise in (b) added to section of ‘fruits’ image in (a): see Table 1 for further details.

(a) No added noise (c) Diffusion (e) Guided (g) Bitonic (i) Bitonic SVT

(b) 15.2 dB SNR (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 14: Results for noise in (b) added to section of ‘monarch’ image in (a): see Table 2 for further details.
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(a) No added noise (c) Diffusion (e) Guided (g) Bitonic (i) Bitonic SV

(b) −0.5 dB SNR (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 15: Results for noise in (b) added to section of ‘blue rocks’ image in (a): see Table 2 for further details.

(a) No added noise (c) Diffusion (e) Guided (g) Bitonic (i) Bitonic SV

(b) 4.9 dB SNR (d) Anisotropic (f) NLM (h) BM3D (j) Bitonic MV2

Figure 16: Results for noise in (b) added to section of ‘south sound’ image in (a): see Table 2 for further details.
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Figure 17: Processing times for the SV bitonic filter. These are for a single 512×512 colour image, for both histogram-based
and sorting-based implementations, based on the average of ten results. On the left is the morphological opening which forms
the basis of the SV bitonic filter. The dashed lines show a fixed (single mask) filter, but with the SV framework: there is a
considerable overhead in storing region indices and checking for mask locations. However the subsequent trialling of up to
32 masks (dash-dot lines) is much less significant. The middle graph shows the components of the bitonic and SV bitonic:
whilst the anisotropic Gaussian is much slower than the Gaussian, it is still the opening and closing operations that dominate
the time taken for both the bitonic filters. On the right, sorting-based versions of the bitonic are slower, tending to O(l2)
rather than ≈ O(l1.5), in the mask width l.

a slight improvement over Bitonic SVT at most noise levels,
for minimal increase in processing time: in fact Bitonic MV1
often requires a smaller mask size than Bitonic SVT, in which
case the processing time can even be reduced.

The numerical results are not an adequate summary of the
performance, since the characteristic residual noise from each
algorithm is very different, even for similar SNR or SSIM val-
ues. These characteristics can only be seen in images: they
are very visible on the house in Fig. 11. At these noise lev-
els, Diffusion blurs the signal as well as reducing noise, and
the data threshold in Guided either leads to much noise sur-
viving (as shown) or too much blurring. Bitonic has sharper
edges than Diffusion but Bitonic SVT is a very clear improve-
ment. NLM starts to reveal a cross-hatching which results
from finding false patterns in the noise, and BM3D also re-
veals some false patterning across the front face of the house.
Bitonic MV2 has less characteristic noise, though the mask
shape (particularly thin ellipses) is evident in some places;
however there is also slightly less detail than with BM3D.
At a slightly higher noise level, the south sound image in
Fig. 16 also demonstrates the contrast to BM3D. Details of
the crab claw and underside are preserved since the patterns
are sufficiently repeated: Bitonic MV2 shows less detail, but
the edges are very clear and there is little characteristic noise
across the smooth background. This is a direct result of en-
forcing bitonicity across a larger scale due to the increased
noise, but similar features are still visible on close inspection
of the grapes in Fig. 13 for the medium noise case.

The very highest noise levels, as in the blue rocks image
in Fig. 15, reveal the block-based structure on which BM3D
is based, apparent at the oars and along the edge of the boat.
At this level, NLM has poor performance, and prohibitively
long processing times. Bitonic MV2, whilst not preserving

very small features, otherwise performs very well, recover-
ing edges smoothly with limited characteristic noise across
more constant regions. The image in Fig. 12 confirms that
Bitonic SV, like Bitonic, is still very good at handling vary-
ing noise levels. In this case BM3D also performs well, since
the structure is correlated in the horizontal direction, though
horizontal streaks are evident as a result of this.

The Bitonic SV has required several novel developments
with potentially broader applications. These include an effi-
cient implementation of robust SV opening and closing, with
a framework that allows a considerable number of masks to
be tested. Together with the careful analysis of relative cen-
tiles for different shapes, this has enabled mask choice to be
determined from morphological operations, rather than from
a smoothed structure tensor. The local anisotropy derived
from such a tensor has also been improved at corner loca-
tions. Good noise-reduction results have been achieved by
using this robust SV with simple elliptical masks, but the
framework also opens up the possibility of investigating more
complex mask shapes, which may be what is needed to pre-
serve smaller details in the images.

A new formulation has also been presented for non-
iterative directional Gaussian smoothing, which can option-
ally also be thresholded at no additional cost to processing
times. Whilst this technique alone does not perform as well
as when embedded in Bitonic SV, it still has quite reasonable
noise-reduction capability at high noise levels, and is faster
than all but Guided, which is not appropriate in these cases.
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5 Conclusion
The structurally varying bitonic is a considerable improve-
ment on the fixed bitonic for image noise reduction, whilst
increasing the processing time by usually less than an order
of magnitude. It is increasingly competitive with linear noise-
reduction algorithms, outperforming non-local means at all
noise levels and the block-matching 3D filter for very high
noise. In such scenarios, the structurally varying bitonic has
less characteristic residual noise and very good edge defini-
tion, with similar processing times, though with some loss
of small scale detail compared to block-matching. The non-
iterative directional Gaussian used in the new bitonic filter
is much faster and yet also has good performance in high
noise. The novel implementation of robust structurally vary-
ing opening and closing operations enables future develop-
ment of the bitonic, and morphological operations more gen-
erally, with more complex mask shapes. Inclusion of data
thresholding within these opening and closing operations has
improved performance in low noise and enables the adoption
of a multi-resolution framework around morphological oper-
ations for high noise.

Implementations of all the novel filters in this paper are
available for Matlab7 and also for Windows in wxDicom8

software.
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