Polynomial Softmax Functions
for Pattern Classification
A. Tuerk, S.J. Young
CUED/F-INFENG/TR 402
February 2001

Cambridge University Engineering Department
Trumpington Street
Cambridge CB2 1PZ
England

E-mail: at2330Qeng.cam.ac.uk, sjy@eng.cam.ac.uk

Abstract

This report discusses softmax functions with polynomial and more general exponents and
investigates the problem of optimising their parameters with regard to the cross-entropy error
function. It is shown that, in this situation, the error surface is always convex and that in
many cases there exists exactly one optimal set of parameters. In addition to these theoretical
results, the practical estimation of the optimal parameter set is implemented using the Newton
algorithm with line search and backtracking. In a number of test cases this algorithm is shown
to converge reliably to the correct results.

Contents

1

2

Introduction
Basic properties of the softmax functions

Strict convexity and the minimisation of the error function
3.1 Convexity of the error function 0oL,
3.2 Minimisation of the error function

Practical parameter reestimation

4.1 The one-dimensional two-class problem
4.2 Higher dimensional 2 class problems
4.3 Higher dimensional multi class problems

Conclusions and further work

12

13
14
18
22

27

1 Introduction

In the neural network literature softmax functions are typically used if the output units of
a neural network have to be interpreted as posterior probabilities. In this situation softmax
functions are the activation units of the final layer [5, 7], and the outputs of the neural net
are therefore given by

exp(ak) (1)

Ej exp(aj)

Here a; is the j-th output of the neural network before applying the softmax function. The
definition of the softmax functions ensures that the network outputs lie between 0 and 1
and that their sum is equal to 1. This justifies their interpretation as probabilities. The
weights of such a neural network are then optimised with respect to the cross-entropy criterion
which results in a tractable reestimation theory [4, 5]. The main motivation for studying
neural networks as input to softmax functions is their great versatility and the possibility of
approximating a function with arbitrary accuracy as long as the neural network has enough
hidden layers and nodes. However, this also means that such a model shares the same problems
as all neural networks. For instance, it is not clear if the error surface has any local minima
which correspond to suboptimal choices of parameters, or if there exists a global minimum
at all. This problem has, for instance, been discussed in [2].

This paper presents an alternative to the combination of general neural networks and
softmax functions in which independent polynomials or more general linear combinations
of non-linear functions are substituted for the network outputs. In [5] an example has been
discussed where the input to the softmax functions was a polynomial, however, this polynomial
depended non-linearly on the model parameters and is therefore not covered by the theory
developed in this report. Polynomials have also been studied in the Volterra connectionist
model [10, 8]. Here the polynomials are directly applied to the observation vectors without
the subsequent use of softmax functions. Since the polynomials can take any values this
means that the problem of assigning proper classification indices to the training data has to
be addressed [11]. This is not necessary for softmax functions because, here, the training data
are labelled, in the usual way, by assigning a probability of 1 to the class the data point belongs
to. Although, as compared to the Volterra model, there is no closed form solution for the
optimal set of parameters of a set of polynomial softmax functions, it will be shown in section
3 that under very general assumptions on the training data the cross-entropy error surface
is always strictly convex and that there exists a unique global minimum. Section 4 discusses
the practical implications of these results and gives several examples of the usefulness of
polynomial softmax functions. It will, for instance, be shown that even if the assumptions in
section 3 are not completely satisfied, it is still possible to find a sequence of softmax functions
that approximate the training data with arbitrary accuracy. Furthermore, polynomials will be
shown to exist that solve classification problems that are normally used to motivate the use of
neural networks with two or more hidden layers. In addition, these polynomials use a similar
number of parameters as a comparable neural network. A final advantage of polynomials
as compared to neural networks as input to softmax functions is that their “topology” is
much simpler. Therefore, to solve a particular classification problem only the degree of the
polynomial has to be considered. Nevertheless, partitioning a classification task can often
give practical advantages and in section 4.3, the possibility of introducing a “topology” into
a set of more general probability functions will be suggested by using algebraic combinations
of polynomial softmax functions.

2 Basic properties of the softmax functions

In this paper softmax functions will be applied to various classification problems. The data
set that defines a K-class classification problem consists of a set of points z,,n = 1,..., N
in the observation space and a set of posterior probabilities p, ; for each point z,, and each
class k =1,...,K. The p, ; therefore have to satisfy

K
an,k =1 (2)
k=1

for each point x,. Such data sets include the classical situation where one has a set of
observations z, that are labelled according to their class-membership. In this case p, is 1 if
k is the label of the class that x, belongs to and 0 otherwise. One can further augment this
data set by adding positive weights w,, to each point z,,. These weights can be interpreted
as the importance of the data point z,, in the classification problem and will later be used in
the definition of the error function. Data sets of this kind will be denoted by (z,p,w) in the
following, i.e.

(z,p,w) = {&n,Ppp,wn:n=1,..., NAk=1,...,K} (3)

and they will be referred to as d-dimensional K-class problems, where d is the dimension of
the z,,. Given a data set (z,p,w), the task is to model the relationship between the z,, and
the p,j as accurately as possible and thereby reliably predict the class membership of the
zp. Here, the relationship between the z,, and the p, ; will be modelled by softmax functions
with polynomial exponents. Later this frame-work will be extended to include exponents of
a more general form. For a K-class problem these softmax functions are defined by

ek (@) B
Lyl tsksEo
Sp(z) =) (4)
ESSTTIONN h=K

where the g;(x) are polynomials, i.e.

L
gi(z) =Y ajat (5)
1=0

Here a;; are the coefficients of the j-th polynomial, L; is its degree, and / can be a multi-index
if the dimension of z is greater than one. The set of all model parameters will from now on
be denoted by a, i.e.

a={aj;:j=1,...,K-1A1=0,...,L;} (6)

It is immediate from (4) that the softmax functions satisfy
K
Y Se(x)=1 and 0<Sp(z)<1 (7)
k=1

for each z. Therefore the numbers Si(z), k£ = 1,..., K constitute a probability distribution
for each z. Before tackling the problem of reestimating the model parameters it is necessary

to define more precisely the criterion which characterises the ideal set of model parameters. In
this work the criterion will be linked to an error function that is the sum of the K-L distances
between the true and the estimated posteriors at each point of the training set, i.e.

B(z,p,a zzpnklog(pg’“)) (8)

n=1k=1

This error function is called the cross-entropy error function and is closely related to the MMI
criterion [1, 12] that is used in speech recognition to train the parameters of a set of hidden
Markov models. Additionally, one can weight the K-L distance in (8) at the individual data
points with the weights of the classification problem w, which results in the following more
general error function.

E(z,p,w,a) = nzlwnz:pnklog< sz)> (9)

This allows the case where the x, are samples of a non-uniform distribution to be handled.
The information about the distribution can be included into the search for an optimal set of
parameters by setting w, to the value of the distribution at z,. In this way, the error function
puts a high weight on errors in areas where the value of the density is high. Assuming that,

0log(0) = 0 (10)

the error function (9) is always positive and equals zero only if the approximating functions
model the training data perfectly. The optimal parameter set a will be the one that minimises
the error function (9). Since the entropy of the probability distribution p,x,k =1,...,K at
each point z, is not affected by changes in the parameter set a, minimising (9) is equivalent
to minimising the following expression

- Z Wn, an klog Sk xn)) (11)
n=1

A necessary condition for a set of parameters a to minimise the error function is that the
gradient vanishes at such a point. For a component a;; in g;(x) the partial derivative of the
error function is given by

0 0 N Dnk
E = n n,k 10
aaj,l (x,p,w,a) 8(1]7 nzlw Zp k g(S (.’L'))
= _an ank IOg (Sk(zn)) (12)
n=1
K-1
= _anzpnk< () 9a llog(1+zeqzwn>>
75 i=1

The gradient of the error function with respect to the model parameters a is therefore given
by

0

VE(z,p,w,a) = {an pn,])aa lq(:cn):jzl,...,K—l/\le,...,Lj}

(13)
Here it was used that a;; is a parameter that appears only in g;(z) and therefore the following
holds

s

8
9ajy

(@) =0 if k#j (14)

Apart from the independence of the parameters of different g;(x)’s, the derivation of equation
(12) did not make use of the special form of the g;(x) and is therefore valid for any function
g;(x) which is partially differentiable with respect to one of its parameters a;;. If ¢;(z) is a
polynomial of the form (5) then equation (12) becomes

l
P8 = S5 s w

This is the [-th moment of the weighted difference between p,, ; and S;(zy). Since the gradient
has to vanish at a local minimum of the error function the moments up to order L of the
weighted difference have to vanish at such a point. Note that the requirement that the
gradient of the error function is 0 has a similar form as the requirement that a polynomial
minimises the sum of square error on the training data. However, since the S;(x) do not
depend linearly on the parameters a;; there is no closed form solution for the optimal set of
parameters in this case. This means that an iterative scheme has to be employed to find a
solution. This will be discussed in section 4.

3 Strict convexity and the minimisation of the error function

This section will investigate some special properties of the error function E(z,p,w,a) that
are important with respect to the optimisation of the parameter set a. In particular it will
discuss matrices that arise as second order derivatives of the error function E(z,p,w,a) and
will analyse them in terms of their associated inner products.

3.1 Convexity of the error function

As can be seen from (12), the second order derivatives of the error function require the
derivatives of the softmax functions. These can be calculated as follows.

dazy " (+ Y et(@)?

For k = j, equation (16) becomes

0 e‘lj(z) (er (:n)) P
_Y ¢, |)
day, 5te) = (1 + i ewnl® 2 (14 SR ean(e))2 3aj,lq]($) (17)

and for k # j equation (16) reduces to

9 s ek (%) a5 (%) 9
k(-’L') - (1 + ZK 1e¢1k(f’3)2 8aj,lq]

ba (@) (18)

Substituting the definitions of the softmax functions, these last two equations can be refor-
mulated as follows

5 (Sk(@) = S(@)*)g7ai(@) : j=k

o Sk(x) = (19)
3l —Sj(x)Sk(x)%j’lqj(x) jF£k

Under the assumption that the following holds

0
——qi(z)=0 20
c’)a]-Jaj,l: QJ() ()

the second order derivatives of the error function E(z,p,w,a) are therefore given by

9 21]:[:1 Wy (Sk(Tn) — Sk(xn)2)3£e’l Qk(xn)aaz,l, a(zn) @ j=k
aliE(xapvwaa) =
RN - quyzl wnSk(xn)Sj (xn)%j’l%(xn)%k’l,‘ﬂc(xn) D j#Ek
(21)
Integrating (20) one can see that the most general g;(z) for which the derivations up until
equation (21) are valid are given by

Z a],l¢j, + ¢]() (22)

Because of (14) a;; and ay y are independent of each other if j # k, and ¢;;(x) and ¢;(z) are
functions independent of the a;;. In keeping with the terminology of polynomials, L; will be
called the degree of ¢;(x). Due to the special form of the g;(z) in (22), equation (21) can be
rewritten as

5 YA wn(Sk(n) — Sk(n)?)dri(Tn)brp(zn) :+ j=k
E(z,p,w,a) = (23)

oa;ak)
5101 — SN Sk ()8 (2n) b1 (@) (wn) G K

For the special case where the g;(z) are polynomials, equation (21) becomes

d S0t wn(Sk(ea) — Se(wn))ait =k
E(z,p,w,a) = (24)

da;jakp ' .
P - Z =1 wnSk(xn)Sj(xn)xiz_H : JFk

Equation (23) gives the components of the second order derivative, which is also called the
Hessian, of the error function F(z,p,w,a) regarded as a function of a. This matrix will be
denoted by H(zx,p,w,a) and abbreviated as H if the particular classification problem (z, p, w)

is not important. For a two class problem with an exponential function g(x) of degree L the
second order derivative of the error function E(z,p,w,a) is given by the following matrix

ZnNzl Cn¢0(xn)2 Eﬁ:l cndo(Tn)o1(zn) - EnNzl cn0(Tn)PL(Tn)
ZnNzl cnP1 (-Tn)¢0(1'n> Zgzl Cn¢1(xn)2 c ZnNzl cn1 (mn)¢L (‘En)

ZnNzl cndL(Tn)do(zn) EnNzl cn®L(zn)do(Tn) -+ ZnNzl CnﬁbL(acn)2

Here the ¢, are defined as follows

Cp = wn(Sl (xn) - Sl(wn)z) = wnSl(xn)SZ(xn) (26)

Since wy, is positive and 0 < Si(x) < 1 holds for all x, the ¢, are always positive. Given this
fact, it is straight forward to show that the matrix H is always positive semi-definite. This
holds because H can be rewritten in the following form

N
H= Zlcné(xn)lq)(xn) (27)

where ®(z,,) is the vector given by

®(2n) = (¢o(@n), - -, $r(2n))’ (28)
Applying the quadratic form that is represented by H to a vector v results therefore in

N
vHY' = Z cn < ®(zpn),v >2 (29)

n=1

where < -,- > is the standard Euclidean inner product. Since the ¢, are positive this shows
that H is always positive semi-definite. If there exist L + 1 linearly independent ®(x,) the
quadratic form H is strictly positive definite. This shows that for a two class problem of
arbitrary dimension the error surface E(z,p,w,a) is always convex and strictly convex if
there are L + 1 linearly independent ®(z,,).

For a multi-class problem where the number of classes is larger than 2 the Hessian of the
error function has a more complex form. For a 3-class problem, for instance, the Hessian is

Hy1 Hio
H = 30
(Hiy Haz) (30)
Here Hi; is an Ly + 1 X Ly + 1 matrix and Hag is an Lg + 1 X Lg + 1 matrix of the form (25),

where L, is the degree of ¢; and Ly is the degree of g3. For matrix Hyq the ¢, which will be
denoted as h,11 are given by

given by

hni1 = cn = wn(Sl(xn) - Sl(xn)2) (31)
and for matrix Has the ¢,, which will be denoted as hy22, are given by

hpo2 = cp = ’wn(SQ(xn) - S2($n)2) (32)

Matrix Hys is an L1 + 1 X Ly 4+ 1 matrix of the following form

Zgzl cn¢0($n)2 Erjyzl cndo(Tn)d1(zn) - Zr]yzl cn®o(Tn)PL, (Tn)
Eﬁ:l cnd1(Tn)do(2n) Zﬁ:l Cn®1 (mn)2 T 2112[21 cn®1(n)PL, (Tn)

Er]zvzl cn Ly (Tn)do(zn) Zgzl endry (Tn)d1(zn) - Eﬁ:l cn@r, (Tn) 9oL, (2n)
(33)
for which the ¢,, in the following denoted as hj12, are given by

hni2 = cp = _wnsl(wn)sé(xn) (34)

To show that matrix H is positive semi-definite it is convenient to decompose it, as in the
case of a two-class problem, into a sum of matrices. The terms of the sum are the matrices
with a fixed index n which will be denoted by H,. These matrices are again block matrices
whose blocks can be derived from matrices Hi1, Hi2 and Hyy. These blocks will be denoted
as Hp11, Hpie and Hygs in the following. Matrix Hy,11 can therefore be written as

Hpi1 = hp11®1(z0) @1 (zn) (35)
and H,,99 is given by
Hpoo = hpao®a(zn) ®2(zr) (36)
where ®; and ®, are defined as follows
®1(zn) = (P1,0(2n),---,01,L,(Tn)) (37)
®a(zn) = (¢20(2n),---,02,L,(%n)) (38)
(39)

Therefore, it follows that Hj,12 is given by
Hp12 = hn12®1(zn) @2(z) (40)
The positive semi-definiteness of H, will be shown by proving that the following holds
vHpv' >0 (41)

where v is an arbitrary vector of dimension L; + Ly + 2. To simplify the problem this vector
will be written as

v = (v1,v2) (42)

where v; are the first Ly + 1 components of vector v and v are the remaining Lo + 1 compo-
nents. Proving that (41) holds, therefore amounts to showing that the following is true

hnll < @1(.%‘”),’01 >2 +2hn12 < @1(:13“),’01 > @2(3}“),1}2 > +hn22 < @2(.’271),’02 >22 0 (43)

Since the inner products < ®i(z,),v1 > and < ®(z,),vy > can take any value, proving
equation (43) is equivalent to showing that the following matrix is positive semi-definite.

h, = (hni1 hni2) (44)

hni2 hp22

10

These considerations can easily be generalised to a K-class problem with more than 3 classes.
In this case, proving that the individual terms of the second order derivative are positive
semi-definite is equivalent to showing that matrix h,, = (hmj)f’{j_:ll is positive semi-definite.
Here the h,;; are given by

i = ' (45)
—Si(wn)Sj(zn) ¢ i#j

Matrix h,, is diagonally dominant since

lhniil = Si(xn) — Si(za)? = Si(zn) Y. Si(za)

=1,
K-1 K-1
> Si(za) D Sj(za) = D |haijl (46)
=L =1

and since its diagonal elements are positive the matrix is positive definite. If there exists a
j with 1 < j < K — 1 for which there are L; + 1 data points z, such that the ®;(z,) are
linearly independent then the second order derivative of the error function E(z,p,w,a) is
positive definite. Therefore, the following Theorem has been proven

Theorem 1 The error function E(z,p,w,a) of a K-class problem of arbitrary finite dimen-
sion, regarded as a function of the model parameters a, is always conver. If there exists a j
with 1 < j < K — 1 for which there are at least Lj + 1 data points x, such that the ®;(xy,)
are linearly independent then the error function E(x,p,w,a) is strictly convez.

If the observation space is one-dimensional and the functions g;(x) are polynomials then the
linear independence of L; + 1 vectors ®;(xy,) means that the Vandermonde matrix has to be
non-degenerate. This again is equivalent to the requirement that there are L; + 1 different
Zp. Therefore the following corollary holds

Corollary 1 The error function E(x,p,w,a) of a one-dimensional K-class problem is strictly
convez if the gj(x) are polynomials and there exist at least min; L; + 1 different zy,.

The operations that are necessary to calculate H, involve the calculation of the products
®;(xp) ®j(xn) and of the hp;j. If the functions ¢;;(x) are the same for different j then only
the products ®;(z,)'®;(z,) have to be calculated for the j whose function g;(x) has the
highest degree. The total number of operations for these products in one dimension and for
polynomial exponents is 2max; L;+1. Adding the number of operations necessary for the hy;;
shows that the total number of operations necessary to calculate H, for a one-dimensional
K-class problem with polynomial exponents is

K(K —1)

2 L:+1
m]ax]—i— + 2

(47)
This means that the number of operations to calculate H,, is of the order of K2 and of the
order of max; L;, which is a considerable reduction in the number of necessary operations

as compared to a general neural network where it is of the order of the squared number of
weights [3, 6].

11

3.2 Minimisation of the error function

The previous section showed that the error function for a multi-class problem of arbitrary
finite dimension is always convex. This means that the following holds

)\IE(xapawaal) +- 4+)\nE(xap’waan) > E(x,p,w,)‘lal +---+)\nan) (48)

where a; are arbitrary points in the parameter space and Ay + --- + A, = 1. If the error
function is strictly convex the above inequality is strict. This implies that there can at most
exist one local minimum. Once it has been shown that there exists a local minimum of
the error function it therefore follows that this is a unique global minimum. To show the
existence of a local minimum of the error function it is sufficient to prove that there exists
a local minimum along each direction in the parameter space. This together with the fact
that the set of directions is compact and taking the minimum of the error function along each
direction is a continuous function will show that there exists a global minimum of the error
function. To show that there exists a local minimum along each direction it is necessary to
observe that the error function restricted to a particular direction in parameter space becomes
a one-dimensional strictly convex function. It is therefore sufficient to show that the error
function tends to infinity if the one-dimensional parameter goes to infinity or minus infinity.
For a K-class problem of arbitrary finite dimension this can be shown as follows. Let g;(z),
j=1,..., K — 1, be an arbitrary set of polynomials such that not all of them are zero, then
the direction specified by the g;(z) is the set of polynomials given by cg;(z), j =1,..., K —1,
where c is a real number. Suppose there exists an z,, such that g;(z,) # 0 for at least one
j. Without restricting the generality of the proof one can assume that ¢;(z,) > 0. Now let J
be defined by

J = arg max g (@n) (49)

Then ¢j(z,) > 0 and therefore the following holds true.
€47 (n)

LT et

—1 for ¢— o0 (50)

This implies that S;(z,) — 0 if j # J. Similarly, one has
ecas (zn)

L+ 525 erlen)

=0 for ¢— — (51)

This implies that for |c| — oo there is always one j such that S;(z,) converges to zero. For
such a j the following therefore holds if p, ; # 0.

DPn,j
i 1 : — 52
Pn,j 108 (Sj(xn)> oo ()
And as a result the error function E(z,p,w,a) tends to infinity. Together with Theorem 1
the following theorem has therefore been proved

Theorem 2 Let (z,p,w) be a multi-class problem of arbitrary finite dimension. Suppose none
of the py ; are zero and that there exists for each set of functions g;(x), j =1,..., K —1, and
each x,, at least one j for which qj(xy,) # 0 then there exists a point a in the parameter space
which minimises E(x,p,w,a). If, furthermore, there exists at least one j for which there
are Lj + 1 data points x, such that the ®;(xy) are linearly independent then this solution is
unique.

12

Since a one-dimensional polynomial g;(z) of degree L; has only L; roots, together with
Corollary 1, Theorem 2 immediately implies the following

Corollary 2 Let (z,p,w) be a one-dimensional K-class problem and suppose there exist at
least min; L; + 1 different x,, such that p,; # 0 for all the j. Then there exists exactly one
point a in the parameter space which minimises E(x,p,w,a).

The requirement that p, ; # 0 for all j is essential in the above statements. As will be shown
in the next section, one cannot expect to find a global minimum of the error function if there
are p, ; which are zero. In this case, however, experimental evidence suggests that there still
exists an approximate solution that is unique to within multiplication by a constant.

4 Practical parameter reestimation

This section will discuss some of the problems that are involved in determining an optimal set
of parameters in practice. Although Theorem 2 guarantees the existence of a unique solution
to the optimisation problem for a very general class of functions g;(x) the functions that will
be considered in this section are exclusively polynomials.

The proof of Theorem 2 in the last section was not constructive. Initially, it is therefore
not clear how to find the global minimum that is guaranteed by this theorem. There are
a number of standard optimisation schemes, like conjugated gradients and gradient descent
that could be used for this task. The method investigated here is the Newton algorithm with
line search and backtracking as described in [9]. This algorithm will be used to find a solution
of the equation

VE(z,p,w,a) =0 (563)

which characterises the global minimum of the error function E(z,p,w,a). Now one step of
the Newton iteration with line-search is given by

ajt+1 = 4§ —)\(ai)H(x,p,w,a)_IV(E(w,p,x, a)) (54)

where A(a;) is a positive variable that determines how far one moves in the Newton direction
H(z,p,w,a) 'VE(w,p,z,a), and, as before, H(z,p,w,a) is the second order derivative of
the error function. The variable A is required to decrease the length of the gradient in going
from a; to a; 3 and will therefore quite often be lower than 1. On the other hand, to avoid
slow or even spurious convergence, A is not allowed to become arbitrarily small. In the
Newton algorithm, it is essential that H(x, p, w,a) is well conditioned to allow for an effective
matrix inversion. This might not be the case if the x, have high values and the degrees of
the exponential polynomials are large. In this situation the absolute values of the entries
in different rows of H might vary by some orders of magnitude. This undesirable effect can
be avoided by rescaling the data points x,. In principle, one can apply an arbitrary affine
linear transformation A to the x, and use the Newton iteration for this transformed problem.
This results in a set of polynomials g; from which the polynomials of the original problem
can be derived by substituting g;(x) by g;j(Az). Since A was assumed to be affine linear the
function ¢;(Az) is again a polynomial. Thanks to this observation the Newton algorithm can
be efficiently applied to most practical situations.

In the following, the reestimation of the softmax parameters will be illustrated with the
help of several examples. First, a number of one-dimensional examples will be discussed that

13

are intended to show basic properties of the softmax functions. Subsequently, the reestimation
procedure will be applied to two-dimensional classification tasks with a special focus on the
comparison of softmax functions and neural networks. The data points x, in all of these
experiments were chosen to lie on an equidistant grid. This is, however, not necessary for
the reestimation to work. Such data points were only chosen to investigate the basic ability
of softmax functions to approximate an arbitrary posterior. The p, ; in these examples were
either 0 or 1. This corresponds to the usual situation where the training data x,, are labelled
according to their class membership. The examples will show that the requirement in Theorem
2, that the p, ; are not zero, was essential because the sequence of a; does not converge in
this case. However, the value of the error does converge to zero and therefore the Newton
algorithm is still applicable in this situation.

4.1 The one-dimensional two-class problem

In the following experiments, the training data were generated by prescribing two posterior
probabilities to a set of 2000 equidistant points over an interval ranging from —10 to 10. One
of the posteriors was chosen to be constant and equal to 1 in the interval from —5 to 5 and
was set to zero elsewhere. The other was determined by the requirement that both posteriors
sum to one at each data point. Each of the following figures shows only the first posterior
probability.

Figure 1 shows approximations of a true posterior (solid line) by softmax functions that
were derived from an initial guess by a sequence of Newton iterations of the form (54). As can
be seen from figure 1, the approximations become increasingly accurate with an increasing
number of iterations. The initial guess in this experiment was the polynomial

Pinit(T) = (55)

which gives the softmax function in the upper graph of figure 1 where it is represented by
the dotted curve. Since the initial polynomial was chosen at random the corresponding
softmax function is quite far from the posterior it is meant to approximate. Although the
initial polynomial had degree one, the reestimation procedure was required to produce a
polynomial of degree two. The upper graph in figure 1 shows that already after 5 iterations
the estimated posterior had changed from an asymmetric to a symmetric shape. Until about
iteration 15 this estimate changed only little which was also reflected by a small value of
A(a) in (54) during these iterations. Only after iteration 15 did the reestimation procedure
start to take larger steps in the Newton direction again and after 30 iterations there was
hardly any difference between the true and the estimated posterior. This was also reflected
by the value of the error function which dropped from 5164.49 for the initial guess to 14.84
for the approximating softmax function after 30 iterations. The estimated polynomial after
30 iterations was

pso(z) = 2.21442z% + 0.02222z — 55.35773 (56)

Although the sequence of softmax functions converges, Theorem 2 cannot be applied in
this case because all the posterior probabilities p;, ; are either 0 or 1. It is therefore not
immediately clear if there exists a unique solution in the parameter space. And indeed,
further iterations show that the polynomial parameters do not converge. After 60 Newton
iterations the estimated polynomial was

peo(z) = 502.1275522 + 5.02127z — 12553.18762 (57)

14

probability
o
(&)

/ \
/) \\,\
0 | o | a |
-10 -5 0 5 10
X axis
1t _ —]
e T TiE T N
/ - N \
> ;o . o
= /s \
So5t / N A
o / \
o /)
o ‘1 W
R N . NN
_ -7 - NS
0) 3 | | |
-10 -5 0 5 10
X axis

Figure 1: Sequence of approximations to posterior probability. In both graphs the solid line is
the true posterior. In the upper graph the dotted line is the initial posterior, the dash-dotted
line and the dashed line are the approximations after 5 respectively 10 Newton iterations. In
the lower graph the dotted, dash-dotted and dashed line are the approximations after 15, 20
and 25 Newton iterations, respectively.

This is roughly 226 - p3o and therefore the second 30 iterations amount to a much larger
change in the polynomial parameters than the first 30 iterations. However, the change in
the value of the error function is relatively small. After 60 iterations this value was 4.99 -
107!, Even though this is a very small value it could still have been further decreased by
multiplying peo with a high positive number. The reason for this behaviour is the result of the
relationship between the softmax function and the exponential polynomial in this example
which is illustrated by figure 2. Here the dashed line shows the estimated polynomial after
30 iterations and the solid line gives the true posterior. The polynomial has been scaled
to fit to the axes of the plot. The true maximum of the polynomial on this interval was
166.3 and was attained at the boundaries. As can be seen, the polynomial vanishes at the
discontinuities of the input posterior where the average is 0.5. This is the main requirement
for the polynomial of the approximating softmax function, because the set of points where
g(x) vanishes is the set of points where the two softmax functions are 0.5 and has therefore
to coincide with the decision boundary of the classification problem. Once this relationship
between the points where g(x) = 0 and the decision boundary of the classification problem
has been established, every multiple ¢g(x) of the polynomial, where ¢ > 0, will also satisfy
this requirement. Furthermore, since the values of the softmax function are always strictly
higher than 0 and strictly lower than 1 every multiple cg(z), with ¢ > 0, will result in an

15

approximation of the true posterior which becomes better with increasing c¢. This shows that
in the current example the solution to the classification problem is the point at infinity of the
line cg3p(z) in the parameter space.

o o o
N (o2} (e¢]
T T T
| | |

probability / scaled polynomial

o
N
T
L

-10 -5 0 5 10
X axis

Figure 2: Input posterior probability (solid line) and scaled estimated polynomial of softmax
function (dashed line) after 30 iterations.

It was mentioned before that the reestimation procedure in the current example was
required to produce a polynomial of degree two. Figure 3 shows that the choice of the degree
is important. The upper graph in figure 3 shows the result of the reestimation procedure
when the polynomial was restricted to have degree one. After 30 iterations the reestimation
procedure had produced the following result

p3o(z) = 2.99550 - 104z + 9.99501 - 10~* (58)

This polynomial is almost identical zero. The least biased approximation in this case is
therefore a posterior probability that is 0.5 for every value of . The opposite problem occurs
when the degree of the polynomial is too high. If the reestimation procedure is required to
produce a polynomial of degree three one arrives after 30 iterations at the following polynomial

p3o(x) = —3.68155z° + 252.71314x> + 94.56630z — 6318.74809 (59)

As can be seen from the second graph in figure 3, the corresponding softmax function models
the input posterior perfectly over the interval from —10 to 10, i.e. it is almost exactly one
between —5 and 5 and zero elsewhere, but the approximation produces an artifact at the
value x = 68.65. Although subsequent iterations move the artifact further away from the

16

probability
o
(&)
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|

0 1 1 1
-10 -5 0 5 10
X axis
l’ == = 71 ‘7‘7‘
| | |
z : : |
= I
%057 : : b
5 | | |
S : : |
|
| | |
o~ T T T T]
-10 0 10 20 30 40 50 60 70
X axis

Figure 3: In the upper graph the polynomial in the softmax function was required to have
degree not greater than 1. In the lower graph the polynomial was allowed to have degree up
to 3.

interval' it can never be removed completely. The reason for this behaviour lies in the fact
that, as mentioned before, the reestimation forces the polynomial to be zero at the decision
boundary of the classification problem. This means that, in the current example, the third
order polynomial of the approximating softmax function has to have two real roots and
therefore the third root has to be real as well, since all the polynomial coefficients are real.
The third root, however, is not associated with any of the discontinuities of the input posterior.
This example shows that the correct degree of the polynomial in a one-dimensional two class
problem can be found by counting the number of points in the decision boundary of the
classification problem. At these points the polynomial ¢(z) has to vanish. The correct degree
of the polynomial is therefore equal to the number of points in the decision boundary. In the
current example, this degree can also be characterised as the smallest degree of a polynomial
such that the reestimation procedure produces a series of softmax functions whose error
function values converge to zero.

In the previous example the weights w, of the error function E(z,p,w,a) were assumed
to be constant. Figure 4 shows the effect of introducing weights w, which are samples
of Gaussian densities with fixed mean # = 0 and varying dispersion. In this figure the
posterior probability, which is represented by the solid line, was approximated by a softmax
function with a polynomial of degree two. Since, according to the considerations above, the

Lafter 40 iterations it is located at z = 122.98, after 50 at = = 177.30

17

approx approx
\ ___| weights \ weights

0.5 \// 7<\ 1 0.5 }t,/w\\

0 o= -
-10 0 10 -10 0 10
1F--- - 1--— -

Ay ZRe
/ . weights
/ ' weights / : = r‘ g

0.5 N / 1 0.5 J— \// N
approx K / bp \ s
/.' // I

of—=2" S 0 - LBl
10 0 10 10 0 10

Figure 4: Approximation of posterior with softmax functions with second degree polynomial
and uniform and non-uniform weights w,. The weights in this graph are represented by the
dash-dotted lines. These are Gaussians which are centered around z = 0. The approximations
are the dashed curves.

degree of the polynomial has to be 4 for a perfect approximation, the approximating softmax
functions in these examples can only be suboptimal. Figure 4 shows how the concentration
of the weights in a particular area of the training interval influences the approximations.
As one can see, decreasing the variance of the Gaussian density increases the quality of the
approximation close to the mean while more evenly distributed weights result in a better
overall approximation.

4.2 Higher dimensional 2 class problems
The following examples will discuss the softmax parameter reestimation for two-dimensional

classification problems. Again the exponential functions are polynomials. In the context of a
two-dimensional problem this means that the polynomials are given by

q(z1,22) = ago + a10z1 + ap1z2 + 02017% + an1z122 + 0021‘% +oee (60)

The degree of such a polynomial is defined to be the smallest number L such that a;,;, =0
for i1 + ia > L. Equation (60) shows that the parameters of a two-dimensional polynomial

18

can be arranged in the form of a triangular matrix as follows

Ag) Q10 Q20 -+ cccee i ado

apr ai1 AaA21 ..o e.o...n a(d_l)l 0

ap2 ai2 a2 - Gg-1)2 0 0 (61)
aod 0 0 0

Here the degree of the polynomial was assumed to be L. A two-dimensional polynomial of
degree L therefore has (L + 1)(L + 2)/2 parameters. The determination of the proper degree
of the polynomial is not as straight-forward for a higher dimensional classification problem as
it is in one dimension. This is the case because in higher dimensions the decision boundary
of the classification problem is not given by a set of discrete points. Usually, in m dimensions
the decision boundary is given by an m — 1 manifold. Such manifolds can be described locally
by the following equation

flz)=0 (62)

where f(z) is a scalar valued function. Here, the term “locally” means that for each point z in
the observation space there exists a neighbourhood U such that the decision boundary in this
neighbourhood is given by equation (62). Such manifolds are usually categorised according
to the properties of the functions f(z) in (62). If f(z) can always be chosen to be analytic,
for instance, the manifold is called analytic. Analyticity means that at each point in U the
function f(x) can be expanded into an exponential series. Consequently, analytical manifolds
can be locally approximated by polynomial manifolds. This means that the set of points z
that satisfy equation (62) can be approximated by the set of points x that satisfy

q(z) =0 (63)

where ¢(z) is a polynomial. Since equation (63) also defines the decision boundary for a two-
class problem with polynomial softmax functions, one might expect that softmax functions
solve at least locally every classification problem with a reasonably well behaved decision
boundary. In order to obtain a good approximation to the decision boundary one has to make
sure that the degree of the polynomial ¢(z) is sufficiently high. This requirement does not
place an upper bound on the number of parameters necessary to achieve good approximation.
However, the next example will show that for a two-dimensional two-class problem, that
is normally used to motivate the introduction of neural networks with two hidden layers,
softmax functions can be found that solve this problem with a similar number of parameters
as an appropriate neural network.

The left upper graph in figure 9 illustrates a typical classification problem that necessitates
the use of neural networks with more than one hidden layer. Here the plane is divided into
three regions, the innermost and the outermost belong to class 2 the one in the middle belongs
to class 1. The boundaries between each of these regions are defined by 4 non-rectangular
straight lines. The neural network in figure 5 could therefore be used to learn this classification
problem. Here I; and I are the input units for the components of the two-dimensional input
vector and Iy = 1 is the unit corresponding to the bias. Since in total there are 8 different
straight lines to learn, the first hidden layer has 8 hidden units plus a bias unit h; o = 1. Each
of the 8 hidden units hy; — hy g corresponds to the question as to whether the inner product

19

Figure 5: Neural net for classification task in figure 9

of the input vector with the normal direction to one of the lines is positive or negative. It
will be assumed here that the units hy; — hy 4 in the first hidden layer correspond to the
lines that define the outer rectangle in the first plot of figure 9 and that the units k15 — h1 g
correspond to the lines defining the inner rectangle. The first node in the second layer hs ; can
therefore realise the question if the input vector lies inside or outside the outer rectangle and
the second hidden unit ho 2 can realise the question if the input vector lies inside or outside
the inner rectangle. The answers to these questions are finally combined with a bias unit
hao = 1 to infer if the input vector belongs to class one which is represented by a value of
one in the output unit O, or to class two which is represented by a value of one in the output
unit Q. The activation units in this example can be chosen to be Heaviside functions. The
total number of weights in this neural network is given by

8-3+2-5+2-3=40 (64)

Apart from the bias, only the units hy 1 — hy4 in the first layer are connected to node ho
in the second hidden layer, and only the units h;5 — h1 g are connected to node hao. The
topology of this network therefore makes use of the fact that the current classification problem
can be solved by answering the question as to whether the input vector lies inside or outside
of two structures in the plane. Without making use of this a priori information all the nodes
in the first hidden layer have to be connected to all the units in the second hidden layer. The
total number of parameters in such a general neural network is therefore given by

8-3+2-9+2.3=148 (65)

Both these numbers correspond roughly to the number of parameters in a two-dimensional
polynomial of degree 8 which is given by
(8+1)(8+2)

: =45 (66)

20

In the following experiments the posteriors for the two classes were sampled on an equidistant
grid of 51 - 51 = 2601 points. As in the one-dimensional example discussed previously the
posterior probabilities p; , were either 0 or 1. This again rules out the application of Theorem
2 and in principal every approximate solution of the classification problem can be multiplied
by a positive constant to find a better approximation. Here, however, the Newton iterations
were applied as if nothing was known about the posteriors p;, and the reestimation was
considered to be completed if the length of the gradient of the error function was virtually
zero. The initial polynomial in all the experiments was randomly chosen to be

q(z1,22) = 1 + 22 (67)

This choice is very far away from the final solution. In fact, the corresponding softmax func-
tions have a decision boundary that is the straight line through (0,0) with slope —1. Despite
this poor initial choice, figure 9 shows that after a number of iterations the true posterior
will be approximated with arbitrary precision if the degree of the exponential polynomial is
high enough. Figure 9 shows the contour plots of the softmax approximations for polynomials
having degree two up to eight. As can be seen, below degree four the approximation of the
true posterior is relatively poor. This is because the inner rectangle cannot be modelled at all
by a polynomial of such small degree. The approximations with polynomials of degree four
and higher show an increasing sharpness of the edges and better approximation of the inner
rectangle. For a polynomial of degree eight the decision boundary is modelled perfectly. The
closed regions inside class 1 which start to appear from the 6th degree polynomial onwards
between the outer and inner rectangle are the regions where the estimated softmax function
is 1 to within machine precision. Up to a polynomial of degree 5 the reestimation procedure
needed 50 iterations to converge. For the polynomials of degree 6, 7 and 8 the reestimation
procedure was completed after 130, 200 and 350 iterations respectively. The parameters that

0 1 2 3 4 5 6 7 8
0| 286.6 9.4 -1088.9 | 369.9 | 857.7 | -471.8 | -331.7 | 156.1 | 78.6
1| -333.1 | -301.6 854.9 2453.1 65.8 | -1768.5 | -312.4 | 260.0 *
2| -1130.7 | -1312.3 | -1807.6 | 3351.7 | -26.2 | -1214.1 | 778.7 * *
3| -261.9 | -3514.8 | 519.3 924.9 | -570.7 | 949.1 * * *
4| -179.1 | -806.3 | 1742.5 | -463.1 | -809.6 * * * *
5| -251.8 | 1353.4 17.8 -1090.5 * * * * *
6 82.8 583.7 -7.3 * * * * * *
71 139.0 112.5 * * * * * * *
8 60.9 * * * * * * * *

Table 1: Parameters of 8th degree polynomial after 350 iterations.

were estimated for the polynomial of degree 8 are given in Table 1. The entries in this table
represent the a;; parameters of the polynomial where i is the row index and j is the column
index of the table. This table shows that although there is some variation in the magnitude of
the polynomial parameters, the triangular matrix is far from sparse. The full parameter set
of the 8th degree polynomial has therefore to be employed to solve the current classification
problem. The good convergence in all the experiments shows again the great insensitivity of
the reestimation procedure to the initial choice of the exponential polynomial. This illustrates

21

once more that there is only one global minimum which is the point at infinity of a line in the
parameter space. Figure 9 shows that only for a polynomial of degree 8 the approximation to
the true posterior becomes perfect. From a classification point of view, however, one might
already be satisfied with a softmax function with a relatively small degree. Table 2 shows
the percentages of data points in the training data correctly classified for different degrees of
the exponential polynomial. The biggest increase in classification accuracy occurs when the
degree of the polynomial is increased from 3 to 4. As mentioned before, this is a result of the
fact that the inner rectangle is not modelled at all for polynomials of degree 2 and 3. Since
the increase in classification performance is relatively small in going from degree 4 to 8 one
might, in practice, already by satisfied with a 4th degree polynomial model, which has only
(4+1)(4+2)/2 = 15 parameters. Note that the multiplication of the exponential polynomial
by a positive constant does not have an effect on the classification performance of the softmax
functions, because multiplication of the exponential polynomial does not change the decision
boundary. Finally, figure 10 shows the contour plot of the 8th degree polynomial given by

2 3 4 5 6 7 8
89.2 1 90.6 | 96.6 | 97.8 | 98.9 | 99.5 | 100

Table 2: Percentage of training data points correctly classified. The first row gives the degree
of the corresponding exponential polynomial.

Table 1. As can be seen from this figure, in the area under consideration the polynomial has
5 local extrema, 4 of which are local minima and one of them is a local maximum. Outside
this region the polynomial tends to infinity. Each local maximum corresponds to a value of
the softmax function which is close to 1 and each local minimum corresponds to a value close
to 0. Furthermore, figure 10 shows the decision boundary that divides the inner rectangle
from class 1. This is the curve in the middle of the graph with the pointed right upper corner
and corresponds to the contour line of the polynomial for a value of 0.

4.3 Higher dimensional multi class problems

This section will discuss some two-dimensional K-class problems where K > 2 and will
show that the Newton algorithm from the last section can also be applied in this situation.
This leads to a reestimation algorithm that is very stable and can approximate locally every
analytic decision boundary with arbitrary precision as long as the degrees of the exponential
polynomials are high enough. Figure 6 shows a typical two-dimensional three-class problem.
The first graph in this figure shows the true decision boundaries between the 3 different
classes. Here the classes are denoted by C1, C2 and C3. The second and third graph in
figure 6 show the approximations of these decision boundaries by 3 softmax functions with 2
polynomials of degree 1 and 2 respectively after 50 iterations. The initial polynomials were
both chosen to be equal to the polynomial in (67). The curves in the second and third graph
in figure 6 are the contour lines of the corresponding softmax functions at value 0.5. This
explains why in the right upper graph there is a region in the middle of the plane where
these lines do not intersect. This is the case, because all the decision boundaries intersect
in this region and consequently the values of the approximating softmax functions are close
to 1/3. As can be seen from figure 6, softmax functions with polynomials of degree 1 are
only capable of learning one of the three decision boundaries. In general, they can learn any

22

true classes 1st degree polynomials

2 2
C3 C3
1 1
Cl1l
0 ci 0
-1t C2 -1+t C2
-2 -2
-2 0 2 -2 0 2
2nd degree polynomials classes outside training region
5
2 (
c3 c3 Cc2
1
C1l
0 C1 0 c1
-1 Cc?2 Cc2
. &3]
-5
-2 0 2 -5 0 5

Figure 6: Two dimensional three-class problem.

3 class problem that is defined by only two independent decision boundaries. The current
example is therefore too complicated for this type of softmax functions. However, already for
softmax functions with polynomial exponents of degree 2 the approximation of the decision
boundaries is almost perfect. This shows again that polynomials can be found that have a
similar number of parameters as a neural network that is appropriate for this classification
task. Such a neural network is given in figure 7. Here the weights of the first layer learn
the location of the decision boundaries and the hidden layer learns where the classes are
located with respect to the boundaries. The output units are 1 or 0 depending on whether
the input pattern belongs to the corresponding class or not. This neural network has a total
of 3-3+ 3-4 = 21 parameters as compared to the softmax functions with two second degree
polynomials which have 2-3-4/2 = 12 parameters. Unfortunately, these softmax functions do
not generalise in the obvious way, as can be seen from the last graph in figure 6. Here the region
where the training data were located was extended to the rectangle bounded by —5 and 5 in
both directions. This shows that outside the training region the softmax functions introduce
several artifacts. This is due to the fact that the reestimation procedure chooses polynomials
whose contour lines are hyperbolic curves. This is also illustrated by the location of classes
C2 and C3 in this graph which lie opposite each other and have a distinctive hyperbolic
shape. It is not possible to remove these artifacts with polynomials of higher degree. In fact,
for higher degree polynomials the artifacts become even more pronounced. Of course, one
cannot expect that a model is capable of predicting data it has never seen. In principal what
appear to be artifacts outside the training region are all valid extrapolations of the training

23

Figure 7: Neural network for a two-dimensional three-class problem.

data, and could be associated with the true posterior. However, it is somewhat contrived to
assume such properties and it is therefore much more satisfactory to find a representation of
the training data that does not make such assumptions. This problem of finding the simplest
explanation for a set of observations is known as Occam’s razor. In practice, this problem
will be solved by finding the model with the smallest number of parameters. To achieve this
task, in the current example, it is useful to consider the following posterior functions.

B
g
I
n

(2)85(z) (68)
1
2

Here the S{',2 are softmax functions that are given by

. B e4i(2) 69

1(37) - 1_|_eqz‘(<b‘) ()
; 1

5@) = ram (70)

and the ¢;(z) are linear polynomials. It is sensible to assume that there exists a unique set
of polynomials ¢;(z) such that the P;(z) in (68) solve the classification problem in figure
6, because each of the softmax functions S{’z(m) can model exactly one decision boundary
of this problem and the products in the P;(x) can therefore model the intersections of the
corresponding classes. A set of posteriors that are given by (68) which solves this classification
problem will therefore have the minimal number of parameters and generalises in the desired
way. It is interesting to note that the definition of the posteriors (68) contains a logical
structure that is usually modelled by the hidden layers of a neural network. In this structure
a logical “and” is realised by the product of two softmax functions and a logical “or” is realised
by 1 minus the product of two softmax functions. As compared to neural networks, here, the
logical structure is imposed a priori and is not learned automatically. It might, however, be
possible to find the appropriate structure of the classification problem by applying a finite
predefined set of structures and choosing the one that has the best trade-off between the
number of parameters and a small value of the error function. Note that the functions in (68)

24

are not posterior probabilities in the strict sense because they do not sum to one, i.e. the
following holds
0< Pl(.Z) + Pz(m) + P3(1J> <1 (71)

One can, nevertheless, use the error function E(x,p,w,a) in this case whose individual terms
are given by

3
Dn,j
ilog | =——>—— 72
where s
Cn =) Pj(zn) (73)
j=1
and PJ"°"™ is the normalised version of the posteriors
Pj(z)
Py (a) = =2 (74)

Therefore (72) is the KL distance between p, ; and the P/*"™(z,) minus logCy. Since
(71) holds, —log C,, is always positive and therefore minimisation of E(z,p,w,a) can only
be achieved by modelling the posteriors p,; as accurately as possible. If —logC), could
become negative, minimisation of E(z,p,w,a) could be achieved by minimising — log C,
independently of the py, ;. The components of the gradient of E(z, p, w,a) are given by

N
0

E — n\Pn 1 n) — Pn : n)) o n
Par, (z,p, w,a) nglw (Pn,351 (#n) — Pn1S3(x))aal,l‘h(x) (75)
O Bopw,) = 3 wn(onsSHen) — puaSEan)) = ma(an) (76)
(9(12,1 z,p,w, = nZIwn Pn,10o1\Tn Pn,202 (Tn (90,2,1(12 Tn
O Bls,p,w,a) = fjw(S3(n) — prsS3(2n)) ——gs(zs) (77)
3(13,1 , D, W, - — npn,Z 1*n pn,3 2\%n 303,1q3 n

As in section 3.1, in order to study the second order derivatives of the error function it is

sufficient to study the matrices h, = (hm-j)z j=1 Whose diagonal elements are in this case given
by

hnii = wns% (;En)S% (xn)(pn,l + pn,3) (78)
hp2a = wnS% (xn)sg (xn)(pn,2 + pn,l) (79)
hpzz = wy Si)’ (xn)sg (xn)(pn,S + pn,2) (80)

Since these numbers are all positive and the off-diagonal elements are all zero, this shows that
the error function E(z,p,w,a) is convex. In the light of this result, it seems promising to
study more general “logical combinations” of softmax functions. It is interesting to note that
the error function for the normalised posteriors P/"™(z) does not have the same pleasant
behaviour. Although the gradient has an intuitively understandable form, in this case, the
matrix h,, is not necessarily positive definite as its diagonal elements can become negative if
the estimated posteriors are far from the solution.

Finally, figure 8 shows that the reestimation procedure also works for classification prob-
lems with more than 3 classes and decision boundaries of various types. In this figure the

25

true classes 2nd degree polynomials

2.5

1.5} C1 R

C6 C2

T
!

0.5

C5 C3

|
=
6]

|

|
=
2]

T

|

-2546 ‘ ‘ —2.57~ ‘ ‘

Figure 8: Contour plot of true and approximated posteriors of 2-dimensional 6-class problem.

left graph shows the decision boundaries of a classification problem with 6 different classes
denoted by C1 — C6. The right graph shows the contour plots of the approximating softmax
functions after 60 iterations. The exponential polynomials in this example had degree 2 and
the initial polynomials were all chosen to be equal to the polynomial in (67). This graph
shows that the approximation is almost perfect. The contour lines that do not lie on the de-
cision boundaries determine regions where the value of the softmax function was 1 to within
machine precision. It is interesting to note, that in this example the reestimation procedure
chose polynomials ¢;(x),j = 1,...,5 whose contour lines are always ellipsoids. This is in
contrast to the previous example where these lines were hyperbolic curves. The parameters
of the 5 estimated polynomials for this 6 class problem are given in Table 3. The total num-
ber of parameters in the softmax functions was 5 - 6 = 30. Since these 30 parameters almost
perfectly represent the 2601 data points in this section of the plane, the softmax reestimation
might be considered a feasible data compression scheme in this example. Table 3 also shows
that relative to their absolute value the parameters ajo1 and a;;1 are the ones with the
highest variation. Compared with these parameters the variation of the other parameters is
relatively small. This points to the fact that the decision boundaries in the current example
are not independent of one another. If all the parameters in the polynomials, apart from
the ajo,1 and a; 1,1, are tied together this results in a model with a total of 14 parameters.
Compared to this, the number of parameters in a model where the lines and the circle are
modelled with 3 parameters each is 15. This suggests that the polynomials g;(x) also contain
information about the number of parameters in a minimal model.

26

polynomial 1 polynomial 2
0 1 2 0 1 2
0 9317.04 | 163.30 | 7331.32 || O || 9298.22 | -210.60 | 7317.33
1 || -22500.12 8.5 * 1 || -22499.22 5.91 *
2 || 7498.01 * * 2 || 7500.57 * *
polynomial 3 polynomial 4
0 1 2 0 1 2
0 || 9209.01 | -256.95 | 7308.93 || 0 || 9197.84 | 368.49 | 7214.73
1 || -23665.20 | 670.49 * 1 || -24087.57 | -858.52 *
2 || 6442.65 * * 2 || 6053.75 * *
polynomial 5
0 1 2
0| 8819.48 | 192.25 | 7205.94
1 || -22819.85 | 122.16 *
2 || 7670.21 * *

Table 3: Parameters of 2nd degree polynomials after 60 iterations.

5 Conclusions and further work

This report introduced softmax functions with polynomial and more general exponents and
discussed their reestimation in the context of the cross-entropy error function. It was shown
in section 3 that under relatively general assumptions on the training data, the error surface
of a classification problem of arbitrary finite dimension and for a finite number of classes is
always strictly convex and that there exists exactly one optimal set of parameters. Section
4 showed that a standard Newton algorithm with line-search and backtracking can be used
to find the solution to the parameter reestimation problem. This algorithm was found to
be very robust and insensitive to the choice of initial parameters. Even if the assumptions
that guarantee the existence of a unique solution were not satisfied this algorithm produced
a sequence of posteriors that converged to the proper solution. Finally, in section 4.3 a more
general way to define posterior probabilities as algebraic combinations of softmax functions
was briefly introduced. Future work will investigate if such probability functions are a useful
tool in implementing a “logical structure” with softmax functions. Furthermore, the experi-
mental work presented here was mainly aimed at illustrating the basic features of the softmax
reestimation theory and as such was restricted to toy examples. Future work will therefore
also focus on more realistic problems.

References

[1] L. R. Bahl, P. F. Brown, P. V. de Souza, and R. L. Mercer. Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. In Proc. ICASSP,
pages 49-52, 1986.

[2] M. Bianchini, M. Gori, and M. Maggini. On the Problem of Local Minima in Recurrent
Neural Networks. IEEE Transaction on Neural Networks, 5(2):167-177, 1994.

27

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

C. Bishop. Exact Calculation of the Hessian Matrix for the Multilayer Perceptron. Neural
Computation, 4:494-501, 1992.

C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs. In
F. Fogelman-Soulie and J. Herault, editors, Neurocomputing: Algorithms, Architectures
and Applications, pages 227-236. Springer-Verlag, Berlin, 1989.

W. L. Buntine and A. S. Weigend. Computing Second Order Derivatives in Feed-Forward
Networks: A Review. IEEE Transactions on Neural Networks, 5(3):480-488, 1994.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive Mixtures of Local
Experts. Neural Computation, 3:79-87, 1991.

M. R. Lynch, P. J. Rayner, and S. B. Holden. Removal of degeneracy in adaptive Volterra
networks by dynamic structuring. In Proc. ICASSP, pages 2069-2072, 1991.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in C. Cambridge University Press, 1997.

P. J. W. Rayner and M. R. Lynch. A new connectionist model based on a non-linear
adaptive filter. In Proc. ICASSP, pages 1191-1194, 1989.

P. J. W. Rayner and M. R. Lynch. Complexity Reduction in Volterra Connectionist
Modelling by Consideration of Output Mapping. In Proc. ICASSP, pages 885-888, 1990.

V. Valtchev, J. J. Odell, P. C. Woodland, and S. J. Young. MMIE training of large
vocabulary recognition systems. Speech Communication, 22:303-314, 1997.

28

true posterior 2nd degree polynomial

of 2
1 *1 3* 1
0 T 0

_1 ‘ _1
Class 2 {rr= Class 1

-2 — -2
-2 0 2 -2 0 2

3rd degree polynomial 4th degree polynomial

Figure 9: Contour plots of softmax approximations to true posterior of two-dimensional two-
class problem. The degrees of the exponential polynomials range from 2 to 8.

29

Figure 10: Estimated 8th degree polynomial

30

