
Sparse Finite Element Level-Sets for Anisotropic

Boundary Detection in 3D Images?

Martin Weber1, Andrew Blake2, and Roberto Cipolla1

1 Department of Engineering, University of Cambridge, UK,
{mw232,cipolla}@eng.cam.ac.uk

http://mi.eng.cam.ac.uk/research/vision/
2 Microsoft Research, Cambridge, UK

Abstract. Level-Set methods have been successfully applied to 2D and
3D boundary detection problems. The geodesic active contour model
has been particularly successful. Several algorithms for the discretisation
have been proposed and the banded approach has been used to improve
efficiency, which is crucial in 3D boundary detection. In this paper we
propose a new scheme to numerically represent and evolve surfaces in
3D. With the new scheme, efficiency and accuracy are further improved.
For the representation, space is partitioned into tetrahedra and finite
elements are used to define the level-set function. Extreme sparsity is
obtained by maintaining data only for tetrahedra that contain the zero
level-set. We formulate the evolution PDE in weak form and incorporate
a normalisation term. We obtain a stable scheme with consistent sub-
grid accuracy without having to rely on any re-initialisation procedure.
Boundary detection is performed using an anisotropic extension of the
isotropic geodesic model. With the sparse representation, the anisotropic
model is computationally feasible. We present experimental results on
volumetric data sets including images with a significant amount of noise.

1 Introduction

Boundary surface detection in noisy 3D images is a vital ingredient for the
analysis of medical scans, such as 3D ultrasound. In principle, one can attempt to
form a surface by combining the contours of slices through the volumetric image.
However, noisy images require a 3D method to facilitate the exploitation of the
full spatial context of the problem. Geodesic [1–4] surface detection has been
proposed and Boykov and Kolmogorov [5] have recently presented an efficient
discrete algorithm using graph cuts, including the anisotropic case. However,
greater accuracy can be achieved in the continuous setting when a consistent
sub-grid definition is being employed. Deformable models [6] have been used
to estimate curve and surface models from image data. Level-set methods [7–
10, 1, 2] represent the surface implicitly, are topologically flexible and overcome
other problems of parametric models, such as self-intersection. However, level-set
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implementations in 3D are computationally involved. Preusser and Rumpf [11]
have proposed a level-set framework with cubical finite elements. However, their
numerical representation is not sparse (all levels are evolved) which requires a
computational power exceeding that of current PCs.

Level set-methods [7–10] introduce a level-set function φ, to represent the
interface Γ implicitly as the zero level-set: Γ := φ−1(0) where φ : R3 → R is
a Lipschitz-continuous, real valued function. The implicit representation links φ
(as the introduced analytic entity) with the geometric entity Γ : φ 7→ Γ (φ) and
allows for changes in the topology during the evolution (Figure 1). Furthermore,
it was pointed out [12] that this relationship can be made one-to-one by imposing
the signed distance constraint. That is, the constraint fixes the gauge freedom3.
The conceptual advantage is then that φ is (up to a sign) uniquely determined
by Γ and that one can also write Γ 7→ φ(Γ ). In this way φ gets the intrinsic
geometric meaning as the distance function for Γ .

Fig. 1. Topological changes: stages of a geodesic evolution in the novel finite element
scheme (starting from the top left). Three synthetic objects are to be detected. The
evolution is initialised as a cube and splits automatically into the components. The
generation of the hole inside the torus (bottom right) is an example of a topological
change where the number of components remains unchanged (resolution 40× 40× 40).

1.1 Differential minimisation and level-set evolution

For the evolution, one introduces an evolution parameter t ∈ R and φ becomes
time-dependent4. One starts with an initial function φ(0, .) and prescribes an

3 the freedom of using any multiple ψ φ in the place of φ with any positive valued
function ψ > 0.

4 One refers to the parameter t as time although it is not related to physical time.
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evolution φ(t, .). In Section 2, we introduce a cost-functional C and define the
evolution via gradient descent. The resulting evolution equation is a PDE:

dφ
dt = β (1)

where at the interface Γ , β is the differential of the cost: β|Γ := − δCδφ and is
defined elsewhere in such a way as to maintain the signed distance constraint
[12]. The signed distance constraint is well known for its desirable conceptual
and numerical properties. Where φ is differentiable, we have |∇φ(x)| = 1 and,
for x ∈ Γ the particularly simple expressions for the normal N(x) = ∇φ(x) ∈ S2

and mean curvature κ(x) = ∆φ(x) ∈ R along Γ .

1.2 Previous level-set methods and numerical problems

In the following sections, u denotes the numerical representation of the level-set
function φ. The major issues for the numerical implementation of (1) concern
efficiency, stability and accuracy. Improved efficiency and stability was obtained
using sparse finite element level-sets, as we reported in [13]. Here we extend
the 2D scheme to 3D and include anisotropic cost-functionals. One advantage of
level-set methods over discrete methods is the potential for sub-grid accuracy.

Consistent sub-grid accuracy: sub-grid accuracy requires the definition of
the level-set function inside each cell of the grid. Figure 2 details the standard
way in which this can be achieved [12]. Unfortunately, this sub-grid definition
has several problems:

– mixed polynomial degree: the standard representation (see Figure 2)
singles out the directions of the coordinate axes (along which u is piece-wise
affine). In the interior of the cell it is generally a cubic polynomial.

– tiling ambiguities: the graphical output of the implicit interface is not
straightforward. To obtain a facet approximation, one employs so called iso-
contour algorithms ([10] p.425) such as the marching cube algorithm, in which
case ambiguities in the tiling have to be resolved.

– sub-grid definition cannot be used for the evolution: the definition
of curvature motion [8] inside a cell is problematic. To see this, let us assume
that we have an initial signed distance function φ. Then, curvature motion
is simply given by the Laplacian: β = ∆φ. However, the Laplacian of the
numerical representation u vanishes identically: ∆u(x) = 0 for any x inside
the cell, independent of any node-values on the grid. This is related to the
fact that u is affine along coordinate directions (alternatively, one can verify
in Figure 2 that ∆e0 = 0, like any other nodal basis function). Therefore, the
sub-grid definition cannot be used when the interface is evolved. Instead, one
[8] computes differential operators (like the Laplacian) with finite difference
operators on stencils that contain several cells. However, it is not entirely
clear how the evolution in terms of finite difference operators is related to
the sub-grid localisation of interfaces as defined in Figure 2.
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Fig. 2. Sub-grid definition: The figure illustrates the sub-grid definition of a level-set
function u in terms of (a) cubical cells and (b) tetrahedral elements. (a) in the case of
cubical cells, a product of functions that are affine in the direction of the coordinate-axes
is used. One can express u as linear combination u =

P7
i=0 uiei of nodal basis functions

ei. For instance, the basis function for node 0 is: e0(x) = (1 − x1) (1 − x2) (1 − x3)
which evaluates to 1 at node 0 and vanishes on all other nodes. Unfortunately, the ei
(and hence u) are of mixed polynomial degree: along all coordinate axes they are affine
but on the diagonal they are cubic polynomials. (b) tetrahedral elements are defined by
the 4 nodes located at the vertices (1st degree case) and, 6 additional nodes at the edge-
midpoints in the 2nd degree case. A general 1st or 2nd degree polynomial is prescribed
by the values ui at the nodes. Coordinate axes are not treated as special directions here.

These problems are resolved when simplices are used instead of cubical cells:

– fixed degree: inside each element, u is a polynomial of fixed degree.
– simple graphical output: with first degree simplex-elements, the interface

inside each element is always a planar facet (Figure 3). Hence, no tiling
ambiguity occurs and the output of the interface is straightforward.

– consistent use of the sub-grid definition in the evolution: the evo-
lution equations are treated in weak formulation, which allows us to define
the evolution equation consistently with the defined sub-grid accuracy.

2 Anisotropic interface optimisation

By adopting an interface optimisation formulation, we incorporate the prior
knowledge/demand that the interface is a continuous boundary Γ . As is well
known, this implies robustness to noise. The task is to find local minima of the
cost

C =

∫

Γ

γ (2)

which is a two-dimensional Lebesgue integral of a density γ > 0 (specified below)
over the interface Γ . In the anisotropic case, γ depends not just on location but
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Fig. 3. Implicit facet in 3D: depending on the signs of the node-values, the implicit
facet is either (a) a triangle (if one sign differs from the other three) or (b) a planar
quadrangle (if there are two pairs of different signs).

also orientation. Global minima of (2) are trivial (sets of measure zero) unless
additional constraints are imposed [5]. We follow here the strategy of interface
evolution [7, 8] by deforming an initial interface to obtain local minima.

2.1 Edge indication function

We denote the real-valued volumetric image by f : R3 → R. Edges are related
to the gradient of f . In order to quantify the strength of edges, a function g is
introduced. In the literature [14], g is referred to as edge indication function.
The particular functional form of g is not crucial. It is however essential that
g ≥ 0 and usually g is monotonous with respect to feature gradient magnitude.
We also adopt the convention to normalise g to have values in the unit interval
[0; 1]. We let g(x) depend on the gradient magnitude |∇f(x)| and choose [15]:

g := 1− exp
(
− a
|∇fσ |q

)
(3)

where fσ denotes the smoothed version of the image f obtained by convolution of
f with a Gaussian of width σ. Furthermore, a and q are real, positive constants
that determine the response of the edge/feature detection.

In order to complete the definition of the edge detector function g, one can
adjust the parameters a and q in (3) automatically to the image-data. For in-
stance we determine a, q in such a way that the average gradient magnitude
〈|∇fσ |〉 over the image results in g = 1

2 and that the slope of g with respect
to the gradient magnitude equals −1/〈|∇fσ|〉 at this point. These are sensible
choices which are invariant to the affine value-transformations of the image [16].

2.2 An anisotropic density

In this section we define a cost C(Γ ) for the boundary detection by specifying
the density γ in (2). One viable density γ is obtained by simply choosing the
edge indication function g itself: γ(x,N) = g(x). In this case, one refers to the
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density as (isotropic) Riemannian metric [17, 9] since the cost C(Γ ) =
∫
Γ
g

is the Riemannian area. The attraction to the edges/features in the image is
geometrically obtained by driving the evolution towards g-minimal surfaces.

This is the geodesic model, which is capable of detecting boundaries even in
the presence of noise. However, the isotropic model is known to be sub-optimal.
While the edge-strength is taken into account, the orientation information pro-
vided by ∇fσ is not utilised. We can further improve the performance of the
geodesic boundary detection by including an orientation-dependent term. For-
mally, this means that we consider anisotropic densities γ which depend non-
trivially on the orientation of the interface N .

Orientation-dependent terms have been used previously: Kimmel and Bruck-
stein [18] detect boundary-curves in 2D images using Laplacian zero crossings.
However, their formulation requires additional regularising functionals and pa-
rameters which are needed to determine their relative strength. Instead, the
formulation presented here is based on a single cost-functional that is to be
minimised. Boykov and Kolmogorov [5] consider an anisotropic extension of
the geodesic model in their discrete setting. In our continuous formulation, the
anisotropic extension is conceptually straightforward with consistent sub-grid
accuracy and computationally feasible due to the extreme sparsity of the repre-
sentation.

We consider the general quadratic expression

γ = 1
2 〈N,N〉G (4)

where G is a matrix-valued function and 〈N,N〉G := N>GN . We use the edge
detector g to define G:

G := 1 +
g − 1

|∇fσ |2
∇fσ ⊗∇fσ (5)

where v ⊗ v := v v>. This choice is motivated by the following properties:

– alignment case (∇fσ ∝ N): we obtain GN = gN , which is equivalent to
geodesic motion.

– non-alignment case (dfσ N = 0): we obtain GN = N , equivalent to
curvature motion.

– weak gradient case (∇fσ ≈ 0): since g → 1, we obtain G → 1 which
results in curvature motion.

When compared to the isotropic geodesic motion, there is an additional aligning
force. Figure 4 demonstrates the orienting force for the special case where g = 0.
In this case (5) becomes G = 1 − 1

|∇f |2∇f ⊗ ∇f . The following proposition

(proved in [16]) quantifies the aligning property :

Proposition 1 Difference between the anisotropic and geodesic cost-functionals:

The difference between the cost functionals is given by ∆C := 2
∫
Γ γ −

∫
Γ g =∫

Γ ∆γ (here ∆ denotes differences, not the Lapacian) with the difference-density

∆γ = 〈N,N〉G − g (6)

= (1− g) (1− a)
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with the aligning term a :=
〈
N, 1
|∇fσ |∇fσ

〉2

∈ [0; 1]. Consequently,

– ∆γ ≥ 0: hence an additional cost is present in the anisotropic density.
– ∆γ ∝ (1 − g): hence the orienting power is most pronounced at edges and

vanishes in feature-free regions.
– ∆γ ∝ (1 − a): if the interface is aligned with the feature (a ≈ 1) there is

no additional cost; when the alignment is worst (i.e. orthogonal, a ≈ 0) the
orienting force is maximal.

Fig. 4. Orienting motion: the figure illustrates the orienting property of quadratic
motion γ = 1

2
〈N,N〉G. Orientation is prescribed here by selecting a distance map f

and setting G := 1 − ∇f ⊗ ∇f . In this example, f is the distance from a circle.
The interface is oriented by the evolution without being contracted or attracted to any
features such as edges (|∇f | ≡ 1). Rather, any initial interface is progressively aligned
to the orientation prescribed by f . A temporary local ‘folding’ of the interface can
be observed. This is related to the fact that the cost functional does not discriminate
between N and −N ; however, the cost of transitions between the two possible alignments
means that eventually there is one consistent alignment.

2.3 Gradient descent for the anisotropic scheme

Surface evolution is defined as the gradient descent of the cost (2) with density
(4). Using variational calculus, one can derive [16] the following result:

Proposition 2 Gradient descent of quadratic densities

The normal motion β|Γ = − δCδφ for the gradient descent is given by

β|Γ = divV (7)

V = (G− γ 1)N (8)

where N is the surface normal. We call V the descent-generating vector field. The
geodesic model is a special case in which G = 2 g1 and hence V = gN . Equation
(7) has also been used by Vasilevskiy and Siddiqi in their flux maximising finite
difference scheme [19]. Here, the vector filed V derives from (8) and we exploit
equation (7) in our weak scheme. The fact that such a vector field exists is of
prime importance to our scheme since it enables a straightforward application
of Gauss’s integral theorem for the weak formulation of Section 4.
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3 Sparse finite element representation

The new numerical representation u of the level-set function employs a sparse
finite element complex [13]. For its definition in 3D, we have to partition space
into tetrahedra.

3.1 Partitioning of three-space into tetrahedra

Unfortunately, unlike in the 2D case, it is not possible to partition R3 into stan-
dard 3-simplices. However, the methodology of [13] is not confined to standard
simplices. Here, we obtain a convenient partitioning M of space as Delaunay
tetrahedrisation [20] of the vertex-set (2Z3) ∪

(
(1, 1, 1)> + (2Z3)

)
. A particu-

larly convenient feature of this mesh is that all tetrahedra of the mesh have the
same shape. Each element has two even (2Z3) and two odd (2Z3 +(1, 1, 1)

>
) ver-

tices. For instance, the four vertices {
(

0 0 0
)>
,
(

2 0 0
)>
,
(

1 −1 1
)>
,
(

1 1 1
)>}

span a tetrahedron of the mesh M.
As in the 2D case [13], we restrict the actual numerical representation to

the sparse simplicial sub-complex which consists only of those elements which
contain the zero level-set. We call this minimal set the active complex A ⊂M.

3.2 Finite elements for functional representations

The evolution equations of Section 4 involve the continuous functionals u and
Gij which have to be represented numerically. This is achieved with consistent
sub-grid definition by using standard finite element methods [21]. We briefly
describe the technique for u (every component of G is represented similarly).

u is a linear combination of nodal-basis functions: u(x) =
∑
j uj ej(x). The

nodes are located at the vertices that are contained in the active complex A. In
the second degree case (p = 2), additional nodes are inserted as in Figure 2b.
Each node defines a nodal basis function ej . Inside a tetrahedral element T ∈ A,
ej is defined as the unique [21] polynomial of degree p which evaluates to 1 at
the node and vanishes on all other nodes: ej(xi) = δij . Note that ej is a globally
defined continuous function over the area Ω covered by the active complex A.

The fact that the integral over u is a linear map allows us to integrate ef-
ficiently by using linear combinations of pre-computed integrals over (products
of) basis functions. In fact, this type of integration can be performed analytically
[16] and we only need to store one real value uj at each node. For first degree
elements, each active element T ∈ A contains one planar facet (Figure 3).

4 Surface evolution with sparse finite elements

We now show how a stable evolution can be defined to realise the gradient descent
expression (7) in terms of the sparse representation. The sparse representation
is updated in two stages:
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– first, a differential update corresponding to a time-step ∆t is performed. This
alters the values of nodes uj .

– secondly, the active complex A is updated to restore the minimal containing
property. Elements that no longer contain the zero level-set are deleted while
neighbouring elements get activated if the zero-level set has moved into their
domain. As in the 2D case, the criteria that control the activation and re-
moval of elements are simply obtained5 and functional extrapolation is used
to initialise newly activated nodes.

For the algorithmic details of this process, we refer to [13, 16]. The differential
update with time-step ∆t: u(t+∆t, .) = u(t, .) + v(t, .), v = ∆tβ combines two
equations, which we formulate in weak form (Petrov Galerkin):

– the normalisation of the level-set function is maintained by demanding
〈∇u,∇u〉 − 1 = 0. This is formulated in the weak sense by

zi1 =

∫

Ω

ei (〈∇(u+ v),∇(u+ v)〉 − 1) (9)

– the interface motion v −∆tβ|Γ = 0 is formulated as

zi2 =

∫

Ω

ei (v −∆t β) (10)

Note that 〈∇u,∇u〉 − 1 = 0 (and likewise (9)) has a flat direction since it is
invariant to any level-shift u → u + c, c ∈ R. While this would complicate
the use of the equation in isolation6, it is not a problem when the equation is
combined with the interface motion equation (10).

If there are n active nodes, we have 2n equations and determine the update
v as the least-square solution to |z1|2 + |z2|2. This is a sparse, banded problem
which we solve [13] by the conjugate gradient method [22].

The interface speed βΓ = divV depends on second order derivatives, since
V depends on N = ∇u. In strong form, this causes the same problems as the
finite-difference approach (Section 1.2) since the desired second order derivatives
cannot be obtained from the sub-grid definition inside the elements and are ill
defined at element-transitions. This problem is resolved in the weak formulation.
Instead of having second order derivatives which are ill-defined at element tran-
sitions, we encounter boundary integrals (which we compute efficiently [16]).
By Proposition 2, the gradient descent has a descent-generating vector field
β = divV , hence we can apply Gauss’s theorem and perform partial integration.
This allows us to eliminate second order derivative operators in (10):

∫

Ω

eiβ =

∫

∂Ω

ei 〈V,V〉 −
∫

Ω

dei V (11)

where V denotes the normal along the boundary ∂Ω. The right hand side does
not contain any second order derivatives of the level-set function.

5 This reduces to the task of determining if a boundary-face of A (a triangle) contains
any part of the zero level-set. For p = 1 this simply depends on whether all signs of
uj at the nodes of the triangle agree.

6 This equation is used in some re-initialisation schemes [8].
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5 Experimental results

In this section, we apply the new method to real medical image data. Figures 5
and 6 illustrate results of the boundary detection (white-grey matter boundary)
based on MRI scans7. Figure 7 shows the detection of the vessel-system in a 3D
ultrasound scan of a liver8. The ultrasound data shows a significant amount of
noise and the detection of the vessel-contours in the slice requires a 3D method
which which takes the full spatial context into account.

For all examples, we used 1st degree elements (i.e. p = 1) and determined
the constants a, q of (3) automatically, as described in Section 2.1.

(a) (b) (c)

Fig. 5. Cortical brain structure: (a) displays a slice through the volumetric MRI
data. (b) and (c) show views of the VRML model created by the described method.

6 Conclusion and future work

We presented a novel sparse finite element scheme and applied it to boundary
detection problems in 3D images. The geodesic model was extended to include
quadratic densities. The performance of the geodesic model was improved by
this anisotropic extension and the aligning force was analysed.

Boundary detection was formulated as interface optimisation problem and
gradient-descent was used for the differential minimisation. A key observation
was the existence of a descent-generating vector field which simplified the weak
formulation of the evolution. This had several numerical advantages: first degree
elements were sufficient for the evolution, a consistent sub-grid definition was
established and extreme sparsity was obtained since no additional elements were
required to define the evolution. Like in the 2D case, numerical stability was
obtained by incorporating a normalising term into the evolution equation with
no need for re-initialisation. Applications of the method to synthetic and real
data were presented and the robust performance in the case of noisy images
was confirmed experimentally. With the efficient representation, high resolution
boundary detections were feasible on a standard laptop computer.

Future work will include the implementation of the second degree scheme
and the inclusion of further application-specific types of optimisation problems.

7 sources: http://www.bic.mni.mcgill.ca/brainweb/, http://www.wbic.cam.ac.uk
8 source: http://svr-www.eng.cam.ac.uk/~rwp/stradx/sample_data.html
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(a) (b)

Fig. 6. MRI-brain scan: the cortical brain structure is detected from an MRI-image,
using the quadratic cost. The evolution was initialised by a sphere located in the area
of white matter and inflated with the aid of a balloon force (c = −0.1). (a) shows
a projective view of the obtained surface and in (b) a section of the 3D interface is
superimposed on the corresponding slice of the input-image.

(a) (b)

Fig. 7. Ultrasound scan of a liver (vessel system): boundaries of the vessel system
are detected in an ultrasound scan. The evolution was initialised by a sphere located
inside one of the vessels. (a) shows a projective view of the obtained surface and in
(b) a section of the 3D interface is superimposed on the corresponding slice of the
input-image. The boundary was detected successfully, despite the considerable amount of
noise. σ = 5 was used to smoothen the intensity and quadratic evolution with additional
balloon force c = −0.1 was employed. A similar result could not have been obtained by
considering slices in isolation.
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