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Abstract

The thesis considers a novel technique for adaptation of speaker models, called
eigenvoice decomposition (ED), based around reducing the dimension of the search
space of acoustic models. The technique is compared both practically and theoret-
ically with several other adaptation techniques.

The use of Principal Component Analysis to choose the subspace is discussed
and evaluated. One published method of choosing a model within this space, Max-
imal Likelihood Eigenvoice Decomposition, is presented and compared with a new
method, Weighted Projection.

Robust estimation of the subspace was found to be difficult, but when it could be
performed, ED was found to give a significant improvement in recognition accuracy
with only one adaptation sentence, rather than the five or so required by other
methods.
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Chapter 1

Introduction

1.1 Context

There are many applications for speech recognition where the system will be used
by a limited range of speakers only; for example a desktop dictation system (voice-
operated typewriter), or a voice control system to be used by a specific group of
people. However, increasingly it is necessary for a system to be deployed where it
will be used by a large number of persons, for example a telephony dialogue system.
In such situations it has been normal to use only one, speaker-independent model in
order to model the speech regardless of the person making the utterance.

The word error rate afforded by using such a system is rather worse than if a
speaker-dependent model was employed, typically by a factor of 2-3 [14]. However,
it 1s impractical to obtain a sufficient amount of data to train a speaker-dependent
model for each speaker, even if all speakers are known a priori; hence the interest
in (speaker) adaptation - transforming a speaker-independent model to a speaker-
dependent one using less data than would be required to train the model directly,
or alternatively, altering the input data stream to a speaker-independent repre-
sentation based on a model of a speaker (speaker normalisation). If the amount of
adaptation data is very small, then the adaptation is referred to as rapid adaptation,
and is the topic of this thesis.

1.2 Scope

Within this thesis, I first overview the use of Hidden Markov Models [20] for acoustic
modelling of speech signals and hence for speech recognition. Of the many methods
available for speaker adaptation I review four; two ‘classic’ methods, Mazimum A-
Posterior re-estimation (MAP) and Mazimal Likelihood Linear Regression (MLLR),
and two others, Regression Model Prediction (RMP) and Cluster Adaptive Training
(CAT) which attempt to incorporate prior knowledge of the relationship between
parameters of acoustic models for improved adaptation.

Relationships between parameters are also employed in adaptation by Figen-
voice Decomposition (ED) [9], the subject of this thesis, and hence the review of
RMP and CAT. The space of acoustic models forms a vector space [6]; normally
an adapted model may lie anywhere in this space. ED forces the adapted model
to lie in a subspace, the eigenspace, chosen using training data; the basis vectors
for this space are called eigenvoices. Kuhn et al describe one method for choos-
ing a model within the eigenspace, Mazimal Likelithood Eigenvoice Decomposition
(MLED) [10]. I describe this technique, and also a new technique for performing
eigenvoice decomposition, Weighted Projection.



Kuhn et al tested the eigenvoice method using a letter recognition task. Here,
a more demanding task was chosen to test the method’s effectiveness: a 1000 word
vocabulary continuous speech task using the Resource Management Corpus [18]
employing up to 10 sentences of adaptation data, for which transcriptions were
available. The results are compared with those obtained for MAP and MLLR on
the same task.



Chapter 2

The Use Of HMMs For
Acoustic Modelling

For the purposes of this thesis, the acoustic modelling of speech is performed using
phone-level Hidden Markov Models (HMMs). There is one HMM per phone to be
recognised; the acoustic model is formed from a set of such models. 1 here discuss
the structure of such models.

A Hidden Markov Model is a generative model formed from a digraph of nodes,
called states, one of which is initial, one final, and the rest internal, and arcs, called
transitions. Every transition has a probability associated with it. In addition,
every internal state has an associated output (probability) distribution, and are said
to be emitting. The initial and final states are non-emitiing, and so do not have an
associated output distribution. We will employ the convention that the initial state
is state 1, and the final state is state n, if there are n states in the model.

Figure 2.1: Structure Of A HMM

Suppose that at time ¢t we are currently in state i. If we have a continuous
probability distribution for the output (so our speech parameterisation is considered
to be continuous), then the probability density of making an output of o(;41) from
state j at time t + 1 is a;; x p(o(¢41)[state = j), where a;; is the (fixed) probability
of making the transition from state i to state j. We will write p(o(;41)[state = j)
as b; (O(H_l)); the value of this function when evaluated on a given o(;y1) is the
likelthood of observing o(;41) in state j. The likelihood of a series of observations
01,09, ...,07 given a particular path sq, sy, ss, ..., sy through the model is given
by multiplying the state and observation likelihoods together

T—1
p(01,09,...,07|80,51,...,87) = Haszs,+1bs,+1(0s,+1) (2.1)
i=1

Underlying this equation are independence assumptions that the transition proba-
bilities and the observation likelihoods are independent over time and of the path



taken to a given state. It should be noted that the states have no physiological
or phonetic significance, but merely model the change in parameters over time (in
discrete steps), hence hidden.

A HMM is a generative model as it gives the probability of a series of observa-
tions given a path through the model (M), as given by equation 2.1. However, in
speech recognition, we have a series of observations, but no state sequence. Our aim
is, given a set of HMMs and an observation sequence, to find the model which gives
us the maximum likelihood of the observation, regardless of the state sequence. It
would be possible to find the probability of the observation sequence by finding all
possible paths through a model, and then calculating the likelihood for each path
and either summing all probabilities or taking the highest likelihood. This is com-
putationally infeasible due to the exponential number of paths that exist in a typical
HMM. However, efficient algorithms exist for computing these values by dynamic
programming; the algorithm for the first (total likelihood) is called the Total Like-
lihood algorithm, the second (highest likelihood) is called the Viterbi algorithm.
As during recognition it is normally the Viterbi algorithm that is employed, we
consider this first.

2.1 The Viterbi Algorithm

Let us define s(2) to be the state occupied at time ¢, and have a series of observations
01...0r =: O, and a function & as follows:

®;(t) = Likelihood of s(t) = j and generating oy ... o, (2.2)
moving along most probable path

= p(o1...04,8(t) = jmoving along most probable path) (2.3)
The dynamic programming step 1s

() = max (®i(t — L)aij)bj(or) (2.4)

with the boundary conditions

®,(0) = 1
(I>1(t) = 0 0<tLT
®(0) = 0 1<i<N (2.5)

After calculating @5 (T'), the most likely path can be found by backtracking, if suffi-
cient data is stored along with the values of ®;(¢) during the dynamic programming
calculations.

On average, the number of transitions into a state of a HMM is equal to the
number of transitions leaving a state of a HMM. Using the Viterbi algorithm, only
one of the possible paths into a state 1s propagated on to the output, so the number
of paths is constant and equal to the number of states. Hence, the Viterbi algorithm
is linear in both the number of states of the HMM and the length of the utterance.

These equations may be interpreted as extending and pruning partial paths
through a HMM. For each time ¢ there are N — 1 paths active, with the likelihood
of each given by ®;(t), where j is the state terminating the path. The dynamic
programming step at time ¢ + 1 then extends the partial paths of up to time ¢, and
chooses the best of those coming into each state.

The efficiency of the Viterbi decoding algorithm may be increased during recog-
nition by a technique known as pruning. A partial path sg,s1,...,s; through one
of the models may have a sufficiently low likelihood that it is very unlikely that



the likelihood for any path having that partial path as its initial segment will be
sufficiently high for it to be chosen as the best path through the model, and so can
be discounted from the search. Moreover, all partial paths in a model up to a given
time 7 may have a sufficiently low likelihood that it 1s very unlikely that the model
will be the one in the set to have the highest likelihood of the path, and so this
model may then be discounted from the search. Removing a path or model from
the search when it would have actually been selected is called a search error.

So far, we have only considered the case of recognition for a single phone. The
HMMs for each phone can be concatenated in parallel, with the initial and final
states for each model joined into a single start initial and a single final state. The
Viterbi algorithm will choose the single most likely path through the combined
model, indicating the most likely phone for the utterance. Again, to recognise a
series of phones, the phones can be concatenated in series, collapsing the final state
of model and the initial state of the next model to a single state. The Viterbi
algorithm will give the likelihood for the most likely path through all models.

A QAN Qu A QA A QA

s low/ /dh/

Figure 2.2: Parallel And Serial Connection Of HMMs

2.2 The Total Likelihood Algorithm

The equations for this method are much as per that for the Viterbi algorithm. We
define the forward probability (actually likelihood) as follows

a;(t) = Likelihood that s(t)=j and generating oy ... o4
= plo1,...,045(t) =j) (2.6)
= Y (ailt = Dag)(or) 27)
1<i<N

with the boundary conditions as defined for ®. As for the Viterbi algorithm, paths
merge and diverge at roughly the same rate, and so the Total Likelihood algorithm
is also linear in both the number of states of the HMM and the length of the
utterance. However, as we require all partial paths to each state for each time,
we can not prune within the model as we can when doing Viterbi decoding, which
has an impact on efficiency. Also, as there is no concept of one path through a
model, but a probabilistic weighted sum of likelithoods over all paths, we can not
concatenate the models together as we can with Viterbi decoding, and so the Total
Likelihood algorithm is harder to use for continuous speech recognition.

2.3 Training The HMMs

Until now, we have been considering how to perform recognition using HMMs given
that we already have the models. Even given the structure of a HMM, there are
many parameters that need to be estimated, so we now consider how these param-
eters may be estimated.



The parameters of a HMM are estimated via the use of an Ezpectation - Maz-
imisation (EM) Algorithm [2]. An EM algorithm consists of two steps, firstly an
FExpectation Step which transforms the observed (incomplete) data to a set of suf-
ficient statistics, called the compleie data, via an expectation operator. Given this
complete data, the mazimisation step, which estimates the parameters of the model
via maximal likelihood. EM algorithms are generally iterative, as altering the pa-
rameters of the model will normally change the expectation of the complete data,
so the maximisation step needs to be performed again. Convergence to a maximum
of likelihood is guaranteed for a wide range of EM algorithms, although the speed
of convergence may be slow [2].

Given a series of observations for a given HMM, we need to know the state
sequence that gave rise to the observations. As the state sequence is hidden, it is
not known. Thus our series of observation is incomplete, and our transformation
to the complete data will be to append the (posterior) probabilities (likelihoods)
of being in a particular state at a particular time, given the data. We denote this
parameter y; where j is a state and ¢ the time; we will refer to the parameter as
the frame alignment.

Either the Viterbi or Total Likelihood methods of traversing a HMM can be
used in the training step. In the case of the Viterbi algorithm, that traces through
a single “best path”, v is a {0, 1}-valued function; with Total Likelihood, which
works on all paths, v is a [0, 1]-valued function. As it is usual to use Total Like-
lihood in HMM training, we will hereafter assume that method (see section 2.4);
the Viterbi case is similar. The frame alignment may be calculated efficiently us-
ing the forward probabilities defined earlier, and an analogous quantity, 3;(t), the
backward probability.

7i(t) = P(s(t) =j|O, M)

a; ()85 (1)
P(OM)

(2.8)

Where «;(t) is as defined in 2.6 and
Bi(t) = P(oi410142...07|s(t) = j, M)

And the dynamic programming step is

B0 = (X A+ ey )u0 (2.9)

Given our complete data, we may perform a maximisation step. Re-estimation
formulas for transition probabilities and the means & variances of the Gaussian
output distributions may be derived from Baum’s auziliary function [20]. If the
parameter vector of our model (set) M is A, and we wish to estimate the new
parameter vector A for maximising the likelihood on the complete data (the ML
estimate, then this is equivalent to maximising

QA A) = > P(O,s5A)log P(O, 5|A) (2.10)
sEM
over 5\ as
QA X) > Q(A,X) = P(O[A)> P(O[X) (2.11)

Standard constrained optimisation techniques may be used to derive the re-estimation



formulae. For example, the re-estimation formula for the means is

Estimated sum of vectors emitted from state j

Bi = Estimated number of vectors from state j
T
(T
— 21?1 7.7( )Ot (212)
=173 (t)

These are normally calculated using accumulators. As a file is loaded, running
totals for both the numerator and the denominator can be kept, meaning that the
data does not need to be kept in memory. The denominator is called the zeroth
order accumulator, denoted Aq(j) := Zthl 7;(t), and the numerator the first order

accumulator, denoted Ay (j) := E;rzl v; (t)oy.

2.4 Output Using Gaussian Mixtures

To date, we have assumed that the output is distributed as per a Gaussian distri-
bution with fixed mean and variance. Other distributions, be they continuous or
discrete are possible. Using Gaussian distributions is often convenient, and many
properties are retained by using a mizture of Gaussians distribution.
. . . . ey . . _ 1 _l _
A Gaussian distribution has a probability density function p(o) = anagel exp(—3(o

)Y (0 — p)), where p is the distribution mean, C is the distribution covariance
matrix and d is the dimension of the observation vector o. The mixture of Gaussians
distribution has a probability density function of the form

pO) = D eplglo~m) (C) o - m) (19

i=1

with the constraint that the mizture weights c; satisfy Zf=1 ¢; = 1; 1t 1s the weighted
sum of k mizture components, each being distributed as per a Gaussian distribu-
tion. The advantage of using mixtures is due to the theorem that given an infinite
number of Gaussian distributions any (continuous) probability density function can
be modelled. Hence, if we have a sufficient number of mixtures, we can accurately
model the speech distribution, regardless of the actual underlying distribution.

,,,/"statej

Figure 2.3: Considering Multiple Mixture Components As Separate States

With Baum-Welch (Total-Likelihood) training, as we traverse all paths, an out-
put distribution that is mixture of Gaussians may be regarded as k separate, parallel
states, with the mixture weights begin the transition probabilities, as in the dia-
gram. Thus, in contrast to Viterbi training, there is no special training algorithm
required.

10



2.5 Miscellanary

2.5.1 Context Dependency

So far, we have only been considering a single model for each phone. In speech, the
properties of each phone vary widely according to the context in which it appears.
To model this, we can create a separate model for a phone for each context in
which it occurs. If the model is dependent on the phone immediately preceding
and succeeding it, then it is called a triphone. Adding context dependency in this
way vastly increases the number of models for which to estimate the parameters,
for example if we have 45 phones, then there are 45 x 45 x 45 = 91125 possible
triphones.

2.5.2 Parameter Tying

To decrease the number of parameters, it is possible to cluster the models so that
parameters are shared or #ied between distributions. It is possible to tie at many
levels, for example whole phone models could be tied, or at distribution level, but for
the purposes of this thesis we will assume that it 1s states that are being tied. There
are many ways that the tying may be performed; one of the commonest, and the
one that will be employed is tree-clustering. Initially, all states are tied. A binary
decision tree is made, each branch splitting the states into two sets, depending on
context; the splits are made to maximise the likelihood of the training data. During
training, the parameters for a state are estimated using the lowest node in the tree
for which there is sufficient data to perform robust estimation.

11



Chapter 3

Performing Speaker
Adaptation

As discussed in the introduction, we have two methods of adapting for differing
speakers: speaker normalisation, where we try and map the input data stream to a
speaker independent representation, or model-based adapiation, where the acoustic
model is altered. Although speaker-normalisation may be shown to have benefi-
cial effects, the lack of control at the phone-level means that there is a limit to
the amount of inter-speaker variability that may be accommodated. We therefore
concentrate on model-based adaptation techniques.

The exact parameters under which an adaptation technique is required to be
effective will vary widely according to the application. The following indicate the
major parameters that will be defined.

Quantity of Data The effectiveness of a given technique will depend on the amount
of data presented to it; ideally we would wish for the technique to converge
to the true speaker model given sufficient data, and for it to be effective on
small quantities of data.

Supervised vs. Unsupervised If a transcription of the adaptation data is known,
then the adaptation is said to be supervised, otherwise unsupervised.

Text Dependent vs. Text Independent Some techniques may be depend on
the adaptation data being constant between each speaker; more generally
useful are those which are not dependent are any particular input.

Static vs. Dynamic If all adaptation data is presented before the final adapted
model is produced, then the technique is said to be a static or block adaptation
technique, otherwise dynamic or incremental

For the purposes of this thesis, the adaptation techniques to be considered are
all supervised, text independent, static techniques. As the subject being considered
is Rapid Speaker Adaptation, the quantity of data to be considered will be reason-
ably small. With the ML estimation as per section 2.3, if a state is not visited (
>-,7;(t) = 0), then there were be no data at all to estimate the parameters for
the distribution; with a small amount of adaptation data there will be many states
where this will hold. If }~, v;(¢) # 0, we will not be able to form a robust estimate
of the parameter. The basic problem then becomes how to exploit the data that we
do have to form as robust estimates for all parameters. To do this, we can either
employ prior knowledge of what we would expect the estimates to be, or we can use

12



the data of more than one state to estimate parameters that are shared; a technique
known as data pooling. In practice, most techniques employ a combination of both.
To estimate the effectiveness of a technique, we examine the following criteria.

Effect on Recognition Accuracy Given a certain amount of adaptation data
for a speaker, how does the recognition rate (word error rate) alter on test
data for the same speaker.

Computational Efficiency Given the data can the adapted model by computed
quickly and in a small amount of space.

It is also important to note how these criteria change with the amount of adaptation
data available, and the number of parameters in the model.

3.1 MAP

Given adaptation data, it is possible to estimate a model for the speaker using
the Forward-Backward algorithm as normal. However, many parameters will not
be observed sufficiently often to form a robust estimate, if at all. However, the
estimated parameters can be smoothed by forming a combination of the estimated
parameter and a background prior parameter according to the number of times
that parameter has been observed. This is, informally, the idea behind Maximum
A-Posteriori estimation.

The name comes from the theory of Bayesian statistics. We are estimating the
model parameters such that the likelihood of those parameters given the observation
O is maximised; expressed mathematically using Bayes’ rule, using our prior of how
likely a model is, independently of the data observed,

p(O[M)py(M)

p(M|O0) = W (3.1)

where p,(M) is the prior probability of the model before observing any data. The
derivation of the MAP equations [4] is beyond the scope of this thesis. For illustra-
tion, the MAP re-estimation formula for means with Normal output distributions
is given by

PR Yz v(tor
T
T+ Zt:l 7(1)

where 7 is a meta-parameter which gives the bias between the ML estimate of
the mean from the data, and the prior mean. In theory, it would be possible
to incorporate knowledge of the expected properties of the models via the prior.
However, to derive the re-estimation formula for a general case is intractable, and
so only knowledge as to the individual parameters is included, and the speaker
independent parameters are used for the prior.

The big advantage of MAP estimation is that it is convergent in the following

(3.2)

sense: suppose we have a stream of data such that the probability of observing data
for every parameter is non-zero; then as the amount of data tends towards infinity,
the model estimated by MAP estimation tends towards the true speaker-dependent
model. However, the rate at which this convergence occurs is slow, meaning that
MAP is not generally used when only small amounts of data are present. It also
depends on having sufficient data for every parameter. In the case of models with
large numbers of parameters, then some parameters are rarely seen, and so MAP
will adapt these parameters poorly, even when a large quantity of data is available.

13



3.2 RMP

MAP incorporates the prior knowledge of the speaker-independent prior but makes
no attempt to use data from states not currently under adaptation to improve the
adaptation in states with low occupancy. An extension to MAP which does this
is Regression Model Prediction (RMP) [1]. The technique uses linear regression to
estimate the values of poorly adapted parameters from those that are well adapted,
using regression relationships determined from training data. Although the tech-
nique can be used with models having a mixture of Gaussians output distribution,
for reasons of clear notation we assume a single Gaussian distribution.

There 1s an off-line training step involved, in finding the linear regression re-
lationships. A set of N speaker dependent models are trained. For each (target)
distribution having mean u(s),, we can find the K states sq,s2,...,sk that are
most correlated with it, and estimate the regression formula

p) = ag+ AM (3.3)

where M = (...|p(*9)[...). A is here indicated as a full regression matrix, but in
[1] it is taken to be diagonal.

Then to perform adaptation, MAP re-estimation is performed, giving the adapted
mean vectors [L(s). For each distribution, the regression formula estimated by equa-
tion 3.3 is applied to the MAP adapted means to give another estimate of the mean
vector for each distribution, f2(*). These two estimates are combined using another

MAP formula [1], giving

MO Ul Gt o A Gatd &
S EQEEYECIE

(3.4)

where (5(*))? is the variance associated with the initial MAP estimate and (5(*))2
is variance for the regression adapted mean. The better an estimate, the lower its
variance will be. Thus, if there 1s sufficient data for the initial MAP estimate of a
parameter (giving a low variance) but the regression estimate is poor (and so has
a high variance), then the numerator of equation 3.4, and hence the estimate, will
be dominated by the first term, and vice-versa.

RMP has the same advantage of MAP, in that it is convergent. The regression
of unseen or poorly adapted parameters means that the model as a whole will be
closer to the true model on less data. However, individual parameters will converge
no more quickly than for MAP. In addition, finding the most correlated parameters
for the off-line regression calculation step is a very slow step: Ahadi et al estimate
that for a 2 mixture word-internal 3-state HMM triphone system, approximately
350 million relationships must be searched. For the on-line efficiency, please see
section 4.2.5.

3.3 MLLR

The next technique to be considered is Maximal Likelthood Linear Regression
(MLLR) [14]. For a given state (mean), we can estimate the transform required
to transform the mean vector g to the estimate of the adapted mean vector fi, as
follows

or alternatively

po= W¢ (3.6)

14



where ¢ is the extended mean vector (T [1)T and W is the transform matrix. The
transform matrix is estimated so as to give the maximal likelihood of the adapta-
tion data for that distribution. Having a separate transformation matrix for each
distribution does not decrease the number of parameters to be estimated; indeed, it
will probably increase it. However, it is possible to estimate a single transformation
for several distributions, and pool all data seen for these distributions to estimate
the transformation matrix. This enables MLLR to adapt parameters which have
not been observed in the adaptation data.

To decide on how data is to be pooled, a Regression Class Tree may be formed.
A binary decision tree is constructed based upon training data; every node splits
into branches depending on the question of acoustic context, for example “Is the
current phone a nasal?” or “Is the right phone a liquid?”. At every node in the
tree, a transform is estimated for all distributions below it in the tree; if there is
insufficient data to estimate a transform, then the tree is pruned at that point. For
any given distribution, the transform that is the lowest in the tree (with sufficient
data to estimate the transform) is employed.

The number of parameters in each transform is dependent on the type of trans-
form employed; it is not necessary to estimate the full n x n + 1 parameters in W.
One of the most common forms of reduced matrices is block diagonal, as follows

Wo 0 ... b
W= 0O Wi 0 ... by (3.7)
........ 0 W, b,
where the vector of constant offsets, b = (b |bT|...|bI)T.

The use of tying transformations together via a regression tree means, that unlike
MAP adaptation, all parameters may be adapted. However, sufficient data must be
available to robustly estimate the root transformation (which will act as a global
transform), before MLLR may be applied. Taking typical speech parameterisation
of 39 dimensions, and a block matrix such as W above with n = 3, this means that
546 parameters need to be estimated for the transform. The need to estimate these
parameters bounds MLLR to applications where there is sufficient data to robustly
estimate this number of parameters.

If the number of regression classes is equal to the number of distributions, then
MLLR is convergent in the same sense as MAP. However, having so many transforms
to estimate results in a very large number of parameters to estimate; more than using
MAP or direct ML estimate. Hence, a more restricted number of regression classes
are used, reducing the number of parameters to estimate, but losing the property
of convergence. To regain such, MLLR may be combined with MAP. When only a
finite amount of data is present, MLLR will perform a coarser adaptation on the
entire model, then the MAP re-estimation will refine those parameters for which
sufficient data exists.

3.4 CAT

The final adaptation technique we consider is Cluster Adaptive Training (CAT) [3].
One method of speaker adaptation is speaker clustering, whereby, using training
data, a set of cluster models are produced, where each model represents a cluster
of speakers that are, in some sense, ‘similar’. Given adaptation data, the canonical
model which is estimated to be ‘best’ for the new adaptation data is selected. CAT
extends this procedure, so that instead of picking one model, a linear combination
of the canonical models is estimated.
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Given a set of N speaker-dependent models estimated from training data, we
form a set of K cluster models by the following algorithm

1. Estimate the values of the weight vectors for each speaker in the training data,
given the current estimate of the cluster parameters

2. Estimate a new set of cluster models given the weight vector

continuing the iteration until some convergence criterion is satisfied.

Denote the mean of the i*" cluster model for mixture component m of state s
as e%)(i). Then the vector of weights w can be determined by solving the linear
equation

Grw = k) (3.8)
where

60 = ¥ Y awm o m) (3:9)

SEMmEs 1
KD = 3 Y M e Y wer (3.10)
SEM mEs t
MO = (e)]...[eL(K)) (3.11)

It should be noted from the equations that every observation vector is considered
in the computation of every weight as the sums run over every mixture component
in the system and all time of the observations. One would therefore expect the
technique to be particularly suitable for rapid speaker adaptation. In the paper
presenting the technique, ([3]), the technique is evaluated using 20 sentences, which
is more than we consider here. It should also be noted that the technique is not
convergent.
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Chapter 4

Eigenvoices

Intuitively, one would expect that the family of speaker models to be of far lower
dimensionality than the many thousands employed in even a simple acoustic model.
If a more systematic characterisation of speech could be found, it would have an
impact on speaker adaptation, as the number of parameters to be estimated would
be greatly reduced, and so could be more robustly estimated, while still capturing
the essential variation between speakers.

One such attempt at finding a characterisation is that of eigenvoices, first pub-
lished by Juhn, Nguyen et al ([10] & [16]) and modelled on earlier work on human
face analysis [9]. The eigenvoices form a basis of a subspace of the acoustic model
space, and are chosen to account for inter-speaker variability.

Suppose that we wish to adapt a certain set of parameters in a model. These
parameters form a supervector in the space of acoustic models, the D-space. Previ-
ously, using training data, a subspace of the D-space, the K-space, spanned by K
eigenvoices, €eg, €1, ...,ex_1, has been estimated. Given the adaptation data, we
estimate a set of weights, wo, w1, ..., wx_1 to form a model in the K-space given by
> w;e;, which is our adapted model. This process of adaption is called eigenvoice
decomposition (ED). Kuhn et al used an EM-based maximal likelihood algorithm,
Mazimal Likelihood Eigenvoice Decomposition (MLED) to perform the decompo-
sition. This method is discussed shortly, and then a further algorithm, Weighted
Projection, developed for this thesis, is presented.

4.1 Estimating The Subspace

Before performing ED, it is necessary to have estimated the K-space. We can train
a model for each speaker in the training data, and extract a supervector from each.
These supervectors are then analysed to choose a basis. There are many techniques
which may be used, but to to data Principal Component Analysis (PCA) has been
employed.

4.1.1 Principal Component Analysis

Suppose that we have n variables zq, . .., 2n_1. Define the first principal component,
&1, to be the linear combination of the z; such that the variance is maximised, and
define the i*" principal component, & (i > 1), to be the linear combination of the
x; such that the variance is maximised and &; is uncorrelated with &;,...,&_1. It
may be shown [8] that if the z'th eigenvector of ¥ = (0‘0| ..|orn_1), the covariance

matrix of the z;, v; = Zk 0 ozk ck, then §; = Zk 0 ak xk, if the eigenvectors are
ordered according to the magnitude of the corresponding eigenvalue.
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Although we do not have a set of random variables, it is possible to do PCA
in a more data-driven manner [5]. From the training data, we have estimated
n supervectors of parameters, xg,...,x,—1, each of dimension N and can thus
estimate the N x N covariance matrix. Given the covariance matrix, we can find
its eigenvectors, v, ..., vy_1, where v; =Y 1 _, agf)xk. Our principal components
are then &; = Z::o agﬂi)xi.

Intuitively, what we are doing is rotating the space (the matrix of eigenvectors
of ¥ being orthogonal) so that the basis vectors are aligned with the directions
where there is most variability. Hence, to capture the most variability with just
a K-dimensioned space, we take the K principal components, the first being that
associated with the largest eigenvalue. Sometimes, the mean of all the observed
supervectors is used as the first component, and then the first K — 1 principal
components used for the basis. Although PCA is defined in terms of the covari-
ance matrix, other cross-product matrices may be used, for example the correlation
matrix, or X X7 where X := (...|x;|...) [5].

The number of parameter is the model, N, is typically large: anything from a
few thousand to over a million. To compute the entire covariance matrix, the size of
which is quadratic in the number of parameters, is infeasible for models with more
than about 10,000 parameters. However, due to a theorem about Singular Value
Decomposition (SVD), if we use X X7 as our cross product matrix, then we can
perform PCA using much less space. SVD decomposes a matrix into a product of
three matrices:

X = P A Q7

N xn N xr rXr rXn

(4.1)

where A is a diagonal matrix, and P & ) are unitary matrices. The theorem
states that P is the matrix of eigenvectors of X X7 corresponding to the r largest
eigenvalues, which are ordered along the diagonal of A [5]. As SVD can be performed
‘in-place’ for the matrices X, P, A and @, the space required is now linear in the
number of parameters of the model.

There is often a figure quoted called the proportion of variability for a given
basis vector. This is the ratio of the eigenvalue for the given eigenvector to the sum
of the eigenvalues of the matrix, and is a measure of the proportion of variability
in the input accounted for in the given direction [7].

4.2 Eigenvoice Decomposition

4.2.1 Maximal Likelihood Eigenvector Decomposition

Maximal Likelihood Eigenvector Decomposition (MLED) is an application of the
FEzpectation-Mazimisation (EM) algorithm [2]. Informally, it selects a weight vector
w such that if £ := (egle1|...|ex—1), then Ew is the supervector such that when
it 18 recombined to form a model, the likelihood of the observed data is maximised.

The derivation of the equations follows a standard derivation for EM applica-
tions, as indicated for Baum-Welch re-estimation in section 2.3; a full derivation is
given in [16]. We are aiming to choose a vector of model parameters A such that the
likelihood of the observed data O is maximised. We form our complete data set by
calculating the frame alignment (equation 2.8). As per the Baum-Welch derivation
we maximise an auxiliary function, . In contrast to normal maximal likelihood
estimation of model parameters, we will constrain A (and A) to lie in the eigenspace.
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@ is defined by

QAN = —1POMy) Y (0w

SEM N mEs t=1

(nlog(27) + log |C<2)| + h(oy, s))) (4.2)
where
h(owns) = (00— )T CY™ (or — )

As we are only adapting means, the constraint that A lies in the eigenspace 1s
that g1 is a linear combination of the eigenvoices, that is
K-1
[Il = wje]- (43)
j=0

Therefore, we need to maximise ) with respect to the w;s. At maxima,

0Q
= 1 =0,1,...,F—1 4.4
B0, 0 1=0,1,..., (4.4)
and hence
2Q 0
Z® 0 = = A8) i — —
o =0 = Z:}:}:%wﬂm@w@hg) j=0,1,...,F—1 (4.5)
SEM ) mEs t=1
as g:ﬁ; = 0 for i # j as the eigenvoices are orthogonal. The computation of the

derivative is given in [16]. The equation with the derivative computed is given
below. Writing e; as e(i) for clarity,

T E—-1
0= 3 YR T o+ Y wield() ¢4 el @)

SEM mEs t=1 jIO
i=0,1,... K1 (4.6)

Rearranging gives
T . i T E-1 . i
Do YD AR MeR ) O o = 3T DD AN Y] wield) O el (i)
SEM mEs t=1 SEMy mEs t=1 =0
1=0,1,.., K -1 (4.7)

which is a set of K linear equations in K unknowns.
We can rewrite this equation in matrix notation as

Qw = v (4.8)
where
Q = (gi;)
S S S mel) () 08 el i) (4.9)

SEMy mEs t=1

(. Y Y@ e ol ) (4.10)

SEM mEs t=1

Qi

<
(l
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4.2.2 Projection Techniques

Instead of using Maximal Likelihood to estimate the combination of eigenvoices,
it is possible to use projection to estimate the vector in K-space. That is, we
find the vector fu such that ||t — f&|| is minimised, where fi is the ML estimate
of the means from the adaptation data; equivalently we find a vector g1 such that
V' € K, ||p— pl| < ||’ — ]| For this equation to make sense, we need an estimate
for all parameters of the estimated mean vector fi. This is a major obstacle for the
use of projection, and the reason that it is discounted by Kuhn et al in [10].

Instead of performing the projection in the D-space directly, we can apply a
linear transformation such that in the transformed space, where unestimated pa-
rameters are given a value 0, and hence have no effect. Moreover, we can select our
transform such that parameters that we expect to be robustly estimated have more
effect on the choice of f1. Thus, our aim is to minimise ||T'pr — Ti||, where T is the
linear transformation.

We assume that the robustness of the estimate is directly related to the amount
of data used to estimate it; the quantity of data used is given by the zeroth order
accumulator. Therefore, let us define a function w : R — R to map the accumulator

to a weight for that parameter to be a weight function if the following properties
hold:

1. w(0)=0
2. w is (non-strictly) monotonically increasing

We can then define our linear transform 7" to be the composition of two transforms,
the first being a decorrelation of the space, 1), which is not necessarily required, but
will reduce the weighting in favour of distributions with large variances, followed
by a weighting according to the weight function w, Q; that is, 7'= QD. D will be a
block diagonal matrix, as we do not measure the covariance between distributions;

—1/2
candidates for each block on the diagonal include I, to not decorrelate, C’,(,f) / for

a component-by-component decorrelation, or 6_1/2, where C is the average of the
component-by-component covariance matrices, which will provide more robustness
in the case of the covariance matrices being badly estimated. Our weighting trans-
formation will be diagonal, but it is probably easier to consider it as being block

diagonal, and defined by

. 0 0
0 w(Ao(s,m)'?1; 0
0 0

where d is the dimensionality of the speech vector. We also require that Vx €
K.T(x) = 0 = x = 0. This is sufficient to ensure that the image of the basis vectors
of K form a basis for T(K). Theorem 1, adapted from a standard linear algebra
proof for this thesis, states that given T, an estimate that minimises the square
error in the projected space exists.

Theorem 1
Let E = (egley]...|lex_1). Then there exists a vector w such that (TE)T(TE)w =

(TE)TTfi). Moreover, Ew satisfies the property | Th—TEw|| < ||Ta—Tp'|| Yp' €
K.

Proof.
We first justify our earlier claim that {T'eq, Te1, ..., Tex_1} is a basis for T(K).
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As T is linear, {T'eg, Te1,...,Tex_1} span T(K). It only remains to show that

they are linearly independent. Take g, a1, ..., ag—1 such that
agleqg +a11er + ... +ag_1Tex_1 0
T(a0e0+a1e1 —|—...—|—aK_1eK_1) = 0
= apeotajer+...+ag_1eg_1 = 0
>a; = 0 1=0,1,... , K—-1
as eg, ey, ... ,ex—1 are linearly independent. Therefore {T'eg, Te1,... ,Tex_1} are

linearly independent and span T'(K), so form a basis for that space, as required.
To show that w exists, it is sufficient to prove that (T'E)T(TE) is invertible.
Let q be a vector such that (TE)T(T'E)q = 0. Then

(TEQ)"(TEq) = o' (TE)'(TE)q
= qTO
= 0
=TFEq = 0
Suppose q = (90,41, ... ,9k—1). Then
0=TEq = qTes+qTe;+...+qrx_1Tex_1
=q = 0 i=01,... K—1

as {Teg,Tey,...,Tex_1} form a basis. Therefore (TE)TTEq = 0= q = 0 and
so (TE)T(TE) is invertible, and consequently w exists.

Note that Ew is a member of K. Write it := Ew. We need to show that
Tp — Ta| < |[Th —Tw| Yu' € K. We first show that (T — Tp)T T =
0 Vu' € K. By definition of w,

(TEY'TEw = (TE)'Th
(TEY'Ti = (TE)'Th
(TEY' (Tpp—Tp) = 0
(Tp—Tp)"(TE) = 0F
= (Tp—Th)'Te; = 0  i=0,1,...,K—1
= @-p)'Ty = 0 vpek
as {eg,e1,...,ex_1} is a basis for K.
Consider p’ € K.
T —Tu|? = [(Th-Tp)+ (T - Tw)|?

(Ti = Tp)"(Ti = Ti) +
2ATh —T) (Th—Tu') +
(Ti = Tp')! (Ti = Tp')
1T —Till* + [|Th — Tp'|?
ITh—TW| > ||Ta-Thal (4.11)

Therefore, g is the vector in K, such that the square error between that and the
estimate of the parameter vector gt in the space when transformed by T is the least
of all vectors in K.

Theorem 1 gives a matrix equation that we can use to estimate the weight vector
w and hence the re-estimate of the mean vector, g1, namely

(TEY'(TE)Yw = (TE)'Th (4.12)
ETTTTEw = ETTTTh (4.13)
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Both the left and right hand sides have a common subexpression of 77 7. Consid-
ering this expression gives the following derivation, noting that both the identity
matrix and a decorrelation matrix are invariant under transpose.

T = DTQTaD
.0 0 0 0
= o b o]0 wH(s,m)21; 0
0 0 0 0 '
g 0 0 .00
0 w(do(s,m)21; 0 || 0 DR 0
0 0 0 0
: 0 0
= | 0 DWuw(Ao(s,m))1sDS 0
0 0 '
: 0 0
2
= | 0 w(d(s,m)DS" 0o |=B (4.14)
0 0
Then the right hand-side of equation 4.12 can be written
v = (TE)"Th=E"Bp
v = e(i) B
= > Ze() w(Ag(5,m)) D (5)° 1
SEM mEs
= 3 ST el Aals mel) () Do) ) (4.15)
SEM mEs

And similarly the left hand side can be written as

E'TTTEw = ETBEw =:Qw = (g;;)w
qij = e(i)TBe(J')
= 30 3 wAols,m)e (i) Din()%((G)  (4.16)
SEM mEs

and the projection amounts to solving the equation

Qw=v (4.17)

Weighted Projection Algorithm

Further manipulation of equation 4.15 is possible in order to convert to a form more
suitable for the computation of the weight vector, w. Noting that g ( ) = %(m%,

the i"" component of v, v;, is given by

uo= 3 3 wla(s m)el) () DG ) (4.18)

SEMx mEs

_ w(Ag(m 5) o)

= > Z Fo(m. ) DL Ay (m, s) (4.19)
SEMx mEs
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The algorithm can then be described thus

1. Compute the zeroth and first order accumulators for all distributions, Ag(m, s)

and Aq(m, s)
2. Compute v using equation 4.19
3. Compute () = (g;;) using equation 4.16
4. Solve the linear equations Qw = v

5. Compute the new model mean g = Ew

4.2.3 Comparing MLED and Projection Techniques
The Use Of Constraints

ED constrains a model to lie in K-space. When performing projection, we first
estimate an unconstrained model, and then enforce the constraint that the model
lie in the eigenspace (using a least-squares metric to determine the closest model
within the eigenspace to the unconstrained model). By using MLED, we enforce the
constraint before performing any model estimation [16]. The re-estimation formula
will re-estimate the model subject to the constraint, guaranteeing no reduction in
likelihood. The projection technique has no such guarantee.

The difficulty with imposing the constraint is that the true model may not ac-
tually lie in the eigenspace, and thus the technique is not convergent. If the amount
of data is small, then this is not a problem, as the true model could not be ro-
bustly estimated. However, if a suitable amount of data might be available, then
the eigenvoice technique will be insufficient. To circumvent the problem, eigen-
voice techniques may be combined with MAP [9], or some other technique, as was
mentioned for MLLR.

Using An Identity Weight Function

Consider the special case where the weight function used in the projection tech-
nique is the identity function, that is w(z) = 2, and the component-by-component
covariance matrices are used for decorrelation. Then, from equations 4.15 and 4.16,

o= 3 3 Ao(s,mel) () (Cr(s)™ ) A

SEM mEs
- T (5
s S)(, T = Ym t)o
- Z Z(E :“/7(71)(75)>e,(n)(z) Cm(s)thl—(sg)t
sEMmeEs =1 Et:] e ('t)
T

= 3 Y wel ) ¢oy (4.20)

SEMmEs t=1

Gio= 3> Ao(s,m)ed(@) (Cn(s)/?) el)(j)

SEM mEs

= 3 Y S0 ) Cm(s)el) ) (4.21)

SEMmEs t=1
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Comparing these equations with equation 4.9 and 4.10, we see that the equations
are the same. Hence, projection with occupancy weighting and component-by-

component covariance decorrelation is equivalent to MLED.

4.2.4 Comparing Eigenvoice And Other Adaptation Tech-
niques

Only a small proportion of the D-space consists of models that are humanly realis-
able. MAP and MLLR do not make use of this ¢ priori knowledge, and allow the
model they estimate to range over the entire space. In theory MAP could incorpo-
rate this information via the prior, but to do so is mathematically intractable. The
use of eigenvoices is an attempt, albeit crude, to constrain the search to the space of
models that are realisable. The attempt is crude for the following reasons. Firstly,
the estimate of the space itself, being a linear closure of a set of vectors, includes
many models that unrealisable; moreover the basis vectors themselves may not be
realisable, being a linear combination of model parameters from observed data. In
addition, the estimate of K-space is made from a finite (and probably small) set of
speakers, and so may not reflect the true space of possible models.

RMP and CAT also attempt to incorporate prior knowledge. Of the two, CAT
is closer to ED. Indeed, comparison of equations 3.8 to 3.11 and 4.8 to 4.10 reveal
that in the adaptation stage CAT and MLED are identical and it is only the choice
of basis for the constrained space that is different. CAT assumes that the space of
realisable speaker models is in the span of ‘typical’ cluster speakers. When using
PCA, ED attempts to model the variability between speakers in an ordered fashion.
We can thus pick the dimension of space according to the amount of adaptation
data available.

RMP is a very different technique in that by looking across speakers it attempts
to find linear relationships between differing parameters, using training data. This
is in contrast to MLLR, which attempts to find linear relationships to a speaker
independent model using adaptation data.

When performing speaker adaptation, the more data that is available, the more
parameters that we can robustly estimate. When performing rapid speaker adapta-
tion, we have a very small amount of data, and so keeping the number of parameters
at a minimum while still allowing sufficient variability to produce a good model is
a very important compromise. Also, the unseen parameter problem becomes much
worse: not only are most parameters unseen, but very few parameters will have suf-
ficient data for robust estimation of their value. Thus the way that data is pooled
is critical. Ideally, every parameter should be influenced by every observation to
obtain the most robust estimation possible. The following table summarises the
position for each technique.

Adaptation of unseen  Data polling
parameters

MAP No adaptation No data pooling

RMP Adapted as a fixed linear Pooled according to fixed re-
combination of other adapted gression coefficients
parameters

MLLR Adapted by estimated trans- Data pooled per class
form for each class

CAT Adapted globally All data used for estimating ev-

ery parameter
Eigenvoice Adapted globally All data used for estimating ev-
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4.2.5 Computational Efficiency Of Various Adaptation Tech-
niques

In this section we examine the relative efficiency of each of the adaptation techniques
mentioned. Suppose that we have a set of H HMMs each having S states in all
and employing M mixture component per state. Let d be the dimension of our
observation vector, and 1" the number of frames of observations. Furthermore, let
P be the number of phones observed.

The first stage of all techniques is to compute the zeroth and first order ac-
cumulators using the forward-backward algorithm. For each phone, we have SM
distributions, and an average of T/ P frames of observations, so the time per phone
is O((SM)?L) [20]; therefore the overall time complexity is O((SM)?T). We have
HSM distributions to store accumulators for, so the storage required is O(HSMd).
Hereafter, these figures will be taken as given.

MAP

When using MAP, for each observed distribution, we compute equation 3.2, where
the summations are the previously computed accumulators. The time requirement
is clearly O(d), giving rise to a time complexity of O(PSMd) and space complexity
similarly.

Combining these two phases gives an overall complexity of O(SM(SMT + Pd))
in time and O(HSMd) in space.

RMP

After performing MAP, the second stage of RMP is the regression. If we assume
that diagonal regression matrices are being used, it will take O(Kd + d) operations
per state, so O(HSM (K + 1)d) operations in all. The space required to store the
regression matrices is O(HSM (K + 1)d. The final combining of regression and
MAP parameters will also take O(HSMd). Therefore, overall, RMP has a time
complexity of O(SM(SMT + HKd)) and a space complexity of O(HSM K d).

MLLR

Suppose that we are using K regression classes to perform out adaptation; suppose
for the purposes of computation that each one will apply to Hf(M states. Using
the notation of [14] for the intermediate matrices used in computing the adaptation
matrix, to compute the g;'.k takes O(Hf(M), which gives a time of O((d + 1)2%)
for each G*. To compute each row of W takes d matrix inversions of a matrix of
order d + 1 (G?), so each inversion is of order (d + 1)3, O(d*) in all. So for a single
regression class, we have a time order of d*(d* + HSM); all matrices are of size
O(d?), so the space complexity is O(d®) as we have d+1 G* and 1 W. As we had K
regression classes, this gives a time complexity of O(d*(Kd* + HSM)) and a space
complexity of O(Kd?).

Updating the means now becomes a trivial matter of multiplying a vector by a
matrix. We have HSM means to update, each taking O(d?), giving O(H SMd?) in
all, with trivial space constraints.

Putting each stage together gives a time complexity of O(SM(SMT+ HKd?))+
O(Kd*) and a space complexity of O(HSMd?).

CAT

To store the cluster speakers takes O(K HSMd) space. The adaptation techniques
(s)

involves computing equations 3.8 to 3.11. If (%, is diagonal. then to compute each
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source matrix of GSJ) takes O((Kd)?)), giving O(HSM(Kd)?) in total. Similarly,
kg), has a time complexity of O(HSM Kd?). As G&,’)
the linear equation 3.8 is an O(K?®) operation (ignoring Strassen’s method [19]).
Storing the cluster speaker models takes O(K H SMd) space; the space required for

is a K x K matrix, to solve

GS,Z") and kSJ) is comparatively insignificant. The update time for the means will
also be comparatively insignificant.

Combining these results gives a time complexity of O(SM(SMT + HK?d?))
and a space complexity of O(K HSMd).

Eigenvoice Decomposition

Given the accumulators, we need to compute the matrix ¢ and the vector v. For
each element of @, from equation 4.16, we see that there is a time complexity of
O(H SMd?), assuming that D? has been precomputed, giving a time complexity of
O(K?HSMd?) overall. Space required is O(K?), plus the space to store the eigen-
voices, which is O(K HSMd). Similarly, from equation 4.15, the time complexity
for computing v is O(K HSMd?).

The final step is to solve the linear equation 4.17. As the equation is of order
K, solving this is an O(K?®) operation. Updating the means is a comparatively
insignificant operation.

Adding these together, and removing dominated terms gives an order for the
time complexity of O(SM(SMT + H(Kd)?)) + O(K?). However, since normally
HSM > K, we can expect the final term to be dominated, and hence discounted.
Space complexity is O(K HSMd).

Summary
Method Space Time
MAP O(HSMd) O(SM(SMT + Pd))
RMP O(KHSMd) O(SM(SMT + HKd))
MLLR O(HSMd?*)  O(SM(SMT + HKd?)) + O(Kd*)
CAT O(KHSMd) O(SM(SMT + H(Kd)?))
Eigenvoice O(KHSMd) O(SM(SMT + H(Kd)?))

Table 4.1: Time and Space Requirements For Adaptation Techniques

Table 4.1 gives the time and space requirements for each adaptation technique that
we have considered. Under both considerations MAP is clearly the most economical.
Three other methods, RMP, CAT and eigenvoice, have the same space requirements
given the same “order” of adaptation (K). As K will typically be no more than
30, and d 39, K? € Kpur-d?, (Kmur typically 2 or 3) and so MLLR is much
more space-intensive. This means that the other techniques are much more suitable
for embedded applications, for example, telephony, than MLLR. However, time
considerations are often more important than space, given the amount of memory
available in many systems. Again, RMP is much less computationally intensive,
while CAT and eigenvoice decomposition have the same complexity. It is much
harder to compare MLLR, as it has a different structure in its computation. Firstly
notice, when a lot of data is being used, the time complexities are dominated by the
time taken to perform the forward backward algorithm. We therefore consider the
case when SMT is sufficiently small for the other quantities to be significant. The
relative performance of ED (& CAT) and MLLR is then determined by which is
the larger quantity, HSM (K — 1), or d?. Thus, if the models are very complicated,
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so HSM is large, MLLR will be more efficient, on simpler models, Eigenvoice
techniques are preferable.
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Chapter 5

Experimental Evaluation

5.1 Implementation

The following software was written in order to evaluate the efficacy of MLED and
Eigenvoice Projection techniques, using the HTK library [15]. Existing HTK tools
were used to evaluate MLLR and MAP techniques.
EVExtractSV  Extracts a supervector of means from a set of HMMs.
EVChoose Given a list of supervectors, performs PCA and writes a series
of supervectors that are the principal components to file.
EVEAdapt Updates a model file using Eigenvoice Adaptation.

Full source code is supplied in the companion volume to this thesis, which in-
cludes a description of the supervector file format in the comments to the sv.c file.
All the code is my own work, apart from the code for Singular Value Decomposition
and LU Decomposition, and their support routines, which is taken from [19].

5.2 Experiments

The corpus used for the experimental evaluation is the speaker-independent portion
of the resource management corpus [18]. The training corpus consists of data from
109 speakers, and then their are four test corpora, each of 10 speakers. In all cases,
1 speaker speaks 30 sentences. The four corpora are described by their release date:
February 1989, October 1989, February 1991 and September 1992.

Three differing acoustic models were used in the test: single Gaussian mono-
phone and triphones, and 6 mixture component triphones. Each HMM had three
internal states.

To compare the relative effectiveness of different adaptation techniques, the first
10 sentences of the 30 for each speaker in the test corpus was withheld with which
to perform adaptation, the remaining 20 being used to estimate the accuracy of the
model. To act as a prior, a speaker-independent model was estimated by pooling
the data for all 109 speakers in the training corpus. Using the HTK Toolkit ([15]),
the following adaptation techniques were tested using upto 10 adaptation sentences.

1. No adaptation
2. MAP re-estimation

3. MLLR with full regression matrices
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4. MLLR with block diagonal regression matrices, each block being 13 x 13 in size

5. Both MLLR techniques, each followed by MAP

The effect of choosing different bases for the eigenspace was investigated. A set
of 109 speaker-dependent models were generated by taking the speaker-independent
model and performing MLLR adaptation with full regression matrices, followed by
MAP. Two different bases were chosen: one taking the speaker models, and one
performing PCA on X X7 (section 4.1.1). In the case of the monophone models,
a basis was also determined by performing PCA on the covariance matrix. Us-
ing MLED, the recognition accuracy obtained by using eigenspace dimensions of
between 1 and 30 was recorded. In all cases when using ED, 3 iterations of the
re-estimation algorithm as employed.

To investigate the effect of differing projection techniques, different choices for
the weight function and decorrelation matrix were made. Three differing decorrela-
tion techniques were compared: no decorrelation, component-by-component covari-
ance matrix inverse, and the average of these covariance matrices, inverted. The
weight functions were all taken from the same family, defined by

pe(z) = {0 es0 (5.1)

x4 x>0

There are two special cases of this equation, when ¢ = 0, which is called ndicator
projection, and when ¢ = 1, which is called occupancy weighting, and when com-
bined with component-by-component decorrelation is equivalent to MLED (section
4.2.3).

Next, for 2-; 10-, and 30-dimensional eigenspaces, with an appropriate choice of
basis, the effect of altering the amount of adaptation data was investigated. Finally,
the effect of adding MAP and MLLR adaptation to the ED was investigated.

The following section discuss the results obtained; a results summary is in ap-
pendix A, detailed results are supplied in the supplementary volume.

5.3 Choosing An Eigenspace

As described in section 4.1.1, a basis for an eigenspace was chosen using Principal
Component Analysis on the matrix X X7 . Figure 5.1 gives the cumulative variabil-
ity. Since there are at most 109 (number of training data supervectors) positive
eigenvalues of the covariance matrix ([7]), the SVD technique will derive all the
required eigenvalues to assess the proportions of variability.

Using the single Gaussian monophones, 17 dimensions are required to account
for half the variability of the speech signal; with the most complicated models
(triphones with 6 mixture components) 19 are required; strangely, with the single
Gaussian triphones 24 dimensions are required. This reduction in the variability
for the more complicated models is probably due to the difficulty in estimating
the speaker-dependent models on the small amounts of adaptation training data
available.

As the eigenvalues should be derived from the SVD in order of decreasing mag-
nitude, the space under the cumulative graphs should be convex. Consideration of
figure 5.1 shows that this is not the case after approximately 40 eigenvalues. This
is indicative of a lack of numerical stability in the algorithm implementation.

We also see the effect of a lack of stability in figures 5.2 to 5.4. Using the sin-
gle Gaussian models, the word error rate decreases as the dimension of the bases
increases, until approximately 15 dimensions. After this point the recognition rate
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behaves very unpredictably. As the behaviour is independent of the number of
adaptation sentences, it is not due to problems in estimating the ED, and therefore
it indicates a lack of robustness in the estimation of the eigenvoices. As additional
evidence, although the recognition rate when using a basis of original speaker vec-
tors starts considerably lower than using the PCA-derived basis, indicating that
PCA is indeed capturing the inter-speaker variability, as the dimension of the space
is increased the recognition rate continues to increase, instead of behaving unpre-
dictably.

However, this i1s unlikely to be only a problem with numerical stability, as the
PCA(Y) derived basis (computed using Matlab) exhibits the same behaviour as the
PCA(XXT) derived one. This indicates that 109 speakers provides insufficient data
to robustly estimate more than about 14 dimensions of inter-speaker variability.

The word error rate for the speaker-derived basis of the 6 mixture component
triphones also decreases as the dimension of the space increases. On the other
hand, the recognition accuracy using an eigenspace with a PCA-derived basis is
very unstable with the dimension of the space. This is indicative of very poor
estimates of the basis vectors. Performing the PCA on parameter vectors this large
is difficult, even with the SVD technique.

Experiments of altering the training data used in obtaining the initial speaker
dependent model set are reported in [11]. They found that for the technique to
work well, the set of training speakers should be matched as closely as possible
with the test speakers, so that the same inter-speaker variability is matched. It was
also found that it was better to have half as much data from each speaker than
to have data from half the number of speakers. This is indicative of the stability
problem above, as reducing the number of speakers will decrease the robustness of
the estimate of the dimensions of variability, and so only the few most important
eigenvoices will be reliably estimated.

5.4 Choosing A Projection Technique

The definition of the weighted projection in section 4.2.2 was very general. The aim
of the following experiments was to determine the effect of differing choices for 2
and D.

The effect of the three differing decorrelation techniques was first investigated:
using no decorrelation, component-by-component decorrelation (¢) and global decor-
relation (¢) . Using indicator (Ind) and occupancy (occ) weighting only, the average
percentage point difference compared with no correlation for both fixed amounts of
adaptation data, averaging across different numbers of dimensions (table 5.1), and

31



for a fixed dimensionality, averaging across differing amounts of adaptation data
(table 5.2), was computed.

Num Sents Mono - Occ (s)  Mono - Occ (g)  Mono - Ind (s) Mono - Ind (g)
1 0.42 1.17 0.06 0.00

2 0.17 0.13 0.27 0.00

5 -0.27 -0.63 0.05 0.00

10 0.02 0.21 -0.15 0.00

Num Sents Tri - Occe (s) Tri - Occe (g) Tri - Ind (s) Tri - Ind (g)

1 0.11 0.71 -2.15 2.51

2 -0.20 0.52 5.01 4.86

5 -0.40 0.31 4.72 4.69

10 0.10 0.46 4.82 4.61

Table 5.1: Effect Of Decorrelation Against Quantitity Of Adaptation Data (% point
change on recognition accuracy)

Num Dim Mono - Occ (s)  Mono - Oce (g)  Mono - Ind (s)  Mono - Ind (g)
1 0.03 -0.12 -0.04 0.00

2 0.24 0.16 0.23 0.00

5 0.02 0.01 0.02 0.00

10 0.06 -0.02 0.01 0.00

20 -1.39 -0.06

30 1.49 1.27

Num Dim Tri - Oce (s) Tri - Occe (g) Tri - Ind (s) Tri - Ind (g)
1 -1.77 -0.53 9.36 9.96

2 -0.27 0.34 2.15 4.14

5 0.34 0.62 0.46 0.76

10 0.95 0.99 0.96 1.12

20 0.42 0.42 0.56 0.32

30 -0.46 0.91

Table 5.2: Effect Of Decorrelation Against Eigenspace Dimension (% point change
in recognition accuracy)

In general, the type of decorrelation chosen, if any, has little effect on the word
error rate of the technique. Notice how for monophones, the state-by-state decor-
relation mostly outperforms that for the global one, whereas for triphones, the
situation is reversed. This is as the covariance matrices are unlikely to be as ro-
bustly estimated for many of the distributions in the case of triphones, so averaging
them out reduces the problem.

The use of decorrelation has a much higher effect for triphones generally than
for monophones. This is particularly true when using indicator-weighted projection
with large numbers of adaptation sentences and low dimensionality. This is as there
is more scope for certain (possibly badly estimated) parameters dominating results,
as these are likely to have large variances in the training models. Decorrelating
these removes this bias. Occupancy weighting will also help to remove this bias,
as triphones which occur often is test data are likely to also have occurred often in
the training data, and so the variances of these parameters will be much less, and
hence the need to remove the effect of a large variance is also less.

When investigating the effect of altering w, the component-by-component decor-
relation was always used. This enables us to compare the benefit of the MLED
technique of Kuhn, Nguyen et al with the weighted projection technique, MLED
being occupancy weighted projection with this decorrelation matrix. Graphs of the
effect of varying ¢ in equation 5.1 are shown in figures 5.5 to 5.7.
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Given that MLED (¢ = 1) is an EM-derived algorithm, one would expect this
to be the most effective technique, and for the recognition accuracy to tail off on
either side of this value. This only occurs in the 30-dimensional case when using
PCA(X XT) (hence unrobustly) derived basis, in all other cases around ¢ = 1 the
choice of ¢ is unimportant, and there is no evidence of a tail off for low or high gq.

5.5 Comparing Techniques

Given this analysis of ED, the results can be compared with those for other tech-
niques. We restrict our attention to just three cases of ED: using a low (2), medium
(10) and high (30) dimensioned eigenspace, with MLED. The basis vectors are cho-
sen via PCA | except when using a 30-dimensional space or 6 mixture components,
when a basis of speaker vectors was used (see section 5.3 for justification).
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Figure 5.8: Recognition Accuracy Against Number of Adaptation Sentences (Single
Gaussian Monophones) (Speaker Independent = 76.28%)

Figures 5.8 to 5.10 show how the recognition accuracy changes with the amount
of adaptation data. Firstly note that for the conventional techniques of MAP and
MLLR the results on very little data results in a reduction in all but one case,
compared with performing no adaptation (the results for which are given in the
caption). With a few more sentences of data, then the results start to improve,
more rapidly for MLLR than for MAP.

Compared with the change in recognition accuracy with the amount of data for
MLLR and MAP, ED gives very little change in recognition accuracy as the amount
of data increases; after 2 sentences the recognition accuracy is essentially flat.

With the single Gaussian models, an eigenspace dimension of just 2 is sufficient
to obtain a significant increase in recognition accuracy; higher dimensions help
further. From figures 5.2 to 5.4, we see that only in the case of the most complicated
models does having much more than 10 dimensions give further improvement. In the
exception case, then no significant advantage is gained with less than 30 dimensions.
However, as all the bases are speaker derived, if a more systematic model of inter-
speaker variability were to be employed, a lower dimensional space may be sufficient.

Notice also that the more complicated the model the fewer sentences that are
required for MLLR to be as effective as MLED. This is as the number of parameters
to be estimated for the MLLR global transform is fixed, whereas with MLED we
need to increase the eigenspace dimension to sufficiently model the extra difference
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between models (section 5.3); MLLR provides a coarse step in the number of adap-
tation parameters, and so just 1 transform can provide reasonable adaptation, once
it has been robustly estimated.

MAP fares well as an adaptation technique for the simplest model only; for the
most complicated it hardly affects the recognition accuracy, even with 10 adapta-
tion sentences. This is as the number of model parameters increase the number
of parameters with unseen data increases; also as there is less data available per
parameter the speaker independent model is more dominant (c¢f. equation 3.2).

The number of parameters to be estimated, and the amount of data required to
estimate each is an important consideration. It was hypothesised that ED was a
useful technique was because it had very few parameters to be estimated, compared
with other techniques (Table 5.5).

Technique Monophone Triphone 6 Mixture
Triphone
MAP 5655¢ 53313 320112
Full MLLR 1% x(39 x 39 4+ 39) = 1560 ° 1560 1560
B.D. MLLR 1x (3 x (% x % 4+39) =546 ¢ 546 546
Eigenvoice ~ 10° ~ 10 ~ 10

Number of model parameters

®The number of regression matrices is assumed to be 1. The occupancy threshold was set to
700, and so if we assume even data splits the increase to 2 matrices will occur between 3 and 17
adaptation sentences

“Num of matrices X (Dim of speech vector X Dim of speech vector + Num offset params)

dNum of matricies X Num of blocks X (Size of block X Size of block + Num offset pa.rams)

¢Dimension of K-space

Table 5.3: Number of Parameters to Be estimated By Differing Techniques

From the results, we may estimate that we can robustly estimate the ED for 10
dimensions, so we could allow 11—0 sentences per parameter. For MAP and MLLR,
this threshold seems to be at 5 sentences, and so we would allow between 11% and
ﬁ sentences per parameter. Thus it requires more data to robustly estimate the
eigenvoice decomposition, so when more data is available, we miss the subtlety of
adaptation that many parameters afford. However, MAP requires data for a pa-
rameter to adapt it, MLLR requires data from a cluster to adapt a cluster, whereas

ED can use any data available to perform the adaptation.

5.6 Combining Adaptation Techniques

As discussed in the previous section, for eigenspaces up to approximately 30 dimen-
sions, 2 adaptation sentences is sufficient to robustly estimate the ED, and then
no benefit is accrued from increasing the quantity of adaptation data. We there-
fore consider whether ED may be combined with another adaptation technique to
further improve the models.

MAP is one technique that is often used as a post-processing step in adaptation.
There are a couple of reasons for this: firstly, it is a convergent technique, so with
sufficient data we obtain the true speaker dependent model; secondly, given the
accumulators which in general have already been computed for the first adaptation
step, it requires no additional storage and is time-linear in the number of parameters
to be updated.

It has been found that MAP was ineffective on the 6 mixture component triphone
models, so we only consider employing MAP as a post-processing step on simpler
models. For comparison, we also consider using MAP in combination with MLLR.
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There 1s only one case whereby adding MAP gives a significant improvement of
more than 1% point to the recognition accuracy, that being 2-dimensional MLED
on the monophone models. In other cases, even with 10 adaptation sentences there
is very little improvement. One would therefore take it that parameters that MAP
can estimate robustly on 10 adaptation sentences have already been adapted to a
good approximation of the true value by the first technique; other parameters MAP,
by definition, will have little effect upon.

In all cases, adding MAP when there is little data has a negative effect. We have,
though, applied MAP in a naive manner, merely substituting the adapted model
for the speaker independent prior in equation 3.2. To apply MAP systematically,
we would require an estimate for the variance of the parameter estimate and the
maximal likelihood estimate. The adapted estimate of the mean may then be com-
bined with the maximal likelihood estimate in a manner akin to RMP (3.2). In the
case of ED, this variance would probably depend not only on the adaptation data,
but also the eigenvalues of the original basis definition, which give the inter-speaker
variance for each basis vector.

In the experiments, when the amount of adaptation data is very small, the
variance of the maximal likelihood estimate is large, and so the combined estimate
would be estimate by the first adaptation technique. This will ensure that adding
MAP will have only minimal negative impact. It will also improve the effect of
adding MAP with more adaptation sentences, as some parameters will still be badly
estimated by maximal likelihood, and these parameters ill be little changed when
adding MAP in this way.

As MAP proved little effective, we also consider the effect of adding MLLR to
ED. The results are shown in figures 5.13 to 5.15.
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As with MAP, the effect of adding MLLR with very little adaptation data is
negative, although in contrast to MAP initially the effect is less, then it increases,
before finally generally having a positive effect. Notice also, that initially MLLR
with block diagonal matrices fares worse. We could therefore infer that with very
little data MLLR is estimating only a slight transform, which is having little ef-
fect, as the amount of data per transform parameter increases, then the transform
estimated is greater, but still not robust enough to perform good adaptation.

We also see the same principle as with applying MAP, in that the more com-
plicated the model, the less adaptation data is required before adding the post
processing step becomes worthwhile. With the monophone models, even with 10
adaptation sentences it is hardly worth adding a post processing step, whereas with
the more complicated 6 mixture component triphones only a few adaptation sen-
tences are required. The reasons for this are the same as discussed in the previous
section; there are not enough dimensions in the eigenspace to adequately model the
inter-speaker variability between models (compounded by having to use a speaker
derived basis rather than a PCA-derived one for reasons of robustness), and so the
model estimated by ED is still poor, and as MLLR is only estimating a global trans-
form the complexity of the adaptation is independent of the number of parameters
of the model. Justification for the lack of modelling of the variability can be seen
in figure 5.15. The 30-dimensional MLED is giving far superior performance to
the 10-dimensional case, and combining 10-dimensional MLED with MLLR is very
little different to performing MLLR on its own.

In summary, with models of up to 10,000 parameters, with up to 10 adaptation
sentences there is very little benefit from combining ED with MAP or MLLR. With
models of more than 100,000 parameters, there is very little benefit to be gained
by first performing ED unless the eigenspace could be estimated in a more robust
fashion. With very small amounts of data, in a sufficiently dimensioned eigenspace,
ED on its own is superior to combining it with MAP or MLLR. One would expect the
performance of the combined adaptation to increase if the supplementary adaptation
technique could be combined more rigorously with the ED, rather than as a separate
processing step.
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Chapter 6

Conclusions

For the ED technique to be effective, it has been shown that it is important to model
the inter-speaker variability well. Employing PCA on the matrix X X7 via SVD
with 109 input vectors was found to be sufficient when only a low number of model
parameters are required to be adapted, and no worse than applying PCA to the
covariance matrix; but for more than about 15 dimensions, PCA was not found to
be suitable. When the number of model parameters is large, then this method is not
sufficient to estimate the directions of most variability. Hence, extra work is required
to find robust ways of estimating the eigenspace is required. Kuhn et al suggest
independent component analysis [11], others may be possible. Investigation into
whether increasing the number of speakers in the training data increases robustness
is also required.

The lack of robustness of estimation of the eigenspace 1s the reason cited for
the lack of performance with the most complicated models. Two different methods
of performing ED were compared, MLED and Weighted Projection. It was found
that for one particular case of Weighted Projection, the method reduced to that
of MLED. A family of weighted projection functions based on powers (equation
5.1) were evaluated, and it was found that the exact value used for the parameter
of the function in the family was relatively unimportant. This is a useful result,
as a patent application has been made for MLED [17], and so the new method of
weighted projection may be used instead. There is another patent application made
on ED [12] more generally; as these patents have not yet been granted it is unknown
precisely what they cover.

ED was combined with MAP and MLLR to try and combine the rapid adapta-
tion to a first model which the technique provides, with a slower adaptation to a
truer model using MAP or MLLR. Neither technique provided encouraging results.
It was suggested that a more systematic combination of ED and one of the other
techniques may provide better adaptation. In particular, to combine ED and MAP
effectively, it was suggested that it may be necessary to derive the estimate of the
variance of a parameter estimate by ED.

There is more statistical analysis of the technique which may be performed.
The rapidity of convergence of the models has not been investigated, although
anecdotally the three iterations employed were generally found to be more than
sufficient, and for low dimensioned eigenspace, one would have been sufficient. The
other parameters that have had no statistical analysis performed on them are the
estimate of the weights. It is very difficult to estimate the number of iterations
required until convergence, if we do not know how close an estimate needs to be to
the true value to have minimal effect on the recognition accuracy.

The weight vector could also be used, conceptually, to characterise a speaker.
The eigenvoices are chosen in the directions to maximise the inter-speaker variabil-
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ity, which is the criterion used when choosing features for speaker verification or
identification, and Kuhn et al report that this has been attempted, ([11], patent
application [13]). There is no published analysis, though, of the intra- and inter-
speaker variability in this weight vector.

In this thesis, only speaker adaptation has been considered. There are other
types of adaptation which may be required, in particular environment adaptation.
Instead of adapting a model for a new speaker, we adapt a model to improve the
recognition accuracy under differing conditions. To perform this using eigenvoices,
we would require a corpus that contained segregated multi-environment data, to
estimate the directions of variability between environments.

Adapting only the distribution means, as we have done in this thesis, is nor-
mally sufficient for speaker adaptation. However, changing environment often has
a marked impact on the variance as well. Variances are always positive, when
adapting variances, MLED would have this constraint built-in to the optimisation,
and so a MLED re-estimation formula for variances could be derived. When using
weighted projection, it is not immediately apparent how to apply the constraints.
It may be possible to derive the least square error formula (theorem 1) with the
constraints that the variances are positive built in. Alternatively, if there are only
variances in the supervector of parameters being estimated, and the variances of
the maximal likelihood estimate of the model before performing the projection will
also be positive, in this case the constraint will be enforced automatically. This
does imply that the covariance matrices will be diagonal, as adding in covariance
values will destroy the positivity required.

ED has been shown to be a promising technique for speaker adaptation, giving
a 6.5% increase in recognition accuracy with just a single sentence of adaptation
data for the simplest models. An alternative technique to MLED for computing
the decomposition has been derived and presented, and shown to be no worse than
MLED, which has a patent application outstanding against it. Tt was found to be
difficult to robustly estimate the eigenspace, and combine ED with other adaptation
techniques. With sufficiently simple models where the eigenspace could be estimated
robustly, ED was shown to be computationally less expensive than MLLR, and gives
better recognition accuracy than MAP or MLLR adapted models with less than
about 8 sentences of adaptation data.
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Appendix A

Results

A.0.1 Key

The following table gives a reference for the abbreviation of the adaptation tech-
niques used in the following tables.
Abbreviation Meaning

= ‘... followed by ...~

map MAP.

mllr MLLR with full regression matrices.

b. d. mllr MLLR with block diagonal regression matrices.

pind Weighted projection with indicator weight function and no
decorrelation.

pdind Weighted projection with indicator weight function using C'='/2
as the decorrelation matrix.

pgind Weighted projection with indicator weight function using 6_1/2
as the deocrrelation matrix.

pocc As pind, but using an occupancy weight function.

pdocc As pdind, but using an occupancy weight function. This is
MLED.

pgocc As pgind, but using an occupancy weight function.

pdp, As pdind, but using p, (equation 5.1) as the weight function.

A.1 Single Gaussian Monophone

A.1.1 Conventional Techniques

Speaker independent recognition accuracy = 76.28%

Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5
map 75.28 75.24 76.58 77.95 78.51
mllr 76.28 74.43 T73.60 74.62 T71.60
b.d. mllr 75.28 75.83 T77.55 79.83 79.20
b.d. mllr = map 75.28 75.72 T7.55 79.83 79.08
mllr = map 75.28 72.63 68.91 70.69 67.68
Method Eigenspace Num Adaptation Sentences
Dimension 6 7 8 9 10
map 79.16 79.25 79.81 80.48 81.47
mllr 70.03 74.10 76.24 78.97 80.82
b.d. mllr 79.44 79.61 80.01 80.67 81.91
b.d. mllr = map 79.44 79.61 80.01 80.67 81.84
mllr = map 66.87 71.88 73.80 76.73 79.46
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A.1.2 Eigenvoice Decomposition With PCA (X X?) Derived

Basis

Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5

pdocc 1 76.55 76.35
pdocc 2 79.27  79.57 79.76  79.70  79.70
pdocc 3 80.42 80.43
pdocc 4 80.33 80.48
pdocc 5 80.28 80.57
pdocc 6 80.28 80.54
pdocc 7 80.61 81.05
pdocc 8 80.80 80.53
pdocc 9 80.71 80.71
pdocc 10 81.27  81.12 81.05 81.08 81.08
pdocc 11 81.10 81.34
pdocc 12 80.97 81.62
pdocc 13 80.87 81.64
pdocc 14 80.02 81.26
pdocc 15 80.86 81.69
pdocc 16 80.69 79.29
pdocc 17 76.09 80.64
pdocc 18 81.04
pdocc 19 80.35 77.92
pdocc 20 76.14 80.08
pdocc 21 77.57 81.36
pdocc 22 78.56 81.60
pdocc 23 80.63 82.32
pdocc 24 78.17 79.48
pdocc 25 78.62 78.53
pdocc 26 78.26 76.67
pdocc 27 78.94 80.52
pdocc 28 78.55
pdocc 29 78.55 79.15
pdocc 30 79.22  79.90 80.08
pdocc = map 2 7771 76.87 7830  79.37  79.12
pdocc = mllr 2 79.27 7713 71.63
pdocc = b.d. mllr 2 7771 76.78 79.20

pdocc = map 10 78.63 77.93 79.37 80.24  80.02
pdocc = mllr 10 81.27 77.96 74.61  75.64  71.32
pdocc = b.d. mllr 10 78.63 77.44 7829 79.82 79.31
pdocc = mllr 30 79.22 71.71
pdocc = b.d. mllr 30 77.58 79.15
pdpo 2 2 79.86 79.64

pdpo 2 10 80.94  81.15 81.30
pdpo. 30 80.16  80.45

pdpo.s 2 79.33  79.83 79.67
pdpo .4 10 81.05  81.15 81.34
pdpo. 30 79.55  77.36 81.01
pdpo.e 2 79.34  79.79 79.75
pdpoe 10 81.05  81.15 81.39
pdpoe 30 80.61 81.36 79.31
pdpo.s 2 79.29  79.76 79.78
pdpo.s 10 81.19  81.17 81.24
pdpo.s 30 80.44  81.16 79.98
pdpi 2 79.30  79.61 79.71
pdpi.2 10 81.20 81.43 81.08
pdpi.2 30 77.96  78.73 81.45
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Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5
pdpia 2 79.20  79.52 79.71
pdpia 10 81.15 80.11 80.98
pdpra 30 7775 76.45
pdpis 2 79.20  79.40 79.79
pdpie 10 80.27  81.02 81.20
pdpie 30 69.35 82.08
pdpis 2 79.15 79.79
pdpis 10 81.02 81.21
pdpis 30 77.02
pdp2 2 79.05 79.89
pdps 10 80.72 81.17
pdps 30 77.67 76.13
Method Eigenspace Num Adaptation Sentences
Dimension 6 7 8 9 10
pdocc 10 81.45 81.30 81.27 81.32 81.21
pdocc = map 10 80.28  80.28 79.67  80.86 81.94
pdocc = mllr 10 69.41 74.67  76.50 79.30 81.65
pdocc = b.d. mllr 10 79.45  79.63 80.33 80.69 81.84
pdocc 2 79.66  79.71 79.92 79.87  79.89
pdocc = map 2 79.55 80.38  80.87  81.76
pdocc = mllr 2 81.64
pdocc = b.d. mllr 2 81.99
pdocc 30 81.68
pdocc = mllr 30 81.47
pdocc = b.d. mllr 30 81.42

A.1.3 Eigenvoice Decomposition With Speaker Derived Ba-

S1S
Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5

pdocc 1 66.37  66.27 66.39
pdocc 2 70.44  70.22 70.45
pdocc 3 72.20 72.57
pdocc 4 77.96 78.99
pdocc 5 78.03 78.42 78.99
pdocc 6 77.95 78.94
pdocc 7 78.19 78.56
pdocc 8 77.69 78.92
pdocc 9 77.73 78.97
pdocc 10 77.97 78.38 79.08
pdocc 11 78.19 79.00
pdocc 12 78.74 79.64
pdocc 13 79.05 79.92
pdocc 14 79.59 80.22
pdocc 15 79.33 80.38
pdocc 16 79.81 80.60
pdocc 17 79.78 80.64
pdocc 18 79.89 80.78
pdocc 19 80.16 81.15
pdocc 20 80.34  80.56 81.00
pdocc 21 79.86 81.24
pdocc 22 79.97 80.94
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Method Eigenspace Num Adaptation Sentences

Dimension 1 2 3 4 5
pdocc 23 79.53 80.93
pdocc 24 79.53 80.94
pdocc 25 79.63 81.04
pdocc 26 79.56 81.04
pdocc 27 79.37 81.06
pdocc 28 79.81 81.38
pdocc 29 79.55 81.47
pdocc 30 79.76  81.01 81.43 81.36  81.61
pdocc = map 30 77.93 77.03 79.09 79.57  80.00
pdocc = mllr 30 79.76  77.88 73.28 74.43 70.06
pdocc = b.d. mllr 30 7793 76.54 T7.70 7853  79.05
Method Eigenspace Num Adaptation Sentences

Dimension 6 7 8 9 10
pdocc 30 81.34 81.57 81.64 81.64 81.58
pdocc = map 30 80.84 80.74 80.56 81.19  82.23
pdocc = mllr 30 68.39 75.08 T76.62 79.15  81.32
pdocc = b.d. mllr 30 79.31  79.97 80.15 80.26  81.77

A.1.4 Eigenvoice Decomposition With PCA(Y) Derived Ba-

S1S
Method  Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 35

pdocc 1 76.26  76.55 76.35
pdocc 2 79.26  79.51 79.66
pdocc 3 80.41 80.42
pdocc 4 80.34 80.46
pdocc 5 80.31  80.34 80.53
pdocc 6 80.22 80.63
pdocc 7 80.56 81.00
pdocc 8 80.75 80.76
pdocc 9 80.80

pdocc 10 81.26 81.12 81.24
pdocc 11 81.23 81.47
pdocc 12 81.30 81.69
pdocc 13 80.79 81.68
pdocc 14 80.83 80.90
pdocc 15 81.15 81.57
pdocc 16 80.91 81.30
pdocc 17 75.38 77.47
pdocc 18 78.67 81.84
pdocc 19 76.07 79.66
pdocc 20 80.50  79.20 80.01
pdocc 21 80.49 79.07
pdocc 22 79.78 78.98
pdocc 23 78.58 81.75
pdocc 24 76.78 78.55
pdocc 25 7517 80.52
pdocc 26 78.18 81.60
pdocc 27 76.70 81.21
pdocc 28 76.74 80.83
pdocc 29 76.83 80.11
pdocc 30 76.06 78.06 81.80
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A.2 Single Gaussian Triphone

A.2.1 Conventional Techniques

Speaker independent recognition accuracy = 90.10%

Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5
map 89.58 89.23 89.62 89.99 90.21
mllr 90.10 90.70 91.40 91.76  92.37
b.d. mllr 89.58 89.99 91.25 92.06 91.96
b.d. mllr = map 89.58 90.14  91.25 92.06  92.32
mllr = map 89.58 90.03 90.74 91.86 91.96
Method Eigenspace Num Adaptation Sentences
Dimension 6 7 8 9 10
map 89.95 90.21  90.10 90.27  90.57
mllr 92.15 92.12 91.99 92.33  92.70
b.d. mllr 92.04 9229 92.34  92.48 92.93
b.d. mllr = map 92.04 9229  92.34  92.48  92.92
mllr = map 91.74 9144 91.52 91.85 92.28

A.2.2 Eigenvoice Decomposition With PCA(XX7) Derived

Basis
Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5

pdocc 1 90.16  90.17 90.09
pdocc 2 90.74  90.96 90.98 90.98 90.89
pdocc 3 91.40 91.54
pdocc 4 91.50 91.65
pdocc 5 91.63  91.55 91.67
pdocc 6 91.50 91.61
pdocc 7 91.56 91.77
pdocc 8 91.48 91.81
pdocc 9 91.78 91.73
pdocc 10 91.66  91.89 91.95 92.04  91.89
pdocc 11 91.55 91.93
pdocc 12 91.70 91.92
pdocc 13 91.67 92.07
pdocc 14 91.04 92.11
pdocc 15 91.51 91.80
pdocc 16 91.58 91.93
pdocc 17 91.47 91.92
pdocc 18 91.61 91.97
pdocc 19 87.56 92.10
pdocc 20 91.33 91.86 92.10
pdocc 21 91.84 92.29
pdocc 22 91.70 88.10
pdocc 23 91.58 87.83
pdocc 24 91.61 89.81
pdocc 25 91.73 89.92
pdocc 26 91.76 92.17
pdocc 27 89.03 89.34
pdocc 28 90.13 90.63
pdocc 29 90.01 90.99
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Ba-

Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5
pdocc 30 90.95  89.72 90.68
pdocc = map 2 90.68 90.18 90.43 90.81 90.88
pdocc = map 10 91.63 91.66 92.02 92.49 92.74
pdocc = mllr 10 91.66 91.97 91.40 92.10 92.37
pdocc = b.d. mllr 10 91.63 91.73 92.02 92.26 92.47
pdpo.2 2 90.92 91.04
pdpo. 10 91.59 91.97
pdpo. 30 89.60 92.25
pdpo.s 2 90.74 91.06
pdpo.s 10 91.63 91.96
pdpo.a 30 89.47 90.06
pdpo.s 2 90.76 91.02
pdpo.s 10 91.66 91.97
pdpos 30 88.40 90.30
pdpo.s 2 90.72 91.07
pdpo.s 10 91.69 91.96
pdpo.s 30 91.78 91.89
pdp1 2 2 90.80 90.85
pdp1 2 10 91.67 91.99
pdpi2 30 90.61
pdp1a 2 90.81 90.84
pdp1a 10 90.10 91.97
pdpia 30 89.75 87.54
pdpie 2 90.73 90.84
pdpie 10 91.09
pdpis 30 89.42 91.39
pdpis 2 90.77 90.80
pdpis 10 89.05 87.42
pdprs 30 89.91 89.98
pdps 2 90.68 90.83
pdps 10 91.35 91.77
pdp2 30 86.09 89.43
Method Eigenspace Num Adaptation Sentences
Dimension 6 7 8 9 10
pdocc 2 90.84  90.84 90.85 90.81 90.80
pdocc 10 91.88 91.95 91.89 91.92 91.95
pdocc 30 92.17
pdocc = map 2 90.74 90.89 90.80 91.00 91.24
pdocc = map 10 92.43 92.40 92.41 92.32 92.43
pdocc = mllr 10 92.26 92.29 92.25 92.49 93.05
pdocc = b.d. mllr 10 92.26 92.22 92.52 92.59 92.70
A.2.3 Eigenvoice Decomposition With Speaker Derived
sis
Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5
pdocc 1 75.66  74.95 75.14
pdocc 2 82.70 82.75
pdocc 3 85.70 85.78
pdocc 4 90.51 90.50
pdocc 5 90.66 90.47
pdocc 6 90.37 90.63
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Method Eigenspace Num Adaptation Sentences

Dimension 1 2 3 4 5

pdocc 7 90.18 90.54
pdocc 8 90.18 90.55
pdocc 9 90.29 90.58
pdocc 10 90.39  90.78 90.68 90.68
pdocc 11 90.25 90.68
pdocc 12 90.21 90.76
pdocc 13 90.51 90.92
pdocc 14 90.85 91.19
pdocc 15 90.89 91.22
pdocc 16 90.85 91.21
pdocc 17 90.85 91.28
pdocc 18 90.83 91.32
pdocc 19 91.19 91.36
pdocc 20 91.43 91.54

pdocc 21 91.26 91.41
pdocc 22 91.22 91.48
pdocc 23 91.15 91.50
pdocc 24 91.03 91.40
pdocc 25 90.94 91.45
pdocc 26 91.30 91.59
pdocc 27 91.04 91.36
pdocc 28 90.89 91.40
pdocc 29 90.94 91.59
pdocc 30 90.95 9145 91.35 91.61  91.62
pdocc = map 30 90.81 91.29 91.54 91.88  92.06
pdocc = mllr 30 90.95 91.47 90.77  91.36 91.91
pdocc = b.d. mllr 30 90.81 91.29 91.77  92.25 92.44

A.3 6 Mixture Component Triphone

A.3.1 Conventional Techniques

Speaker independent recognition accuracy = 95.38%

Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5
map 95.43 95.39 95.52 95.53  95.37
mllr 95.38 9549  96.09 96.28  96.13
b.d. mllr 95.71 9595 95.88
b.d. mllr = map 95.43  95.50 95.71  95.95 95.72
mllr = map 95.43 9545 96.01 96.12  95.86
Method Eigenspace Num Adaptation Sentences
Dimension 6 7 8 9 10
map 95.42 9530 95.21  95.27  95.41
mllr 96.14 96.17  96.24  96.25  96.28
b.d. mllr 95.98 9597 95.94 96.24
b.d. mllr = map 95.98 9597 95.94 96.12 96.24
mllr = map 95.94 96.08 96.31 95.99  96.25

A.3.2 Eigenvoice Decomposition With PCA(XXT) Derived
Basis
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Method  Eigenspace Num Adaptation Sentences

Dimension 1 2 3 4 5

pdocc 1 95.47 95.39

pdocc 2 93.16  92.30 95.02
pdocc 3 90.83 94.93
pdocc 4 95.87 95.65
pdocc 5 92.03 92.99 95.65
pdocc 6 93.85 95.91
pdocc 7 96.08 93.89
pdocc 8 96.21 96.12
pdocc 9 96.09 93.12
pdocc 10 96.10 96.14
pdocc 11 93.67 96.21
pdocc 12 93.86 95.72
pdocc 13 96.21 96.19
pdocc 14 95.93 96.24
pdocc 15 96.10 96.19
pdocc 16 94.48 96.23
pdocc 17 96.01 96.20
pdocc 18 93.56 96.14
pdocc 19 95.23 93.38
pdocc 20 95.91 96.24
pdocc 21 95.67 94.13
pdocc 22 96.08 96.27
pdocc 23 94.52 95.84
pdocc 24 95.56 96.20
pdocc 25 96.12 96.13
pdocc 26 96.16 96.14
pdocc 27 96.16 96.16
pdocc 28 96.17 96.13
pdocc 29 96.12 93.68
pdocc 30 96.14 96.17

A.3.3 Eigenvoice Decomposition With Speaker Derived Ba-

S1S
Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5

pdocc 1 93.33  93.33 93.20
pdocc 2 93.93  93.97 93.74  93.74
pdocc 3 94.34 94.28
pdocc 4 94.57 94.45
pdocc 5 94.61 94.64 94.53
pdocc 6 94.74 94.68
pdocc 8 95.09 94.97
pdocc 10 95.26  95.72  95.17  95.27  95.16
pdocc 12 95.67 95.78
pdocc 14 95.73 95.84
pdocc 16 95.78 95.76
pdocc 18 95.78 95.84
pdocc 20 95.83  95.91

pdocc 22 95.84 95.84
pdocc 24 95.82 95.95
pdocc 26 96.04 96.06
pdocc 28 96.04 96.19
pdocc 30 95.99  96.21 96.24  96.35 96.25
pdocc = map 2 94.04  93.82 94.12 94.03 94.00
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Method Eigenspace Num Adaptation Sentences
Dimension 1 2 3 4 5
pdocc = map 10 95.27  95.32  95.37 95.54  95.50
pdocc = mllr 10 95.26  95.61 96.04 96.01 96.13
pdocc = b.d. mllr 10 95.27 9542 95.84 95.93  95.83
pdocc = map 30 95.95  96.17 96.32  95.84
pdocc = mllr 30 95.99 96.20 96.17  96.20  96.38
pdocc = b.d. mllr 30 95.97 95.90 95.99  96.23
pdpo 2 2 94.00 93.74
pdpo 2 10 95.26 95.15
pdpo.2 30 96.05 96.21
pdpo.s 2 93.93 93.75
pdpo .4 10 95.26 95.09
Pdp0A4 30
pdpos 2 93.87 93.71
pdpos 10 95.31 95.11
pdpos 30 95.99 96.25
pdpo s 2 93.87 93.70
pdpo.s 10 95.26 95.13
pdpo s 30 95.98 96.27
pdp1 2 2 93.90 93.79
pdpr 2 10 95.24 95.16
pdpi 2 30 96.29
pdpi s 2 93.79 93.77
pdpr s 10 95.19 95.12
pdpi1.4 30 96.06 95.60
pdpie 2 93.81 93.75
pdpie 10 95.26 95.06
pdpis 30 96.34
pdpis 2 93.78 93.67
pdpis 10 95.32
pdpis 30 96.02 96.34
pdp2 2 93.75 93.67
pdp2 10 95.28
pdp2 30 96.32
Method Eigenspace Num Adaptation Sentences
Dimension 6 7 8 9 10
pdocc 2 92.88 93.77 93.78 93.74  93.72
pdocc 10 95.19  95.15  94.57 95.15
pdocc 30 96.23  96.17 94.94  96.28  96.25
pdocc = map 2 93.71  93.63  93.67 93.46  93.72
pdocc = map 10 95.23  95.37  95.41 95.42
pdocc = mllr 10 96.16 96.17 96.16 96.14  96.17
pdocc = b.d. mllr 10 95.98 95.97 96.12 96.27  96.39
pdocc = map 30 96.00 96.16 95.91  95.87  96.23
pdocc = mllr 30 96.32 96.49 96.40 96.42  96.51
pdocc = b.d. mllr 30 96.35 96.25 96.31 96.36
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