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Abstract

There has been substantial progress in the past decadeiievblepment
of object classifiers for images, for example of faces, hwsraard vehi-
cles. Here we address the problem of contaminations (edusion,

shadows) in test images which have not explicitly been eniswad in
training data. The Variational Ising Classifier (VIC) algbm models
contamination as a mask (a field of binary variables) withrangf spa-
tial coherence prior. Variational inference is used to rirelize over
contamination and obtain robust classification. In this weyVIC ap-

proach can turn a kernel classifier for clean data into orntectivatolerate
contamination, without any specific training on contaméaighositives.

1 Introduction

Recent progress in discriminative object detection, dafigdor faces, has yielded good
performance and efficiency [1, 2, 3, 4]. Such systems arebdapd classifying those
positives that can be generalized from positive trainingud&his is restrictive in practice
in that test data may contain distortions that take it oetsiie strict ambit of the training
positives. One example would be lighting changes (to a faog}his can be addressed
reasonably effectively by a normalizing transformatioplagd to training and test images;
doing so is common practice in face classification. Othetssof disruption are not so
easily factored out. A prime example is partial occlusion.

The aim of this paper is to extend a classifier trained on cfeasitives to accept also
partially occluded positives, without further traininghd approach is to capture some of
the regularity inherent in a typical pattern of contamioafinamely its spatial coherence.
This can be thought of as extending the generalizing capabfla classifier to tolerate the
sorts of image distortion that occur as a result of contatitina

As done previously in one-dimension, for image contourstf Variational Ising Classi-
fier (VIC) models contamination explicitly as switches wétlstrong coherence prior in the
form of an Ising model, but here over the full two-dimensionaage array. In addition,
the Ising model is loaded with a bias towards non-contariinaf he aim is to incorporate
these hidden contamination variables into a kernel classfich as [1, 3]. In fact the Rel-
evance Vector Machine (RVM) is particularly suitable [6]iais explicitly probabilistic,
so that contamination variables can be incorporated asceehithyer of random variables.
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Figure 1: The 2D Ising model is applied over a graph with edgesY between neigh-
bouring pixels (connected 4-wise).

Classification is done by marginalization over all posstluefigurations of the hidden vari-

able array, and this is made tractable by variational (mesdd)finference. The inference

scheme makes use of “hallucination” to fill in parts of theealbjthat are unobserved due
to occlusion.

Results of VIC are given for face detection. First we show tha classifier performance
is not significantly damaged by the inclusion of contamimratrariables. Then a contam-
inated test set is generated using real test images and teng@mnerated contaminations.
Over this test data the VIC algorithm does indeed performiaantly better than a con-

ventional classifier (similar to [4]). The hidden variabég/ér is shown to operate effec-
tively, successfully inferring areas of contaminatiomatly, inference of contamination is

shown working on real images with real contaminations.

2 Bayesian modelling of contamination

Classification require®(F|I), the posterior for the propositiafi that an object is present
given the image data intensity arrdyThis can be computed in terms of likelihoods

P(F|I)=P(I|F)P(F)/ (P(I| F)P(F)+ P(I|F)P(F)) (1)
so then the tesP(F | I) > } becomes
logP(I|F)—logP(I|F)>t 2)

wheret is a prior-dependent threshold that controls the tradestfflben positive and neg-
ative classification errors. Suppose we are given a likeli®(1|4, F') for the presence of
a face given contaminatiah an array of binary “observation” variables correspondimg
each pixell; of I, such that); = 0 indicates contamination at that pixel, wheréas= 1
indicates a successfully observed pixel. Then, in priggipl

P(I|F) =Y P(I|6,F)P(6), (3)
7]

(making the reasonable assumptiB(9|F) = P(0), that the pattern of contamination is
objectindependent) and similarly farg P(I | F). The marginalization itself is intractable,
requiring a summation over @f¥ possible configurations @ for images withV pixels.
Approximating that marginalization is dealt with in the hsg&ction. In the meantime, there
are two other problems to deal with: specifying the p#t{)); and specifying the likeli-
hood under contaminatiaR(Z|4, F') given only training data for the unoccluded object.

2.1 Prior over contaminations

The prior contains two terms: the first expresses the beiaf ¢contamination will occur
in coherent regions of a subimage. This takes the form ofiag lmodel [7] with energy



U;(#) that penalizes adjacent pixels which differ in their laingjl(see Figure 1); the second
termU¢ biases generally against contaminatéopriori and its balance with the first term
is mediated by the constaht The total prior energy is then

U(0) =Ur(0) + AUc(8) =D _[1— 6(6e, — be,)] + XY 6(6;), (4)

ecYT

whered(z) = 1if z = 0 and0 otherwise, and;, e, are the indices of the pixels at either
end of edge € Y (figure 1). The prior energy determines a probability viemperature
constantl /T, [7]:

P(§) x e~ U(0)/To — o~ U1(8)/To o~ AUc(8)/To (5)

2.2 Relevance vector machine

An unoccluded classifieP(F'|I,6 = 0) can be learned from training data using a Rele-
vance Vector Machine (RVM) [6], trained on a databaséaftal face and non-face im-
ages [8] (see Section 4 for details). The probabilistic prips of the RVM make it a good
choice when (later) it comes to marginalising o#eFor now we consider how to construct
the likelihood itself. First the conventional, unoccludease is considered for which the
posteriorP(F|I) is learned from positive and negative examples. Kerneltfans [9] are
computed between a candidate imdgend a subset aklevance vector§zy}, retained
from the training set. Gaussian kernels are used here tow®mp

y(I) = Zwk exp(—a Z(Ij - a:kj)z). (6)
k J

wherewy, are learned weights, ang; is thej™ pixel of thek™ relevance vector. Then the
posterior is computed via the logistic sigmoid function as

1

P(F|I>9=1)=U(y(1))=m- (7)
and finally the unoccluded data-likelihood would be
P(I|F,6 =1) x o(y(I))/ P(F). ®)

2.3 Hallucinating appearance

The aim now is to derive the occluded likelihood from the wioded case, where the con-
tamination mask is known, without any further training. Totdis, (8) must be extended
to give P(I|F,0) for arbitrary maskd, despite the fact the pixel§ from the object are
not observed wherevé; = 0. In principle one should take into account all possible (or
at least probable) values for the occluded pixels. Heresifaplicity, a single fixed hallu-
cination is substituted for occluded pixels, then we prdceif those values had actually
been observed. This gives

P(I|F,0) < o(§(1,6))/P(F) 9)
where

§(0,1) = y(I(1,6, F)) and (fu,e,F))f{ fi;[np])j ottiernise  (10)

in which £[I|F] is a fixed hallucination, conditioned on the mod&land computed as a
sample mean over training instances.



3 Approximate marginalization of # by mean field

At this point we return to the task of marginalising o¥&8) to obtainP (I|F) andP(I|F)
for use in classification (2). Due to the connectedness ghiuring pixels in the Ising
prior (figure 1),P(I,0|F) is a Markov Random Field (MRF) [7]. The marginalized likeli-
hood P(I|F') could be estimated by Gibbs sampling [10] but that takes @énsinutes to
converge in our experiments. The following section desxi mean field approximation
which converges in a few seconds. The mean field algorithrivendhere forP(I|F) but
must be repeated also f&X(I|F), simply substituting® for F' throughout.

3.1 Variational approximation

Mean field approximation is a form of variational approximat[11] and transforms an
inference problem into the optimization of a functiodal

J(Q) =log P(I|F) — KL [Q(0)[|P(6|F, I)], (11)
where KL is the Kullback-Liebler divergence

KL [Q(O)IP(OIF,I)] = Q(6)log %
[4 ’

The objective functional (Q) is a lower bound on the log-marginal probabilitg P(I|F)
[11]; when it is maximized at)*, it gives both the marginal likelihood(Q*) =
log P(I|F), and the posterior distributioR* () = P(6|F, I) over hidden variables. Fol-
lowing [11], J(Q) is simplified using Bayes’ rule:

J(Q) = H(Q) + &q [log P(I,0|F)]

whereH (-) is the entropy of a distribution [12] artth[g(0)] = >, Q(6)g(8) denotes the
expectation of a functiogwith respect ta)(6). A form of () must be chosen that makes
the maximization of/(Q) tractable. For mean-field approximatiagp(6) is modelled as
a pixel-wise product of factorsQ(#) = [, Q:(6;). It is now possible to maximize
iteratively with respect to each margir@}(6;) in turn, giving themean field updatglL1]:

Qi & 5 exp {qp, log P, 01F)]} 12)

where
Z; = Zexp {gQ‘gi [IOgP(I70|F)]}
0;

is the partition function andg g, [-] is the expectation with respectpgivend;:
Equolg®)] = Y [H Qj(%)] 9(0).
{035\ Ld\i
3.2 Taking expectations ovetP(1,6|F)
To perform the expectation required in (12), the log-joiistibution is written as:
log {P(I,0|F)} = —log (1 + e—W’J)) — A UL(6) — 2Uc(8) + const

The conditional expectatiofiy s, in (12) is found efficiently from the complete expecta-
tions by replacing only terms ifi;. Likewise, when one factor of) changes (12), the



complete expectations may be updated without recomputtieg &b initio. For brevity,
we give the expressions for the complete expectations &olythe prior this is simply:

EQUON = D_ > Qe(Oe) [L=0(0e, = 0e)] + 23 Q5(6;=0).  (13)

eeYT 6.

For the likelihood it is more difficult. Saul et al. [13] show\u to approximate the expec-
tation over the sigmoid function by introducing a dummy aate¢:

£q [log(1 + ¢ 701)] < —€€q[5(6, 1] +log {£q [70D)] + £ [et6 17D] )

The Gaussian RBF in (6) means that it is not feasible to coeplu¢ expectatidn
Eq [€59%D], so a simpler approximation is used:

Eqlloga(§(0,1)] = logo (Eq[5(6, 1)) ,
where

EQ(6, D) = wi [[ D Q;(6)) exp(—a(i(l,e, F); - :ckj)2). (14)
k i 6;

4 Results and discussion

The mean field algorithm described above is capable onlyazloptimization ofJ(Q).

A symptom of this is that it exhibitspontaneous symmetry breakiigd], setting the con-
tamination field to either all contaminated or all uncontaateéd. This is alleviated through
careful initialization. By performing iterations initiglat a high temperaturé},, the prior

is weakened. The temperature is then progressively destteas a linear annealing sched-
ule [10], until the modelled prior temperatufg is reached. Figure 2 shows pseudo-code
for the VIC algorithm. Note also that an advantage of haliating appearance from the
mean face is that the hallucination process requires no atatipn within the optimization
loop. For19 x 19 subimages, the average time taken for the VIC algorithm toveme

is 4 seconds. However this is an unoptimized Matlab implgatém; and in C++ it is
anticipated to be at least 10 times faster.

The training set used for the RVM [8] contains subimagesgistered faces and non-faces
which were histogram equalized [14] to reduce the effectifiém@nt lighting with their
pixel values scaled to the ranffie 1]. The same is done to each test subimagehe RVM
was trained using 1500 face examples and 1500 non-face éesfnparameters were set
as follows: the RBF width parameter in (6)ds= 0.05; the contamination cost = 0.2
and the temperature constants Are= 2.5, Ty = 1.5 andAT = 0.2.

As a by-product of the VIC algorithm, the posterior patt@&(®|F, I) of contamination is
approximately inferred as the value@fwhich maximizes/. Figure 3 shows some results
of this. As might be expected, for a non-face, the algorittatiucinates an intact face
with total contamination (For example, row 4 of the figura)t bf course the marginalized
posterior probability?(F'|I) is very small in such a case.

4.1 Classifier

To assess the classification performance of the VIC, comiated positives were auto-
matically generated (figure 4). These were combined witle faces and pure non-faces
(none of which were used in the training set) and tested tdyme the Receiver Operating
Characteristic (ROC) curves are given in Figure 4 for theltered RVM acting on the

“The termexp[¢7(6, I)] = exp[¢ 3=, wi []; e~ % ">*+1%)] does not factorize across pixels
These sizes are limited in practice by the complexity of thining algorithm [6]



Require: Candidate image region I
Require: Parameters Ty, To, AT, A
Require: RVM weights and examples wg, 2%
Require: Mean face appearance I

Initialize Q;(f; = 1) « 0.5 Vi
Compute Eo[U(6)] (13)
Compute €[y (6, I)] (14)

T« Ty
while T > Ty do
while @ not converged do
for All image locations ¢ do
Compute conditional expectations £q ¢, [U(#)] and Eqe, [#(8, I)]
Compute Eqyo; [log P(I,6]|F)] = log o (Eqie; [§(6, 1)]) — Eqie; [U(6)]
Compute partition Z; = 3, exp {Eqy; [log P(I,6|F)]}
Update Q;(6;) + Z% exp {€qjo; [log P(1,0|F)]}
Update complete expectations Eq[U(8)] and Eq[F(6, I)]
end for
T+ T—-AT
end while
end while

Figure 2: Pseudo-code for the VIC algorithm

Input? Hallucinated image Contamination fief{6 = 1)
E

axr B

Figure 3: Partially occluded mages with inferred areas obpble contamination (dark).

contaminated set and for the new contamination-tolera@t ditlined in this paper. For
comparison, points are shown fobaosted cascade of classifig¢i$] which is a publicly
available detector based on the system of Viola and JonesTl#é curve shown for the
RVM against aruncontaminatetest set confirms that contamination does make the classi-
fication task considerably harder. Figure 5 shows some aldtige images that the boosted
cascade [15] fails to detect, either because of occlusidneto a degree of deviation from
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Figure 4: ROC curves. Also shown are some of the contamirpatsitives used to generate
the curves. These were made by sampling contaminatiorrpsfrem the prior and using
them to mix a face and a non-face artificially.

Input! Hallucinated image Contamination fiel{6 = 1)
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Figure 5: Images that the boosted cascade [15] failed tacaetefaces: the VIC algo-
rithm produces higher posterior face probability by laibglicertain regions with unusual
appearance (eg due to 3D rotation) as contaminated.

the frontal pose. The VIC algorithm detects them succdgdfiolwever.

4.2 Discussion

Figure 4 shows that by modelling the contamination field iexpy}, the VIC detector im-
proves on the performance, over a contaminated test sét,dbat plain RVM and of a
boosted cascade detector. The algorithm is relativelyresipe to execute compared, say,
with the contamination-free RVM. However, this could beigated by cascading [4], in
which a simple and efficient classifier, tuned to return a agh of false positives for all
objects, contaminated and non-contaminated, would makelaninary sweep of a test
image. The contamination-tolerant VIC algorithm wouldritme applied to the candidate
subimages that remain, thereby concentrating computdtiawer on just a few locations.

Figure 5 illustrates the operation of the contamination ma@ésm on real images, all of



which are detected as faces by the VIC algorithm but missetdlioosted cascade. There
is no occlusion in these examples but rotations have déstdite appearance of certain
features. The VIC algorithm has deals with this by labeltimgdistortions as contaminated
areas, and hallucinating face-like texture in their place.

In conclusion, we have developed the VNC algorithm for obfktection in the presence
of coherently contaminated data. Contamination is modelfecoherent via an Ising prior,
and is marginalized out by variational inference. Experimeshow that VIC classifies
contaminated images more robustly than classifiers dedifpreclean data. It is worth
pointing out that the approach of the VIC algorithm is notited to RVMs. Any proba-
bilistic detector for which it is possible to estimate th@egtation (14) could be modified
in a similar way to deal with spatially coherent contamioati Future work will address:
improved efficiency by incorporating the VIC into a cascatlsimple classifiers; alterna-
tives to data hallucination using marginalization oversinig data, if a tractable means of
doing this can be found.
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