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ABSTRACT

Maximum likelihood linear regression (MLLR) is a parameter trans-
formation technique for both speaker and environment adaptation.
In this paper the iterative use of MLLR is investigated in the context
of large vocabulary speaker independent transcription of both noise
free and noisy data. It is shown that iterative application of MLLR
can be beneficial especially in situations of severe mismatch. When
word lattices are used it is important that the lattices contain the cor-
rect transcription and it is shown that global MLLR based on rough
initial transcriptions of the data can be very useful in generating high
quality lattices. MLLR can also be used in an iterative fashion to re-
fine the transcriptions of the test data and adapt models based on the
current transcriptions. These techniques were used by the HTK large
vocabulary system for the November 1995 ARPA H3 evaluation. It
is shown that iterative application MLLR prior to lattice generation
and for iterative refinement proved to be very effective.

1. INTRODUCTION

One of the most important issues for large vocabulary speaker in-
dependent continuous speech recognition systems is recognition of
data that is not well represented in the system training set. This
includes recognition of outlier speakers and particularly speech
recorded in mismatched conditions through additive noise or a dif-
ferent microphone.

The general approach that we have adopted for recognition of mis-
matched speech is to first derive “initial” models that are more ap-
propriate to the conditions under test than the standard clean model
set and then to perform further adaptation for the actual test data [7].

Two approaches to initial model derivation have been used: Par-
allel Model Combination (PMC) and multi-environment training.
PMC combines additive and convolutional noise estimates with a
model set trained on clean speech to form a more appropriate model
for the current conditions. Due to its efficiency, the Log-Add PMC
technique [1] was used but it only updates the model mean parame-
ters. Multi-environment training has used a stereo training database
containing a clean channel and a “secondary” channel from desk-
mounted microphones and then applying single-pass retraining1[1].

1The a posterori probability of Gaussian occupation is taken from the
clean model set/data and then the model parameters are updated using the

The later phases of adaptation use the maximum likelihood linear
regression (MLLR) technique [4, 5] that we developed for adapting
a set of continuous density HMMs. MLLR uses linear transforma-
tions of the model parameters (means & variances) to improve the
likelihood of the adaptation data. It can use a single global adapta-
tion matrix (single class) or a set of adaptation matrices when more
specific transforms are desirable. Although MLLR requires a (word-
level) transcription of the adaptation data, since the transformations
are very general in nature the technique can be very robust to tran-
scription errors [4]. Furthermore only a small amount of adaptation
data is required.

For situations where speech is to be recognised in blocks or sessions
that come from the same speaker and environment (as in many tran-
scription tasks), it is possible to perform a number of iterations of
MLLR adaptation. On each pass MLLR is used to adapt the models
so that they better match the current speaker/environment and then
the data is re-recognised with the new model set. This iterative ap-
plication of MLLR has been found to be most beneficial in circum-
stances where there is severe mismatch between the data and the ini-
tial models. Iterative unsupervised MLLR adaptation can be used to
provide both broad global adaptation of the initial models prior to
lattice generation and to provide more detailed adaptation in several
passes. At each pass the estimate of the speech labels (used for adap-
tation) is refined and hence more specific MLLR adaptation can be
performed.

The technique was developed in the context of the 1995 ARPA H3
task [7] which includes data recorded in unknown noise conditions
with unknown microphones. The use of iterative unsupervised adap-
tation enables high quality word lattices to be generated. Further
MLLR passes gradually refine the data transcriptions. For the noisy
H3 evaluation data, five such passes were used and the final system
gave the lowest error rate in the 1995 H3-P0 evaluation.

The paper is organised as follows. First an overview of the HTK
large vocabulary speech recognition system is given and the MLLR
technique briefly reviewed. Results are presented on a subset the
1995 H3 development data to illustrate the importance of adaptation
before lattice generation. The 1995 H3 evaluation system is then de-
scribed and the detailed output of each stage of adaptation presented.

secondary channel data.



2. HTK RECOGNITION SYSTEM

This section gives an overview of the HTK LVCSR system. The
system uses state-clustered, cross-word mixture Gaussian context-
dependent acoustic models and a back-off N-gram language model.
More details of the basic clean speech system can be found in [6].

In the standard system, each speech frame is represented by a 39
dimensional feature vector that consists of 12 mel frequency cep-
stral coefficients (MFCCs), normalised log energy along with the
first and second differentials of these values. Cepstral mean normal-
isation (CMN) is applied. For the 1995 H3 evaluation system the
MFCCs were replaced by a PLP-based [3] cepstral parameterisation
and models derived by single-pass retraining.

For use with PMC, the front end is slightly modified: the zeroth cep-
stral coefficient replaces log energy; no CMN is performed and the
regression-smoothed differentials replaced by simple differences.

The HMMs are built in a number of stages. First, the LIMSI 1993
WSJ pronunciation dictionary is used to generate phone level la-
bels for the training data. Then in turn single Gaussian mono-
phone HMMs, single Gaussian cross-word triphone models and sin-
gle Gaussian state-clustered triphones are trained. The clustering
is decision-tree based to allow for the synthesis of triphone models
that don’t occur in training. After clustering mixture Gaussians are
estimated by iterative “mixture-splitting” and forward-backward re-
training.

The acoustic training for the clean-speech system consisted of
36,493 sentences from the SI-284 WSJ0+1 data sets. These data
were used to build a gender independent triphone HMM set with
6,399 speech states, with each state having a 12 component Gaussian
mixture output distribution. This system, with the standard MFCC
parameterisation, is the HMM-1 system of [6].

The full HTK LVCSR system also uses more complex acoustic mod-
els which take account of the preceding and following two phones
(quinphone context) and also the position of word boundaries. The
gender independent version of this HMM set (the HMM-2 system
of [6]) had 9,354 speech states with each state characterised by a
14 component mixture Gaussian. Gender dependent versions of this
system are trained by using the data from just the relevant training
speakers and updating the means and mixture weights.

Gender-independent versions of HMM-1 and HMM-2 were trained
on the PLP representation and secondary channel of the SI-284 data.
For the clean speech part of the H3 task, gender dependent versions
of HMM-2 were also trained on the primary channel of the SI-284
data. Furthermore there were some experiments performed on a
PMC-based version of the HMM-1 system.

The HTK LVCSR system uses a time-synchronous decoder employ-
ing a dynamically built tree structured network decoder. This de-
coder can either operate in a single pass or it can be used to produce
word lattices which compactly store multiple sentence hypotheses.
The lattices contain both language model and acoustic information
and can be used for rescoring with new acoustic models, or for the
application of new language models.

3. MLLR OVERVIEW

MLLR was originally developed for speaker adaptation [4, 5] but
can equally be applied to situations of environmental mismatch. A
set of transformation matrices are estimated which are applied to the
Gaussian mean parameters. We have recently extended the approach
so that the Gaussian variances can also be updated [2].

The matrices are estimated so as to maximise the likelihood of the
transformed models generating the adaptation data. The technique
is implemented using the forward-backward algorithm and has close
links with standard Baum-Welch training. The mean parameters are
usually transformed by a full matrix (in the case of the HTK system
a 40�39matrix) or a block-diagonal matrix which accounts for only
the correlations between the statics, 1st differentials and 2nd differ-
entials as appropriate, while the variances are transformed either by
a diagonal matrix (as in the experiments here) or by a more complex
transform [2].

When only a small amount of data is available, or in cases where
very robust transformation estimation is essential, each set of Gaus-
sian parameters (means and variances) are transformed by a single
matrix (single regression class case). As more data becomes avail-
able , or it is believed that the transcriptions are more reliable, more
specific matrices can be computed using only the data that is aligned
with that class. In the systems used here, all the speech Gaussians are
clustered into a set of 750 base classes, these are then arranged into
a hierarchy and the most specific class is generated that has enough
observations to robustly estimate the MLLR matrix parameters. The
silence models usually form a separate regression class.

MLLR can be applied in a number of different modes including un-
supervised incremental in which the system generates the labelling
and updates the model parameters after every utterance (or after each
small block of utterances) and transcription mode which processes
complete sessions on block (static unsupervised adaptation) as used
in this paper.

4. H3 DATA

For the 1995 ARPA H3 task, speech was collected in a noisy envi-
ronment with simultaneous recording from a number of far-field mi-
crophones as well as a close-talking microphone. For the develop-
ment test data the talkers read from US newspaper articles published
in 1994 and for the evaluation data the texts were published in 1995.

A subset of the development test data was used for initial experi-
ments and we randomly chose one of the far-field microphones for
each speaker. Results are reported on various speaker subsets for the
development data. The A-weighted SNR of the development data
subset varied from about 11dB to 26dB.

For the evaluation test H3-P0 data one microphone was selected
by NIST for each speaker. For the H3-C0 evaluation test the same
speech captured by the close-talking microphone was used. Each of
20 speakers read 15 sentences from one news article. The test was
defined so that data for each speaker (or session) could be processed
using transcription mode adaptation. The A-weighted SNR of the
H3-P0 data from each speaker varied from about 7dB to 23dB.



5. LATTICE GENERATION
EXPERIMENTS

Many large vocabulary speech recognition systems perform decod-
ing in a number of passes. Word lattices2 are generated to compactly
encode a set of reasonable hypotheses. These lattices are normally
produced using simplified acoustic and/or language models. Later
decoding stages then use more powerful and complex knowledge
sources using the lattice as a word constraint network. If the lattice
doesn’t contain the correct answer (i.e. lattice word errors occur)
then this can markedly reduce the effectiveness of later passes.

The lattices generated by the HTK system contain a set of nodes
that correspond to particular time instants and arcs connecting these
nodes that represent word hypotheses for the time period between
two nodes. Associated with each arc are both language model and
acoustic model scores. Since the acoustic models include cross-
word context, lattices may contain copies of each word, and further
copies can be required to encode the language model constraints.

A number of experiments were performed to assess the different lat-
tice generation strategies on the H3 development test data. In all
cases either PMC-based or PLP secondary channel HMM-1 models
were used with a 65k word list and a bigram language model trained
on 227 million words from the 1994 NAB text corpus.

To evaluate lattice quality the lattice word error rate and lattice den-
sity [6] were measured. The lattice error rate gives a lower bound
on the word error rate from rescoring the lattice; while the density is
the average number of arcs in the lattice per spoken word.

Speaker/ Baseline Prelim 1
Mic Pair % Lattice Error % Lattice Error

704/c 26.3 15.5
70a/b 10.3 1.9
70f/d 18.8 7.6
70w/c 24.2 15.8

Table 1: Lattice error rates for several development test speakers
with and without a preliminary pass & global MLLR adaptation.

Table 1 shows the lattice word error rates for the four poorest
speaker/microphone pairs in our subset of the H3 development test
data firstly using the PMC models directly (Baseline) for lattice gen-
eration and then generating lattices with models for which a single
“preliminary” (Prelim) pass was run using tight beamwidths (to ob-
tain a rough initial transcription) and then models adapted by global
MLLR. If clean speech models (rather than PMC-compensated
models) had been used directly for lattice generation it is expected
that the lattice error rates would several times greater than the PMC
lattice error rates.

It can be seen from Table 1 that the use of preliminary MLLR adapta-
tion has reduced the lattice word error rate on average by more than
50%. Another benefit of this approach is that since the lattice gener-
ation used more appropriate models the total computational load is

2Some systems use N-Best lists for the same purpose.

reduced.

Model Set % Lattice Error Lattice Density
Baseline 21.2 3650
Prelim 1 11.3 2092
Prelim 2 8.3 1834

Table 2: Lattice quality on sentences from speaker 704/c.

While a single preliminary pass is clearly very effective the tran-
scription used for adaptation is from a poor system. It is expected
that superior lattices could be generated with 2 preliminary recogni-
tion/MLLR adaptation passes. To examine this possibility the PLP
based secondary channel system was used to generate lattices for 10
sentences of speaker 704 (c microphone) and the lattice error rates
and lattice densities are given in Table 2 for no adaptation and one
and two passes. The table shows that the error rate is further reduced
by the second preliminary pass and also that the use of preliminary
passes has overall decreased the lattice error rate by 60% while halv-
ing the size of the resulting lattices. Hence this approach to lattice
generation was adopted for the H3 evaluation.

6. NOV’95 H3 EVALUATION RESULTS

This section describes the the HTK system used for the 1995 H3
evaluation and gives error rates from each of the passes through the
data. Unsupervised MLLR is applied for each pass to gradually im-
prove system performance.

6.1. HTK H3 System

The HTK system used for the evaluation test data had two paths:
one for high SNR signals typical of the H3-C0 data and one for low
SNR data typical of the H3-P0 data. First the data for a session was
classified as either high or low SNR and then processed accordingly.
Both paths included similar processing: the main difference being
that the HMMs used for high SNR were trained using the Sennheiser
SI-284 training data and the low SNR data used models trained using
the secondary channel data. Gender independent versions of both
HMM-1 and HMM-2 [6] systems were trained for both paths us-
ing the PLP representation. Furthermore gender dependent HMM-2
high SNR models were also trained.

The language models were trained on a total of 406 million words of
text from the 1995 reprocessed CSRNAB1 text training corpus, the
1994 development text corpus, and the H3 and H4 text data sets. All
texts predated August 1 1995. A word list with 65,478 entries was
derived from the most frequent words used in a subset of the data and
back-off bigram, trigram and 4-gram language models built. The
OOV rate of the test data (accounting for the official mappings used
in scoring) was 0.56%.

First, two preliminary passes were performed on the data using the
HMM-1 models with tight pruning to give a rough initial transcrip-
tion. The first of these used the original models and the second
used global MLLR adaptation (i.e. a single transformation for all
Gaussians) and the trigram language model. Using the transcrip-



tions from the second preliminary pass, global MLLR adaptation
was again performed. These models were used to generate word lat-
tices using a bigram language model. These word lattices had a 3.2%
word error rate for the H3-P0 data (and 1.3% for the H3-C0 data)
which we believe to be a very significant factor in the good perfor-
mance of the overall system.

The bigram lattices were expanded to trigram and using the HMM-1
models with more specific MLLR adaptation, the final HMM-1 out-
put was derived. This was then used to adapt the HMM-2 models
using 4-gram lattices.

For the high SNR path, the gender of HMM-2 models for subsequent
passes was found using the likelihoods from forced alignments of the
final HMM-1 output with the male and female model sets—gender
independent models were used if there was inconsistency within a
session.

Finally the 4-gram lattices were iteratively rescored using the HMM-
2 models. The final HMM-1 transcriptions and global adaptation
(with a separate transform for silence) were initially used and then
on each subsequent iteration a larger number of regression classes
were created. There were 5 such HMM-2 passes for the low-SNR
data and 3 passes for the high SNR data. The final pass gave the
system output.

6.2. Evaluation System Results

Table 3 shows the scored output of the system at various stages of
processing. It can be seen that there is a substantial decrease in word
error rate between the first two preliminary passes (Prelim. 1 and
Prelim. 2) which leads to a much improved lattice word error rate in
the lattice generation stage.

Processing LM H3-P0 H3-C0
Stage Type Data Data

Prelim. 1 tg 33.27 12.59
Prelim. 2 tg 21.06 9.60

Lattice Gen. bg 22.12 10.88
Lattice Gen. tg 17.20 7.88

Final HMM-1 tg 16.17 7.61
Global HMM-2 fg 14.49 6.81

HMM-2 thresh. a fg 14.24 —
HMM-2 thresh. b fg 13.81 —
HMM-2 thresh. c fg 13.71 6.68

Final HMM-2 fg 13.50y 6.63y

Table 3: % Word error rates on Nov’95 H3 data at various stages of
processing. y denotes the systems actually used for the Nov’95 H3
evaluation.

The final HMM-1 output uses a number of transformation matrices
(the previous stages use global adaptation). If this stage had been the
final output of the system both the H3-P0 and H3-C0 systems would
have given the lowest error rates in the Nov’95 H3 evaluation.

The use of the HMM-2 set of models along with the 4-gram language
model decreases the error rate by about a further 15%. The last line

of Table 3 gives the actual HTK results in the Nov’95 H3 evaluation
which were the lowest error rates in both the H3-P0 and H3-C0 tests.
All the results use the adjudicated transcriptions and map files.

There are a number of stages of processing with the HMM-2 model
sets and in each step the number of transformation matrices is in-
creased. The decrease in word error using multiple transformations
with the HMM-2 models on the H3-P0 data is 7%—this becomes
just a 3% reduction (to 14.11%) if the intermediate stages of adap-
tation are not performed.

7. CONCLUSION

The use of iterative unsupervised MLLR based adaptation has been
described in the context of large vocabulary speaker independent
continuous speech recognition. It was been shown MLLR adapta-
tion prior to lattice generation can greatly improve lattice quality.
The process also improves the speed of lattice generation in such cir-
cumstances. The technique can also be applied to gradually improve
the data transcription via further recognition (using the lattice con-
straints) and adaptation passes.
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