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ABSTRACT

Adaptive training is an important approach to train speech recogni-
tion systems onfound, non-homogeneous, data. Standard adaptive
training employs a single transform to represent unwanted acoustic
variability for an utterance. A canonical model representing only
the inherent speech variability may then be trained given this set of
transforms. For found data there are commonly multiple acoustic
factors affecting the speech signal. This paper investigates the use
of multiple forms of transformations, structured transforms (ST),
to represent the complex non-speech variabilities in an adaptive
training framework. Two forms of transform are considered, clus-
ter mean interpolation and constrained MLLR. Re-estimation for-
mulae for estimating the canonical model using both maximum
likelihood and minimum phone error training are presented. Ex-
periments to compare ST to standard adaptive training schemes
were performed on a conversational telephone speech task. ST
were found to significantly reduce the word error rate.

1. INTRODUCTION

The majority of state-of-the-art speech recognition systems are
trained onfounddata, for example broadcast news and telephone
conversations. This data is typically highly non-homogeneous,
there are multiple factors that vary across the corpus that alter the
speech signal. For example, the speaker or the background acous-
tic noise condition changes across training utterances.Adaptive
training techniques [1, 2] aim to overcome this problem by us-
ing transformations to represent the unwanted acoustic variability.
A canonicalmodel can then be trained, given these transforms,
which should only represent the desired variability of a partic-
ular phone without the effects of the unwanted acoustic factors.
Commonly used approaches are based on maximum likelihood lin-
ear regression (MLLR) and constrained MLLR (CMLLR) trans-
formations, referred to as speaker adaptive training (SAT) [1], or
cluster mean interpolation, referred to as cluster adaptive training
(CAT) [2] or eigenvoices [3]. These adaptive training schemes
use a single form of transform during training. Multiple forms of
transform may then be used during test set adaptation [2]. More
recently schemes using multiple forms of transformation during
the adaptive training process have been examined [4, 5].

This paper considers the use of multiple transformations, re-
ferred to asstructured transforms, for adaptive training. The use
of multiple types of transformation should help in removing the
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effects of unwanted acoustic factors. For example one transform
may be geared to handling variations in the background noise, the
second transform to variations in the speaker. The use of these
structured transforms may be viewed as an initial step to construct-
ing large systems using acoustic factorisation [5]. In acoustic fac-
torisation multiple transformations are used. However, each trans-
form is constrained to relate to a specific acoustic factor. This gives
additional flexibility in how the model may be used [5]. This re-
striction is not applied to the structured transformations used here.

In this work two transformations are used for the structured
transforms. The transformations selected are cluster mean inter-
polation [2] and CMLLR [6]. For these forms of transforma-
tion both maximum likelihood (ML) and discriminative training,
in this case minimum phone error (MPE) [7], are considered. In
common with other combinations of adaptive training with dis-
criminative training, the transformation parameters are estimated
using ML. These are then fixed and used during discriminative
training. This dramatically simplifies the estimation of test set
transforms and has been found to show the same performance as
combined discriminative schemes for the unsupervised adaptation
tasks considered here [8]. In contrast to previous work on multi-
ple transform schemes, a state-of-the-art task, conversational tele-
phone speech, is examined. Furthermore both ML and MPE train-
ing are compared. A simplified form of the discriminative training
of the canonical model may also be used to discriminatively train
an eigenvoice system [3].

The paper is arranged as follows. In section 2, the theory of
adaptive training using structured transforms with both the ML and
MPE criteria is introduced. Section 3 details experimental results
on an English conversational telephone speech task. Conclusions
are then given in section 4.

2. ADAPTIVE TRAINING USING STRUCTURED
TRANSFORMS

The structured transforms considered in this work comprise a com-
bination of CMLLR and CAT. Though both are linear, the repre-
sentation of non-speech variability is very different. CMLLR is a
linear transform of the features, CAT is a linear interpolation of a
set of cluster means.

2.1. Maximum Likelihood Training

Maximum likelihood training of the model parameters uses expec-
tation maximisation in the same fashion as CAT [2] and SAT [1].
An iterative approach is adopted where first the transform param-
eters are estimated, then the canonical model parameters. The
whole process is then repeated. Note, the canonical model to be
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trained has multiple cluster, in contrast to the standard SAT set-up.
The auxiliary function of the adaptive training with ST is1

Q(M) = −1
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whereγm(t) is the posterior probability of componentm generat-
ing the observationo(t) given the current model parameterŝM,
the CMLLR feature transform gives

o(s)(t) = A(s)o(t) + b(s) (2)

the CAT interpolation of the means gives

�(sm) = M(m)�(s) (3)

where�(s) are the set of interpolation weights for speakers and
M(m) consists ofP cluster mean vectors.
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The model parameters may be split into two distinct parts. The
first are the parameters of the canonical model2 {M(m),Σ(m)}
for each componentm. Second are the parameters associated with
the transform for speakers, {A(s),b(s),�(s)}.

Canonical model estimation. This is a simple extension to
the model-based CAT estimation approach [2]. In addition to con-
sidering the speaker specific interpolation weights, the features are
transformed using the associated CMLLR transform. The suffi-
cient statistics required to estimate the model parameters

G(m) =
X
s,t

γm(t)�̂(s)�̂(s)T (5)

K(m) =
X
s,t

γm(t)�̂(s)o(s)(t)T (6)

L(m) =
X
s,t

γm(t)o(s)(t)o(s)(t)T (7)

Where the transformed features are determined by the speaker spe-
cific CMLLR transform in equation 2. For all the systems in this
paper, diagonal covariance matrices are used. The ML-estimates
of the model parameters are then given by

M(m)T = G(m)−1K(m) (8)

Σ(m) = diag

 
L(m) −M(m)K(m)P

s,t γm(t)

!
(9)

Note the ML-based eigenvoices formulae are a simplified form of
this where the covariance matrices are not updated [9].

Transform estimation. This is a simple iterative process, where
given the interpolation weights, the adapted mean,�(sm) is used
to estimate the CMLLR transform as described in [6]. Then the in-
terpolation weights,�(s) are estimated using the transformed fea-
tureso(s)(t) as described in [2]. The initialisation of interpolation

1The dependence on the current model parametersM̂ will be assumed
in the following expressions.

2For this paper the estimation of the component priors and transition
matrices are not considered. The formulae are identical to the standard
CAT updates given in [2].

weights can be found in [2]. As the standard ML estimates of
these transforms are used in this paper, and are not involved in the
discriminative training, they are not described in more detail.

The parameters associated with the structured transforms are
not considered in the next section. Thus the parameters associated
with M will simply be the canonical model parameters.

2.2. Discriminative Training

For state-of-the-art speech recognition systems, discriminative train-
ing is becoming increasingly popular [10]. Various criteria are
possible, for example MMI training, however minimum phone er-
ror (MPE) training [7] has been found to yield good performance.
The criterion may be expressed as

F(M) =

P
w p(O|Mw)κP (w)RawAccuracy(w)P

w p(O|Mw)κP (w)
(10)

whereRawAccuracy(w) is a measure of the number of phones
accurately transcribed,Mw is the composite model for word se-
quencew andκ is an acoustic deweighting factor commonly used
in discriminative training.

To optimise the MPE criterion, aweak-senseauxiliary func-
tion is used to derive close-form re-estimation formulae [7]. The
weak sense auxiliary function for MPE can be expressed as

Q(M) = Qn(M)−Qd(M) + G(M) + log p(M) (11)

whereQn(M) andQd(M) are standard auxiliary functions with
a similar form to equation 1 for numerator and denominator re-
spectively. The only difference is that the equivalent of the poste-
rior for components,γn

m(t) inQn(M) andγd
m(t) inQd(M), are

calculated in a different way [7]. A smoothing function,G(M) is
added to improve stability of the optimisation. This must satisfy
the following equation to ensure that it is still a valid weak sense
function

∂

∂MG(M)

����
M̂

= 0 (12)

Finally, a prior ,p(M), may also be introduced, either based on
the ML statistics, which is called I-smoothing [10], or on the maxi-
mum a posteriori (MAP) estimates, which is called MPE-MAP [11].
By definition, a log-prior is a weak-sense function of itself, so that
equation 11 is a valid weak-sense auxiliary function.

In common with many implementations of discriminative adap-
tive training schemes, this work will only consider discrimina-
tively training the model parameters given ML estimates of all
transform parameters. This yields about the same performance
as discriminatively training all the parameters, but is simpler and
more consistent when dealing with unsupervised adaptation task [8].
The combination of CMLLR with discriminatively training the
model parameters is simple as it is a transformation of the fea-
tures. The rest of this section concentrates on the discriminative
training of the CAT model parameters. It is worth noting that this
also allows discriminative training of eigenvoices when a maxi-
mum likelihood eigenspace is used, as the schemes are the same
other than the initialisation [2].

The smoothing auxiliary functionG(M) is different from the
standard form given in [7] as it must yield the current CAT param-
eters as the ML estimate. One suitable smoothing function is given
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where �̂(sm) = M̂(m)�̂(m), Σ̂(m) are current parameters and
“tr()” is trace of matrix. The constantDm is a positive smoothing
constant for componentm to ensure convergence. This expression
satisfies the smoothing constraint of equation 12, for all values of
ν

(s)
m . However it is sensible to use this value to reflect the propor-

tions of data for that particular components of a speaker, so in this
work

ν(s)
m =

P
t γn

m(t)P
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where the summation in the numerator only involves data associ-
ated with speakers.

For MPE training it is essential to perform some additional
smoothing to improve the generalisation of the resultant model.
this is normally achieved by incorporating a prior into the esti-
mation scheme. For this work the prior distribution,p(M) will be
based on the ML estimates of the the cluster means,M̃(m), and co-
variance matrix,̃Σ(m). This is an I-smoothing version of discrim-
inative CAT training. By taking the Normal-Wishart distribution
[12] as the prior for model parameters{M(m),Σ(m)} at speaker
level and assuming appropriate Normal-Wishart parameters, the
log prior for model parameters may be written as a weighted sum
of speaker-level priors:

log p(M) = K − τ I

2
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whereτ I is the specified parameter of the Normal-Wishart dis-
tribution. ν̃

(s)
m is a slightly modified version of equation 14, in-

stead of using the MPE numerator valuesγn
m(t), the standard ML

parameters,γm(t), are used.K is the appropriate normalisation
term. The ML-estimates4 are derived from the ML statistics,̃G(m),
K̃(m) andL̃(m). However in contrast to equations 5 to 7, the statis-
tics are all normalised by

P
s,t γm(t) to yield “unit” counts.

Differentiating the whole auxiliary function with respect to the
canonical model parameters and setting it to zero leads to model
parameters re-estimation formulae. These updates may be ex-
pressed in terms of modified sufficient statistics.
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3The interpolation weights are not updated so are simply indicated as
using the current parameters throughout.

4Note for MPE training these statistics differ from the numerator statis-
tics. For MMI estimation they would be the same and I-smoothing can be
implemented using count scaling [7].
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The canonical model parameters are then given by

M(m)T = G(m)−1K(m) (18)

Σ(m) = diag
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m (t) + Dm + τ I

!
(19)

In common with standard I-smoothed MPE training, there are
two constants that must be specified. The first isDm. In this paper
it is set to beEγden

m , whereE is a constant [7]. The second con-
stant isτ I which determines the smoothing with the ML estimates
of the model parameters.

The MPE criterion has been investigated for traditional adap-
tive training[8]. In this paper, we investigated a simplified discrim-
inative adaptive training with structured transforms. First, multi-
cluster canonical model and structured transforms are estimated
using ML criterion as described in section 2.1. Then both CAT
weights and CMLLR transforms are fixed and only the canonical
model is updated with the MPE criterion. This update employs
the formulae above. The component posterior probability for nu-
merator, denominator and ML estimates are obtained by using the
adapted model and the accumulation of sufficient statistics uses the
transformed feature vectors.

3. RESULTS

The performance of structured adaptive training was evaluated on
a state-of-the-art large vocabulary speech recognition system, con-
versational telephone speech (Switchboard). The training corpus
consisted of 5446 speakers (2747 female, 2699 male), giving a to-
tal of about 295 hours of data. This is referred to as theh5train03
training data. The test corpus was a subset, half, of thedev01 test
data consisting of 59 speakers (30 female, 29 male), about 3 hours.
This is thedev01sub test data. All systems had 16 Gaussians per
state, and use PLP front-end with C0 and first, second derivatives,
HLDA and VTLN were also applied. The use of VTLN decreased
the possible gains that could be obtained using adaptive training,
but gave a more realistic baseline. A tri-gram language model was
used in decoding.

Two sets of systems were built, using MLE and MPE training
respectively. The simplified form of adaptive training with MPE
was used where the structured transforms were estimated using
MLE and only the canonical model parameters estimated using
MPE. The hypothesis for adaptation for all the adaptively trained
systems was taken from the associated MPE or MLE gender in-
dependent (GI) system. For the gender dependent (GD) systems,
the test set per-side “gender” was assumed to be known, i.e., no
gender classification error. During training and test adaptation, a
global interpolation weight was estimated and separate speech and
silence transforms were used for CMLLR. For the two multiple
cluster systems, CAT, and the structured transform (ST), CAT plus
CMLLR, two clusters (eigenvoices) were used. These were ini-
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tialised using gender information during training5, however, in test
adaptation, no prior gender information was used.

System Training Test Estimation
Adaptation Adaptation MLE MPE

GI —
— 33.4 30.4

CMLLR 31.5 28.3

GD
gender — 32.7 30.3

info CMLLR 30.9 28.4

GD gender — — 29.7
(MPE-MAP) info CMLLR — 27.8

SAT CMLLR CMLLR 31.0 27.8

CAT CAT
CAT 32.6 29.6
ST 30.8 28.0

ST ST ST 30.6 27.5

Table 1. WER ondev01sub comparing different adaptive train-
ing with both MLE and MPE training. ST refers to the structured
transform of CAT plus CMLLR.

Table 1 shows the baseline results for both GI and GD models.
For the MLE trained systems, the GD model yielded significant
gains over the GI model both with and without CMLLR adapta-
tion. However, for MPE training, the performance of the two sys-
tems was approximately the same. Using MPE-MAP, significant
performance gains over the MPE GD system were obtained, about
0.6% absolute. This is consistent with the gains that were obtained
on the Broadcast News task [11].

Three adaptively trained systems were generated. The first
used CMLLR during the training process, consistent with the forms
used in the CUED-HTK evaluation systems6. This is referred as
speaker adaptive training (SAT). For the MLE system, gains of
about 0.5% absolute were obtained over the GI system and about
the same performance as the GD system. For the MPE trained
systems, the performance was comparable with the MPE-MAP
system. The CAT system using just interpolation weights for test
adaptation (CAT) gave about the same performance as the GD sys-
tem in MLE training. Using ST for test adaptation again yielded
about the same as a GD system with CMLLR. In MPE training, it
is interesting to note that the CAT system performed well without
the need to use MPE-MAP. This is due to the use of “soft” interpo-
lation weights allowing clusters to make use of training data from
all speakers. Using ST in training obtained statistically significant7

improvements compared to SAT in both MLE and MPE training.
Compared to the other adaptive training or adaptation techniques
in both ML and MPE, ST gave the lowest error rates.

4. CONCLUSION

This paper has described adaptive training using structured trans-
forms for separately removing complex non-speech variabilities.
Cluster mean interpolation and CMLLR transforms were used as

5This was found to yield slightly better performance than eigenvoices
initialisation which has a bias cluster with fixed weight associated though.

6For details see the presentations on the HTK web-site
http://htk.eng.cam.ac.uk/docs/cuhtk.shtml .

7Statistical significance testing used NIST provided softwaresctk-
1.2

the structured transforms. ML adaptive training with structured
transforms was presented as a simple extension to standard adap-
tive training. A discriminative criterion based on the MPE objec-
tive function was used to estimate multi-cluster model parameters,
which finally leads to a simplified discriminative version of adap-
tive training with structured transforms. Experiments showed that
the ST-based adaptive training significantly outperformed the tra-
ditional adaptive training techniques. These gains were observed
for both MLE and MPE training. In future, the nature of struc-
tured transforms will be studied. Acoustic constrains will also be
added to model different non-speech variabilities explicitly, which
is closer to acoustic factorisation.

5. REFERENCES

[1] T. Anastasakos, J. Mcdonough, R. Schwartz, and J. Makhoul,
“A compact model for speaker adaptive training,” inProc.
ICSLP, 1996, pp. 1137–1140.

[2] M. J. F. Gales, “Cluster adaptive training of hidden markov
models,” IEEE Transactions on Speech and Audio Process-
ing, vol. 8, pp. 417–428, 2000.

[3] R. Kuhn, J. C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid
speaker adaptation in eigenvoice space,”IEEE Trans. on
SAP, vol. 8, no. 6, pp. 695–707, 2000.

[4] M. J. F. Gales, “Multiple-cluster adaptive training schemes,”
in Proc. ICASSP, 2001.

[5] M. J. F. Gales, “Acoustic factorization,” inProc. ASRU,
2001.

[6] M. J. F. Gales, “Maximum likelihood linear transformations
for HMM-based speech recognition,”Computer Speech and
Language, vol. 12, pp. 75–98, 1998.

[7] D. Povey, Discriminative Training for Large Vocabulary
Speech Recognition, Ph.D. thesis, Cambridge University,
2003.

[8] L. Wang and P. C. Woodland, “Discriminative Adaptive
Training Using The MPE Criterion,” inProc. ASRU, 2003.

[9] P. Nuguyen, C. Wellekens, and J. C. Junqua, “Maximum
likelihood eigenspace and MLLR for speech recognition in
noisy environments,” inProc. Eurospeech, 1999, pp. 2519–
2522.

[10] P. C. Woodland and D. Povey, “Large scale discriminative
training of hidden markov models for speech recognition,”
Computer Speech and Language, vol. 16, pp. 25–48, 2002.

[11] D. Povey, M. J. F. Gales, D. Y. Kim, and P. C. Woodland,
“MMI-MAP and MPE-MAP for acoustic model adaptation,”
in Proc. EuroSpeech, 2003.

[12] J. L. Gauvain and C. H. Lee, “Maximum a posteriori es-
timation for multivariate gaussian mixture observations of
markov chains,” IEEE Trans. on SAP, vol. 2, pp. 291–298,
1994.

4


