
Effective Handling of Dialogue State in the Hidden

Information State POMDP-based Dialogue Manager

MILICA GAŠIĆ and STEVE YOUNG

Cambridge University Engineering Department

Effective dialogue management is critically dependent on the information that is encoded in the
dialogue state. In order to deploy reinforcement learning for policy optimisation, dialogue must
be modelled as a Markov Decision Process. This requires that the dialogue state must encode

all relevent information obtained during the dialogue prior to that state. This can be achieved
by combining the user goal, the dialogue history and the last user action to form the dialogue
state. In addition, to gain robustness to input errors, dialogue must be modelled as a Partially

Observable Markov Decision Process (POMDP) and hence, a distribution over all possible states
must be maintained at every dialogue turn. This poses a potential computational limitation since
there can be a very large number of dialogue states. The Hidden Information State model provides
a principled way of ensuring tractability in a POMDP-based dialogue model. The key feature of

this model is the grouping of user goals into partitions that are dynamically built during the
dialogue. In this paper, we extend this model further to incorporate the notion of complements.
This allows for a more complex user goal to be represented and it enables an effective pruning
technique to be implemented which preserves the overall system performance within a limited

computational resource more effectively than existing approaches.

Categories and Subject Descriptors: H.1.2 [Information Systems]: Models and Principles—User/Machine Sys-

tems; I.2.6 [Computing Methodologies]: Artificial Intelligence—Learning

General Terms: Spoken Dialogue Systems, Dialogue modelling, POMDP, Reinforcement learning

Additional Key Words and Phrases: dialogue belief monitoring, dialogue state representation

1. INTRODUCTION

Statistical approaches to dialogue management enable extensible dialogue managers to be built
based on data rather than hand-coded rules. In particular, the reinforcement learning approach
enables a dialogue policy to be learnt in such a way as to optimise overall dialogue success. In
order to deploy reinforcement learning for policy optimisation, dialogue is modelled as a Markov
Decision Process (MDP) [Levin et al. 1998]. This requires the dialogue state to be Markovian,
i.e., the state has to encode everything that happened previously in the dialogue which might
be potentially useful for selecting the next action. In addition, modelling dialogue as a Partially
Observable Markov Decision Process (POMDP) allows the dialogue manager to be robust to speech
recognition errors [Young et al. 2010; Thomson and Young 2010]. This approach requires that a
distribution over all dialogue states, the belief state, is maintained at each dialogue turn.

According to [Williams et al. 2005], the combination of the user goal, the dialogue history and
the last user action provides sufficient information to form a Markovian dialogue state. However,
the set of all such dialogue states can be very large. This is particularly limiting in the case of
the POMDP, where a distribution over all states has to be maintained at every dialogue turn.
In order to deal with this, there are two main approaches which enable a tractable POMDP dia-

Authors’ address: M. Gašić, S. Young, {mg436|sjy}@eng.cam.ac.uk, Trumpington Street, Cambridge, CB2 1PZ,
UK
Submitted to ACM Transactions on Speech and Language Processing Special Issue on Machine Learning for Robust

and Adaptive Spoken Dialogue Systems.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Gašić and Young

logue manager to be built for a real-world task. The Bayesian Update of Dialogue State (BUDS)
model [Thomson and Young 2010], assumes that the state can be factored into independent ele-
ments and then the probability distribution can be independently updated for each element. The
Hidden Information State (HIS) model, advocated in [Young et al. 2010], does not assume any
independence relationship between different elements of the state. Instead, it maintains the prob-
ability distribution of only the most likely dialogue states. In order to do this efficiently, user goals
are grouped together into partitions, on the assumption that every goal in the same partition is
equally likely. The partitions are built using the N-best user dialogue acts from the speech under-
standing component, the system’s output dialogue act and the domain ontology. In this way, the
partitions are constrained to represent only the plausible goals from the domain. A similar ap-
proach is adopted in [Williams 2010] with the difference that an ontology is not used to determine
possible goals. Instead, the partitions represent every possible combination of attribute-value pair
and their complements.

In order to further exploit modelling of the input dependencies that the HIS model facilitates,
we extend this framework to enable richer expressiveness via the notion of complements. Similar
to [Kim et al. 2008; Williams 2010], the partitions are formed using not only the user input, but
also the complements of the user input. In this way, coverage of potential user goals is improved.
This is particularly useful for more complex dialogue structures, where the user goal evolves during
the dialogue, influenced by the system’s responses. Moreover, the notion of complements allows
a variant of first order logic to be incorporated, i.e, the user can use negations, conjunctions and
disjunctions to communicate with the system and the system can use quantifiers to express the
result of the user query.

Since there is uncertainty in the user input at every turn, the number of possible partitions
grows exponentially as the dialogue progresses. This poses computational issues, especially in
domains where relatively long dialogues are expected. It also limits the length of the N-best list of
hypothesised user dialogue acts input to the dialogue manager, which is crucial for robust belief
monitoring in noisy conditions [Thomson et al. 2008]. In this paper, we show that the explicit
notion of complements allows an efficient pruning technique to be implemented which enables
arbitrarily long N-best lists of input acts and arbitrarily long dialogues to be supported, whilst
preserving the most probable user goals.

The next section gives a brief overview of the Hidden Information State model with a focus on the
structure of the ontology, the state representation and the belief update. Then, Section 3 provides
a description of how the notion of complements is used in partitioning to support a more complex
dialogue structure. A technique for reducing the number of partitions is presented in Section 4
and evaluation results are given in Section 5. Finally, conclusions are given in Section 6.

2. HIDDEN INFORMATION STATE MODEL

A HIS-based spoken dialogue system consists of three major components: speech understanding,
speech generation and dialogue management - see Fig. 1. The speech understanding component
consists of a speech recogniser and a semantic decoder. Its function is to map user utterances
into an abstract representation of the user intention – the user action. Since this input might
be corrupted with noise, an N-best list of possible user actions along with a confidence score for
each is passed to the dialogue management component in each turn. Using this, the dialogue
manager updates the estimate of the belief state. Then, based on the updated belief estimate
and the dialogue policy, the dialogue manager chooses the system’s action. The speech generation
component normally consists of a natural language generator and a speech synthesiser. It maps
the system’s response first into text and then into speech. The overall structure of a statistical
spoken dialogue system is shown in Fig. 1.

The core of the system is the HIS dialogue manager. In the remainder of this section we explain
the main features of the HIS model based on [Young et al. 2010]. Firstly, we explain the structure
of the ontology that is used for building the dialogue state. We then explain how the dialogue
state is formed and, following that, we give a brief description of the belief update procedure.
Finally, we conclude the section with a description of the action-selection process.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 3

Fig. 1. Statistical Spoken Dialogue System Structure

Fig. 2. Generic Ontology Structure

2.1 Domain Ontology

The HIS model is targeted at limited domain query dialogues. As far as dialogue management
is concerned, the dialogue between the system and the user takes place at the level of dialogue
acts where each dialogue act comprises a type and a list of attribute-value pairs. For example,
inform(type=restaurant, food=Chinese) would be the representation at the dialogue act level
corresponding to the user saying “I’d like a Chinese restaurant”. A domain ontology then defines
all of the attributes and their possible values, as well as the structural relationship between different
attributes.

The ontology has a tree structure. The tree nodes are divided in three groups: class nodes,
lexical nodes and atomic nodes (see Fig 2). Class nodes can have many child nodes, the first is
always atomic and defines a specific instance of the class, the remainder consist of an optional
class node and one or more lexical nodes. Lexical nodes can have only a single atomic child node.1

As an example, a simple tourist information ontology is given in Table I, where examples of
class nodes are entity and type (bold font), lexical nodes are pricerange and food (regular
font) and atomic nodes are restaurant and Chinese (italic font).

The attributes listed in each dialogue act correspond to either class or lexical nodes in the
ontology; and the values that they take are represented by atomic nodes. The tree root is a class
node and it defines the user goal in the most general way. Other class nodes define the user query
more specifically. In detail, each class node and its atomic child node define an additional set of
attributes that are represented by lexical nodes and optionally a class node. For example, in the
ontology from Table I, atomic node restaurant for class node type defines an additional set of
lexical nodes: food, pricerange, music, drinks, and stars.

The Hidden Information State model makes use of the hierarchical relationship between the

1Note that attributes corresponding to lexical nodes are often referred to as slots in the dialogue systems literature
since in simple systems, dialogues are designed with the aim of filling in a fixed set of slots with values from the
user.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

4 · Gašić and Young

entity ← venue(type, area, name, addr, near, phone, comment)
type ← hotel(pricerange, stars, price, drinks)
type ← restaurant (food, pricerange, price, music, drinks, stars)

type ← bar(drinks, music, pricerange)
type ← amenity
area = { central, east, west, ... }

food = { Italian, Chinese, Indian, ... }
...

Table I. Ontology Rules

attributes to model the dependencies in each user input. For example, in the tourist information
domain if the user specified food=Italian that implies that the user wants type=restaurant

and entity=venue. Attribute value pair pricerange=cheap is associated with type=restaurant,
type=bar and type=hotel, but not type=amenity. Therefore if no type was specified, applying
pricerange=cheap would result in creating these all these three partitions. A full description of
a real-world tourist information ontology is given in Appendix 7.2.

2.2 State Representation

In the Hidden Information State model, the dialogue state is represented as a combination of the
user goal, the last user act and the dialogue history. Since the user goal and the true user act
cannot be directly observed they are both part of the hidden state. Although the system actions
are fully observable, the user actions are not and therefore the dialogue history is also part of the
hidden state.

This combination can result in a vast number of dialogue states and it would not be computa-
tionally tractable to maintain a probability distribution over such a large state space. Therefore,
user goals are grouped together into partitions on the assumption that all goals from the same
partition are equally probable. Partitions are built using the attribute-value pairs from the N-best
list of the user input and the previous system output. They are combined together using the
dependencies defined by the domain ontology. In detail, each partition represents a realisation of
a tree from the ontology. The dialogue history is represented in the form of a finite state machine
that keeps track of the dialogue progress. The combination of a partition, a user act from the
N-best list and the associated dialogue history if the user took that action for that representation
of the user goal (the partition) forms a hypothesis, i.e., a single member of the partitioned state
space. Note that the dialogue act need not be consistent with the partition. This represents the
case that the user apparently says one thing while wanting something else; and this can frequently
happen when there are speech recognition errors. In this case, the user model assigns a low proba-
bility to the partition as explained further in Section 2.3. A probability distribution over the most
likely hypotheses is maintained during the dialogue and this distribution constitutes the POMDP’s
belief state.

The main requirements for representing partitions are that each partition is unique and that
they are represented in a way that allows a large number of partitions to be maintained efficiently
and compactly. Since each partition is the realisation of a tree from the ontology, many parti-
tions have common subtrees and hence partitions should be able to share nodes and achieve a
compact representation [Young et al. 2010]. A problem arises, however, in negotiation-type di-
alogues when users change their goal and ask for something else. The implicit rejection of the
current most probable goal means that the probability of all hypotheses consistent with this goal
should go down and the probability of all other hypotheses should increase. However, without
an explicit representation of complements, it is difficult to determine which set of hypotheses
is which. For example, consider attribute value pairs name=Char Sue, type=restaurant and
pricerange=cheap. In the representation without complements this would result in four parti-
tions: one that contains name=Char Sue, type=restaurant and pricerange=cheap (1), another
that contains type=restaurant and pricerange=cheap (2), one with just type=restaurant (3)
and one with just pricerange=cheap (4). Thus, if the system makes an offer inform(name=Char
Sue,type=restaurant,pricerange=cheap), this matches partition (1) most closely. However, if the

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 5

user asks for an alternative, the user goal could be represented by any of the partitions (2), (3),
and (4) despite the fact that these could all yield the same entity Char Sue from the data-base.
Preventing this to ensure that a genuine alternative is offered to the user is difficult and requires
ad hoc hand-crafting. Hence, although sharing nodes among partitions allows for a vast number
of partitions to be efficiently represented, it is difficult to identify and remove partitions that are
represented in such a way. It has been shown in [Williams 2010] that partition recombination can
overcome this problem with the notion of complements, which we further explore in this paper.

2.3 Belief Update

The Hidden Information State model maintains a probability distribution over hypotheses – the

belief state. The probability of each hypothesis in the belief state is updated every turn using four
components: the observation model, the user action model, the user goal model and the dialogue
history model. It is updated according to:

b′ (p′, a′

u, s′d)
︸ ︷︷ ︸

h
′

new
hypothesis

= k · P (o′|a′

u)
︸ ︷︷ ︸

observation
model

P (a′

u|p
′, am)

︸ ︷︷ ︸

user
action
model

P (p′|p)
︸ ︷︷ ︸

user goal
model

∑

sd

P (s′d|p
′, a′

u, sd, am)
︸ ︷︷ ︸

dialogue history
model

b (p, au, sd)
︸ ︷︷ ︸

h

old
hypothesis

, (1)

where b is the current belief state, b′ is the updated belief state, p is a partition of user goals,
au is the user action, am is the system action and sd is the dialogue history (primed are the
elements of the next turn). The observation model is derived from a scored N-best list of the
user input dialogue acts generated by the speech understanding component. The user action
model consists of a dialogue act type bigram model and an item matching model. The act type
bigram model determines how probable the user dialogue act type is given its preceding dialogue
act type in the dialogue. The item matching model is a filter that gives a low probability to the
dialogue act items inconsistent with the given partition and a high probability otherwise. The user
goal model is derived from the domain ontology. The dialogue history, that is assigned to each
hypothesis, represents a set of states for every node that belongs to the respective partition of that
hypothesis. These states keep track of what has happened previously in the dialogue. The dialogue
history model itself is deterministic and is implemented as a finite state machine. For example,
if the partition contains elements cheap, hotel, area and the user says inform(type=hotel,

pricerange=cheap) then cheap and hotel transit to the state of UserInform while area remains
in the Initial state. Then, if the system says request(area) the node area transits to SysRequest

state. These are important for the action selection process which is described in the next section.

2.4 Policy Representation and Action Selection

The number of hypothesis for any real-world problem can be very large and applying POMDP
learning algorithms directly to the full dialogue state to find an optimal policy would be compu-
tationally intractable. To overcome this problem, the belief state space (master space) is mapped
into a smaller-scale summary space. The features of the summary space are: top hypothesis prob-
ability, next hypothesis probability, the last user act type from top hypothesis and an indicator of
how many database entries match the top partition. This continuous summary space is discretised
into a grid, so that reinforcement learning MDP learning algorithms can be tractably performed.
The policy is a mapping from summary space grid points to summary actions. The policy op-
timisation is performed in interaction with a simulated user which gives a reward to the system
at the end of every dialogue. In that way, every dialogue is a learning episode, which allows the
Monte Carlo Control algorithm [Sutton and Barto 1998; Young et al. 2010] to be used to find
the optimal policy. The optimal policy maps each summary grid point into a summary action
selected to yield the highest expected reward. The summary action is then mapped back into
a master action by adding additional information from the corresponding master belief state to
give the required system dialogue act. For this purpose, the dialogue history information is used.
For example, if the system makes an offer it mentions all the attribute-value pairs that the user
requested so that the user can be assured that the offered entity has certain properties. Although

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

6 · Gašić and Young

Representation Atomic node for Lexical node food

Set Chinese English Indian Italian Japanese French Thai

T F T F F F F

Disjunctions Chinese ∨ Indian

Conjunctions ¬English ∧ ¬Italian ∧ ¬Japanese ∧ ¬French ∧ ¬Thai

Table II. Different representations of the same atomic node in a partition

based on heuristics, the summary to master space mapping is relatively easy to implement and
rarely leads to poor dialogue management behavior in the same way as the inappropreate choice
of summary actions.

3. EXTENDED STATE REPRESENTATION

In order to exploit the HIS system’s capability to model dependencies between different attribute-
value pairs, we extend the standard model to include the explicit representation of complements.

3.1 Explicit Representation of Complements

A partition is a realisation of the ontology tree with an extended representation of values in
the atomic nodes. In detail, class and lexical nodes take unique values, for example type, area

or food. Logically, atomic nodes should be represented as a set of Boolean indicators for each
possible value from the ontology. However, a potential drawback of this set representation is the
need to enumerate every value that an attribute can take which can be a problem for classes with
high cardinality. An alternative and more compact approach is to represent atomic nodes as a
disjunction of the values which are true or a conjunction of the negation of the values which are
false. An example is given in Table II.

3.2 Partitioning Process

Partitioning is the process of applying an attribute-value pair s = v to a partition p that contains
node s and creating its child partition c. In the ontology, s is either a class or a lexical node
and v is an atomic node. In the partition p, node s has a child atomic node that has all possible
values that attribute s can take. During the partitioning process, the value v in the atomic node
of the partition p is set to false and the partition c is a copy of the partition p in which v of the
corresponding node is set to true.

In order to apply attribute-value pair s = v to an existing set of partitions, it must first be
ensured that there is a partition that contains node s. For attribute s, the list of superiors is
defined as all attribute-value pairs si = vi where si are class nodes on the path from the node s

to the root of the ontology tree, and vi are the values of their child atomic nodes that enable the
attribute expansion leading to the occurrence of s in the tree. For example, for attribute-value
pair food=Italian the list of superiors is type=restaurant, entity=venue, see Table I. The
ontology automatically generates this list for each attribute s, so that they can be applied prior
to applying s = v. In that way, it is ensured that there exists a partition with node s before s = v

is applied.2

The partitioning process starts by applying the list of attribute-value pairs from the N-best
user input to the initial partition, which is just the root of the ontology tree. The process is
then recursively repeated. In such a way, an ordered tree of partitions is created, where the order
indicates when each partition was created. Attribute-value pairs from the system act are also
applied during this partitioning process to ensure that the belief state includes attributes which
have been introduced by the system as well as by the user.

It is important to note that this process guarantees that each partition that is created is unique.
This is achieved by checking whether a partition contains v set to false before s = v is applied
to that partition. If it does contain v set to false, then s = v must have already been used and

2This mechanism is essential for dialogues where the user takes the initiative. For example: Sys:“How may I help
you”, User:“I want some Italian food”.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 7

System hello()
User inform(=hospital)

System inform(name=“Addenbrooke’s Hospital”,type=amenity,amtype=hospital)
User request(area)

System inform(name=“Addenbrooke’s Hospital”,area=addenbrookes)
User inform(area!=addenbrookes)

System inform(name=none,type=amenity,amtype=hospital,name!=“Addenbrooke’s Hospital”)
User request(addr)

System inform(name=“Addenbrooke’s Hospital”,
addr=“Cambridge University Hospitals NHS Foundation Trust, Hills Road”)

User bye()

Table III. Dialogue with Negations in System’s Response

should not be applied again to that partition.
A step-by-step example of the partitioning process is given in Fig 4. The final tree of partitions
represents the partitions that are created from the following attribute-value pairs: entity=venue,
type=restaurant, area=central, food=Italian and pricerange=cheap. The ontology from
Table I is used to determine the valid combinations. Therefore, there is no combination that
involves type!=restaurant and food=Italian, since the lexical node food is specific to class
node type in which the atomic child value restaurant is set to true.

3.3 Logical Expressions for Negotiation-type Dialogues

The explicit representation of complements in partitions, improves the model in a number of ways.
Firstly, it enables a simpler error recovery. For example, if attribute-value pair s = v occurred in

the N-best user input due to a recognition error, and it turns out later in the dialogue that the user
does not want v, then the user modelling component will automatically increase the probability
of the partition that contains ¬v. In that way, even if the system does not know exactly what the
user wants for attribute s, the knowledge that the user does not want v is explicitly represented
and the true user goal will be in the partition that has ¬v.

Secondly, this representation is particularly useful when the user goal evolves during the di-
alogue. For example, if the user wants a Chinese restaurant in the centre, the system may of-
fer “Charlie Chan is a Chinese restaurant in the centre”, which is represented at the dialogue
act level by inform(name=Charlie Chan, type=restaurant, food=Chinese, area=central).
When the system makes such an offer, the partitioning results in some partitions containing
name=Charlie Chan and others name!=Charlie Chan. In a real dialogue, a user might want
to have more options and may ask “Do you have anything else?’, corresponding to the dia-
logue act reqalts(). Based on this, the user action model will increase the probability of
partitions which have name!=Charlie Chan and decrease the probability of partitions that have
name=Charlie Chan.

3.3.1 Quantifiers in the System’s Response. By utilising the notion of complements, the sys-
tem can provide more accurate responses to the user. Referring back to the example from the
previous section, if the user wanted something other than Charlie Chan’s, it may turn out that
the partition with name!=Charlie Chan, type=restaurant, food=Chinese and area=central

does not have any matching entries in the database. In that case, the system may respond with
inform(name=none, type=restaurant, food=Chinese, area=central, name!=Charlie Chan),
meaning “There is no restaurant that serves Chinese food and is in the centre and isn’t Charlie

Chan”, or in a more natural form “Charlie Chan is the only Chinese restaurant in the centre”. An
example of a Cambridge tourist information dialogue (Appendix 7.2) that utilises such expressions
is given in Table III.

During the course of a dialogue with a high rate of speech recognition errors, the system might
not know what the user wants, but it might be confident about what the user does not want.
Coming back to the previous example, the speech recogniser might output “No, I don’t want the

central area, I want ...” corresponding to deny(area=central) or inform(area!=central), but

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

8 · Gašić and Young

Fig. 3. Step-by-step Partitioning Process

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 9

Fig. 4. Step-by-step Partitioning Process (cont.)

the actual value for the attribute area might not be recognised. Then, after applying the user
action model, the partition containing name!=Charlie Chan, type=restaurant, food=Chinese
and area!=central might end up having the highest probability. If such a partition does not
have any matching entries in the database, the system may inform the user about it rather
then trying to find out the exact value of attribute area that the user wants. The result-
ing system dialogue act would then be inform(name=none, type=restaurant, food=Chinese,

area!=central), meaning “There is no restaurant that serves Chinese food and is not in the

central area”, or alternatively “All Chinese restaurants are in the centre”.
These two examples demonstrate the capability the explicit representation of complements pro-

vides for expressing existential and universal quantifiers in the system’s response. This can make
the dialogue more efficient as there is no need for the system to try to resolve every single con-
straint that user might have, since knowing just what the user does not want might be sufficient
to provide an acceptable response.

3.3.2 Disjunctions and Conjunctions in the User’s Request. It was mentioned previously that
atomic nodes in partitions can be represented in terms of conjunctions or disjunctions of values
in partitions. So far we have only considered the case when the user has in mind one specific
value for each attribute, and any cases of multiple values in partitions come from confusions
caused by recognition errors. However, this representation also allows a richer expression of the
user’s constraints. For example, if the user wants a restaurant that serves Thai or Indian food
inform(type=restaurant, food=Thai∨Indian), partitions can directly represent this. There-
fore, the system can handle such requests. An example of a Cambridge tourist information dialogue

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

10 · Gašić and Young

System hello()
User inform(=restaurant, food=Thai | Indian, pricerange=cheap))

System inform(name=“The Rice Boat”,type=placetoeat,eattype=restaurant,pricerange=cheap,food=Indian)
User reqalts(food=Thai)

System inform(name=none,type=placetoeat,pricerange=cheap,food=Thai)
User request(name=“The Rice Boat”, addr)

System inform(name=“The Rice Boat”,addr=“37 Newnham Road”)
User bye()

Table IV. Dialogue with Disjunctions in User’s Request

System hello()
User inform(=hotel, stars!=“4”, stars!=“5”)

System inform(name=“Express by Holiday Inn Cambridge”,type=placetostay,staytype=hotel,stars=“2”)
User reqalts()

System inform(name=“Royal Cambridge Hotel”,type=placetostay,staytype=hotel,stars=“3”)
User request(area)

System inform(name=“Royal Cambridge Hotel”,area=riverside)
User bye()

Table V. Dialogue with Conjunctions in User’s Request

where the user makes use of disjunctions is given in Table IV.
Since we assume that every entity has only one value for each attribute, for example a hotel

can only have a certain number of stars, then conjunctions such as stars=4∧5 would not be
applicable. However, conjunctions in terms of negations are possible and effectively represent
disjunctions of negated values. For example, the user constraint “I want a hotel, but not with four

or five stars” corresponds to the dialogue act inform(type=hotel,stars!=4∨5), or, alternatively,
inform(type=hotel,stars!=4, stars!=5). This can be directly represented in partitions and
thus handled by the system, see the Cambridge tourist information dialogue in Table V.

4. PRUNING

Due to the nature of the partitioning process, the number of partitions grows exponentially as
the dialogue progresses, which poses a potential computational limitation. A simple experiment
on 3000 dialogues in interaction with a simulated user on 40% semantic error rate using a 10-best
list shows the exponential nature of the growth of the number of partitions, see Fig. 5. The
average time in seconds that is taken for the belief update in each turn is given at each point in
the graph3. In order for the system to run in real time the total response time (including decoding
and generation) should not be larger then 1 second, which means that the belief update time
should be kept well below that threshold. Therefore, a pruning technique is needed to ensure this.

4.1 Partition Recombination

The number of partitions can be reduced simply by removing the low probability partitions. As
noted earlier in Section 2.3, belief state hypotheses are formed from the combination of a partition,
the last user action and the respective dialogue history, and the probability of each hypothesis
is maintained through-out the dialogue. The probability of a specific partition can therefore be
easily computed by marginalising out the user action and dialogue history simply by summing
all hypotheses containing that partition i.e., b(p) =

∑

h∈p b(h). This allows for low probability
partitions to be identified and removed. However, since the partitions represent groups of user
goals, completely removing a user goal makes it impossible to recreate it and this is clearly not
desirable.

Rather then removing the partitions, the method proposed in [Williams 2010] reduces the num-
ber of partitions by recombining the low probability leaf partitions with their parent partitions.

3The runtime results are obtained on 8 core Intel Xeon 2.83GHz processor and 24Gbytes RAM

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 11

2 4 6 8 10 12 14 16 18 20 22

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.031
0.046

0.052
0.068

0.081

0.103

0.159
0.125

0.15

0.217

0.229

0.381

1.138

Dialogue turn

A
ve

ra
ge

 n
um

be
r

of
 p

ar
tit

io
ns

Fig. 5. Average number of partitions for dialogue turn. The values on the curve denote the average time to perform
the belief update in seconds.

1: Let o′ be an observation from the N-best input

2: Let p be a partition and its belief b(p)
3: Let h be a hypothesis and its belief b(h)
4: repeat for each dialogue turn

Belief Update

5: Partition each p using attribute-value pairs from the last system action am

6: Initialise b′(p) = 0 for all partitions p in the current set of partitions
7: for each o′ in the N-best list do

8: Partition each p using attribute-value pairs from o′

9: for each partition p′ in the current set of partitions do

10: for create new hypothesis h′ from previous hypothesis h and o′ do

11: b′(h′) = P (o′|a′
u)P (a′

u|p
′, am)P (h′|h, p′, au, am)P (p′|p)b(h)

12: b′(p′) = b′(p′) + b′(h′)
13: end for

14: end for

Partition Recombination

15: Recombine partitions w.r.t the current updated belief b′(p′)
16: end for

Action Selection

17: Choose the next system action a′
m according to b′(h′)

18: until dialogue ended

Fig. 6. Belief Update with Recombination

The recombination is performed by removing the complementary value from the parent partition,
updating its probability with the probability of its child partition and removing the child partition.

An outline of the belief update algorithm that utilises this partition recombination is given in
Fig. 6. In each dialogue turn the partitioning is performed using the attribute-value pairs from the
last system action (line 5). Then, for each observation in the N-best user input the partitioning is
performed using its attribute-value pairs (line 8), the belief over new hypotheses is updated (line
11) and the updated belief over partitions is accumulated (line 12). If the number of partitions
exceeds the threshold, the partitions are recombined according to the current updated belief (line
15). After the whole N-best list is processed, the next system action is chosen according to the
updated belief.

This method is shown to be effective in domains that do not have many attributes [Williams
2010]. However, the method has its limitations in more complex domains. Firstly, a partition can

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

12 · Gašić and Young

only be recombined with its parent even though there may be other partitions it is complementary
to and which would be better candidates for recombination. Referring to the example from Fig
4, partition 1.1.1.1.1.1 is complementary both to partition 1.1.1.1.1 and to partition 1.1.1.1.2.
Secondly, allowing only leaf partitions to be removed might not be desirable in long dialogues.
Leaf partitions are usually the last to be created but in dialogues where the user goal evolves
over time, the partitions that are created early on typically become less probable as the dialogue
progresses. Thus, the more recent leaf partitions are often more useful. However, if one simply
modifies the recombination technique to allow for non-leaf partitions to be recombined, as in for
example 1.1.1 and 1.1.2, it would be difficult to determine the right position for the newly obtained
partition. What is more, such a partition would not have any complements and thus it would be
impossible to remove it before other partitions are recombined. Finally, the problem of partitions
without any complements can occur even in the case of recombining the leaf partitions. For
example, recombining 1.1.1.1.1.1 with its parent 1.1.1.1.1 results in a partition that does not have
any complements. In complex dialogues, where the user can change the goal, it may be important
that each partition has a complementary partition.

4.2 Pruning of the Applied Attribute-Value List

In this paper, we propose a new pruning method that is not constrained by the position of partitions
in the tree and guarantees that every partition has a complement.

Rather then recombining the partitions, the number of partitions can be reduced by removing
some of the applied attribute-value pairs. The marginal probability of attribute-value pair s = v

is the sum of probabilities of all partitions that have v set to true. In that way, a sorted list of
the applied attribute-value pairs can be obtained. The lowest probability attribute-value pairs are
likely to have the least impact on modelling the user goal and therefore can be removed.

Let s = v be the attribute-value with the lowest probability in the list of applied attribute-value
pairs. Assume that s = v is not among the superiors for any other applied attribute-value pair
sk = vk (see Subsection 3.2). To remove s = v, the following procedure is taken. Starting from the
root partition, the partition is examined to see if it contains node s with a child node containing
¬v. If not, the search is continued through its children starting from the oldest. If it does contain
¬v, it is marked as upper. Then the search is performed through its children, starting from the
oldest until, one that contains node s with a child node containing v is found. It is marked as
lower. Such a pair of partitions is guaranteed to exist, they are complementary and only differ
in the atomic node that contains v and for every given upper there is only one lower (see Stat. 1
and 5 in Appendix 7.1) . What is more, if partitions upper and lower have child partitions, they
have subtrees with the same structure where these partitions are roots. Each partition from the
upper subtree will have its complement in the lower subtree. All that is needed is to add the
belief of each partition in the lower subtree to its complement in the upper subtree, to remove ¬v

from the upper partition and then to delete the lower subtree (see Stat. 6 in Appendix 7.1). The
procedure is continued until there is no partition matching ¬v left. This can be easily performed
using a stack structure. The pseudo code is given in the Appendix 7.3.

Every time a lower partition is removed all the hypotheses that are associated to that partition
are removed. However, when a node is removed in an upper partition only the history related to
that node is removed in each associated hypothesis.

An example of the pruning procedure is given in Fig. 7, where the attribute-value pair food=Italian
is removed from the list of applied attribute-value pairs. The first partition that contains node
food and !Italian is 1.1.1 and its child partition that contains Italian is 1.1.1.2. They are
respectively marked as upper and lower and both of them have child partitions which are com-
plementary, 1.1.1.3 and 1.1.1.2.1 respectively, similarly for partitions 1.1.1.1 and 1.1.1.1.1. Then,
partitions with Italian are deleted and !Italian is removed from their complementary partitions.

If s = v is among the superiors of some attribute-value pair sk = vk, then sk = vk has to be
pruned from the part of the tree that contains s = v (see Stat. 8 in Appendix 7.1). The algo-
rithm is same as the one described above, with the difference that upper and lower partitions
are complementary in vk and both contain v set to true. Referring to the example from Fig 4,
if, for instance, type=restaurant is to be removed, then food=Italian and area=central have

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 13

Fig. 7. Pruning an attribute-value pair from the tree of partitions

to be removed first. If the pruning is performed based on the lowest probability, it is never the
case that food=Italian has higher probability than type=restaurant, since it can only occur
in the partitions that have restaurant as true. However, some attributes can occur for differ-
ent realisations of class nodes. For example, type=restaurant and type=hotel can both have
pricerange=cheap, see Table I. In that case, if type=hotel is to be removed, pricerange=cheap
has to be removed only from the partitions that have hotel.

In this way, it is guaranteed that the lowest probability attribute-value pair can be removed
from the tree of partitions, regardless of when it was applied and how the partitions that contain
it are structured in the tree. After pruning an attribute-value pair, the structure of the tree of
partitions is the same as if that attribute-value pair had never been applied at all, so the pruning
does not affect the existence of complements.

Whilst the partitioning process exponentially increases the number of partitions, the above
pruning technique decreases it at the same rate, so the total number of partitions remains bounded.
This allows dialogues of arbitrary length. Furthermore, it also enables large N-best inputs to be
applied.

An outline of the belief update algorithm that utilises the above pruning method is given in

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

14 · Gašić and Young

1: Let o′ be an observation from the N-best input
2: Let p be a partition

3: Let h be a hypothesis and its belief b(h)
4: Let d be an attribute-value pair and p(d) its marginal probability
5: repeat for each dialogue turn

Pruning

6: for each applied attribute-value pair d do

7: p(d) =
P

p:d∈p

P

h∈p b(h)
8: end for

9: Prune the list of the applied attribute-value pairs w.r.t. p(d)
Belief Update

10: Partition each p using attribute-value pairs from the last system action am

11: for each o′ in the N-best list do

12: Partition each p using attribute-value pairs from o′

13: for each partition p′ in the current set of partitions do

14: for create new hypothesis h′ from previous hypothesis h and o′ do

15: b′(h′) = P (o′|a′
u)P (a′

u|p
′, am)P (h′|h, p′, au, am)P (p′|p)b(h)

16: end for

17: end for

18: end for

Action Selection

19: Choose system action according to b′(h′)
20: until dialogue ended

Fig. 8. Belief Update with Pruning

Fig. 8. In contrast to the algorithm in Fig. 6, pruning is applied before the processing of the
input, so that no information from the current N-best list is lost before the next system action
is chosen. The reason for this is to accommodate negotiation-type dialogues, where the user can
change their mind and therefore put more importance on the most recent observations rather than
the keeping of low probability older information. More precisely, in this framework what the user
does not want and what the system is uncertain about are represented in the same way in order
to retain tractability. For that reason, very low probability slot-value pairs are most probably
the ones that the user does not want so it is safer to remove them rather that the ones that
were obtained from the latest N-best input. At the beginning of each dialogue turn, the marginal
probability of all applied attribute-value pairs is calculated (lines 6-8). Then pruning of the lowest
probability attribute-value pairs is performed (line 9). Following that, partitioning is performed
using the attribute-value pairs from the last system act (line 10). Then, partitioning is performed
for each user dialogue act in the N-best input list using its attribute-value pairs and the belief is
updated (lines 11-18). Finally, the next system action is chosen based on the updated belief (line
19).

In Appendix 7.4 an example of a long negotiation-type dialogue which incorporates this prun-
ing technique is given together with the list of active attribute-value pairs and their marginal
probabilities in each turn.

5. EVALUATION

The evaluation is divided in three parts. In Section 5.1, we examine how well the system can
deal with user goals when the constraints are in the form of disjunctions. Then, in Section 5.2,
we compare the performance of pruning in the applied attribute-value list algorithm (described in
Section 4.2) and a version of the partition recombination algorithm [Williams 2010]. Finally, in
Section 5.3 different pruning thresholds are examined.

For each experiment, the policy was trained in interaction with a simulated user at the dialogue
act level. The application is the Cambridge tourist information system. The domain consists
of more then 500 entities each of which has upto 10 attributes the user can query. The full
description of the ontology is given in Appendix 7.2. The simulated user gives a reward at the end
of each dialogue of 100 if the dialogue was successful and 0 otherwise, less the number of turn.
The simulated user allows a maximum of 100 turns in each dialogue, terminating it when all the
necessary information has been obtained or if the dialogue manager repeats the same dialogue

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 15

action more than three times in a row. The simulated user is able to generate user acts for a
particular goal, but it can also change the goal during the dialogue. When the system makes
an offer the simulated user changes its goal with probability 0.28. An error model is used to
add confusion to the user input and it produces a scored N-best list of user dialogue acts with
confidence scores consistent with the required error rate. Each error rate roughly represents the
probability of the user input not being on the top of the N-best list [Thomson 2009]. In order
to demonstrate the system’s capability for dealing with reasonably long N-best lists, the length
of the N-best list was set to 10. The system takes about 13 turns on average to complete a
dialogue; Fig. 9 shows how the number of turns increases as the user input becomes more noisy.
The policies were trained using the grid-based Monte Carlo Control algorithm in an incremental
noise setting [Young et al. 2010]. The resulting policies were evaluated with the simulated user
performing 2500 dialogues at each error rate.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
9

10

11

12

13

14

15

16

17

A
ve

ra
ge

 n
um

be
r

of
 tu

rn
s

Error rate

Fig. 9. Average number of turns as a function of error rate

5.1 Disjunctions in the User Goal

For this experiment, the simulated user was modified to produce constraints in the user goal such
that on average 20% of them contain a disjunction of two values, for example, type=restaurant,
pricerange = moderate | cheap, food=Japanese. The performance of the system is compared
on both the tasks that contain disjunctions and regular tasks. The performance is measured as
the average reward at different confusion levels and the results are presented in Fig. 104. As can
be seen from the graph, the system can deal with disjunctions in the user constraints at least as
well as it can for standard user constraints.

5.2 Pruning vs Recombination

In this experiment, the two methods for reducing the number of partitions: the pruning of the
applied attribute-value list and the partition recombination algorithm are compared. In both cases,
the maximum number of partitions was set to 300. We examined the performance by measuring
the average reward that the system obtained with each of the methods. The results are given
in Fig 11 which shows that the pruning of the applied attribute-value list gives a better overall
performance. As shown by the error bars, the results are statistically significant in the high noise
regions, suggesting that it can more effectively manage user goal partitioning in noisy complex
domains compared to the simpler partition recombination approach.

4The error bars represent a 95% confidence interval.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

16 · Gašić and Young

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
30

40

50

60

70

80

90

Error rate

A
ve

ra
ge

 r
ew

ar
d

Standard User Goal
Disjunctions in User Goal

Fig. 10. System Performance with Disjunctions in the User’s Request

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
30

40

50

60

70

80

90

Error rate

A
ve

ra
ge

 r
ew

ar
d

Pruning
Recombination

Fig. 11. System Performance Comparison of Attribute-Value List Pruning (Pruning) and Partition Recombination
(Recombination). In both cases, the maximum number of active partitions was 300.

5.3 The Effect of Different Pruning Thresholds

In order to examine the effect that the pruning has on the system’s performance, three different
pruning thresholds were compared: 3, 30 and 300. In addition, a contrast is given between two
different user simulator setting – one where the user goal stays constant during the dialogue, and
one where the user changes its goal during the dialogue. The comparison is given in Fig. 12.
In the case when the user goal stays constant during the dialogue, increasing the number of
partitions leads to improved system performance. This is in line with the findings in [Williams
2010]. It is important to note that, in contrast to a dramatic difference between 3 and 30,
the difference between 30 and 300 is mostly not statistically significant. 3 partitions roughly
correspond to only 2 attribute-value pairs representing the user goal and the user typically has
about 4 constrains, so the goal in that case is not fully represented. Therefore, if the dialogue
manager has a very low pruning threshold it is not able to represent the user goal even on zero
error rate, which leads to low performance. The results from Fig. 12 suggest that increasing the
number of partitions over 300 would not improve the performance further and this was confirmed
by further tests at 3000.
In the case where the user goal changes during the dialogue, the threshold of 30 gives a more robust
performance on higher error rates then the threshold of 300, see Fig. 12(b). This is probably a
consequence of the fact that the HIS system does not have an explicit state transition matrix. Since

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 17

a change of user goal can also be achieved by discarding earlier evidence in favour of the most
recent evidence, pruning helps achieve this. Thus, in the HIS model, pruning enables the dialogue
to be more adaptive to inconsistent user behaviour. In real dialogues, users do not normally have
a strictly defined goal but are likely to change their mind depending on the system’s response,
and pruning can facilitate this.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

20

30

40

50

60

70

80

90

Error rate

A
ve

ra
ge

 r
ew

ar
d

300 max partitions
30 max partitions
3 partitions

(a) User goal stays constant during the dialogue

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

20

30

40

50

60

70

80

90

Error rate
A

ve
ra

ge
 r

ew
ar

d

300 max partitions
30 max partitions
3 partitions

(b) User goal changes during the dialogue

Fig. 12. Influence of the pruning threshold on system’s performance when user has a constant goal (a) and when
user changes the goal (b)

6. CONCLUSION

This paper has described how enriching the dialogue state structure with the explicit representation
of complements can improve POMDP-based dialogue modelling in a complex domain. It enables
the use of disjunctions and conjunctions in the user request as well as quantifiers in the system’s
response. More importantly, the notion of complements provides a basis for a pruning technique
that can effectively bound the number of partitions created during a dialogue and thereby ensure
tractability. It supports N-best lists of user dialogue act hypotheses which are large enough to
include all of the informative variants during noisy speech, and it can handle dialogues of arbitrary
length. Furthermore, we have shown that this new pruning technique leads to better performance
than the existing recombination method in practical real-world application domains.

Acknowledgements

This research was partly funded by the UK EPSRC under grant agreement EP/F013930/1 and
by the EU FP7 Programme under grant agreement 216594 (CLASSiC project: www.classic-
project.org). The authors would like to thank anonymous reviewers for their suggestions that
helped improve the paper, as well as Rogier van Dalen, Filip Jurčiček, Simon Keizer, François
Mairesse, Blaise Thomson and Kai Yu for useful comments and discussions.

REFERENCES

Kim, K., Lee, C., Jung, S., and Lee, G. G. 2008. A frame-based probabilistic framework for spoken dialog
management using dialog examples. In SIGdial ’08: Proceedings of the 9th SIGdial Workshop on Discourse and
Dialogue. Association for Computational Linguistics, Morristown, NJ, USA, 120–127.

Levin, E., Pieraccini, R., and Eckert, W. 1998. Using Markov Decision Processes for Learning Dialogue Strate-

gies. In Int Conf Acoustics, Speech and Signal Processing. Seattle,USA.

Sutton, R. and Barto, A. 1998. Reinforcement Learning: An Introduction. Adaptive Computation and Machine
Learning. MIT Press, Cambridge, Mass.

Thomson, B. 2009. Statistical methods for spoken dialogue management. Ph.D. thesis, University of Cambridge.

Thomson, B. and Young, S. 2010. Bayesian update of dialogue state: A POMDP framework for spoken dialogue
systems. Computer Speech and Language In press.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

18 · Gašić and Young

Thomson, B., Yu, K., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., and Young, S. 2008. Evaluating
semantic-level confidence scores with multiple hypotheses. In Interspeech. Brisbane, Australia.

Williams, J. 2010. Incremental Partition Recombiantion for Efficient Tracking of Multiple Dialogue States. In Int
Conf Acoustics Speech and Signal Processing ICASSP. Texas.

Williams, J., Poupart, P., and Young, S. 2005. Factored Partially Observable Markov Decision Processes for
Dialogue Management. In 4th Workshop on Knowledge and Reasoning in Practical Dialogue Systems. Edinburgh.

Young, S., Gašić, M., Keizer, S., Mairesse, F., Schatzmann, J., Thomson, B., and Yu, K. 2010. The Hidden
Information State Model: a practical framework for POMDP-based spoken dialogue management. Computer

Speech and Language 24(2), 150-174.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 19

7. APPENDIX

7.1 Consistency Proofs for Pruning Operations

Definition 1. An ontology is a forest of ordered trees such that all its trees have the same

root node and if a tree contains a node that has multiple child nodes, then the first child node

determines the other child nodes of that node.

Definition 2. An attribute-value pair is a pair of nodes from some ontology tree where the

value is a leaf node and the attribute is its parent node. It is denoted as s = v.

Definition 3. Attribute-value pair s = v is called superior to attribute-value pair s′ = v′ if,

in some ontology tree, value v is the first child node of node s and among other child nodes of s,

v1, · · · , vn, there exists node vi so that nodes s and vi appear on the path from s′ to the root in

that ontology tree.

Definition 4. A partition is a tree where all its non-leaf nodes coincide with all non-leaf nodes

of at least one ontology tree, the coinciding ontology tree. Each leaf node of a partition is a set of

boolean indicators. There is one indicator for each coinciding ontology tree. Each indicator corre-

sponds to the value in an attribute-value pair in the coinciding ontology tree, where the attribute

coincides with the parent of the leaf node in the partition.

Definition 5. The generic partition is the partition that has only two nodes. The root node

of the generic partition coincides with the root node of every tree in the ontology and the leaf node

has all indicators set to true.

Definition 6. Two partitions p and c are complementary in attribute-value pair s = v if they

are the same in all nodes except in the nodes the child nodes of which have all indicators set to

true in either p or c, and in the child node of node s, where in partition p all boolean indicators

are set to false apart from the one for v, which is set to true, and in partition c the indicator for

v is set to false. It is said that partition p contains s = v and partition c contains s = ¬v.

Definition 7. Attribute-value pair s = v is applicable to partition p if partition p contains

the boolean indicator for value v set to true in the child node of node s and at least one more

indicator set to true in the child node of node s. Then, the process of applying attribute-value pair

s = v to partition p is setting the indicator for v to false in partition p and replicating partition

p into partition c where all indicators are set to false in the child node of node s, apart from the

indicator for v, which is set to true. In the case where s has multiple child nodes in one of the

coinciding ontology tree of partition c and v is its first child node in that ontology tree, other child

nodes of node s are created in that partition. Every newly created child node then has a child leaf

node where all indicators are set to true. The same applies to partition p if only one indicator in

the child node of node s remains true. Partition c is called a child of partition p and partition p

is called the parent of c. The process of applying attribute-value pair to a partition is also called

partitioning.

Statement 1. Partition p and its child partition c created by partitioning p with s = v to p

are complementary in s = v.

Proof. Trivial from Defs. 6 and 7.

Definition 8. A tree of partitions is an ordered tree where the nodes are partitions connected

in parent-child relationship. The tree of partitions is created by applying ordered list of attribute-

value pairs s1 = v1, · · · , sn = vn in such way that s1 = v1 is applied to the generic partition,

s2 = v2 is applied to all resulting partitions and so on for every subsequent attribute-value pair

from the list.

Definition 9. A subtree of partitions is a tree of partitions where instead of the generic par-

tition the partitioning process starts with an arbitrary partition.

Statement 2. Two trees of partitions are the same if they are created using the same ordered

list of attribute-value pairs.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

20 · Gašić and Young

Proof. Trivial from Def. 8.

Statement 3. Two subtrees of partitions are the same if they are created using the same

ordered list of attribute-value pairs starting from the same partition.

Proof. Trivial from Stat. 2.

Statement 4. Attribute-value pair s = v cannot be applied to partition p if partition p does

not contain all the superior attribute-value pairs of s = v that belong to one coinciding ontology

tree of partition p.

Proof. Trivial from Defs. 3 and 7.

Statement 5. Let T be the tree of partitions created with ordered list of attribute-value pairs

s1 = v1, · · · , sk = vk, s = v, sk+1 = vk+1, · · · , sn = vn. Then, there exists at least one pair of

partitions p and c in T such that p is the parent of c, they are complementary in s = v and for

every such p there exists only one c.

Proof. Let T ′ be the tree of partitions created by attribute-value pairs s1 = v1, · · · , sk = vk.
Then, in order to apply attribute value pair s = v, s = v has to be applicable to at least one
partition p. Applying s = v to partition p creates partition c such that p is the parent of c and
they are complementary in s = v (Def. 7 and Stat. 1).

Attribute-value pair s = v is only applied to partition p if it contains the indicator for value
v set to true. Once p is partitioned, the indicator is set to false and therefore s = v cannot be
reapplied to partition p (Def. 7). Hence, another such child partition c cannot be created.

Definition 10. Pruning of attribute-value pair s = v from tree of partitions T built using

ordered list of attribute-value pairs s1 = v1, · · · , sk = vk, s = v, sk+1 = vk+1, · · · , sn = vn is

the process of removing all partitions from the tree T that are built using s = v or created from

partitions that are built using s = v so that the resulting T ′ is the same as if it was built using

attribute-value pairs s1 = v1, · · · , sk = vk, sk+1 = vk+1, · · · , sn = vn.

Statement 6. Let T be the tree of partitions created by applying ordered list of attribute-value

pairs s1 = v1, · · · , sk = vk, s = v, sk+1 = vk+1, · · · , sn = vn. Let p and c be a pair of partitions

such that p is the parent of c and they are complementary in s = v. Let s = v be not among the

superiors for any attribute-value pair si = vi, i = k + 1, · · · , n. If p and c are roots of subtrees,

these subtrees have the same structure and for every partition in one subtree there exists a partition

in the same place in the other subtree and such that they are complementary in s = v.

Proof. Assume that every attribute-value pair si = vi from sk+1 = vk+1, . . . sn = vn, if
applicable to a partition that contains s = v, is then also applicable to partition that contains
s = ¬v. Then, sublist of applied attribute-value pairs si1 = vi1 , . . . sim

= vim
that is applicable

to a partition which contains s = v, is also applicable to a partition which contains s = ¬v.
By Defs. 7 and 6 partition p contains s = v and partition c contains s = ¬v. Since the sublist
si1 = vi1 , . . . sim

= vim
is applied in the same order to both of these partitions, it creates two

subtrees with roots p and c respectively. These subtrees have the same structure since the list
is applied in the same order and by Def. 8 a tree of partitions is an ordered tree. Had p and c

been identical then these subtrees would have been identical too (Stat. 3). Since partitions p and
c only differ in the child node of s, every partition of one subtree only differs in the child node of
s from the partition in the same position in the other subtree. In that way, for every partition in
the subtree with the root p there exists a partition in the same place in the subtree with the root
c and such that they are complementary in s = v.

Let si = vi be an attribute-value pair that is applicable to partitions that contain s = v but not
applicable to partitions that contain s = ¬v. That means that si = vi can only appear in trees
that contain s = v, which means that having indicator for v set to true enables creating other
child nodes of s and thus allows for si = vi to be applied. Then, by Def. 3, s = v is among the
superiors for si = vi. This is in contradiction with the assumption that s = v is not among the
superiors for any attribute-value pair si = vi, i = 1, . . . , k.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 21

Statement 7. Let T be the tree of partitions created by applying ordered list of attribute-value

pairs s1 = v1, . . . , sk = vk, s = v, sk+1 = vk+1, . . . , sn = vn and s = v is not among superiors for

any attribute-value pair si = vi, i = 1, . . . , k. Then, s = v can be pruned from T .

Proof. According to Stat. 6 there exists at least one pair of partitions p and c which are
complementary in s = v and if they are roots of subtrees, then for every partition in one subtree
there exists a partition in the same place in the other subtree such that they are complementary in
s = v. If for all such pairs p and c, the subtree with c as the root is removed and the indicator for
v is set to true in each partition in the subtree with p as the root, the resulting tree does not have
any partitions created by applying s = v or created from the partitions that had s = v applied to
it.

Statement 8. Any attribute-value pair that is used for building a tree of partitions can be

pruned from that tree.

Proof. Let s = v be the attribute value pair that is to be pruned from tree of partitions T

created by s1 = v1, . . . , sk = vk, s = v, sk+1 = vk+1, . . . , sn = vn. If s = v is not among any
superiors of sk+1 = vk+1, . . . , sn = vn then Stat. 7 applies.

Assume s = v is among the superiors for ski
= vki

from sk+1 = vk+1, . . . , sn = vn and assume
ski

= vki
is not among superiors for any of ski+1

= vki+1
, . . . , sn = vn. Let partitions p and c be

complementary in s = v and be the roots of subtrees Tp and Tc. Then, according to Stat. 7 si = vi

can be pruned from subtree Tc and the resulting subtree T ′

c is the same one as the one created
when sk+1 = vk+1, . . . , ski−1

= vki−1
, ski+1

= vki+1
, . . . , sn = vn are applied to partition c. Then, if

s = v is not among superiors for any of sk+1 = vk+1, . . . , ski−1
= vki−1

, ski+1
= vki+1

, . . . , sn = vn,
according to Stat. 7, it can be pruned. Otherwise the same applies to any such attribute-value
pair from sk+1 = vk+1, . . . , ski−1

= vki−1
, ski+1

= vki+1
, . . . , sn = vn, s = v is the superior of.

If ski
= vki

is among superiors for any of ski+1
= vki+1

, . . . , sn = vn the same procedure is applied
recursively until the attribute-value pair that is not among superiors for any of the attribute-value
pairs following in the list is found and pruned. The last attribute-value pair trivially satisfies that
requirement.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

22 · Gašić and Young

7.2 CamInfo Domain

The CamInfo domain is a tourist information for Cambridge, whereby the user can ask for infor-
mation about a restaurant, a bar, a hotel, a museum or other tourist attractions in the local area.
The database consists of more than 400 entities each of which has up to 10 attributes that the
user can query. The possible attribute-value pairs are organised in an hierarchical ontology, see
Table VI.

entity ← venue(type, name, area, near, addr, phone, postcode)
type ← placetostay(staytype, hasinternet, hasparking, price, pricerange, stars)
type ← placetoeat(eattype, pricerange, openhours, price)
type ← placetodrink(drinktype, pricerange, openhours, price)
type ← placetosee(seetype, pricerange, openhours)
type ← entsvenue(entstype)
type ← univenue(unitype, openhours)
type ← sportsvenue(sport)
type ← transvenue(transtype)
type ← shopvenue(shoptype, openhours)
type ← amenity(amtype)
amtype ← hospital()
amtype ← policestation()
amtype ← bank(openhours)
amtype ← postoffice(openhours)
amtype ← touristinfo(openhours)
shoptype ← supermarket()
shoptype ← shoppingcentre()
transtype ← airport()
transtype ← busstation()
transtype ← trainstation(openhours)
staytype ← guesthouse()
staytype ← hotel()
eattype ← restaurant(food)
drinktype ← bar(childrenallowed, hasinternet, hasmusic, hastv, openhours, price)
drinktype ← coffeeshop()
drinktype ← pub(childrenallowed, hasfood, hasinternet, hastv)
seetype ← architecture()
seetype ← museum()
seetype ← park()
unitype ← college()
unitype ← department()
unitype ← library()
entstype ← cinema()
entstype ← theatre()
entstype ← nightclub(openhours, price, pricerange)
entstype ← entertainment()
entstype ← boat()
entstype ← concerthall()
food = { American, Cafe food, Chinese, ... }
pricerange = { free, cheap, moderate , ... }
sport = { badmintoncourt, cricketfield, footballfield , ... }
area = { girton, kingshedges, arbury , ... }
...

Table VI. CamInfo Ontology Rules

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 23

7.3 Pseudo Code for Pruning

void Partition::prune(AttributeValuePair d)

{

PartitionPtr upper, lower;

Stack<float>& s;

if(this->has_children)

for each child c of this starting from the oldest

c->prune(d);

if (this->contains(complement(d)))

{

upper=this;

for each child c of upper starting from the oldest

if(c->contains(d))

{

lower=c;

break;

}

lower->deletePartitions(s);

s.push(lower->belief);

delete(lower);

upper->updateBeliefandRemoveComplements(s,d);

}

}

void Partition::deletePartitions(Stack<float>& s)

{

for each child c of this starting from the oldest

{

c->deletePartitions(s);

c->push(belief(c));

}

delete(children);

}

void Partition::updateBeliefandRemoveComplements(Stack<float>&d, AttributeValuePair d)

{

this->belief+=s.pop();

this->removeComplement(d);

for each child c starting from oldest that contains negation of d

{

c->updateBeliefandRemoveNegations(s,d);

if(s->size()==0)

break;

}

}

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

24 · Gašić and Young

7.4 Typical Long Negotiative Dialogue

In this section an example of a typical long negotiative dialogue is given. It consists of 17 dialogue
turns in each of which the system prompt and the true user action are given. In addition, the
system’s dialogue act and a scored list of the N-best user dialogue acts are provided, together with
the probability of the most likely hypothesis and a sorted list of applied attribute-value pairs with
their marginal probabilities. The attribute-value pairs that are in bold font match the most likely
partition.
There are several points of the dialogue to note. Firstly, turns 4-6 show how the user goal changes
during the dialogue. Secondly, turns 8 and 11 show the capability of the system to deal with long
N-best inputs5. Furthermore, there are also examples of how the system deals with a range of
problems, such as mis-recognitions in turns 9, 11 and 12, a user mistake in turn 10 and a silence
detection problem in turn 13. Moreover, in turns 8, 9 and 11-16 pruning of the lowest probability
attribute value pairs takes place. Finally, it is also interesting to note how the probability of
the top hypothesis changes over time. For example, in turn 12, where a mis-recognition occurs,
the probability of the top hypothesis is very low, only 0.013. This is due to the fact that the
user through-out the dialogue asked for a place to stay and in turn 12 the top partition contains
a restaurant. However, in turn 14 and 15 when the system offered a hotel and user asked for
an address, the probability increases from 0.025 to 0.308 showing how the system became more
confident about the user’s requirements.

1 System act hello()
System prompt Thank you for calling the Cambridge Information system. How may I help you?
True user action HI I’M LOOKING FOR A PLACE TO STAY
N-best input hello(type=placetostay,task=find) 1.00

hello(type=placetostay) 0.00
hello(type=placetostay,name=“The Place”,task=find) 0.00

Top hypothesis prb 0.676
Applied attributes task=find 0.997; entity=venue 0.994; type=placetostay 0.987; name=The Place 0.312

2 System act confreq(type=placetostay,near)
System prompt You are looking for a place to stay. Are you looking for somewhere near a particular venue?
True user action MAYBE SOMEWHERE IN THE CENTRE
N-best input inform(area=citycentre) 1.00
Top hypothesis prb 0.900
Applied attributes task=find 0.999; entity=venue 0.998; area=citycentre 0.972

type=placetostay 0.932; name=The Place 0.012

3 System act inform(name=“Gonville Hotel”,type=placetostay,area=citycentre)
System prompt The Gonville Hotel is a great place to stay and it’s in the central part of town.
True user action IS IT EXPENSIVE
N-best input confirm(pricerange=expensive) 1.00

inform(pricerange=expensive) 0.00
Top hypothesis prb 0.456
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.991

name=Gonville Hotel 0.978; area=citycentre 0.930; pricerange=expensive 0.495
name=The Place 0.006

Table VII. A typical long negotiative dialogue (turns 1-3)

5The confidence scores are here rounded to two decimals, but in fact they are always greater than zero.

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 25

4 System act inform(name=“Gonville Hotel”,pricerange=none)
System prompt I am sorry but there is no information about the price range for the Gonville Hotel.
True user action DO YOU HAVE ANY CHEAP HOTELS
N-best input inform(pricerange=cheap,=hotel) 0.96

inform(=hotel) 0.04
Top hypothesis prb 0.290
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.987

area=citycentre 0.806; staytype=hotel 0.708; pricerange=cheap 0.585
name=Gonville Hotel 0.523; pricerange=expensive 0.201; name=The Place 0.014

5 System act inform(name=none,type=placetostay,area=citycentre,pricerange!=dontcare)
System prompt There is no place to stay in the central area

for which I have any information about the price range.
True user action HOW ABOUT RIVERSIDE
N-best input reqalts(area=riverside) 0.90

inform(area=riverside) 0.05
reqalts() 0.04
reqalts(=bar,area=riverside) 0.01
null() 0.00

Top hypothesis prb 0.213
Applied attributes task=find 0.999; entity=venue 0.998; area=riverside 0.775; type=placetostay 0.752

staytype=hotel 0.585; pricerange=cheap 0.419; name=Gonville Hotel 0.273;
type=placetodrink 0.198; area=citycentre 0.152
pricerange=expensive 0.150; drinktype=bar 0.092; name=The Place 0.068

6 System act inform(name=none,type=placetostay,pricerange=cheap)
System prompt There is no place to stay in the cheap price range.
True user action HOW ABOUT SOMETHING MODERATE
N-best input reqalts(pricerange=moderate) 0.83

inform(pricerange=moderate) 0.17
Top hypothesis prb 0.065
Applied attributes task=find 0.999; entity=venue 0.998; pricerange=moderate 0.847

area=riverside 0.612; type=placetostay 0.593; type=placetodrink 0.394
staytype=hotel 0.338; name=Gonville Hotel 0.247; area=citycentre 0.218
drinktype=bar 0.193; name=The Place 0.138; pricerange=cheap 0.037
pricerange=dontcare 0.036; pricerange=expensive 0.033

7 System act inform(name=none,type=placetostay,staytype=hotel,area=riverside,pricerange=moderate)
System prompt There is no hotel in the riverside area in the moderate price range.
True user action I DON’T CARE ABOUT THE AREA
N-best input inform(=dontcare) 1.00

null() 0.00
Top hypothesis prb 0.116
Applied attributes task=find 0.999; entity=venue 0.998; name=dontcare 0.569; type=placetostay 0.512

area=dontcare 0.491; type=placetodrink 0.458; pricerange=dontcare 0.433
pricerange=moderate 0.357; drinktype=bar 0.252; area=riverside 0.252
staytype=hotel 0.249; area=citycentre 0.131; name=Gonville Hotel 0.124
name=The Place 0.103; pricerange=cheap 0.061; pricerange=expensive 0.059

Table VIII. A typical long negotiative dialogue (cont., turns 4-7)

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

26 · Gašić and Young

8 System act inform(name=“The Eagle”,type=placetodrink,drinktype=bar,
area=citycentre,pricerange=none)

System prompt The Eagle, which is in the central part of town, is a great bar.
I am sorry but there is no information about the price range for it.

True user action I’M LOOKING FOR A PLACE TO STAY
N-best input inform(type=placetostay,task=find) 0.99

inform(type=placetostay,name=“The Place”,task=find) 0.01
inform(type=placetostay) 0.00
inform(=trainstation,name=“The Place”,task=find) 0.00
inform(type=placetostay,name=“Cambridge Police Station”,task=find) 0.00
hello(type=placetostay) 0.00
3 attribute-value pairs are pruned

Top hypothesis prb 0.080
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.814

pricerange=moderate 0.516; staytype=hotel 0.421; area=riverside 0.321;
pricerange=dontcare 0.259; area=dontcare 0.254; area=citycentre 0.196
type=placetodrink 0.125; name=Gonville Hotel 0.093; drinktype=bar 0.065
name=dontcare 0.065; name=The Eagle 0.049; name=Cambridge Police Station 0.049
name=The Place 0.049; type=transvenue 0.039; transtype=trainstation 0.020

9 System act inform(name=none,type=placetostay,staytype=hotel,area=riverside,pricerange=moderate)
System prompt There is no hotel in the riverside area in the moderate price range.
True user action I DON’T CARE ABOUT THE AREA
N-best input inform(=dontcare) 0.57

null() 0.28
inform() 0.15
7 attribute-value pairs are pruned

Top hypothesis prb 0.069
Applied attributes task=find 0.998; entity=venue 0.995; type=placetostay 0.958

pricerange=dontcare 0.435; staytype=hotel 0.420; area=dontcare 0.386
pricerange=moderate 0.365; name=dontcare 0.205
area=riverside 0.187; area=citycentre 0.182; name=Gonville Hotel 0.117

10 System act inform(name=“City Centre North”,type=placetostay,staytype=guesthouse,
area=arbury,pricerange=none)

System prompt City Centre North is an outstanding guesthouse in the Arbury part of town,
also I am sorry but there is no information about the price range for it.

True user action DO YOU HAVE ANY MODERATE RESTAURANT UH HOTEL
N-best input inform(pricerange=moderate,=restaurant,=hotel) 0.91

inform(=restaurant,=hotel) 0.05
inform(pricerange=moderate,=restaurant) 0.04

Top hypothesis prb 0.023
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.743

pricerange=dontcare 0.399; pricerange=moderate 0.362; name=City Centre North 0.301
area=dontcare 0.277; staytype=guesthouse 0.261; type=placetoeat 0.216
staytype=hotel 0.209; name=dontcare 0.188; area=citycentre 0.182; area=riverside 0.169
area=arbury 0.169; eattype=restaurant 0.124; name=Gonville Hotel 0.101

Table IX. A typical long negotiative dialogue (cont., turns 8-10)

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

Effective Handling of Dialogue State in the HIS Dialogue Manager · 27

11 System act inform(name=“Finches Bed and Breakfast”,type=placetostay,area=girton,
pricerange=none,staytype=guesthouse)

System prompt Finches Bed and Breakfast is a great guesthouse in the Girton part of town and
I am sorry but there is no information about the price range for it.

True user action I’M LOOKING FOR A MODERATELY PRICED PLACE TO STAY
N-best input inform(pricerange=moderate,task=find) 0.79

inform(name=“The Place”,pricerange=moderate,task=find) 0.09
inform(type=placetostay,pricerange=moderate,task=find) 0.06
inform(pricerange=free,pricerange=moderate,task=find) 0.04
inform(type=placetostay,pricerange=moderate,name=“The Place”,task=find) 0.01
3 attribute-value pairs are pruned

Top hypothesis prb 0.062
Applied attributes task=find 0.999; entity=venue 0.998 type=placetostay 0.974

staytype=guesthouse 0.344; staytype=hotel 0.270; area=dontcare 0.206
area=girton 0.168; area=riverside 0.155; area=arbury 0.150; area=citycentre 0.134
name=City Centre North 0.063; pricerange=dontcare 0.074; pricerange=free 0.072
name=dontcare 0.064; name=Finches Bed and Breakfast 0.063; name=The Place 0.063

12 System act inform(name=“Express by Holiday Inn”,area=barnwell,
type=placetostay,hasinternet=true,hasparking=true,stars=“2”)

System prompt The Express Holiday Inn has an internet connection and a parking lot and it’s in
the Barnwell part of town. This place, which has 2 stars, is a great place to stay.

True user action WHAT’S THE PRICERANGE
N-best input inform(=restaurant) 0.89

null() 0.11
5 attribute-value pairs are pruned

Top hypothesis prb 0.013
Applied attributes task=find 0.999; entity=venue 0.999; type=placetostay 0.815

pricerange=moderate 0.594; hasinternet=true 0.408; hasparking=true 0.408;
stars=2 0.407; name=Express by Holiday Inn 0.327; staytype=guesthouse 0.279
staytype=hotel 0.251; name=City Centre North 0.224; type=placetoeat 0.171
area=dontcare 0.161; eattype=restaurant 0.146; area=barnwell 0.145
area=riverside 0.142; area=girton 0.141; area=arbury 0.133; area=citycentre 0.129

13 System act inform(name=“Riverside Restaurant and Granta Bar”,area=riverside,eattype=restaurant,
type=placetoeat,food=Traditional,pricerange=expensive,near=“Queens’ College”)

System prompt The Riverside Restaurant is an outstanding restaurant in the riverside part of town
in the expensive price range near Queens’ College, also it serves traditional food.

True user action I’M LOOKING
N-best input inform(task=find) 0.50

null() 0.50
8 attribute-value pairs are pruned

Top hypothesis prb 0.008
Applied attributes task=find 0.999; entity=venue 0.997; type=placetostay 0.830;

hasinternet=true 0.422; hasparking=true 0.422; stars=2 0.416; pricerange=moderate 0.414
staytype=guesthouse 0.408; pricerange=expensive 0.286; area=dontcare 0.260
area=riverside 0.252; area=barnwell 0.243; name=Express by Holiday Inn 0.170
name=Riverside Restaurant and Granta Bar 0.168; type=placetoeat 0.146
eattype=restaurant 0.095; food=Traditional 0.047

Table X. A typical long negotiative dialogue (cont., turns 11-13)

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

28 · Gašić and Young

14 System act inform(name=“The Cricketers”,area=riverside,near=“Ruskin Gallery”)
System prompt The Cricketers is in the riverside part of town near the Ruskin Gallery.
True user action I’M LOOKING FOR A FOR A HOTEL IN THE MODERATE PRICERANGE
N-best input inform(pricerange=moderate,=hotel,task=find) 0.96

inform(=hotel,pricerange=moderate) 0.04
5 attribute-value pairs are pruned

Top hypothesis prb 0.025
Applied attributes task=find 0.999; entity=venue 0.999; type=placetostay 0.993

pricerange=moderate 0.722; staytype=hotel 0.722; hasinternet=true 0.503
hasparking=true 0.503; stars=2 0.493; textbfarea=dontcare 0.264; area=riverside 0.244
area=barnwell 0.244; name=The Cricketers 0.206; staytype=guesthouse 0.135
pricerange=expensive 0.135

15 System act inform(name=“The Cambridge Belfry”,type=placetostay,staytype=hotel,
pricerange=moderate,area=girton,hasinternet=true,hasparking=true)

System prompt The Cambridge Belfry, which has an internet connection and parking spaces, is an
outstanding hotel. It’s in the moderate price range and in the Girton part of town.

True user action WHAT’S THE ADDRESS
N-best input request(addr) 1.00

3 attribute-value pairs are pruned

Top hypothesis prb 0.308
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.990

pricerange=moderate 0.854; staytype=hotel 0.854
name=The Cambridge Belfry 0.794; hasinternet=true 0.791
hasparking=true 0.791; area=dontcare 0.390; area=girton 0.365
stars=2 0.199; area=barnwell 0.081; area=riverside 0.081

16 System act inform(name=“The Cambridge Belfry”,addr=“Back Lane, Cambourne”)
System prompt The Cambridge Belfry is located on Back Lane, Cambourne.
True user action AND THE PHONE NUMBER
N-best input request(phone) 1.00

2 attribute-values are pruned

Top hypothesis prb 0.427
Applied attributes task=find 0.999; entity=venue 0.998; type=placetostay 0.993

hasinternet=true 0.912; hasparking=true 0.912
pricerange=moderate 0.912; stars=2 0.081; staytype=hotel 0.912
name=The Cambridge Belfry 0.914; area=dontcare 0.482; area=girton 0.460

17 System act inform(name=“The Cambridge Belfry”,phone=“01954714600”)
System prompt The phone number of The Cambridge Belfry is 01954714600.
True user action THANKS BYE

Hanging up

Table XI. A typical long negotiative dialogue (cont., turns 14-17)

ACM Transactions on Speech and Lang. Proc., Vol. V, No. N, Month 20YY.

