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ABSTRACT

This paper presents a purely data-driven spoken language under-
standing (SLU) system. It consists of three major components,
a speech recognizer, a semantic parser, and a dialog act decoder.
A novel feature of the system is that the understanding compo-
nents are trained directly from data without using explicit seman-
tic grammar rules or fully-annotated corpus data. Despite this, the
system is nevertheless able to capture hierarchical structure in user
utterances and handle long range dependencies. Experiments have
been conducted on the ATIS corpus and 16.1% and 12.6% utter-
ance understanding error rates were obtained for spoken input us-
ing the ATIS-3 1993 and 1994 test sets. These results show that our
system is comparable to existing SLU systems which rely on either
hand-crafted semantic grammar rules or statistical models trained
on fully-annotated training corpora but it has greatly reduced build
cost.

1. INTRODUCTION

Substantial research has been done in spoken dialogue systems.
Among the various spoken dialogue projects, the most influential
one is the U.S. DARPA program. From 1990 to 1995, DARPA
sponsored a spoken language understanding programme to develop
and objectively measure the performance of various Spoken Lan-
guage Understanding (SLU) systems. Different research sites worked
on the same domain, the Air Travel Information Service (ATIS)
[1], data for which were collected jointly by them. The utterance
understanding error rates for spoken language input in the De-
cember 1994 benchmarks range from 6.5% to 44.9% for context-
independent utterances (category A).

Work in the early 90’s focused on the semantic parser module.
The techniques used were either based on context-free semantic
rules to extract keywords or phrases to fill slots in semantic frames
(template matching), such as MIT’s TINA [2], CMU’s PHOENIX
[3], and SRI’s Gemini [4], or based on stochastic models, such as
AT&T’s Markov model-based CHRONUS [5] and BBN’s hierar-
chical Hidden Understanding Model (HUM) [6]. Both approaches
have drawbacks. The former is highly domain-specific and re-
quires heavy manual processing, whilst the latter needs a fully-
annotated corpus in order to reliably estimate model parameters.

More recently, the DARPA Communicator project [7] aims to
support rapid, cost-effective development of multi-modal speech-
enabled dialog systems. Members of the Communicator sites in-
clude AT&T, BBN, CMU, University of Colorado (CU), IBM,
MIT, MITRE, and SRI. In most of the systems developed by these
sites, semantic parsing is still based on the early versions of parse
modules, such as the Phoenix parser used by CMU and CU, the

TINA Parser used by MIT, and the Gemini parser used by the
BBN’s Talk’n’Travel system [8]. Only IBM uses a slightly dif-
ferent approach in that it uses a decision-tree based statistical se-
mantic classer and parser for its natural language understanding
module [9].

The above systems rely on either semantic grammar rules or
statistical models trained on fully-annotated training corpora. Here,
we propose a SLU system whose three major components, the
speech recognizer, the semantic parser, and the dialog act decoder
are all trained directly from data. In particular, it has a hierar-
chical semantic parser which is able to capture embedded seman-
tic structure in user utterances and which is trained using con-
strained Expectation-Maximization (EM) directly on unannotated
data. The evaluation results on the ATIS corpus using spoken input
show that our system is comparable to the original DARPA ATIS
SLU systems but with greatly reduced build cost.

The rest of the paper is organized as follows. Section 2 briefly
describes the general framework of a statistical SLU system and
Section 3 summarizes the training and evaluation procedures used.
Section 4 discusses in detail each of the three major components,
the speech recognizer, the semantic parser, and the dialog act de-
coder. The experimental setup and evaluation results are then pre-
sented in section 5. Finally, section 6 concludes the paper.

2. SPOKEN LANGUAGE UNDERSTANDING

Spoken language understanding (SLU) can be broadly viewed as
a pattern recognition problem. It aims to interpret the meanings of
users’ utterances and respond reasonably to what users have said.
A typical architecture of an SLU system is given in Fig. 1, which
consists of a speech recognizer, a semantic parser, and a dialog act
decoder. The user’s input acoustic signal � is first translated into
a word string � by the speech recognizer. Such word strings are
then mapped into a set of semantic concepts � by the semantic
parser. The dialog act decoder infers the user’s intention or goals���

based on the semantic concepts extracted and the current di-
alogue context. Finally, the deduced information may be passed
to the dialogue manager to decide appropriate actions to take in
response to the user’s query.
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Fig. 1. Typical structure of a spoken language understanding sys-
tem.



Traditionally, the SLU problem is solved in three stages. First
recognize the underlying word string � from each input acoustic
signal � , i.e.

�� � argmax� ��� ��� �	� � argmax� ��� �
� ��� ��� ��� (1)

then map the recognized word string
�� into a set of semantic con-

cepts � �� � argmax ��� ��� ���� (2)

and finally determine the user’s dialog acts or goals by solving
���� � argmax��� ��� ��� � ���� (3)

In the system described in this paper, each of these stages
is modelled separately. we use a standard HTK-based [10] Hid-
den Markov Model (HMM) recognizer for recognition, the Hidden
Vector State (HVS) model for semantic parsing [11], and Tree-
Augmented Naive Bayes networks (TAN) [12] for dialog act de-
coding. Section 4 below describes each of these in more detail.

It should, however, be noted that sequential decoding is sub-
optimal in the sense that the solution of each stage depends on the
exact solution of the previous stage. In order to reduce the effect
of this approximation, it is possible to retain a word lattice or � -
best word hypotheses instead of the single best string

�� as the
output of the speech recognizer. The semantic parse results may
then be incorporated with the output from the speech recognizer to
rescore the � -best list since it provides additional knowledge to
the recognizer. This is considered further in Section 5. Similarly,
it is possible to retain the � -best parse results from the semantic
parser and leave the selection of the best hypothesis until the dia-
log act decoding stage. However, in practice, no gain was found
for this and hence we do not pursue it further here.

3. SYSTEM TRAINING AND EVALUATION

Fig. 2 shows the organization of our SLS system for both training
and evaluation. The ATIS training data contain the acoustic speech
signal, word transcription and reference SQL query for each utter-
ance. Each of the three major components, the speech recognizer,
the semantic parser, and the dialog act decoder are trained sepa-
rately. The acoustic speech signal is modelled by extracting 39
features every 10ms: 12 cepstra, energy, and their first and second
derivatives. This data is then used to train the speaker-independent,
continuous speech recognizer. The semantic parser is trained us-
ing the word transcriptions from the ATIS corpus combined with
their abstract semantics extracted automatically from the reference
SQL queries provided in the corpus. The parser is trained on this
data using constrained EM as described further in Section 4.2. It
is straightforward to identify the main topic or goal and the key
semantic concepts of each utterance from the corresponding refer-
ence SQL query and this information is used to train the dialog act
decoder.

During testing, the � -best lists from the speech recognizer
are passed to the semantic parser to generate semantic concept se-
quences. Parse scores from the semantic parser are combined with
the total acoustic and language model likelihoods from the speech
recognizer and used to rescore the � -best list. Meaningful se-
mantic concept/value pairs are then extracted from the resulting
best hypothesis and the user’s goals are inferred by the dialog act

decoder from the semantic concept sequences generated. These
extracted concept/value pairs and inferred goals are then fed into
the SQL query generator to form an SQL query in order to fetch
answers from the ATIS database.

Performance is measured at both the component and the sys-
tem level. For the former, the recognizer is evaluated by word error
rate, the parser by concept slot retrieval rate using an F-measure
metric [13], and the dialog act decoder by detection rate. The
overall system performance is measured using the standard NIST
“query answer” rate.

4. SYSTEM COMPONENTS

This section discusses the three main components of our SLU sys-
tem, the speech recognizer, the semantic parser, and the dialog act
decoder.

4.1. Speech Recognizer

The speech recognizer was built using the HTK toolkit [10]. It
comprises 14 mixture Gaussian HMM state-clustered cross-word
triphones augmented by using heteroscedastic linear discriminant
analysis (HLDA) [14]. Incremental speaker adaptation based on
the maximum likelihood linear regression (MLLR) method [15]
was performed during the test with updating being performed in
batches of five utterances per speaker.

4.2. Semantic Parser

The semantic parser component was built using the Hidden Vector
State (HVS) model [11]. The HVS model can be best explained
using the example parse tree shown in Fig. 3 where the semantic
information relating to each word is completely described by the
sequence of semantic concept labels extending from the pretermi-
nal node to the root node. If these semantic concept labels are
stored as a single vector, then the parse tree can be transformed
into a sequence of vector states as shown in the lower portion of
Fig. 3. For example, the word Denver is described by the seman-
tic vector [CITY, FROMLOC, SS]. Viewing each vector state as a
hidden variable, the whole parse tree can be converted into a first
order vector state Markov model. This is the HVS model.

Each vector state is in fact equivalent to a snapshot of the stack
in a push-down automaton and state transitions may be factored
into a stack shift by � positions followed by a push of one or
more new preterminal semantic concepts relating to the next in-
put word. Such stack operations are constrained in order to reduce
the state space to a manageable size. Natural constraints to intro-
duce are limiting the maximum stack depth and only allowing one
new preterminal semantic concept to be pushed onto the stack for
each new input word. Such constraints effectively limit the class
of supported languages to be right branching. The joint probabil-
ity

��� ������� ��� of a series of stack shift operations � , concept
vector sequence � , and word sequence � can be decomposed as
follows

��� ������� ��� �
��
���! 

��� � � � � �#"$  ��� �%"$  ��&
����' ��(*)�+ � � �%"$  ��� �%"$  �,� � �-& ����. � � � �%"/  ��� �  � (4)

where:
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Fig. 2. Procedures on ATIS training and evaluation.

� � �  denotes a sequence of vector states �  ���� � � . � � at word
position

�
is a vector of � � semantic concept labels (tags),

i.e. � � � ( ' � ( ) + � ' ��( � + � ��� � ' ��( � �%+*+ where
' ��( ) + is the preter-

minal concept and
' � ( � � + is the root concept (SS in Fig. 3);� � �%"$  � �%"/  denotes the previous word-parse up to position�
	 ) ;� � � is the vector stack shift operation and takes values in the

range of � � ��� ��� �%"$ where � �#"$ is the stack size at word
position

�	 ) ;� ' � ( )�+ � '����
is the new preterminal semantic tag assigned

to word
. � at word position

�
.

In the HVS model used by our SLU system, Equation 4 is
approximated by

��� � � � � �%"/  ��� �%"/  ��� ��� � � � � �%"/ � (5)����' � ( ) + � � �%"$  ��� �%"$  � � � ��� ����' � (*)�+ � ' � ( � ��� � � + � (6)����. � � � �%"$  ��� �  ��� ����. � � � � � (7)

For training, we assume the availability of a set of domain-
specific lexical classes and abstract semantic annotations for each
utterance. In the case of ATIS, these can be extracted automati-
cally from the relational database and SQL queries of the training
utterances. The HVS model is then trained on the unannotated ut-
terances using EM constrained by the lexical class information and
the dominance relations built into the abstract annotations [11].

4.3. Dialog Act Decoder

The dialog act decoder was implemented using the Tree-Augmented
Naive Bayes (TAN) algorithm [12], which is an extension of Naive
Bayes Networks. The basic classifier learns from training data the
conditional probability of each semantic concept ��� given the goal���

,
��� � � � ��� � . Classification is done by picking the goal with the

highest posterior probability of
� �

given the particular instance of
concepts �  & & & ��� ,

��� � � � �  & & & ��� � . The strong independence

assumption made is that all the concepts � � are conditionally inde-
pendent given the value of the goal

���
. TAN networks relax this

independence assumption by adding dependencies between con-
cepts. They are however still a restricted family of Bayesian net-
works in which the goal variable has no parents and each concept
has as parent the goal variable and at most one other concept. An
example of such a network is given in Fig. 4 where each concept
may have one augmenting edge pointing to it. The procedure for
learning these edges is based on the well-known Chow-Liu algo-
rithm [16] except that instead of using the mutual information (MI)
between two concepts, conditional mutual information (CMI) be-
tween concepts given the goal variable is used

������� ��! �"!# � �%$ � &��!' ("!' � � ��� ��) � ��* � ��� ��&
+�,�- ��� ��) � ��* � ��� ���� ��) � ��� � ��� ��* � ��� � (8)
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Fig. 4. Example of a Tree-Augmented Naive Bayes Network.

In our dialog act decoder here, one TAN was used for each
goal, the semantic concepts which serve as input to its correspond-
ing TAN were selected based on the MI between the goal and the
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concept. Dependencies between concepts were then added based
on the CMI between concepts given the goal.

5. EXPERIMENTS

Experiments have been conducted using the ATIS corpus and the
ATIS-3 NOV93 and DEC94 data were selected as test sets. Utter-
ances in the ATIS corpus are divided into three categories, context-
independent (A), context-dependent (D), or unanswerable (X). The
experimental results reported in this paper focus on category A ut-
terances only unless otherwise specified.

5.1. Experimental Setup

Altogether 22316 spontaneous utterances recorded using Senn-
heiser microphone from ATIS-2 and ATIS-3 are used for acoustic
model training. This includes the ATIS-2 FEB92 and NOV92 test
sets in addition to the ATIS-2 and ATIS-3 training sets. The lan-
guage model was trained on 23096 ATIS spontaneous utterances
with vocabulary size 1644. It consists of a word trigram and a
word trigram interpolated with a class-based trigram. The latter
has 60 classes derived automatically using the Kneser-Ney clus-
tering procedure [17]. The perplexity tested on the joint ATIS-3
NOV93 and DEC94 test sets is 16.5 and 15.5 for the word trigram
alone and the interpolated model respectively.

The � -best word hypotheses generated from the speech rec-
ognizer were fed into the semantic parser to output semantic con-
cept sequences. Given an acoustic speech signal � , translated into
a word sequence � , and parsed into a semantic concept sequence� , the parse scores are combined with the total acoustic and lan-
guage model likelihoods according to equation 9.

��
� �� � argmax ' � ����� ��� �
� ��� ��� ��� ��� ��� ���
� argmax ' � ����� ��� �
� ��� ��� ��� � ��� ��� ��� � (9)

where
��� �
� ��� is the acoustic probability from the first pass,��� ��� is the language modelling likelihood,

��� ��� ��� is the se-
mantic parse score,

�	�
denotes the � -best list, 
 is a semantic

parse scale factor, and � is a grammar scale factor which was set
to 15.0 for the NOV93 test set and 17.0 for the DEC94 test set as
determined experimentally.

For the dialog act decoder, 16 dialog acts or goals were defined
in the ATIS domain with each goal corresponding to one TAN. The
top 15 semantic concepts ranked by MI were used as input to each
TAN.

The SQL query generator module was tested on the reference
parse results of ATIS-3 NOV93 and DEC94 test sets. 5 out of 448
utterances from NOV93 test set and 3 out of 445 utterances from
DEC94 test set did not return the correct answers, which gives
the utterance understanding error rate 1.1% and 0.7% respectively.
The analysis of the results shows that one context-dependent utter-
ance has been misclassified as category A (context-independent)
in each of these two test sets and the rest are too complicated for
the SQL query generator to handle properly.

5.2. Experimental Results

Experiments were first conducted to evaluate individual compo-
nents of the SLU system. Table 1 gives the results in word error
rate (WER) for the speech recognizer by imposing different refine-
ment techniques on the full test sets (A+D+X). The baseline was
built using a word bigram language model (LM), then the HMM
models were refined based on the HLDA technique. Subsequently,
incremental adaptation test was performed and bigram word lat-
tices were generated, which were then expanded to word trigram
lattices by applying the word trigram LM. Finally, the class-based
trigram LM was used to transform word bigram lattices to class-
based trigram lattices.

Criteria NOV93 DEC94
word bigram 7.3 6.0

+HLDA 6.8 5.4
+adaptation test 5.7 4.1
+word trigram 4.8 3.6

+class-based trigram 4.8 3.4

Table 1. Test results for the speech recognizer (%WER).

The semantic parser was tested using both text input (refer-
ence transcriptions) and spoken input (recognizer output). The
F-measure scores together with recall and precision values are re-
ported in Table 2.

For the dialog act decoder, the goal detection accuracy based



NOV93 DEC94
Measurement Text Spoken Text Spoken

Recall 89.2% 87.6% 91.3% 89.7%
Precision 91.4% 90.4% 92.6% 91.4%

F-measure 90.3% 89.0% 91.9% 90.5%

Table 2. Test results for the semantic parser.

on the parse results of both text input and spoken input is shown in
Table 3.

Parser Input NOV93 DEC94
Text input 91.7% 91.2%

Spoken input 91.5% 90.8%

Table 3. Test results for the dialog act decoder.

During the integrated system test, experiments were first con-
ducted to determine the best possible performance in WER obtain-
able from the � -best lists output by the speech recognizer. This
was done by picking the hypothesis with the lowest WER from
each list for � ranging from 1 to 1000. As the system gave the
same performance when � is beyond 25, only the results with val-
ues of � ranging from 1 to 25 are reported in Fig. 5. It can be
observed that � � ) � gives the optimal WER and subsequent ex-
periments were therefore conducted on 10-best lists only. Increas-
ing the value of � degrades the system performance slightly. This
is due to noise introduced by the lower ranks of � -best lists. The
oracle WER of different � -best lists are also given to indicate the
range of improvements possible by incorporating more knowledge
sources.
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Fig. 5. Values of � (as in � -best list) vs WER.

Fig. 6 shows the WER obtained for rescored 10-best word
hypotheses when the semantic parse scale factor 
 as defined in
Equation 9 is varied. The optimal value for 
 is 10 as the lowest
WER is obtained at this point for both NOV93 and DEC94 test
sets. Increasing 
 value degrades the system performance since
the semantic parse scores tend to dominate the rescored results.

0 5 10 15 20
3.5

4

4.5

HVS Parse Scale Factor (NOV93)

W
E

R

Original WER
Rescored WER

0 5 10 15 20
2.5

3

3.5

HVS Parse Scale Factor (DEC94)

W
E

R

Original WER
Rescored WER

Fig. 6. Scale of semantic parse score vs WER.

The end-to-end evaluation results on both natural language un-
derstanding (NL) and spoken language understanding (SLS) eval-
uations are shown in Table 4. F-measure evaluates the extraction of
concept/value pairs in terms of recall and precision, while answer
error rate measures the minimum / maximum answers from the
ATIS database using the NIST scoring package. The latter is the
standard scoring metric used by DARPA ATIS SLU systems. For
the NL test, the semantic parser used as input the reference tran-
scriptions instead of the recognized output. The SLS(1) results
were obtained by taking the best word hypothesis directly from
the speech recognizer, while the SLS(10) results were obtained by
taking the best word hypothesis from the rescored 10-best list after
incorporating semantic parse scores.

NOV93 DEC94
Answer Answer

F-measure Error F-measure Error
NL 90.3% 12.3% 91.9% 8.5%

SLS(1) 89.0% 18.3% 90.5% 13.9%
SLS(10) 89.3% 16.1% 90.6% 12.6%

Table 4. NOV93 and DEC94 NL and SLS test results.

6. CONCLUSION

This paper has discussed a purely data-driven spoken language un-
derstanding system. Its three major components, the speech recog-
nizer, the semantic parser, and the dialog act decoder, are trained
directly from corpus data. In particular, its two understanding
components, the semantic parser and the dialog act decoder, are
trained without the use of explicit semantic grammar rules or fully-
annotated treebank style data.

The evaluation results on the ATIS corpus show that our SLU
system is comparable to the original DARPA ATIS SLU systems
which relied on either hand-crafted semantic grammar rules or
fully-annotated training corpora to extract semantic information,
but it can be built at much lower cost. We have also confirmed,



as others have done [18, 19, 20, 21], that semantic knowledge ex-
tracted by a parser can be applied to rescore � -best word hypothe-
ses from the speech recognizer to improve both WER and overall
end-to-end performance.
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