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ABSTRACT

Current commercial dialogue systems typically use hand-crafted
grammars for Spoken Language Understanding (SLU) operating
on the top one or two hypotheses output by the speech recogniser.
These systems are expensive to develop and they suffer from signifi-
cant degradation in performance when faced with recognition errors.
This paper presents a robust method for SLU based on features ex-
tracted from the full posterior distribution of recognition hypotheses
encoded in the form of word confusion networks. Following [1], the
system uses SVM classifiers operating on n-gram features, trained
on unaligned input/output pairs. Performance is evaluated on both
an off-line corpus and on-line in a live user trial. It is shown that
a statistical discriminative approach to SLU operating on the full
posterior ASR output distribution can substantially improve per-
formance both in terms of accuracy and overall dialogue reward.
Furthermore, additional gains can be obtained by incorporating
features from the previous system output.

Index Terms— Semantic decoding, Spoken language under-
standing, Dialogue systems

1. INTRODUCTION

Spoken Dialogue Systems are often deployed in noisy settings,
where background noise, varying line quality and diverse user pop-
ulations can result in high speech recognition error rates. As a
consequence, the semantic representations extracted using hand-
crafted semantic decoders such as Phoenix [2] often contain errors.
Some mitigation of these errors can be gained by using statistical
semantic decoders which have been trained to recognise the cor-
rect representation from noisy ASR transcriptions. Examples of
such decoders include generative approaches which model the se-
mantics of an utterance as a hidden structure on which observed
words are conditioned [3, 4, 5, 6], and discriminative models which
train classifiers to directly label utterances using for example condi-
tional random fields [7] and support vector machines (SVMs) [8, 9].
Unlike generative models, discriminative models do not make in-
dependence assumptions over the feature set and hence they are
generally considered to give better performance [7].

A disadvantage of many discriminative methods however is that
they require training utterances to be semantically annotated at the
word-level. Manually aligning words with semantic tags is time con-
suming, and methods which allow training from unaligned data are
therefore preferred.

There are a number of possible approaches to training on un-
aligned data (e.g. [6, 10, 11]). However, a particularly simple but
effective approach developed by Mairesse et al. is to view a word
string as a collection of n-gram features from which SVM classifiers
can be trained to detect tuples from which the required semantics

can be reconstructed. In particular, if the semantics denote dialogue
acts represented in functor form by a dialogue act type and a list of
attribute-value pairs (e.g. inform(food=indian,area=centre))
[12], then a multi-class SVM can be used to detect the dialogue act
type, and a set of binary SVMs can be used to detect the presence of
attribute-value pairs. This Semantic Tuple Classifier (STC) approach
was shown to significantly outperform a hand-crafted Phoenix parser
and was comparable to the best reported results on a benchmark
ATIS test set [13]. An extension of this technique forms the basis
of this paper.

The impact of speech recognition errors can be further mitigated
by using a statistical dialogue manager to track beliefs [14, 15]. The
basic idea is that user inputs are treated as evidence from which the
user’s intentions and beliefs can be inferred. If multiple hypotheses
are available, then the dialogue manager can exploit contextual con-
straints to shape its beliefs and mitigate against errors. For this to
work with maximum effect, however, the input evidence at each turn
must be a full distribution over all possible semantic interpretations
of what the user has just said.

As illustrated in Fig. 1(a), conventional semantic decoders can
be extended to provide an approximation of the required distribution
by configuring the speech recogniser to generate an N -best list and
then applying the decoder to each element of the list in turn. Since
similar word strings will frequently map to the same dialogue act,
the resulting list must be pruned to remove duplicates. Confidence
scores from the recogniser can then be used to weight the resulting
M -best list (M < N ) to form the required distribution. A critical
limitation of this approach, however, is that unless very long N -best
lists are used, the final pruned lists are often very short1 and the re-
sulting approximation is quite poor. Secondly each element of the
M -best list is being computed from a single element of the N -best
word list even though elements of the list are highly correlated. A
final limitation is that it is quite difficult in this framework to effi-
ciently apply context constraints such as the previous question to the
user.

This paper describes and evaluates an extension to the STC ap-
proach in which the decoder is applied directly in a single pass to
features extracted from a word confusion network as illustrated in
Fig. 1(b). As will be shown by off-line evaluation on a dialogue
corpus and by on-line evaluation in a real user trial, this Confu-
sion network (CNet) decoder approach outperforms a hand-crafted
Phoenix-based decoder and an STC decoder operating in N -best
mode. Furthermore it does this in the off-line evaluation for both
a 1-best F-measure metric and a full distribution cross-entropy met-
ric, demonstrating that the approach improves both the quality of
individual semantic interpretations and the full distribution over all

1frequently less than 4 for limited domain tasks such as tourist informa-
tion.



interpretations. Finally, it is shown that the addition of context is
both trivial to implement in the CNet framework and effective in
further improving performance.

Fig. 1. Semantic decoder configurations: (a) each word string in
the N -best list is decoded and any duplicates are merged to give an
M -best list of semantic hypotheses; (b) the semantic decoder is ap-
plied once to features extracted from a word confusion network and
the M -best most likely hypotheses are output. This latter form also
facilitates the addition of context by simply extending the feature set.
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The remainder of this paper is organised as follows. In section 2,
the Phoenix, STC and CNet decoders are described. Section 3 then
describes the off-line corpus and the evaluation metrics, and presents
the results. Section 4 briefly describes the statistical dialogue system
and presents the results of the user trial. In both cases, the application
domain is a tourist information service which can locate restaurants
according to a variety of criteria such as food type, location, price-
range, etc. Finally, section 5 concludes.

2. THE SEMANTIC DECODERS

2.1. Phoenix

Phoenix is a robust semantic decoder which uses manually con-
structed semantic grammars designed to detect keywords and
phrases, and convert them into semantic tags[2]. The Phoenix
parser is designed to be robust to word errors and searches to find
the best possible parse of the input according to a metric which
seeks to find the longest spanning phrases. The grammar used in
this evaluation has been specially written for the tourist domain over
a period of several years, and has been refined to work effectively
on the ASR hypotheses generated by our recognition system2.

The Phoenix decoder is configured as in Fig. 1(a) to run on the
top 10 ASR hypotheses, producing a single dialogue act for each.
These are then weighted by the corresponding posterior probabil-
ity assigned by the recogniser to each hypothesis in the N -best list,
and duplicates are merged to give the final distribution over dialogue
acts.

2.2. Semantic Tuple Classifier

As explained in the introduction, the STC decoder detects dialogue
act types and slot attribute-value pairs based on the N -gram counts
in the input word sequence [1]. The STC decoder requires a set
of SVMs to be trained: one multi-class classifier is used to predict

2A HTK-based system with a vocabulary of around 3000 words and a
trigram language model [16]

the dialogue act type, and a binary classifier is used to predict the
existence of each possible slot-value pair. The SVM classifiers use
a linear kernel, and outputs are converted to probabilities using a
sigmoid function [17].

Running the classifiers on an utterance, u, gives the probability
of each dialogue act type, P (d-typei | u) as well as the probabil-
ity of each possible slot-value pair, P (sv|u). The probability of a
dialogue-act D of type d-typej with a set of slot-value pairs, S is
approximated by:

P (D | u) =

P (d-typej |u)
∏
sv∈S

P (sv|u)
∏
sv/∈S

(1− P (sv|u)) (1)

A simple set of rules is imposed on S for each dialogue act type,
to ensure that the resulting dialogue act makes sense:

• S must be empty for dialogue act types: ack, bye, null, re-
peat, restart, thankyou

• S must contain at least one unbounded slot if and only if the
dialogue act type is request

• S must contain one bounded slot for types: confirm, inform,
reqalts

where a bounded slot is one which occurs in a pair with a specified
value, as in ‘food=chinese’ and an unbounded slot does not, e.g.
‘phone’ which signifies it is being requested. Subject to these rules,
a search is performed to find the topM most probable dialogue acts.

The vector representation of an utterance, u, as presented in [1]
is xi = Cu(n-grami) where Cu(ng) counts how many times the
n-gram ng occurs in utterance u. n is allowed to range from 1 to 3,
i.e. words and sequences of two and three words are counted. Only
a small number of n-grams present in the training data occur in any
single utterance, meaning this is a sparse representation. This allows
for fast training and classification with SVMs.

Mairesse et al. evaluated the performance of the STC model
trained on only the top ASR hypothesis and such a system was shown
to outperform the Phoenix baseline [1]. As a better comparison for
the CNet decoder described in the next section, it is possible to ex-
tend the training of the STC decoder to use the hypotheses in the
ASR N -best lists. Two methods of doing this have been explored.

n-gram Features
The obvious way to exploit the N -best lists for training is to create
a data point for each of the top k hypotheses with the same semantic
reference label (dialogue act type or slot-value pair). To take account
of the confidence scores attached to the hypotheses, each data point
in the SVM training algorithm is assigned a misclassification cost
which is proportional to the posterior probability of the hypothesis.
A major limitation of this approach, however, is that the size of the
training set is multiplied by k and since the training time of an SVM
depends on the training set size R roughly as O

(
R3
)
, k must be

kept very small.

Weighted Sum Features
To avoid increasing the training set size, the n-gram features from
each of the top N ASR hypotheses can be weighted by their poste-
rior probability and then summed. This attempts to summarise the
information in the N best list, and does not have the problem of in-
creasing the training set size. This representation can be written as:

xi =

N∑
j=1

Chypj (n-grami) · pj



where xi is the i’th element of the training vector and pj the posterior
probability of hypj , the j’th ASR hypothesis in the N -best list.

2.3. Confusion Network Decoder
A word confusion network is an efficient structure for representing
the lattice of all hypotheses generated by a speech recogniser [18].
Confusion network features are shown in [19] to be useful in de-
veloping more robust systems for named entity extraction and call
classification. They allow for efficient calculation of the quantities
E (Cu(n-grami)), the expected frequency of n-grami in the utter-
ance (if the n-gram only appears in one path in the graph, then this
is just its probability of occurrence.)

The CNet decoder is trained and configured in a similar way to
the STC decoder above, the only difference being that the recogniser
is configured to output confusion networks rather than N -best lists
and the SVMs are trained from a single feature vector with elements:

xi = E (Cu(n-grami))
1/|n-grami|

where |n-grami| is the number of words in n-grami. The expo-
nentiation is a normalisation included to compensate for the fact
that longer word sequences are always less likely than their subse-
quences.

At run-time, the confusion network decoder is applied just once
to each ASR output and the top M hypotheses are generated in rank
order according to equation (1).

2.4. Dialogue Context Features
To investigate the effectiveness using the dialogue context to con-
strain the semantic decoder, a set of context features yi are extracted
from the last system act as yi = ι(xi ∈ Dm), where ι is an indicator
function and xi runs over all dialogue act types and slot-value pairs
to find occurrences in the last system dialogue act Dm

3. The final
representation of a user utterance when using this context is then a
concatenation of the original word confusion network features and
the context features. This allows the models to learn a dependence
on the last act which the machine generated.

Incorporating this level of context does not lead to an overly re-
strictive decoder. This was confirmed by comparing the performance
of the learnt models when faced with instances where the system re-
quested information from the user, but the user did not provide it.
Two decoders using confusion network features were evaluated on
the subset of such instances, one of which used context features and
the other did not. The difference in performance was negligible sug-
gesting that the models learned to not rely too heavily on context
from the examples in the training corpus.

3. OFF-LINE CORPUS EVALUATION

3.1. Cambridge Restaurant Information Domain

The dialogue corpus data used for off-line evaluation of the decoders
described above was collected using a restaurant information system
for the City of Cambridge. Users can specify restaurant suggestions
by area, price-range and food type and and can then query the system
for additional restaurant specific information such as phone number,
post code, signature dish and address. To achieve a range of differing
noise conditions, participants were asked to interact with different
systems operating in a variety of conditions related to in-car dia-
logues; in a stationary car with the air conditioning fan on and off, in

3User and system dialogue acts have exactly the same form in the CUED
system

a moving car and in a car simulator [20, 21]. For the creation of this
corpus, all of the utterances from the dialogues were re-transcribed
using the same speech recogniser, which achieved an average word
error rate (WER) of 37.0%.

Each section of the corpus has an equal distribution of the differ-
ent in-car conditions. Some basic statistics of the corpora are given
in Table 1, and the data is available for download online4.

Training Testing
Dialogues 1522 644
Utterances 10571 4882
Male : Female 28 : 31 15 : 15
Native : Non-Native 33 : 26 21 : 9

Table 1. Training and Testing Corpora

3.2. Dialogue Acts

The outputs of the semantic decoders are dialogue acts, conforming
to the Cambridge Dialogue Act Specification [12]. A dialogue act is
specified by a dialogue act type which describes the type of action
the user is trying to perform, and a set of slot-value pairs which spec-
ify what constraints are being imposed. If a slot is being requested,
then its value is simply omitted. For clarification, see Table 2 which
has a list of examples of dialogue acts in this domain.

Transcription Dialogue Act

I want an Indian restaurant in
the west of town.

inform
{food=indian, area=west,
type=restaurant}

Good bye. bye
{}

Do you know the phone num-
ber of one in the east?

request
{phone, area=east}

Is that in the east? confirm
{area=east}

Any part of town. inform
{area=dontcare}

Is there anything else? reqalts
{}

No I want a cheap Chinese
place.

negate
{ pricerange=cheap, food=chinese }

I don’t want British. deny
{ food=british }

Table 2. Example dialogue acts, consisting of a dialogue act type
and a set of slot-value pairs. Requested slots do not have values, for
example ‘phone’ in the third example.

3.3. Evaluation Metrics

For conventional, non-statistical dialogue systems, an important
metric to assess the quality of the output of a semantic decoder is
the F-score, the harmonic mean of the precision and recall of true
semantic items in the top semantic hypothesis.

Let the true reference dialogue act for an utterance beDref, given
by the dialogue act type d-typeref and the set of slot-value pairs Sref.
Suppose that a semantic decoder output the hypotheses Dhypi with

4http://mi.eng.cam.ac.uk/∼mh521/incarslu



corresponding probabilities pi for i = 0, . . . , m−1 and p0 ≥ p1 ≥
p2 ≥ . . . ≥ pm−1, where Dhypi is given by the dialogue act type
d-typehypi

and the set of slot-value pairs Shypi , then the F-score of
this decoding output is:

F = 2|A∩B|
|A|+|B|

where A = (Sref ∪ {d-typeref})
and B = (Shyp0 ∪ {d-typehyp0

})

As noted in the introduction, in a statistical dialogue system,
the distribution over all possible dialogue acts is used to update the
dialogue belief state. It is therefore important that the distribution
output by the semantic decoder accurately reflects the underlying
uncertainty. The Item Cross Entropy (ICE) between the hypotheses
and the true semantics measures the overall quality of a distribution
and is shown to provide consistent rankings between semantic de-
coders [22].

The ICE score is calculated from the confidences, c(·), of each
dialogue act type and slot-value pair:

c(d-type) =

M−1∑
i=0

{
pi if d-type = d-typehypi
0 otherwise

c(sv) =

M−1∑
i=0

{
pi if sv ∈ Shypi

0 otherwise

These are compared with the true distribution of the semantics, c?(·),

c?(d-type) =

{
1 if d-type = d-typeref

0 otherwise

c?(sv) =

{
1 if sv ∈ Sref

0 otherwise

Giving the cross entropy, or ICE:

ICE =
1

1 + |Sref|
∑
x∈X

log (c(x)c?(x) + (1− c(x))(1− c?(x)))

where X is a set containing all the possible dialogue act types and
slot value pairs, and the arguments to the log function are thresh-
olded to prevent attempting to calculate log(0).

The final metric reported is the dialogue act type accuracy (DA
type Acc.), which measures whether the top semantic hypothesis has
the correct dialogue act type. In the notation above:

DA type Acc. =

{
1 if d-typehyp0

= d-typeref

0 otherwise

In the evaluation, the training corpus is used to train a semantic
decoder, then the whole test corpus is decoded. The F-score, ICE and
dialogue act type accuracy for each test utterance are then calculated
and averaged.

3.4. Experimental Results

Table 3 shows the performance of various semantic decoders in
terms of the F-score, Item Cross Correlation (ICE) and dialogue act
type accuracy achieved in the test corpus.

The n-gram features are evaluated with k (the number of ASR
hypotheses used for training) set at 1 and 2. Training complexity
becomes an issue for higher values, and the increase in performance
is negligible. The pay-off for increasing k was found to be higher
for smaller training corpora. The systems trained on these features

Features Trained
on

Context
Features

F
Score ICE

DA
type
Acc.

Phoenix (Hand-
crafted
grammar)

no
0.694
±

0.012

2.784
±

0.116

0.706
±

0.013
1

n-grams
from N -best
list
hypotheses

top hy-
pothesis no

0.692
±

0.012

1.790
±

0.065

0.706
±

0.013
2

top 2 hy-
potheses

0.703
±

0.012

1.719
±

0.068

0.724
±

0.013
3

top hy-
pothesis yes

0.725
±

0.011

1.529
±

0.062

0.754
±

0.012
4

top 2 hy-
potheses

0.740
±

0.011

1.499
±

0.064

0.773
±

0.012
5

Weighted
sum of
vectors from
N -best list

N = 10
no 0.708

±
0.012

1.760
±

0.074

0.729
±

0.012
6

yes 0.742
±

0.011

1.497
±

0.066

0.773
±

0.012
7

Confusion
network
features

Full
confusion
network

no 0.730
±

0.011

1.680
±

0.062

0.757
±

0.012
8

yes 0.767
±

0.011

1.431
±

0.063

0.800
±

0.011
9

Table 3. Results are written µ±1.96σ where µ is the estimate of the
mean over the utterances in the test corpus and σ the standard error.
Row 2 corresponds to the basic STC decoder described in [1].

(rows 2 and 3) achieve F-scores comparable to Phoenix, and signifi-
cantly smaller (i.e. better) ICE scores. The decrease in ICE score and
improved dialogue act type accuracy (DA type Acc.) resulting from
increasing k from 1 to 2 is probably significant. Incorporating the
last system act context features (rows 4 and 5) increases the F-scores
to be higher than the Phoenix result.

The results of the decoders trained on weighted sum features
(rows 6 and 7) are similar to the k = 2 system (rows 3 and 5), sug-
gesting this is a reasonable method of summarising the information
in the N -best list. Recall this representation avoids the problem of
multiplying the size of the training set.

The decoders using confusion network features (rows 8, 9) per-
form well compared to the others. The results suggest that the F-
score of the context independent decoder (row 8) is better than that
of any other context-dependent decoder. The context dependent de-
coder (row 9) scored better than any other system in F-score, ICE
and DA type Acc. The confusion network features can be thought
of as similar to weighted sum features in the limit of increasing k,
the number of top ASR hypotheses used. Intuitively, there is more
information in these features, as they may pick out n-grams which
do not appear in the top N hypotheses and furthermore assign them
weights which more accurately reflect our estimate of the expected
n-gram counts.

Figure 2 shows an example where the keyword ‘west’ is not in
the top 10 ASR hypotheses, causing the hand-crafted grammar to



fail. The word ‘west’ is found (although with a low weight) in the
confusion network, and the statistical models have learnt typical con-
fusions of the speech recogniser, allowing it to give some weight to
the correct hypothesis ‘inform(area=west)’. Because the last system
act in the dialogue was asking the user to select between the west
area and any area, the model with context puts an even higher weight
on the correct hypothesis.

To show that the best system, confusion network features with
context, is more robust to noise than the Phoenix baseline, polyno-
mial regressions were run for the two systems predicting ICE and
F-score from the utterance Word Error Rate. For the F-score, a de-
gree 2 polynomial was found to model the data best, and for ICE a
linear regression was found to be best using F-tests. Figure 3 shows
the results of these regressions.

The regressions suggest that the statistical decoder has learnt
a decoder which degrades much more gracefully when faced with
speech recognition errors than the hand-crafted grammar.

4. USER TRIAL

A user trial was run to investigate the effect of using the best statisti-
cal decoder found in the previous section, the confusion network and
context features decoder (Table 3, row 9), in the context of an end-
to-end dialogue system. The hand-crafted Phoenix grammar (Table
3, row 1) was used to provide a baseline.

4.1. Experimental Set-up

One hundred native speakers of American English were recruited
using Amazon Mechanical Turk [23]. Each was asked to use the
dialogue system to find a restaurant in Cambridge matching a set of
constraints, and to then request some details. Some tasks involved
specifying constraints which should be relaxed in case no matching
venue was found. An example of a typical task was: ‘Try to find a
Chinese restaurant in the west, if there is none then try Thai food.
Get the phone number and address.’ After a dialogue, the participant
was asked whether or not they got the information they needed, and
if they agreed then the dialogue was recorded as being successful.

Participants were randomly allocated either a system using the
Phoenix grammar, or one using the Confusion network with context
decoder. Both dialogue systems use the Bayesian Update of Dia-
logue State framework to track the dialogue belief state, treating the
dialogue planning process as a Partially Observable Markov Deci-
sion Process (POMDP) [15]. The dialogue policy for each system

Fig. 2. Illustrative example

Last system act: select(area=west,area=dontcare)
Transcription: west side of town please
ASR: what kind of town please, what what kind of town please, kind of town
please, etc.

M -best dialogue acts:

CNet decoder,
with context:
0.79 inform(area=west)
0.15 inform(area=north)
0.05 request(food, area=west)
0.01 null()

CNet decoder,
no context:
0.37 null()
0.32 inform(area=west)
0.14 inform(area=north)
0.09 reqalts()
0.07 request(food)
0.01 inform(area=centre)

Phoenix grammar:
0.96 null()
0.04 request()

Fig. 3. Regressions of F-score and ICE against WER. Grey lines
show margins of 2 standard errors. Confusion network decoder is
shown to degrade significantly more gracefully as noise increases.

0 20 40 60 80 100

0.
3

0.
5

0.
7

0.
9

WER

F-
sc
or
e

C.Net. + Context
Phoenix

Predicted F-score

0 20 40 60 80 100

0
1

2
3

4
5

6

WER

IC
E

C.Net. + Context
Phoenix

Predicted ICE

was optimised to maximise a reward function R using the Natural
Actor Critic learning algorithm where

R = 20 · Success− Number of user turns (2)
and Success = 1 if the dialogue is successful, and 0 otherwise. This
reward function provides a measure of dialogue quality reflecting the
design objective of achieving a high success rate and short dialogues.
Each policy was trained using a simulated user with built-in error
model and each error model was separately trained to reflect the type
of confusions each decoder makes, using real example confusions.

Note that unlike the off-line corpus, the live trial was conducted
using relatively clean telephone calls and a different set of acoustic
models optimised for this domain. The WER over the 924 trial dia-
logues was 20.1%, while the WER in the off-line corpus was 37.0%.

4.2. Trial Results

The results of the trial are shown in Table 4. The F-scores, ICE
scores and Dialogue Reward achieved by the CNet decoder are sig-
nificantly better than the Phoenix grammar. The raw success rate is
also higher for the CNet decoder although the difference is not sta-
tistically significant. The average dialogue length is shorter by half
a turn on average and this is significant. Overall the differences be-
tween the two decoders are not as pronounced as in the offline eval-
uation because the dialogues in the trial were at much lower word
error rates. The high success rates achieved in the User Trial are in-
dicative of this. Given the evidence of the off-line evaluation, it is
hypothesised that the advantages of the CNet decoder would become
more pronounced in more challenging scenarios such as in a car us-
ing an open far-field microphone.



Phoenix CNet with context
Dialogues 456 468
F-score 0.795 ± 0.02 0.822 ± 0.02
ICE 2.016 ± 0.223 1.264 ± 0.151
Success Rate (%) 94.3 ± 2.0 94.7 ± 2.0
Turns per dialogue 8.25 ± 0.29 7.79 ± 0.25
Dialogue Reward 10.60 ± 0.55 11.15 ± 0.54

Table 4. Results of User Trial. Errors are 1.96 times the standard
error.

5. CONCLUSIONS

Building on the Semantic Tuple Classifier (STC) proposed by
Mairesse et al., this paper has described a statistical Confusion
Network (CNet) semantic decoder which is applied directly in a
single pass to features extracted from a word confusion network.
It has been shown through off-line evaluation on a dialogue corpus
collected in noisy conditions that the CNet decoder approach out-
performs both a hand-crafted Phoenix-based decoder and an STC
decoder operating in N -best mode. Furthermore it does this for
both a 1-best F-measure metric and a full distribution cross-entropy
metric, demonstrating that the approach improves both the quality of
individual semantic interpretations and the full distribution over all
interpretations. It has also been shown that the addition of context
is both simple to implement in the CNet framework and effective
in further improving performance. Finally, it has been shown via a
user trial that the performance advantages indicated by off-line eval-
uation do translate into improved overall performance when used in
a live dialogue system
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[20] M. Gašić, P. Tsiakoulis, M. Henderson, B. Thomson, K. Yu,
E. Tzirkel, and S. J. Young, “The effect of cognitive load on a
statistical dialogue system,” in Proceedings of SIGdial, 2012.
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J. Schatzmann, and S. J. Young, “Evaluating semantic-level
confidence scores with multiple hypotheses,” in INTER-
SPEECH, 2008.

[23] F. Jurcicek, S. Keizer, M. Gašić, F. Mairesse, B. Thomson,
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