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Abstract

This paper investigates a method of automatic pronunciation scoring for use in computer-assisted language learning

(CALL) systems. The method utilises a likelihood-based `Goodness of Pronunciation' (GOP) measure which is ex-

tended to include individual thresholds for each phone based on both averaged native con®dence scores and on re-

jection statistics provided by human judges. Further improvements are obtained by incorporating models of the

subjectÕs native language and by augmenting the recognition networks to include expected pronunciation errors. The

various GOP measures are assessed using a specially recorded database of non-native speakers which has been an-

notated to mark phone-level pronunciation errors. Since pronunciation assessment is highly subjective, a set of four

performance measures has been designed, each of them measuring di�erent aspects of how well computer-derived

phone-level scores agree with human scores. These performance measures are used to cross-validate the reference

annotations and to assess the basic GOP algorithm and its re®nements. The experimental results suggest that a like-

lihood-based pronunciation scoring metric can achieve usable performance, especially after applying the various en-

hancements. Ó 2000 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In diesem Artikel wird eine Methode zur automatischen Bewertung der Aussprache innerhalb eines Systems f�ur

computergest�utztes Fremdsprachenlernen vorgestellt, welche anhand eines Wahrscheinlichkeitsmaûes, Goodness of

Pronunciation (GOP), einen Aussprachewert f�ur jedes Phoneme in einer �Auûerung berechnet. Liegt ein solcher Auss-

prachewert oberhalb eines Schwellwertes, wurde ein Aussprachefehler detektiert. Die Methode wird im folgendem

durch individuelle Schwellwerte f�ur jedes Phoneme, durch die Einbindung von Modellen der Muttersprache des Fre-

mdsprachensch�ulers und durch Erweiterung der Erkennungsnetzwerke mit zu erwartenden Aussprachefehlern ver-

bessert. Die Evaluation der GOP Methode erfolgt mit Hilfe einer speziell f�ur diese Zwecke aufgenommenen Datenbank

englischer Sprache mit ausl�andischen Akzent, die Phonetikern in Bezug auf Aussprachefehler kommentierten. Da

Bewertung von Aussprache h�ochst subjektiv ist, sind vier Meûmethoden zur Evaluation verschiedener Aspekte der
�Ubereinstimmung verschiedener Bewertungen eines Datensatzes entwickelt worden. Die Anwendung dieser

Meûmethoden erm�oglicht, die Leistung der GOP Methode mit Phonetikern zu vergleichen. Die experimentiellen Er-

gebnisse deuten darauf hin, daû eine auf Wahrscheinlichkeitsmetrik zur Aussprachebewertung in der Lage ist, in der

Praxis anwendbare Ergebnisse zu liefern; dies gilt insbesondere nach der Anwendung der Verbesserungen. Ó 2000

Elsevier Science B.V. All rights reserved.
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1. Introduction

Computer-assisted language learning (CALL)
systems can provide many potential bene®ts to both
the language learner and teacher. They allow con-
tinuous feedback to the student without requiring
the sole attention of the teacher, they facilitate self-
study and encourage interactive use of the language
in preference to rote-learning. Finally, they can be
used to streamline assessment procedures.

To be e�ective, a CALL system requires the
ability to accurately measure pronunciation qual-
ity both to enable the immediate correction of er-
rors and to provide longer term feedback on
overall language competence. The aim of the work
described in this paper is to study acoustic likeli-
hood-based methods for automatic pronunciation
assessment within the framework of a hidden
Markov model (HMM) speech recognition system.

Existing work on automatic pronunciation
scoring has mainly been focussed on the word and
phrase level, possibly augmented by measures of
intonation, stress and rhythm (Goddijn and de
Krom, 1997; Hiller et al., 1993; Hamada et al.,
1993; Rogers et al., 1994). These systems typically
require several recordings of native utterances to
train the models for each word in the teaching
material. They are therefore text-dependent with
the disadvantage that the teaching material cannot
be adjusted without making additional recordings.
Systems aimed at teaching selected phonemic er-
rors are described in (Kawai and Hirose, 1997;
Kim et al., 1997; Ronen et al., 1997), where either
durational information or models trained on non-
native speech have been employed. Automatic
speech recognition with HMMs has been used to
score complete sentences rather than smaller units
of speech (Bernstein et al., 1990; Neumeyer et al.,
1996). The system described by (Eskenazi, 1996)
produces scores for each phone 1 in an utterance,

but there is no attempt to relate this to human
judgements of pronunciation quality. A dialog
system aimed at teaching spoken Japanese is pre-
sented in (Ehsani et al., 1997) where speech rec-
ognition is used to analyse the studentÕs answer at
each stage of the dialog.

The system described here is focussed on mea-
suring pronunciation quality of non-native speech
at the phone level. The aims are to locate pro-
nunciation errors, to assess how close the pro-
nunciation is to that of a native speaker and to
identify systematic di�erences when compared to a
pronunciation dictionary.

The remainder of this paper is organised as
follows. In Section 2, the basic Goodness of Pro-
nunciation (GOP) scoring algorithm is described
along with a number of re®nements. Section 3 then
presents a set of four performance measures which
can be used both to validate pronunciation as-
sessments made by human judges and to assess the
performance of the GOP algorithms. Section 4
describes the non-native database which was spe-
cially recorded for this work. Finally, Sections 5
and 6 present performance assessments of the
human judges who annotated the database and the
automatic GOP algorithms. The paper concludes
with a discussion of the results and some com-
ments on future directions.

2. GOP scoring

2.1. Basic GOP algorithm

The aim of the GOP measure is to provide a
score for each phone of an utterance. In comput-
ing this score it is assumed that the orthographic
transcription is known and that a set of HMMs is
available to determine the likelihood p�O�q�jq� of
the acoustic segment O�q� corresponding to each
phone q. Under these assumptions, the quality of
pronunciation for any phone p is de®ned to be
the duration normalised log of the posterior

1 Throughout this paper a ``phone'' denotes a sound unit used

to model speech with HMMs, which roughly corresponds to a

phoneme as de®ned by linguists.
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probability P �pjO�p�� that the speaker uttered
phone p given the corresponding acoustic segment
O�p�. That is,

GOP1�p� � log P�pjO�p��ÿ ��� ��=NF�p�; �1�

� log
p�O�p�jp�P �p�P

q2Q p�O�p�jq�P�q�

 !�����
�����
,

NF�p�;

�2�
where Q is the set of all phone models and NF(p)
the number of frames in the acoustic segment O�p�.

Assuming all phones are equally likely
(P(p)�P(q)) and that the sum in the denominator
can be approximated by its maximum, the basic
GOP measure becomes

GOP1�p� � log
p�O�p�jp�

maxq2Q p�O�p�jq�
� ��������� �

NF�p�:

�3�
The acoustic segment boundaries and the corre-
sponding likelihoods are determined from Viterbi
alignments. Firstly, the numerator of Eq. (3) is
computed using a forced alignment in which the
sequence of phone models is ®xed by the known
transcription and secondly, the denominator is
determined using an unconstrained phone loop.
This is the same arrangement as is commonly used
in word spotting (Knill and Young, 1994). One
di�culty in Eq. (3) is that if a mispronunciation

has occurred, it is not reasonable to constrain the
acoustic segment used to compute the maximum
likelihood phone q to be identical to the assumed
phone O�p�. Hence, the denominator score is de-
termined by simply summing the log likelihood per
frame over the duration of O�p�. In practice, this
will often mean that more than one phone in the
unconstrained phone sequence has contributed to
the computation of maxq2Q p�O�p�jq�.

A block diagram of the resulting scoring
mechanism is shown in Fig. 1. The front-end fea-
ture extraction converts the speech waveform to a
sequence of mel-frequency cepstral coe�cients
(MFCC) and these are used in two recognition
passes: the forced alignment pass and the phone
recognition pass where each phone can follow the
previous one with equal probability. Based on
these results, the individual GOP scores are cal-
culated for each phone as de®ned in the previous
equations. Finally, a threshold is applied to each
GOP score to reject badly pronounced phones.
The choice of threshold depends on the level of
strictness required. The selection of suitable
thresholds is further discussed in Section 6.

The quality of the GOP scoring procedure de-
scribed above depends on the quality of the
acoustic models used. Since the aim of the GOP
measure is to assess pronunciation quality with
respect to native speaker performance, it is

Fig. 1. Block-diagram of the pronunciation scoring system: phones whose scores are above the prede®ned threshold are assumed to be

badly pronounced and are therefore rejected.
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reasonable to use native speakers to train the
acoustic models. However, non-native speech is
characterised by di�erent formant structures com-
pared to those from a native speaker for the same
phones (Arslan and Hansen, 1997) and this can
lead to phone recognition errors. Hence, some de-
gree of speaker adaptation may be justi®ed. To test
this hypothesis, the GOP measure can be computed
using models whose Gaussian means have been
adapted using Maximum Likelihood Linear Re-
gression (MLLR) (Leggetter and Woodland,
1994). In order to achieve speaker normalisation
without adapting to speci®c phone error patterns,
this adaptation is limited to a single global trans-
form of the HMM mixture component means.

2.2. Phone dependent thresholds

So far a single threshold for all phones has been
assumed. However, in practice, the acoustic ®t of
phone-based HMMs di�ers from phone to phone.
For example, fricatives tend to have lower log
likelihoods than vowels suggesting that a higher
threshold should be used for these.

A simple phone-speci®c threshold can be com-
puted from the global GOP statistics. For exam-
ple, the threshold for a phone p can be de®ned in
terms of the mean lp and variance rp of all the
GOP scores for phone p in the training data,

Tp1 � lp � arp � b; �4�
where a and b are empirically determined scaling
constants. The assumption here is that averaging
the native GOP scores will reduce the a�ect of
errors in the phone recogniser.

A reasonable target for an automatic pronun-
ciation system is to perform as well as a human
judge. One way to approximate human perfor-
mance is to learn from human labelling behaviour.
Let cn(p) be the total number of times that phone p
uttered by speaker n was marked as mispro-
nounced by one of the human judges in the
training database. Then a second phone dependent
threshold can be de®ned by averaging the nor-
malised rejection counts over all speakers,

Tp2
� log

1

N

XN

n�1

cn�p�
XM

m�1

cn�m�
, ! 

; �5�

where M is the total number of distinct phones and
N the total number of speakers in the training set.

2.3. Explicit error modelling

Pronunciation errors can be grouped into two
main error classes. The ®rst class contains indi-
vidual mispronunciations when a student is not
familiar with the pronunciation of a speci®c word.
The second class consists of substitutions of native
sounds for sounds of the target language, which do
not exist in the native language. This error type
will be called systematic mispronunciations. Be-
cause the GOP method described so far does not
employ models of a studentÕs native phones, in-
correct acoustic modelling of the non-native
speech will occur especially in the case of system-
atic mispronunciations. The detection of these er-
rors might be improved if knowledge of the native
tongue of the learner can be included in the GOP
scoring.

For this purpose a recognition network has
been implemented incorporating both correct
pronunciation and common pronunciation errors
in the form of error sublattices for each phone,
using phone model sets of both the target and the
native language. Concatenating these sublattices
according to target transcriptions yields the de-
sired error network for any utterance. For exam-
ple, Fig. 2 shows the resulting network for the
word ``but''. The list of possible errors of a
Spanish speaker learning English has been taken
from (Kenworthy, 1987), some examples of which

Fig. 2. Example of error network for the word `but', created

through concatenating the sublattice of possible errors for each

phone, the topmost phones correspond to the target tran-

scription. (Phoneme names with subscript `s' denote Spanish

models.)
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are listed in Table 1. The recognition output of
such an error network will be a sequence of phones
either corresponding to the target transcription
p� pt in the case that the target pronunciation was
more likely or otherwise to an error phone p� pe.

A straightforward detector of systematic mis-
pronunciations based on an error network could
consist of rejecting all phone segments where an
error phone has been recognised. However, such
an approach would ignore the information about
the likelihood of the occurrence of such an error.
Hence, the posterior likelihood of each error
phone P �pejO�p�� is computed by normalising with
the recognition results of a phone loop network
including acoustic models of both the target lan-
guage and the speaker's native language applying
Eq. (3).

Knowledge of P �pejO�p�� permits calculating the
posterior probability of the target phones pt in all
phone segments containing systematic mispro-
nunciations:

P �ptjO�p�� � 1ÿ
X
q 6�pt

P �qjO�p��

� 1ÿmax
q6�pt

P �qjO�p��

� 1ÿ P �pejO�p��: �6�

Again the assumption has been made that the
above sum can be approximated by its maximum.
Thus, scores for systematic mispronunciations
GOPe(p) are de®ned as

GOPe�p� � j log�1ÿ P�pejO�p���j if p � pe;
0:0 otherwise:

�
�7�

Combining the basic GOP1 with GOPe yields a
second GOP metric which includes additional
penalties for scores of phone segments where sys-
tematic error was recognised.

GOP2�p� � GOP1�p� � K GOPe�p�; �8�
where K is a scaling constant.

3. Performance measures

In order to assess the e�ectiveness of the GOP
scoring for detecting pronunciation errors, a set of
four new performance measures has been designed.
These are based on similarity measurements be-
tween reference transcriptions produced by human
judges and the output of the GOP metric. Since the
production of reference transcriptions must be
done by human judges and is highly subjective, the
same performance measures are also used to cross-
validate the judges. Note that the performance
measures are only concerned with the detection of
pronunciation errors. They do not take account of
the type of error which has occurred.

To cover all aspects of performance, four dif-
ferent dimensions are considered.
· Strictness ± how strict was the judge in marking

pronunciation errors?
· Agreement ± what is the overall agreement be-

tween the reference transcription and the auto-
matically derived transcription? This measure
takes account of all phones whether mispro-
nounced or not.

· Cross-correlation ± what is the overall agreement
between the errors marked in the reference and
the automatically detected errors? This measure
only takes account of phones for which an error
has been marked in one or both transcriptions.

· Overall phone correlation ± how well do the over-
all rejection statistics for each phone correlate
between the reference and the automatic system?

The next section describes the form of the error
transcriptions in more detail and then the mea-
sures themselves are de®ned.

Table 1

Expected errors of a Spanish speaker for some British-English

phones (Phone names with subscript `s' denote Spanish models)

British Expected errors

b b, v, b_s

d dh, d_s

th f, s, f_s, s_s

s hh, del

ch ch_s

jh ch,ch_s

k del, k_s

l l_s

ah a_s, aw, ae

uh uw, u_s

ae eh, e_s

oh o_s
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3.1. The transcription of pronunciation errors

The non-native database used for assessment
consists of target transcriptions based on a pro-
nunciation dictionary and transcriptions which
have been annotated by human judges to contain
the phone sequence actually spoken. The utterance
transcriptions marked with corrections will be re-
ferred to as corrected transcriptions and the tran-
scriptions derived directly from the pronunciation
dictionary will be referred to as the dictionary-
based transcriptions. Finally, transcriptions in
which each phone correction has been replaced by
a single rejection symbol are referred to as rejec-
tion-marked transcriptions.

Two corrected transcriptions of the same utter-
ance are di�cult to align with each other due to
insertions and deletions of phones. Therefore, all
performance measures compare transcriptions on a
frame by frame basis. With this approach, mea-
suring the similarity of two di�erently corrected
transcriptions of the same utterance becomes
equivalent to comparing the rejection/acceptance
marking of corresponding speech frames.

Based on the rejection-marked transcriptions,
the frame level markings are calculated as follows:
1. The phone level segmentation for each sentence

is calculated by forced alignment of the acoustic
waveform with the corrected transcriptions.

2. All frames corresponding to substituted, insert-
ed or deleted phones are marked with ``1'', all
other ones with ``0''. This yields a vector x of
length N with x�i� 2 f0; 1g. These vectors will
be called transcription vectors.

3. The transitions between ``0'' and ``1'' in the
transcription vectors are abrupt whereas in
practice the precise location of the boundaries
between correctly and incorrectly pronounced
speech segments are uncertain. Moreover,
segmentation based on forced alignments
can be erroneous due to the poor acoustic
modelling of non-native speech. For these
two reasons, the vectors representing correct-
ed transcriptions are smoothed by a Ham-
ming window

x0�n� �
XN=2

k�ÿN=2

x�k�w�nÿ k�: �9�

Using a frame period of 10 ms, the length of a
vowel tends to extend over 6±20 frames, whereas
consonants can be much shorter. Also, if rejected
frames in one transcription are immediately fol-
lowed by rejected frames in the other transcription,
the rejections can be considered to have been
caused by the same pronunciation error. Based on
these considerations, a window length of N� 15
was selected for all experiments. The e�ect of the
smoothing window is illustrated in Fig. 3.

3.2. Performance measures

This section de®nes the four performance
measures used to compare transcriptions corrected
by two judges or one judge and the automatic
GOP scoring system.

Firstly, human correction of the pronunciation
of non-native speakers depends on personal
judgement. There will always exist a large number
of phones whose pronunciation is on the border-
line between correct and incorrect, a stricter judge
might declare more borderline cases as incorrect
than another judge who is more benign. In the case
of computer-based scoring, the choice of a rejec-
tion threshold determines how strict the scoring
system will be. This strictness of labelling, S, can be
de®ned as the overall fraction of phones which are
rejected,

Fig. 3. Smoothing e�ect of the windowing, overlapping regions

denote areas where both judges decided to reject the pronun-

ciation.
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S � Count of rejected phonemes

Total count of phonemes
: �10�

As an example, the database used for assessment
(described below) contains a set of calibration
sentences which were labelled by six di�erent
judges. Fig. 4 shows the strictness of the judges for
these calibration sentences where the mean and
standard deviation are lS � 0.18 and rS � 0.05,
respectively.

A simple way to compare the strictness of two
judges J1 and J2 is to use the di�erence between
strictness levels for the two, i.e.,

dS � jSJ1 ÿ SJ2j: �11�
The overall Agreement (A) between two utterances
is de®ned in terms of the cityblock distance be-
tween the corresponding transcription vectors, i.e.,

AJ1;J2 � 1ÿ 1

N
kxJ1 ÿ xJ2kC; �12�

where kxkC �
PNÿ1

i�0 jx�i�j:
Agreement measures overall similarity of two

transcriptions by comparing all frames of an ut-
terance. In contrast, the Cross-Correlation (CC)
measure takes into account only those frames
where there exists a rejection in either of them,

CCJ1;J2 � xT
J1xJ2

kxJ1kEkxJ2kE

; �13�

where kxkE �
����������������������PNÿ1

i�0 x�i�2
q

is the standard Eu-
clidean distance. Cross-correlation measures the
similarity between all segments which contain re-

jections in either of the two transcriptions. Because
similarity of the rejection patterns with a human
judge is the main design objective of the GOP
scoring system, this measure has the highest
importance.

Finally, Phoneme Correlation (PC) measures the
overall similarity of the phone rejection statistics.
Given a vector c whose elements contain the count
of rejections for each phone in a complete speaker
set, phone correlation is de®ned as

PCJ1;J2 �
PM

m�0�cJ1�m� ÿ lcJ1��cJ2�m� ÿ lcJ2�PM
m�0

����������������������������������������������������������������
�cJ1�m� ÿ lcJ2�2�cJ1�m� ÿ lcJ2�2

q ;

�14�

where lc denotes the mean rejection counts.

4. Collection of a non-native database

In order to evaluate the pronunciation scoring
methods described above, a database of non-na-
tive speech from second-language learners has
been recorded and annotated.

The recording guidelines for this database col-
lection were based on the procedures used for the
WSJCAM0 corpus (Fransen et al., 1994). Students
of English as a second language read prompting
texts composed of a limited vocabulary of 1500
words in a quiet room environment. The compe-
tence level of the speakers was intermediate. They
were all able to understand the prompting texts
and instructions and they were able to read the
sentences with relatively few hesitations. On the
other hand, their competence level was low enough
to ensure that they produced a signi®cant number
of easily detectable mispronunciations.

Each prompting session consisted of a common
set of 40 phonetically balanced sentences read by
all subjects and an additional 80 sentences which
varied from session to session. Extracts from
``Penguin Readers'' (Fine, 1995; Chandler, 1991)
were used as the source of the prompting texts.
These texts have been speci®cally written for the
purpose of teaching English as a foreign language.
They employ a limited vocabulary and simpli®ed
sentence and grammatical structures.

Fig. 4. Relative strictness for all human judges measured on the

calibration sentences.
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The subjects for the database collection con-
sisted of 10 students, six of them female and four
of them male, speaking as their mother-tongues
Latin-American Spanish, Italian, Japanese and
Korean. Additionally, 20 sentences from a female
Spanish speaker were recorded to serve as cali-
bration sentences. These were annotated by all six
judges participating in the labelling task. The re-
sulting six sets of calibration transcriptions can
thus be used to compare the human labelling
consistency.

The database was annotated by trained pho-
neticians (the ``judges''), all of them native speak-
ers of British English. This annotation was
performed at three di�erent levels. Firstly, the
original transcriptions were annotated with all
substitution, deletion and insertion errors made by
the non-native speaker. Since the non-native
speech contained a range of sounds which do not
exists in British English, the judges had the op-
portunity to extend the supplied British English
phone set with phones taken from the speaker's
native language. These labelling instructions
yielded transcriptions resembling the non-native
speech as closely as possible. Secondly, each word
was scored on a scale of 1±4, with 1 representing
barely intelligible speech and 4 representing native-
like pronunciation. Finally, each sentence was
scored on the same scale. Of these three levels of

annotation, only the ®rst phone error correction
level is used for the experiments reported here.

5. The labelling consistency of the human judges

In order to properly interpret the results of as-
sessing a computer-based pronunciation system
using manually derived transcriptions as the ref-
erence, it is necessary to measure the inter-judge
labelling consistency and to obtain an under-
standing of how the judges label the data. Their
labelling is characterised by the phones they con-
sider important for good pronunciation and thus
tend to correct, by the consistency of the rejection
patterns across di�erent judges and ®nally by their
strictness. In this section, the four performance
measures described above are used in conjunction
with the 20 calibration sentences to determine
these characteristics.

Fig. 5 shows averaged results of all the mea-
sures for each judge. These results have been cal-
culated by averaging A, CC, PC and dS between
the respective judge and all other ones. All results
vary within an acceptable range, that is
0.85 < A < 0.95, 0.40 < CC < 0.65, 0.70 < PC < 0.85
and 0.03 < dS < 0.14. Therefore, the labelling by
di�erent human judges can be considered as being
reasonably consistent although Judge 5 is a slight

Fig. 5. A, CC, PC and dS for each judge based on averaging the measures between the respective judge and all the other judges.
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outlier in that he has a lower average cross-cor-
relation with the other judges. The total mean
values over all pairs of judges of all four measures
are shown in Table 2. These mean values will be
used as benchmark values against which to mea-
sure the performance of the automatic scoring
presented in later sections.

Table 3 shows the similarity between the human
judges and the baseline GOP scoring method for
each non-native speaker in that judge's group. It
can be seen that the intra-judge results are quite
consistent. However, Judge 4 had a high accep-
tance of non-native pronunciation, and thus cor-
rected a signi®cantly smaller portion of the data.
For such a degree of strictness, the automatic
scoring performs considerably worse.

Fig. 6 shows the CC and PC measures for each
speaker grouped according to their native lan-
guages. Also shown on this ®gure are the genders
of each speaker. From this ®gure and the data
shown in Fig. 5, it appears that the labelling of the

human judges does not depend signi®cantly on the
mother tongue or the gender of the subjects, but
depends mostly on the variability of human judges.

Finally, the rejection patterns for three of the
judges are shown in Fig. 7, which depicts the re-
jection counts for all phones for the judges. The
strong correlation between the rejection pattern of
these three judges is clearly evident.

The above analysis of human judgement char-
acteristics shows that although there is signi®cant
variability in the labelling of each judge, there is
nevertheless su�cient common ground to form a
basis for assessing the performance of the various
automatically derived pronunciation metrics.

6. Experimental results

This section presents performance results
for both the basic GOP scoring method and the

Table 2

Averaged A, CC, PC and dS results based on correlating all

possible pairs of judges (these values are the baseline against

which to measure automatic scoring performance)

A CC PC dS

0.91 0.47 0.78 0.06

Table 3

Similarity results between judges and the baseline GOP scoring

grouped according to the judge who labelled the respective

speaker sets (the speaker name Cal. denotes the calibration

sentences)

Judge Speaker Strictness CC PC

J1 Cal. 0.25 0.51 0.77

ss 0.25 0.56 0.73

ts 0.21 0.49 0.84

J2 Cal. 0.19 0.53 0.81

yp 0.16 0.49 0.62

J3 Cal. 0.21 0.50 0.68

mk 0.13 0.38 0.57

J4 Cal. 0.13 0.37 0.62

sk 0.07 0.12 0.61

as 0.11 0.37 0.50

J5 Cal. 0.16 0.22 0.71

ay 0.19 0.50 0.61

¯ 0.16 0.43 0.56

pc 0.19 0.50 0.62

ky 0.23 0.48 0.34

Fig. 6. CC and PC results grouped according to each student's

mother-tongue.
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various re®nements described in Section 2. All
speech recognition is based on multiple mixture
monophone models trained on the British English
corpus WSJCAM0 (Fransen et al., 1994). The
HMMs were built using the HTK Toolkit (Young
et al., 1996).

For the case of automatic GOP scoring, agree-
ment A, cross-correlation CC and phone correla-
tion PC vary according to the level of strictness
applied, which again depends on the threshold
levels set. In Fig. 8, the GOP scores for an example
sentence are shown. Varying the threshold deter-
mines the number of rejections. For the marked
threshold in the example ®gure, both human and
machine judgements agree on which phones to
accept and to reject with two exceptions. The ®rst

phone of the sentence is not rejected by the human
judge but it is rejected by the GOP metric, this is
probably due to bad acoustic modelling at the
sentence beginning. Further, the `ae' in `carry' has
been rejected by the human judge method but not
by the GOP scoring.

In the work reported here, the range of rejection
thresholds studied was restricted to lie within one
standard deviation of the judges strictness i.e.,
jdS j6 rS where in this case rS � 0.05. Within this
range, the variation of A, CC and PC for one
speaker as a function of the threshold level is
shown in Fig. 9. In this ®gure, the vertical lines
denote the acceptable range of threshold settings
and, as can be seen, the performance values do not
vary greatly within this range.

Fig. 7. Rejection counts of all phones for all judges based on the calibration sentences to show the correlation between the rejection

pattern of di�erent judges.
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Table 4 shows optimal values of A, CC and PC
achievable for each speaker within the allowed
threshold range. As can be seen, the optimal
threshold is speaker dependent. However, apart
from speakers `sk', `as', a threshold of 4.5 would
be close to optimal for all speakers. Since `sk' and
`as' were the two speakers whose transcriptions
were annotated by the very strict judge (Judge 4),
these two speakers have not been included in the
results presented in the following.

The performance results for the automatic GOP
scoring metrics as discussed in Section 2 are sum-
marised in Fig. 10. The ®rst bar on the left marked
``Baseline'' shows the performance of the basic
GOP 1 metric with a ®xed overall threshold as
discussed above. The ®nal bar on the left shows the
human±human performance on the calibration

sentences for comparison. As can be seen, the
scores for A and CC are similar whereas for PC,
the automatic scoring is worse by about 20%. The
second bar marked ``MLLR'' shows the e�ect of
applying speaker adaptation. For Group 1 an
improvement of 5% has been obtained for PC at
the cost of a small decrease in CC. The third and
fourth bars show the e�ects of using individual
thresholds for each phone based on averaging
native scores Tp1

and on averaging the judges
scores Tp2

. As can be seen, thresholds derived from
the statistics of the judge's scoring appear to pro-
vide the best performance. This is probably be-
cause these are directly related to the desired
rejection statistics.

Finally, Table 5 summarises the e�ects of
incorporating error modelling into the GOP

Fig. 8. GOP scoring results for an example sentence, `ss' denotes the location of a rejection, the automatically rejected phones

correspond to GOP scores above the threshold.
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algorithm. The British English HMMs were aug-
mented by a set of similar Spanish models trained
on a database of Latin-American Spanish. The data
from the three Spanish speakers in the database was
analysed using the extended GOP2 metric with the
scale factor K adjusted to give optimal performance.
Instead of averaging over all eight speakers, results
shown in this table are only averaged over the three
Spanish speakers in the database, the averaged
baseline performance of which is shown in the ®rst
line of Table 5. Comparision of these results with
those for the second GOP metric demonstrate that a
slight improvement can be obtained by including
the extra information relating to systematic mis-
pronunciations. Finally, the results of combining all
proposed re®nements of the baseline algorithm, i.e.,

adaptation, judge-based individual thresholds and
error modelling, are as high as the human bench-
mark values.

Table 6 compares human rejections with all
automatically detected systematic mispronuncia-
tions, i.e., all rejections of phone segments where a
native phone had been more likely than the target
phone. The relatively high values for CC and PC
indicate that a large proportion of pronunciation
errors are due to systematic mispronunciations
and that a signi®cant proportion of these can also
be detected by the use of error networks. Addi-
tionally, this metric provides information about
which type of mispronunciations occurred and
whether the pronunciation of a given phoneme
sounds more Spanish than English. This

Fig. 9. Dependency of A, CC, PC and dS on threshold variation, based on data for `¯', a male Spanish speaker. The range inside the

bold lines is the range of valid dS .
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information might be used in future work to pro-
vide additional feedback about error types in ad-
dition to detecting error locations within an
utterance or a word.

7. Conclusions

This paper has presented a likelihood-based
method for GOP scoring and proposed a number
of metrics which can be used to assess perfor-
mance in comparison to human judges. Using a

Table 4

Thresholds yielding optimal performance for all non-native speakers of the database

ID Thres A CC PC dS

¯ 5 0.91 0.43 0.56 0.02

pc 4.5 0.87 0.50 0.62 0.04

yp 4.0 0.90 0.49 0.62 0.02

ts 4 0.87 0.49 0.84 0.03

ky 5 084 0.48 0.34 0.04

sk 7 0.90 0.12 0.61 0.06

ss 4.5 0.85 0.56 0.73 0.05

as 7 0.90 0.37 0.50 0.07

mk 4.5 0.90 0.38 0.57 0.07

ay 4.5 0.90 0.50 0.61 0.05

j1 4.5 0.86 0.51 0.77 0.01

j2 5 0.87 0.53 0.81 0.04

j3 4.5 0.86 0.50 0.68 0.05

j4 7.5 0.91 0.43 0.62 0.00

j5 5.5 0.88 0.22 0.71 0.05

j6 4 0.85 0.52 0.65 0.03

GOP mean 0.88 0.47 0.60 0.05

Human mean 0.91 0.47 0.78 0.05

Fig. 10. Comparison of the A, CC and PC performance mea-

sures using: (a) the basic GOP scoring (Baseline); (b) basic GOP

with adaptation (MLLR); (c) individual thresholds based on

native scores (Ind-Nat); (d) individual thresholds based on

human judges (Ind-Jud); (e) human±human average perfor-

mance (Human).

Table 5

Performance for experiments with and without error modelling

(all experiments include adaptation)

Experimental setup A CC PC

Baseline 0.89 0.46 0.71

Ind-Judge 0.89 0.48 0.76

Error modelling 0.88 0.48 0.72

Ind-Judge + Error modelling 0.90 0.49 0.78

Human mean 0.91 0.47 0.78

Table 6

Performance results when using an error network to detect

systematic mispronunciations

Speaker ID A CC PC SID dS

¯ 0.90 0.34 0.42 0.18 0.01

pc 0.88 0.39 0.57 0.23 0.04

ts 0.89 0.27 0.40 0.19 0.02
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specially recorded database of non-native speech,
the basic GOP method has been investigated and
the e�ectiveness of the performance measures
studied.

The combination of the baseline method with
several re®nements yielded improvements in the
automatic scoring performance, which then be-
came comparable to the human±human bench-
mark values. Applying speaker adaption and
individual thresholds trained on human judge-
ments has improved the phone correlation from
PC� 0.62 to 0.72, this being only about 7.7%
worse than the averaged human performance of
PC� 0.78. For the Spanish speaker sets in the
database, application of the error modelling tech-
nique yielded performance as high as the bench-
mark values.

In conclusion, this work indicates that a com-
puter based pronunciation scoring system is likely
to be capable of providing similar feedback to a
student as a human judge with regard to which
phonetic segments in an utterance can be accepted
as correct or not. Future work will concentrate on
expanding the algorithm to inform the student
about which mistake he or she has made.
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