Available online at www.sciencedirect.com

COMPUTER
ScienceDirect SPEECH AND
E; Computer Speech and Language 24 (2010) 150-174 LANGUAGE

www.elsevier.com/locate/csl

The Hidden Information Statemodel: A practical framework for
POMDP-based spoken dialogue management

Steve Young*, Milica Gasi¢, Simon Keizer, Francois Mairesse, Jost Schatzmann,
Blaise Thomson, Kai Yu

Cambridge University Engineering Department, Trumpington Street, Cambridge, CB2 1PZ, UK

Received 31 October 2008; received in revised form 29 January 2009; accepted 2 April 2009
Available online 16 April 2009

Abstract

This paper explains how Partially Observable Markov Decision Processes (POMDPs) can provide a principled math-
ematical framework for modelling the inherent uncertainty in spoken dialogue systems. It briefly summarises the basic
mathematics and explains why exact optimisation is intractable. It then describes in some detail a form of approximation
called the Hidden Information State model which does scale and which can be used to build practical systems. A prototype
HIS system for the tourist information domain is evaluated and compared with a baseline MDP system using both user
simulations and a live user trial. The results give strong support to the central contention that the POMDP-based frame-
work is both a tractable and powerful approach to building more robust spoken dialogue systems.
© 2009 Elsevier Ltd. All rights reserved.

Keywords: Statistical dialogue systems; POMDP; Hidden Information State model

1. Introduction

Spoken dialogue systems allow a human user to interact with a machine using voice as the primary com-
munication medium. The structure of a conventional spoken dialogue system (SDS) is shown in Fig. la. It
contains three major components: speech understanding, speech generation and dialogue management. The
speech understanding component typically consists of a speech recogniser and semantic decoder, and its func-
tion is to map user utterances into some abstract representation of the user’s intended speech act «,. The
speech generation component consists of a natural language generator and a speech synthesiser and it per-
forms the inverse operation of mapping the machine’s response a,, back into speech.

The core of the dialogue manager is a data structure which represents the system’s view of the world in the
form of a machine state s,. This machine state typically encodes an estimate of three distinct sources of

* Corresponding author. Tel.: +44 (0) 1223 332654; fax: +44 (0) 1223 332662.
E-mail address: sjy@eng.cam.ac.uk (S. Young).

0885-2308/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.¢s1.2009.04.001

mailto:sjy@eng.cam.ac.uk

S. Young et al. | Computer Speech and Language 24 (2010) 150174 151

(a) Conventional (b) Probabilistic
Sq , Sy
Speech ~ || State 8| 1| Belief
’Understanding* a0 Estimator | Estimator
au - au
S b(Sm)
User (S, m
5I'T'I
Speech Dialog . | Dialog
Generation 2.0 Policy] Policy

§ =<s.,a,5>
m v utd

Fig. 1. Structure of a spoken dialogue system: a, and a,, denote user and machine dialogue acts, s, is the user goal and s, is the dialogue
history. The tilde indicates an estimate. Part (a) shows a conventional dialogue manager which maintains a single state estimate; (b) shows
a dialogue manager which maintains a distribution over all states and accepts an N-best list of alternative user inputs.

information: the user’s input act a,, an estimate of the intended user goal 5,' and some record of the dialogue
history 5,.> Most conventional dialogue managers rely on hand-crafted deterministic rules for interpreting
each (noisy) user dialogue act a, and updating the state. Based on each new state estimate, a dialogue policy
is used to select an appropriate machine response in the form of a dialogue act a,. This dialogue cycle con-
tinues until either the user’s goal is satisfied or the dialogue fails.

The designers of such systems have to deal with a number of problems. Since the user’s state s, is unknown
and the decoded inputs &, are prone to errors,’ there is a significant chance that §,, will be incorrect. Hence, the
dialogue manager must include quite complex error recovery procedures. Recognition confidence scores can
reduce the incidence of misunderstandings but these require thresholds to be set which are themselves noto-
riously difficult to optimise. Modern recognisers can produce alternative recognition hypotheses but it is not
clear in practice how these can be used effectively. Finally, the impact of decisions taken by the dialogue man-
ager do not necessarily have an immediate effect, hence dialogue optimisation requires forward planning and
this is extremely difficult in a deterministic framework.

As has been argued previously, taking a statistical approach to spoken dialogue system design provides the
opportunity for solving many of the above problems in a flexible and principled way (Young, 2002). Early
attempts at using a statistical approach modelled the dialogue system as a Markov Decision Process
(MDP) (Levin et al., 1998, 2000; Young, 2000). MDPs provide a good statistical framework since they allow
forward planning and hence dialogue policy optimisation through reinforcement learning (Sutton and Barto,
1998). However, MDPs assume that the entire state is observable. Hence, they cannot account for either the
uncertainty in the user state 5, and dialogue history §,, or the uncertainty in the decoded user’s dialogue act a,,.

Fig. 1b shows an alternative model for the dialogue management component in which the uncertainty in the
user’s dialogue act and the uncertainty in the machine state are shown explicitly. In this new model, the state
estimator maintains a distribution across all states rather than a point-estimate of the most likely state. The
dialogue manager therefore tracks all possible dialogue paths rather than just the most likely path. The ensu-
ing dialogue decision is then based on the distribution over all dialogue states rather than just a specific state.
This allows competing hypotheses to be considered in determining the machine’s next move and simplifies
error recovery since the dialogue manager can simply shift its attention to an alternative hypothesis rather
than trying to repair the existing one.

If the decoded user input act is regarded as an observation, then the dialogue model shown in Fig. 1b is a
Partially Observable MDP (POMDP) (Kaelbling et al., 1998). The distribution over dialogue states is called

! Examples of user goals are “finding flight information between London and New York”, “finding a Chinese restaurant near the centre
of town”, “ordering three Pepperoni pizza’s”, etc.
2 Since both a, and s, are noisy, the record of dialogue history is also noisy, hence the tilde on sg.

3 Word error rate (WER) is typically in the 10-30% range.

152 S. Young et al. | Computer Speech and Language 24 (2010) 150174

the belief state b and dialogue policies are based on b rather than the estimated state. The key advantage of the
POMDP formalism is that it provides a complete and principled framework for modelling the inherent uncer-
tainty in a spoken dialogue system. Thus, it naturally accommodates the implicit uncertainty in the estimate of
the user’s goal and the explicit uncertainty in the N-best list of decoded user acts. Associated with each dia-
logue state and machine action is a reward. The choice of reward function is a dialogue design issue, but it will
typically provide positive rewards for satisfying the user’s goal, and negative rewards for failure and wasting
time. As with regular MDPs, dialogue optimisation is equivalent to finding a decision policy which maximises
the total reward.

The use of POMDPs for any practical system is, however, far from straightforward. Firstly, in common
with MDPs, dialogue states are complex and hence the full state space of a practical SDS would be intractably
large. Secondly, since a belief distribution b over a discrete state s of cardinality n» + 1 lies in a real-valued
n-dimensional simplex, a POMDP is equivalent to an MDP with a continuous state space b € R". Thus, a
POMDP policy is a mapping from regions in n-dimensional belief space to actions. Not surprisingly these
are extremely difficult to construct and whilst exact solution algorithms do exist, they do not scale to problems
with more than a few states/actions.

There are two broad approaches to achieving a practical and tractable implementation of a POMDP-based
dialogue system. Firstly, the state can be factored into a number of simple discrete components. It then
becomes feasible to represent probability distributions over each individual factor. The most obvious examples
of these are so-called slot filling applications where the complete dialogue state is reduced to the state of a
small number of slots that require to be filled (Williams and Young,2007a,b). For more complex applications,
the assumption of independence between slots can be relaxed somewhat by using dynamic Bayesian Networks
(Thomson et al., 2008a,b). Provided that each slot or network node has only a few dependencies, tractable
systems can be built and belief estimates maintained with acceptable accuracy using approximate inference
(Bishop, 2006).

A second approach to approximating a POMDP-based dialogue system is to retain a full and rich state
representation but only maintain probability estimates over the most likely states. Conceptually, this
approach can be viewed as maintaining a set of dialogue managers executing in parallel where each dialogue
manager follows a distinct path. At each dialogue turn, the probability of each dialogue manager represent-
ing the true state of the dialogue is computed and the system response is then based on the probability dis-
tribution across all dialogue managers. This viewpoint is interesting because it provides a migration path for
current dialogue system architectures to evolve into POMDP-based architectures (Henderson and Lemon,
2008).

This paper describes a specific implementation of the second approach called the Hidden Information State
(HIS) model. The HIS system uses a full state representation in which similar states are grouped into partitions
and a single belief is maintained for each partition. The system typically maintains a distribution of upto sev-
eral hundred partitions corresponding to many thousands of dialogue states. The HIS system has been
described in outline in a number of conference papers (Young, 2006; Young et al., 2007; Gasi¢ et al.,
2008). The aim of this paper is to provide a single coherent and more detailed description of how the HIS sys-
tem works, and an assessment of its performance characteristics. This paper is structured as follows. Section 2
reviews the theory of POMDP-based dialogue management in general and then gives the specific theory under-
lying the HIS system. Section 3 explains how the various probability models in the HIS system are imple-
mented and Section 4 deals with policy representation and optimisation. Section 5 describes how HIS
systems are trained using a user simulator and Section 6 presents experimental results. This paper ends in Sec-
tion 7 with our conclusions.

2. POMDPs for dialogue management
2.1. POMDP basics

Formally, a POMDP is defined as a tuple {S,,, 4., T, R, O,Z, 2, by} where S,, is a set of machine states; 4,, is
a set of actions that the machine may take; 7 defines a transition probability P(s/,|s.,an.); R defines the

S. Young et al. | Computer Speech and Language 24 (2010) 150174 153

expected immediate reward r(s,,a,); O is a set of observations; Z defines an observation probability
P(0'|s,a,); 7 is a geometric discount factor 0 < A < 1; and b, is an initial belief state.*

A POMDP operates as follows. At each time step, the machine is in some unobserved state s,, € S,,. Since
s, 18 not known exactly, a distribution over states is maintained called a belief state such that the probability of
being in state s,, given belief state b is b(s,,,).5 Based on the current belief state b, the machine selects an action
a,, € A,, receives a reward r(s,,, a,), and transitions to a new (unobserved) state s/, where s/, depends only on
s, and a,,. The machine then receives an observation o’ € O which is dependent on s/, and a,,. Finally, the belief
distribution 4 is updated based on o’ and a,, as follows

P(0'|s},, @, D)P(S! |aw,b) P(O'IS),an) 3" cs, Py, am, by) P(Sm|dn, D)
P(0'|ay, b) - P(o'|an, b)
= k 'P(0,|S;n7am) Z P(S:n|am7sm)b(sm)? (1)

SmESm

b'(s)=P(s |0, an b) =

m

where k = 1/P(0|an, b) is a normalisation constant (Kaelbling et al., 1998). Maintaining this belief state as the
dialogue evolves is called belief monitoring.

At each time step ¢, the machine receives a reward r(b;,a,) based on the current belief state b, and the
selected action a,,,. The cumulative, infinite horizon, discounted reward is called the refurn and it is given by

R = Zic: itr(b” am‘[) _ > yhi Z b,(sm)r(sm, am,,). (2)

=0 SmESm

Each action g,,, is determined by a policy n(b,) and building a POMDP system involves finding the policy
7" which maximises the return. Unlike the case of MDPs, the policy is a function of a continuous multi-dimen-
sional variable and hence its representation is not straightforward. However, it can be shown that for finite
horizon problems the value function of the optimal policy is piecewise linear and convex in belief space (Son-
dik, 1971). Hence, it can be represented by a set of policy vectors where each vector v; is associated with an
action a(i) € 4,, and v;(s) equals the expected value of taking action «(i) in state s. Given a complete set of
policy vectors, the optimal value function and corresponding policy is

V™ (b) = max{v; - b} 3)

and
n'(b) = a(argrinax{u,- : b}). (4)

This representation is illustrated in Fig. 2a for the case of |S,,| = 2 and a value function requiring just three
distinct linear segments. The value function itself is the upper heavy line. In this case, b is a 2-D vector such
that by = 1 — b, hence it can be denoted by a single point on the horizontal axis. The linear segments divide
belief space into three regions and the optimal action to take in each region is the action associated with the
uppermost vector in that region. So for example, if b < x in Fig. 2a, then action a(1) would be chosen, if
x < b < y then action a(2) would be chosen, and so on.

The optimal exact value function can be found by working backwards from the terminal state in a process
called value iteration. At each iteration ¢, policy vectors are generated for all possible action/observation pairs
and their corresponding values are computed in terms of the policy vectors at step ¢ — 1. As 7 increases, the
estimated value function converges to the optimal value function from which the optimal policy can be
derived. Many spurious policy vectors are generated during this process, and these can be pruned to limit
the combinatorial explosion in the total number of vectors (Kaelbling et al., 1998; Littman, 1994). Unfortu-
nately, this pruning is itself computationally expensive and in practice, exact optimisation is not tractable.
However, approximate solutions can still provide useful policies. The simplest approach is to discretise belief

4 Here and elsewhere, primes are used to denote the state of a variable at time ¢ + 1 given that the unprimed version is at time 7.
5 In other words, a belief state b is a vector whose component values give the probabilities of being in each machine state.

154 S. Young et al. | Computer Speech and Language 24 (2010) 150174

=1 (a) S,,= s~ (b) s =2
V_I a(1) 3
V2 a a(3)
V3
X
< b >

Fig. 2. POMDP value function representation: (a) shows exact an representation and (b) shows a grid-based representation.

space and then use standard MDP optimisation methods (Sutton and Barto, 1998). Since belief space is poten-
tially very large, grid points are concentrated on those regions which are likely to be visited (Brafman, 1997;
Bonet, 2002). This is illustrated in Fig. 2b. Each belief point represents the value function at that point and it
will have associated with it the corresponding optimal action to take. When an action is required for an arbi-
trary belief point b, the nearest belief point is found and its action is used. However, this can lead to errors and
hence the distribution of grid points in belief space is very important. For example, in Fig. 2b, if b = z then
a(3) would be selected although from Fig. 2a it can be seen that the optimal action was actually a(2).

Grid-based methods are often criticised because they do not scale well to large state spaces and hence meth-
ods which support interpolation between points are often preferred (Pineau et al., 2003). However, the HIS
model described below avoids the scaling problem by mapping the full belief space into a much reduced sum-
mary space where grid-based approximations appear to work reasonably well.

2.2. The SDS-POMDP

As discussed in the introduction, when using a POMDP to model a spoken dialogue system, it is natural to
factor the machine state into three components s,, = (s, a,,s,) (Williams and Poupart, 2()05).6 The belief state
b is then a distribution over these three components.

The transition function for an SDS-POMDP follows directly by substituting the factored state into the reg-
ular POMDP transition function and making some reasonable independence assumptions, i.e.

P(S |Smsam) = P(s., ., 8 |Sus @uy Say am) = P(S |8y, an)P(d)]S, an)P(s)|s,, ., Sq,am). (5)

w) Yo
This is the transition model. Making similar reasonable independence assumptions regarding the observa-
tion function gives

P(0'ls,,, am) = P(0'ls,, a,; 54, am) = P(0'a,). (6)

uw) u?

This is the observation model.
The above factoring simplifies the belief update equation since substituting (5) and (6) into (1) gives

b(s,d,s,)=k- Pld) Pd]s,an) Z P(s! [y, am) - Z P(s)|s.,d ,sa,am) b(Su,Sa)- (7)
——

. . S, Sd . .
observation model user action model " user goal model dialogue history model

As shown by the labelling in (7), the probability distribution for &/, is called the user action model. It allows the
observation probability that is conditioned on a/, to be scaled by the probability that the user would speak «/,
given the goal s/, and the last system prompt a,,. The observation o is typically an N-best list of hypothesised
user acts, each with an associated probability, i.e.

0= [{@,,p1) (@ p) - (@), py)] (8)

such that p, = P(a"|o) for n =1...N. Thus, the combination of the observation model with the user action
model allows a posterior reranking of an N-best recognition output to be made based on the dialogue system’s

® Note that alternative POMDP formulations can also be used for SDS (e.g. Roy et al., 2000; Zhang et al., 2001).

S. Young et al. | Computer Speech and Language 24 (2010) 150174 155

Fig. 3. SDS-POMDP dialogue framework as a Bayesian network. Solid arrows denote conditional dependencies, open circles denote
hidden variables and shaded circles denote observations. The machine action a,, is a function of the belief distribution b(s,, @y, S4)-

current beliefs. The user goal model determines the probability of the user goal switching from s, to s/, follow-
ing the system prompt a,,. Finally, the dialogue history model enables information relating to the dialogue his-
tory to be maintained such as a grounding state. Fig. 3 shows the SDS-POMDP in the form of a Bayesian
network. The form of the statistical models used in the HIS system to represent the components of (7) are
described in detail in Section 3.

2.3. The HIS POMDP

The key idea underlying the HIS model is that at any point in a dialogue, most of the possible user goal
states have identical beliefs simply because there has been no evidence offered by the user to distinguish them.
For example, if the system believes that the user might have asked for a Chinese restaurant then it must record
food=Chinese as a possible goal state, but there is no point in maintaining individual goal states for all of
the other possible food types such as food=Italian, food=French, etc. which have not been mentioned
since they are all equally likely. Significant computation can therefore be saved by grouping these states into
equivalence classes. The HIS model therefore assumes that at any time ¢, the space of all user goals S, can be
divided into a number of equivalence classes p € P where the members of each class are tied together and are
indistinguishable. These equivalence classes are called partitions. Initially, all states s, € S, are in a single par-
tition p°. As the dialogue progresses, this root partition is repeatedly split into smaller partitions. This splitting
is binary i.e. p — {p/,p — p'} with probability P(p'|p).”

Since multiple splits can occur at each time step, this binary split assumption places no restriction on the
possible refinement of partitions from one turn to the next. Given that user goal space is partitioned in this
way, beliefs can be computed based on partitions of S, rather than on the individual states of S,. Initially
the belief state is just °(p°) = 1. Whenever a user state partition p is split, its belief mass is reallocated as

b(p') = P(¢'lp)b(p) and b(p—p') = (1 -P{E|p)b(p).)

Note that this splitting of belief mass is simply a reallocation of existing mass, it is not a belief update,
rather it is belief refinement.

A further simplification made in the HIS model is to assume that user goals change rarely and when they
do, they are relatively easy to detect. Hence, instead of assuming that the user goal can change every turn, the
HIS model assumes that user goal changes will be explicitly identified by the dialogue policy decision process
and signalled by explicit system responses (this is explained further in Section 4.3). Normal turn-by-turn belief
updating is therefore based on the assumption that

P(s, |su) = 0(s,,4); (10)

where d(s),s,) =1 if s/, = s, and 0 otherwise.

7 The notation p — p’ should be read as denoting the partition containing all states in p except for those in p'.

156 S. Young et al. | Computer Speech and Language 24 (2010) 150174

Table 1
The principal dialogue acts used by the HIS System. The Sys and Usr columns indicate which are valid acts for the system outputs and user
inputs, respectively.

Act Sys Usr Description

hello(a =x,b=y,...) Vv vV Open a dialogue and give infoa=x, b=y, ...
inform(a =x,b=y,...) 4 V4 Give informationa=x,b=y, ...

request(a,b = x,...) V4 V4 Request value for a given b =1x, ...

reqalts(a = x,...) X V4 Request alternative with a = x, ...

confirm(a =x,b=y,...) V4 vV Explicitly confirma =x, b=y, ...

confreq(a = x,...,d) 4 X Implicitly confirm a = x, ... and request value of d
select(a = x,a = y) V4 X Select either a =x ora =y

afirm(a =x,b=y,...) 4 V4 Affirm and give further infoa=x,b=y, ...
negate(a = x) X V4 Negate and give corrected value a = x

deny(a = x) X v Deny that a = x

bye() V4 V4 Close a dialogue

Substituting (9) and (10) into (7) gives the belief update equation for the HIS model

(. d,sy) =k- P|a,) Plalp an) Y Psylp.a, 54 an) P(0P)b(p,sa), (11)
———) sa) ; !
observation model user action model dialogue history model belief refinement

where p is the parent of p’ and where s, is the dialogue history shared by all states in partition p.
3. Implementation of the HIS probability models

The HIS system represents a complete dialogue state as a triple (p, a,,s;) representing a partition of equiv-
alent user goal states, the last user dialogue act and a common dialogue history. This triple and its associated
belief represents a hypothesis regarding the true (hidden) state of the dialogue system and the HIS system
maintains a list of the M most likely hypotheses as an approximation to the full distribution. Each complete
dialogue cycle consists of splitting any necessary partitions and updating their beliefs according to Eq. (11). In
order to understand this process in more detail, it is first necessary to explain how goal states, partitions and
dialogue acts are represented in the HIS system. The implementation of the three core probability models is
then described. The section ends with a summary of how belief monitoring in the HIS system works in
practice.

3.1. Dialogue acts

Dialogue acts in the HIS system take the form actt (a; = vy, ay = vy, ..) where actt denotes the type of dia-
logue act and the arguments are act items consisting of attribute-value pairs.® Attributes refer to nodes in the
user goal state tree described below and values are the atomic values that can be assigned to those nodes. In
some cases, the value can be omitted, for example, where the intention is to query the value of an attribute.
The same dialogue act representation is used for both user inputs and the dialogue manager outputs. The most
common acts are listed in Table 1 and a simple dialogue illustrating their use is shown in Table 2. A full
description of the dialogue act set used by the HIS system is given in Young (2007).

Note that in the HIS system every utterance translates into a single dialogue act. When the speech under-
standing system is uncertain, the input to the dialogue manager is typically a list of alternative dialogue acts.
For example, the utterance “I want an Italian place near the cinema” spoken in a noisy background might
yield
inform(type=restaurant,food=Italian, near=cinema) {0.6}

inform(type=restaurant,food=Indian, near=cinema) {0.3}

8 Attributes are referred to as slots in some dialogue systems.

S. Young et al. | Computer Speech and Language 24 (2010) 150174 157

Table 2
An example dialogue and its representation at the dialogue act level.
Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)
S: You are looking for a restaurant. confreq(type = restaurant,food)
What type of food do you like?
U: I'd like an Italian somewhere near the museum. inform(food = Italian,near=museum)
S: Roma is a nice Italian restaurant near the museum. inform(name = “Roma”, type = restaurant,food = Italian, near = museum)
U: Is it reasonably priced? confirm(pricerange = moderate)
S: Yes, Roma is in the moderate price range. affirm(name = “Roma”, pricerange = moderate)
U: What is the phone number? request(phone)
S: The number of Roma is 385456. inform(name = “Roma”, phone = “385456”)
U: Ok, thank you goodbye. bye()
Table 3
Example ontology rules for a simple tourist information domain.
task — find(entity) 0.4
entity — venue(name, type, area) 0.8
type — bar(drinks, music) 0.4
type — restaurant(food, pricerange) 0.3

area
food

(central|east|west]|. . .)
(Italian|Chinese]. . .)

inform(type=bar,near=cinema) {0.1}

where the number in braces is the probability of each dialogue act hypothesis. This list corresponds to the
form of observation defined in (8).

3.2. User goal state partitioning

The HIS system is designed primarily for information retrieval tasks. However, compared to simple slot
filling systems, it supports a much richer set of user goal representations based on tree-like structures built
from classes, subtypes, and atomic values where a class represents a collection of related values and a subtype
denotes a specific variant of a class. The space of all possible user goals is described by a set of simple onto-
logical rules which define the various subtypes of each class and the atomic values which can be assigned to
terminal classes.

The way this works is best illustrated by example. Table 3 shows a fragment of the rule set used by a simple
application in the Tourist Information domain.’ Rules of the form x — y(,q,r,...) define how a class x can
be expanded as a subtype y with class members (p,q,7,...). Rules of the form x = (a|b|c|...) define which
atomic values (@, b,c,...) can be assigned to the terminal class x. As an example, the tree structure shown
in Fig. 4 would represent the goal of a user who was looking for a cheap Chinese restaurant in the centre
of town.

For a given set of rules, there are many possible trees that can be derived and as noted previously, it is not
practical to instantiate all of them and maintain a belief for each. Furthermore, without evidence from the
user, the majority of possible goals would all have the same very low probability.

To avoid this, it may be observed that a partially instantiated tree can be used to efficiently represent the set
of all possible user goals derivable from that tree. A partially instantiated tree therefore represents a partition
of user goal space. Splitting a partition then equates to selecting one of the uninstantiated leaf nodes and split-
ting it so that one copy is left unchanged and the other copy is expanded according to one or more ontology

® It should be noted that apart from the database itself, there is no other application-dependent data or code in a HIS dialogue manager.

158 S. Young et al. | Computer Speech and Language 24 (2010) 150174

atomic

D

? central ?

Qestaurant) food | price |

chinese cheap

Fig. 4. Tree structure representing the user goal: “find a cheap Chinese restaurant in the centre of town”.

rules. Furthermore, if a prior probability mass is associated with each tree node, then splitting a node carrying
mass P using a rule with prior probability p simply requires that the mass of the remaining uninstantiated node
is reduced to probability P — p and the split off node has mass p. In addition, the belief associated with the
original partition is divided between the two new partitions in the same proportion. Provided that no rule
is used to split a node more than once, this mechanism ensures that all partitions are unique, the sum of
the prior probabilities over all partitions is always unity and splitting does not change the total belief over
all partitions.

For the case of non-terminal nodes, the partition split probability P(p/|p) is specified as a prior in the node
expansion rules (indicated by a —). This prior can be estimated by counting occurrences of each class type in a
training corpus. However, for the case where an atomic value « is assigned to a terminal node x, using a simple
prior for P(p'|p) = P(alx) would severely under-estimate the probability since in practice it will be heavily con-
ditioned by the values of the other terminal nodes in the goal tree. Hence, in this case, P(p/|p) is estimated as
ne(x,a,s,)/ne(x,s,) where the numerator is the number of database entities consistent with the current goal
hypothesis s, when x = a and the denominator is the number of database entities consistent with s, when x
is unspecified.

Thus, in the HIS model, partitions of user goal space are represented by a forest of trees where each tree
represents a single partition. At the start of a dialogue, there is just one partition represented by a single root
node with belief mass unity. Each incoming user act is matched against each partition in turn and if there is a
match, nothing needs to be done. However, if there is no match, the ontology rules are consulted and the sys-
tem attempts to create a match by expanding the tree. This expansion will result in partitions being split and
their belief mass redistributed accordingly. This is illustrated in Fig. 5. Following the initial system prompt, the
user requests something but due to poor speech recognition the understanding component generates two pos-
sible hypotheses. These firstly cause the task node to be split to create a £ind task. Since there is no match
for the type=restaurant item, an entity node is created with subtype venue and then its type node is
split to create a subtype restaurant. The second user act hypothesis is then matched against the set of par-
titions, and the type node is split again to create the bar subtype. The way in which the prior probabilities
are applied is indicated by the numbers on the top of the nodes.

The figure also illustrates the way that the belief is redistributed by the splitting process. It is important to
stress that this belief refinement is quite distinct from belief monitoring. The probability of each hypothesised
user act is irrelevant to the splitting process. The whole process is designed to be conceptually equivalent to a
system where all possible trees are fully expanded from the outset and belief monitoring is applied to all pos-
sible partitions.

S. Young et al. | Computer Speech and Language 24 (2010) 150174 159

Turn 0

1.0

task

1 partition: ~ task() b= 1.0 S: How may | help you?

U: I want to find a <mumble>.
Turn 1 06 => inform(task=find, type=restaurant)
’ inform(task=find, type=bar)

task |)
ﬁ 10
entity
03 1.0
venue 4 T
o7 name
type
7.0
drinks e
1lo
restaurant

food i

4 partitions:p=0.6 task()

b=0.12 find(venue(restaurant(food=?, ...), name=2, ...))
0.16 find(venue(bar(drinks=?, ...), name=2, ...))
0.12: find(venue(type=?, name=2, ...))

Fig. 5. Illustration of partition splitting.

3.3. The observation model

The observation model probabilities P(o | a,) are derived directly from the N-best list of hypotheses gen-
erated by the speech understanding component by assuming that

P(ola, = a.) = k°p;, (12)

where @’ and p; are defined in (8) i.e. the posterior probability of the N-best list element corresponding to a,.
In practice, the constant £° can be ignored since it is subsumed by the constant k in the belief update Eq. (11).
In practice, the quality of the N-best list of user acts is crucial to obtaining robust performance (Thomson
et al., 2008c). In the current system, the speech recogniser generates a word lattice which is then converted to a
confusion network (Evermann and Woodland, 2000). A ranked list of word level hypotheses is then generated
from this confusion network in which the probability of each hypothesis is given by the product of each con-
stituent word posterior including any null arcs. Each word level hypothesis is then parsed to produce a user
dialogue act and any resulting duplicates are merged by summing their probabilities. Currently, the speech
understanding component is deterministic and does not modify the word level probabilities.'®

3.4. The user action model

The HIS user action model is a hybrid model, consisting of a dialogue act type bigram model and an item
matching model

Pla,lp'an) = P(7(a,)|7 (an)) - P(M(a,)p, an), (13)

bigram model item matching model

19 The Phoenix decoder is currently used for semantic parsing (Ward, 1991).

160 S. Young et al. | Computer Speech and Language 24 (2010) 150174

where 7 (-) denotes the fype of the dialogue act and .#(-) denotes whether or not the dialogue act matches the
given user goal partition p’ and the last system act a,,.

The bigram model reflects the dialogue phenomenon of adjacency pairs (Schegloff and Sacks, 1973). For
example, a question is typically followed by an answer, an apology by an apology-downplayer, and a confir-
mation (““You want Chinese food?”) is typically followed by an affirmation (“Yes please.”), or negation (“No,
I want Indian.”). The bigram model is trained from data using maximum likelihood with Witten—Bell
smoothing.

The item matching model is deterministic, assigning either a full match probability or a no match probability,
depending on the outcome of matching the user act with the given user goal partition. For example, the user is
not likely to ask about Indian food when the user goal actually indicates that he wants a Chinese restaurant.
Therefore, the item arguments of an inform act should match the partition. On the other hand, a negation is
not likely if the content of the last system act matches the partition. The matching probabilities themselves are
optimised empirically.

The design of the matching model is formalised in terms of dialogue act preconditions (Cohen and Perrault,
1979). The preconditions of an action specify the conditions that the assumed dialogue state has to satisfy in
order for an agent to perform that action. For example, a user wanting to find a Chinese restaurant is moti-
vated to perform the action inform (type=restaurant, food=Chinese) (assuming cooperativity in
the sense that the system will try to satisfy the user’s goal once it has been informed about it). Each precondi-
tion is defined in terms of an agent (typically the user u), a propositional attitude (typically wanTs), and a
propositional argument (typically an attribute-value pair). For example, inform (food=Chinese) has
the precondition ‘U wants (food=Chinese)’, whereas a negate () after confirm(food=Indian) has
the precondition ‘U not waNTs (food=Indian)’. Table 4 presents some examples of HIS system user dialogue
acts and their preconditions in terms of the propositional attitudes of the user, and what matching operations
against the given user goal partition are required for these preconditions to be satisfied. Note that since the
preconditions do not depend on specific attribute names or their values, the item match model specification
is domain-independent.

3.5. The dialogue history model

Each user goal partition represents one possible interpretation of the goal that is in the user’s mind and
which is motivating the current query. As the dialogue progresses, the attributes and values which comprise

Table 4

Preconditions and item match conditions required by the item match model for some typical user acts. Where relevant, the last system act
a,, is shown as [sys: act]. The relation kNows_vAL means “knows the value of”’; BEL means “believes”; and not(a = x) means that the item
(a = x) may not match the partition.

User act Preconditions Items to match
inform(a=x, b=y) UWwANTSa=x,b=y a=x,b=y
request(a,b=x) U WANTS b = x b=x

U wanTs U KNOWS_VAL a a
reqgalts(a=x) U WANTS @ = x a=x
confirm(a=x) U wanTs U KNOWS_IF @ = x a=x
affirm() [sys: confirm(a =x)]

U WANTS a = x a=x
affirm(b=y) [sys: confirm(a =x)]

U WANTS a = x a=x

U waNTs b=y b=y
negate () [sys: confirm(a =x)]

not(U WANTS a = x) not(a = x)
negate(b=y) [sys: confirm(a =x)]

U BEL S BEL U WANTS a = x

not(U WANTS a = x) not(a = x)

U waNTs b=y b=y

S. Young et al. | Computer Speech and Language 24 (2010) 150174 161

Table 5

User goal node grounding states.

State Description

Init Initial state

UReq Item requested by user with expectation of an immediate answer
Ulnf Item supplied by user during formation of a query

SInf Item supplied by system

SQry Item queried for confirmation by system

Deny Item denied

Grnd Item grounded

the goal will be mentioned by both the user and the system in various contexts. The purpose of the dialogue
history model is to track the status of these attributes and values using a grounding-model (Traum, 1999).
Each terminal node in the associated partition is assigned a grounding state as shown in Table 5.

These states are updated according to a simple set of transition rules as the dialogue progresses. For exam-
ple, if the user requests ‘““a bar in the centre of town”, the grounding state of the nodes representing
area=central will be Ulnf. If the system then queries that the desired area is indeed ‘““‘central” and the user
confirms it, then the grounding state will be updated to Grnd.

It is important to emphasise that the grounding states of nodes in user goal trees are not deterministic. Any
node may have multiple possible states depending on the possible dialogue histories that led to the current
state. The combination of a specific user goal partition, last user act and specific dialogue history constitute
a hypothesis in the HIS system. For example, Fig. 6 illustrates the way that hypotheses are formed in more
detail. In this example, the system had previously output inform(music=Jazz) and the user’s response
was either request (food) or deny (music=Jazz). Previously there was a single dialogue history hypoth-
esised for the given fragment of partition p’ with both nodes in the Init state. After completing the turn, there
are two distinct dialogue history states corresponding to the two different interpretations of the user input.

The actual probability P(s,|p',), s4,a,) returned by the dialogue history model is deterministic. If after
updating the history from s, to s/, a resulting hypothesis (p/,a’,s)) is inconsistent, for example the user has
denied a goal in p/, then P(s,|p', d, sq4, an) ~ 0, otherwise P(s,|p/, d,,sq4, an) = 1.

3.6. Summary of belief updating in the HIS system

Before moving to the topic of policy representation and optimisation, it may be helpful to summarise the
process of belief updating in the HIS system. Referring to Fig. 7, the inputs to the system consist of an obser-
vation from the user and the previous system act. The observation from the user typically consists of an N-best
list of user acts, each tagged with their relative probability ((6) and Section 3.1). The user goal is represented by
a set of branching tree structures which represent partitions of the user goal space and they are grown down-
wards controlled by application-dependent ontology rules (Section 3.2). Initially, there is a single tree node

~1
[aﬂl] au
5!
[S: inform(music=Jazz)] 4 lfood: Tnit-> UReq
U: request(food) music: Init -> SInf -> Grnd
restaurant
2
[am] aLl 2
S
Italic 12 [S: inform(music=Jazz)] ? |food: Init
talian azz U: deny(music=Jazz) music: Init ->SInf -> Deny

Fig. 6. Example hypothesis formation where the same partition has differing grounding states depending on the interpretation of the
previous user act.

162 S. Young et al. | Computer Speech and Language 24 (2010) 150174

Ontology Rules Application Database
Observation I \
1 1 Iy
/ Sd 4—0 ~
From \) hy
User Sa O Belief
\ hy State
1
V\ Sq —O > —
h
From 52 4—04
System d
hs
3
Sd 4—O
- Action POMDP
a, < — Refinement |« Polic
Specific (heuristic) Strategic y
Action Action

Fig. 7. Overview of the HIS system operation.

representing a single partition with belief unity. As the trees are grown, the partitions are repeatedly split
allowing the belief assignment to be refined.

The tree growing process is driven entirely by the dialogue acts exchanged between the system and the user.
Every turn, the previous system act and each input user act is matched against every partition in the branching
tree structure. If a match can be found then it is recorded. Otherwise the ontology rules are scanned to see if
the tree representing that partition can be extended to enable the act to match. Once the matching and par-
tition splitting is complete, all the partitions are rescanned and for each partition, all hypothesised user acts
which have items matching that partition are attached to it.

Each combination of a user goal partition and an input user act (p,a,) forms a partial hypothesis and the
observation probability and user act model probability can be calculated as in (12) and (13).

The grounding status of each tree node is recorded in the dialogue history state s;. Since the grounding sta-
tus of a tree node can be uncertain, any (p, a,) pair can have multiple grounding states attached to it. However,
unlike the user act component of the state which is memoryless, the dialogue history evolves as the dialogue
progresses. Thus, at the beginning of each dialogue cycle, the various dialogue state instances are stored
directly with the partitions. Once the input user acts have been attached to the partitions, the dialogue history
states are updated to represent the new information in the dialogue acts. At this point, the dialogue history
state probabilities (Section 3.5) are computed. At the end of the turn, identical dialogue history states attached
to the same partition are merged ready for the next cycle.

Every distinct triple (p, a,,s,) remaining at the end of the above process represents a single dialogue hypoth-
esis /. The belief in each 4 is computed using (11) and the complete set of values b(%;) represents the current
estimate of the POMDP belief state. This belief state is input to the POMDP policy which determines the next
system output. The way that policies are represented and the implementation of the decision process is
described next.

4. Policy representation and optimisation

As mentioned in Section 2.1, the HIS system represents policies by a set of grid points in summary belief
space and an associated set of summary actions. Beliefs in master space are mapped first into summary space
and then mapped into a summary action via a dialogue policy. The resulting summary action is then mapped
back into master space and output to the user. This mapping is necessary because accurate belief monitoring
requires that the full propositional content of user goals and dialogue acts be maintained, whereas policy

S. Young et al. | Computer Speech and Language 24 (2010) 150174 163

Table 6

Hypothesis status values used in summary belief space.

H-status Meaning

initial initial state of a hypothesis

supported at least one grounded node in associated partition

offered entity consistent with this hypothesis has been offered to user
accepted offered entity has been accepted

rejected at least one node in associated partition is denied
notfound no solution to user goal defined by partition is possible
Table 7

Partition status values used in summary belief space.

P-status Meaning

initial initial state of a partition

generic partition is consistent with at least one node instantiated
hugegroup set of database entities matching partition is under-specified
smallgroup set of database entities matching partition is fully specified
unique partition is consistent with a single unique matching entity
unknown no entities in database are consistent with this partition
Table 8

List of summary acts.

Summary act Meaning

greet greet the user

request request information

confreq implicitly confirm and request further information

confirm explicitly confirm some information

offer offer an entity to the user

inform provide further information

split ask user to distinguish between two options

findalt find an alternative solution to users goal

querymore ask user if more information is required

bye say goodbye

optimisation requires a more compact space which can be covered by a reasonable number of grid points. This
section explains this mapping process in more detail and describes the policy optimisation algorithm.

4.1. Summary space and dialogue policies

In the current HIS system, each summary belief point is a vector consisting of the probabilities of the top
two hypotheses in master space; two discrete status variables, /-status and p-status, summarising the state of
the top hypothesis and its associated partition (see Tables 6 and 7); and the type of the last user act.

The set of possible machine dialogue acts is also compressed in summary space. This is achieved by remov-
ing all act items leaving only a reduced set of dialogue act types. When mapping back into master space, the
necessary items (i.e. attribute—value pairs) are inferred by inspecting the most likely dialogue hypotheses. The
full list of summary actions is given in Table 8.

Given the above, a dialogue policy can be represented as a fixed set of belief points in summary space (i.e. a
grid) along with the action to take at each point. In order to use such a policy, a distance metric in belief space
is required to find the closest grid point to a given arbitrary belief state. In the prototype HIS system, this dis-
tance metric is'!

' But see Section 6.

164 S. Young et al. | Computer Speech and Language 24 (2010) 150174

Master Space Summary Space
< p’ Sd 4 au >
~Grnd)
b(1)=0.58 ~-Ulnfo affirm(..)
-Ulnfo
b(2)=0.25 <-Ulnfo inform(..) N
: b
--Ulnfo
b@)=022 | @ inform(..) h- p- | last
S“I.r.1fo / b(1) 6@ | status |status | uact
heuristically
add items
to machine
action in
master
space
a, <
[eg. confirm(area=central)] [eg. confirm]
Fig. 8. Master-summary state mapping.
2 5
b — byl = ou -\ (bilk) — T o (1= 8(bi(k), by(k))), (14)
k=1 k=3

where the o’s are weights, the index k ranges over the 2 continuous and 3 discrete components of b and o(x,y)
is 1 iff x = y and 0 otherwise.

4.2. Master—summary space mapping

The process of mapping between master and summary space is illustrated in more detail in Fig. 8. On the
left of this figure is master space consisting of a set of dialogue hypotheses where, as discussed previously, each
hypothesis consists of a user goal partition p, a dialogue history state s; and the last user act a,. Note also that
each hypothesis has associated with it a notional set of database entries consisting of all entities in the database
which are consistent with the hypothesis’s partition. On the right of Fig. 8 is summary space represented by a
single vector or belief point.

The policy is shown as an irregular grid of these belief points and the figure shows how a system response is
generated by mapping the current belief state b into a summary belief state b, then finding the nearest stored
point in the policy b; which in turn yields a summary action al,. This is then mapped back into master space by
a heuristic which assumes that the selected summary action refers to the top hypothesis and therefore

S. Young et al. | Computer Speech and Language 24 (2010) 150174 165

constructs the full machine action a,, taking note of the grounding state of all the nodes in the associated par-
tition (Williams and Young, 2007b).'?

4.3. Switching user goals

As mentioned in Section 2.3, the HIS POMDP model assumes that the user’s goal does not change. In prac-
tice, of course the user’s goal does occasionally change but this is usually signalled by the user explicitly
requesting an alternative or as a consequence of the system not being able to find an entity in the database
that satisfies the user’s current goal. This is handled by associating a change of goal with a specific summary
state-action called findalt (see Table 8). When a findalt action is executed, the effect is equivalent to an offer
action, except that the most likely hypothesis in master belief space is replaced by an alternative hypothesis
lower down the N-best list.

4.4. A hand-crafted policy

Before discussing policy optimisation, it should be noted that at the level of summary space, it is relatively
easy to hand-craft a policy and such a policy serves as a useful baseline for experimental performance evalu-
ations. The strategy used by the HIS hand-crafted policy is to first check the most likely hypothesis. If it con-
tains sufficient grounded keys to match between one and three database entities, then the offer action is
selected. If any part of the hypothesis is inconsistent or the user has explicitly asked for another suggestion,
then the findalt action is selected. If the user has asked for information about an offered entity then inform is
selected. Finally, if an ungrounded component of the top hypothesis can identified then depending on the
belief, one of the confreq or confirm actions is selected; otherwise a request action is generated to expand
one of the partition’s leaf nodes.

4.5. Policy optimisation

As explained in Section 2.1, representing a POMDP policy by a grid of exemplar belief points yields an
MDP optimisation problem for which many tractable solutions exist. Here a simple Monte Carlo Control
algorithm is used (Sutton and Barto, 1998). Associated with each belief point is a function Q(l;,izm) which
records the expected reward of taking summary action &, when in belief state b. Q is estimated by repeatedly
executing dialogues and recording the sequence of (lg,,&mﬂ,) belief point—action pairs. At the end of each dia-
logue, each Q(@,, an,) estimate is updated with the actual discounted reward. Dialogues are conducted using
the current policy = but to allow previously unvisited regions of the state-action space to be explored, actions
are occasionally taken at random with some small probability e."

Once the Q values have been estimated, the optimal policy can easily be found by setting

n(b) = argmax O(b,a,), Vbe B. (15)

In order to minimise the errors caused by quantising belief space, belief points should only be placed in
regions of the state space which are likely to be visited during actual dialogues. Belief points are therefore gen-
erated on demand during the policy optimisation process. Initially, just a single belief point is allocated. Then
everytime a belief point is encountered which is sufficiently far from any existing point in the policy grid, it is
added to the grid as a new point.

The complete policy optimisation algorithm is shown in Fig. 9.

5. Training the HIS system

This section explains how the HIS system policy is optimised in practice using a user simulator.

12 In the case of the splir summary action, the response is constructed from the top two hypotheses.
13 This is referred to as an e-greedy policy in the literature.

166 S. Young et al. | Computer Speech and Language 24 (2010) 150174

1: Let Q(Z) Gm) = expected reward on taking action a,, from belief point b
2: Let N(b, a,,) = number of times action d,, is taken from belief point b
3: Let B be a set of grid-points in belief space
4: Let 7 : b — dm; Vb € Bbe a policy
5: repeat
6: t—20
7 Qm,o < initial greet action
8: b= by [= all states in single partition - see section 2.3 |
Generate dialogue using e-greedy policy
9: repeat
10: t—t+1
11: Get user turn a,; and update belief state b
12: b, — SummaryState(b)
) RandomAction with probability e
13: At ~
7(Nearest (b, B)) otherwise
14: record <8t7 Qmy), T —t
15: until dialogue terminates with reward R from user simulator

Scan dialogue and update B, @ and N
16: for t =T downto 1 do

17: if b, € B, |b, — by < 0 then — update nearest pt in B
181 Q(bk7 dm,t) «— Q(bkaﬁ<21igibf)i;lt)+R

19: N(i)]ﬁ &m’t> — N(E)k, (jlm’t) + 1

20: else «— create new grid point
21: add b; to B

22: Q(by, iimy) — R, N(by, igy) — 1

23: end if

24: R +—~R « discount the reward

25: end for

Update the policy
26: for all by, with updated Q(l;k, Gy,) for any a,, do
27: m(by) = argmaxg,, Q (b, Gm)
28: end for
29: until converged

Fig. 9. Monte Carlo policy optimisation algorithm.

5.1. Reward function

The choice of reward function can have a significant effect on system performance and in principle quite
elaborate reward schemes could be devised to encourage specific desired behavioural properties. For the exper-
iments described here, however, a very simple reward function is used where the reward for each dialogue is
obtained by subtracting 1 point for each turn and adding 20 points in case of a successful dialogue. Since a
typical dialogue will require around five or six turns to complete, this implies that around 15 represents an
upper bound on the achievable average return.

5.2. User simulation

Policy optimisation using the Monte Carlo algorithm requires many thousands of dialogues to obtain
robust estimates for the Q values. Hence in practice, a user simulator is used to generate responses to system

S. Young et al. | Computer Speech and Language 24 (2010) 150174 167

actions. This has two main components: a User Goal and a User Agenda (Schatzmann et al., 2007a). At the
start of each dialogue, the goal is randomly initialised with requests such as name, addr, phone and con-
straints such as type=restaurant, food=Chinese, etc. The agenda stores the dialogue acts needed to
elicit this information in a stack-like structure which enables it to temporarily store actions when another
action of higher priority needs to be issued first. This enables the simulator to refer to previous dialogue turns
at a later point. To generate a wide spread of realistic dialogues, the simulator reacts wherever possible with
varying levels of patience and arbitrariness. In addition, the simulator will relax its constraints when its initial
goal cannot be satisfied. This allows the dialogue manager to learn negotiation-type dialogues where only an
approximate solution to the user’s goal exists. Speech understanding errors are simulated at the dialogue act
level using confusion matrices trained on labelled dialogue data (Schatzmann et al., 2007b).

5.3. Policy optimisation

When training a system to operate robustly in noisy conditions, a variety of strategies are possible. For
example, the system can be trained only on noise free interactions, it can be trained on increasing levels of
noise or it can be trained on a high noise level from the outset. A related issue concerns the generation of grid
points and the number of training iterations to perform. For example, allowing a very large number of points
leads to poor performance due to over-fitting of the training data. Conversely, having too few points leads to
poor performance due to a lack of discrimination in decision making.

Based on some initial experimentation, the following training schedule is used for HIS policy optimisation.
Training starts in a noise free environment using a small number of grid points and it continues until the per-
formance of the policy asymptotes. The resulting policy is then taken as an initial policy for the next stage
where the noise level is increased, the number of grid points is expanded and the number of iterations is
increased. This process is repeated until the highest noise level is reached. This approach was motivated by
the observation that a key factor in effective reinforcement learning is the balance between exploration and
exploitation. Since the HIS system policy optimisation uses dynamically allocated grid points, maintaining this
balance is crucial. In this case, the noise introduced by the simulator is used as an implicit mechanism for
increasing the exploration. Each time exploration is increased, the areas of state space that will be visited will
also increase and hence the number of available grid points must also be increased. At the same time, the num-
ber of iterations must be increased to ensure that all points are visited a sufficient number of times. In practice
a total of 750-1000 grid points have been found to be sufficient and the total number of simulated dialogues
needed for training is around 100,000.

A second issue when training in noisy conditions is whether to train on just the 1-best output from the sim-
ulator or train on the N-best outputs. Intuitively, a larger N-best list provides a better approximation of the
observation. However, a limiting factor here is that the computation required for N-best training is signifi-
cantly increased since the rate of partition generation in the HIS model increases exponentially with N.

In preliminary tests, it was found that when training and testing with 1-best outputs, there was little differ-
ence between policies trained entirely in no noise and policies trained on increasing noise as described above.
However, policies trained on 2-best using the incremental strategy when tested using 2-best outputs did exhibit
increased robustness to noise, whereas policy trained in no noise did not show any improvement when tested
on 2-best. Hence, incremental training with 2-best outputs was adopted for all policy training (Gasic et al.,
2008).

6. Evaluation

This section describes the evaluation of a HIS-based dialogue system designed for the Tourist Information
domain. The system allows users to request information about venues in a fictitious town called Jasonville.
The user may provide information about nine attributes in their attempts to find a suitable venue. These
are: name of the venue, type of venue, area, price range, nearness to a particular location, type of drinks, food
type (for restaurants), number of stars (for hotels and restaurants) and music (for restaurants and bars). Once
a suitable venue is found the user may ask about four further attributes: address, telephone number, a com-
ment on the venue and the price (for hotels and restaurants). There are 47 different venues in total.

168 S. Young et al. | Computer Speech and Language 24 (2010) 150174

The primary evaluation is based on comparing the HIS POMPD-based dialogue manager with an MDP-
based manager. The latter was developed in 2007 as part of another project in a parallel development to the
HIS system described here. It has been used in various trials (Schatzmann, 2008) and since considerable effort
has been put into optimising this system, it serves as a good baseline for comparison.

For each system there are the following variants:

MDPO07-HDC the baseline 2007 MDP system with a hand-crafted policy
MDPO07-TRA the baseline 2007 MDP system with a trained policy
HIS07-HDC the prototype 2007 HIS system with a hand-crafted policy
HIS07-TRA the prototype 2007 HIS system with a trained policy
HISO8-TRA a refined 2008 HIS system with a trained policy

The MDPO0O7-HDC system is in effect a conventional dialogue manager utilising a finite-state network with
hand-crafted decisions. The MDP(07-TRA system uses a state-action table trained using reinforcement learn-
ing via interactions with the user simulator. The HIS07 system represents the first complete HIS-based spoken
dialogue system which was capable of conducting realistic and complete dialogues in the tourist information
domain including negotiating with the user when the users initially query was under- or over-specified. The
HIS07 system has all of the components described above except that it uses a simplified form of user action
model.

As described in more detail below, the HISO7 system was trialled in February 2008 and hence its perfor-
mance as measured by the user simulator can be verified with real user trial data. Subsequent to the trial, a
number of improvements have been made to the HIS system. In particular, the user action model has been
refined following the schema described in Section 3.4 and the grid-based training has been improved by replac-
ing the Euclidean metric in Eq. 14 by a quantiser in which the probabilities of the top two hypotheses are
placed in one of three bins corresponding to probabilities (1.0,0.0) i.e. the top hypothesis is certain;
(0.5,0.5) i.e. the top two hypotheses are equally likely; and (0.0,0.0) i.e. all hypotheses are uniformly unlikely.
This new HISO8 system is substantially more robust than the HIS07 system and even though no user trial
results are currently available, its inclusion in the simulated results provides a useful indication of progress.

6.1. Evaluation via user simulation

The limitations of testing a statistical dialogue system on the same user simulator that was used to train its
policy have been well documented (Schatzmann et al., 2005). Nevertheless, evaluation via user simulation can
provide a useful basis for comparing systems and characterising their behaviour.

All of the results given in this section were obtained by using the user simulator described in Section 5.2 to
conduct dialogues over a range of simulated error rates. Depending on the error rate, the simulator provides
upto 2-best user dialogue acts at each turn. In the actual trial described below, the average number of seman-
tically distinct dialogue acts derived from the 10-best asr output was 1.4. Hence, the simulator set-up is com-
parable to the trial system.

Each graph point represents 3000 simulated dialogues. In all cases, the same reward function is used for
evaluation as was used in training i.e. 20 points are awarded for a successful dialogue and 1 point is deducted
for every turn taken. In addition to recording the rewards achieved, success rates are also recorded. A dialogue
is considered to be successful, if the correct venue has been offered and the additional information has been
given, as specified in the final user goal.

6.1.1. Performance on simulated data

The average success and reward rates as a function of error rate for the five dialogue systems are shown in
Figs. 10 and 11. The general trend is for the trained systems to perform better than their hand-crafted coun-
terparts. The trained HIS systems clearly out-perform the MDP system and the increased robustness of the
HIS08 system compared to the HISO7 system is striking. This is thought to be mostly due to the improved
accuracy of the user action model which is key to the POMDP system’s ability to discriminate between user
act hypotheses based on context.

Fig.

Fig. 11.

S. Young et al. | Computer Speech and Language 24 (2010) 150174 169
100
B
_____ ~
90 ==
SIssT - - HISO8-TRA
85 e
NN
Q N TT=2
= 80 ~ < H%SO?’ FRA
o S A v
5 75 s
g BRSNS
a0 MDPO7-TRA =~ _ s <
65 HISO7-HDC / BN
N SN
MDPO7-HDC—— "« "~y
60 -~ X
55 -
50 T T T T T T T T T 1
0O 005 01 015 02 025 03 035 04 045 05

Semantic Error Rate

10. Success rates at varying error rates for five systems tested on a user simulator.
12
10 ==
RN
TN = HISO8-TRA
T 8 AN
E N> -
2 RSy
[) ~
o AREOE HISO7-TRA
[J] 6 ~ N
& SN
o MDPO7-TRA RN
> N
I 4 3
MDP0O7-HDC™ \:»\\\
2 HISO7-HDC———> "%
S \\ \ ~
0 N
0 005 01 015 02 025 03 035 04 045 05
Semantic Error Rate
Average reward rates at varying error rates for five systems tested on a user simulator.

6.1.2. Effect of the user action model

Given the crucial role of the user action model (UAM) in computing beliefs, it is of interest to determine
how much it contributes to robustness in practice (Keizer et al., 2008).

Fig. 12 shows simulation results comparing the success rates for the HISO8-TRA system with various con-
figurations of the user action model. The solid uppermost line (UAM) shows the performance with the full
user action model as described in Section 3.4. This is identical to the HISO8-TRA plot in Fig. 10. Also shown
is the performance with only the 1-best user act input to the system (UAM 1-best), the user action model with
the item match component disabled (UAM bigram only) and the complete user action model disabled (UAM

disabled).

The results clearly show a dramatic improvement in success rate when using the UAM. They also clearly
demonstrate the increase in robustness to errors provided by the 2-best input user act list compared to just the
1-best list. Finally, comparing the UAM disabled case with the bigram only case, it appears that the bigram
component of the UAM makes only a small contribution to performance compared to the item match model.

170 S. Young et al. | Computer Speech and Language 24 (2010) 150174

100
95 —
90 =~ UAM
- N
85 === =
~ s UAM 7~ _
% 30 s S— 1-best -~ —
o Sl ~o
8 75 YAM——— = —
S Bigram only X S
a 70 3
>
65 UAM_— >
disabled RN

60 -

55 -

50 T T 1

0 005 01 015 02 025 03 035 04 045 05

Semantic Error Rate

Fig. 12. Success rates for the HISO8-TRA system, comparing different configurations of the UAM.

6.2. Evaluation via a user trial

Whilst user simulation studies can be useful for understanding the broad characteristics of a spoken dia-
logue system, actual performance can only be reliably measured by conducting system trials with real users.
This section describes one such trial conducted in February 2008 in which the HIS07 system was compared
with the MDPO7 system. In both cases, performance with the trained policy and the hand-crafted policy
was tested.

6.2.1. System configuration and trial setup

The dialogue system used for the trial consisted of an ATK-based speech recogniser (Young, 2005), a Phoe-
nix-based semantic parser (Ward, 1991), a template-based response generator and the FLite diphone-based
speech synthesiser (Black and Lenzo, 2005). The semantic parser uses simple phrasal grammar rules to extract
the dialogue act type and a list of attribute/value pairs from each utterance.

In a POMDP-based dialogue system, accurate belief updating is very sensitive to the confidence scores
assigned to each user dialogue act. Ideally these should provide a measure of the probability of the decoded
act given the observation. In the HIS system, the recogniser output is in the form of a confusion network
(Mangu et al., 2000) which is used to compute the inference evidence for each hypothesis. The latter is defined
as the sum of the log-likelihoods of each arc in the confusion network and when exponentiated and renormal-
ised this gives a simple estimate of the probability of each hypothesised utterance. Each utterance in the 10-
best list is passed to the semantic parser. Equivalent dialogue acts output by the parser are then grouped
together and the dialogue act for each group is then assigned the sum of the sentence-level probabilities as
its confidence score.

For the trial itself, 36 subjects were recruited (all British native speakers, 18 male, 18 female). Each subject
was asked to imagine himself to be a tourist in a fictitious town called Jasonville and try to find particular
hotels, bars, or restaurants in that town. Each subject was asked to complete a set of pre-defined tasks where
each task involved finding the name of a venue satisfying a set of constraints such as food type is Chinese and
price range is cheap, and then getting the value of one or more additional attributes of that venue such as the
address or the phone number.

For each task, subjects were given a scenario to read and were then asked to solve the task via a dialogue
with the system. The tasks set could either have one solution, several solutions, or no solution at all in the
database. In cases where a subject found that there was no matching venue for the given task, he/she was
allowed to try and find an alternative venue by relaxing one or more of the constraints.

S. Young et al. | Computer Speech and Language 24 (2010) 150174 171

In addition, subjects had to perform each task at one of three possible noise levels. These levels correspond
to signal/noise ratios (SNRs) of 35.3 dB (low noise), 10.2 dB (medium noise), or 3.3 dB (high noise). The noise
was artificially generated and mixed with the microphone signal, in addition it was fed into the subject’s head-
phones so that they were aware of the noisy conditions. The initial intention was to compute results at each
noise level but in the event the ensuing error rates varied significantly within each noise level and statistically
significant results could only be achieved by averaging across all noise levels.

A supervisor was present at all times to indicate to the subject which task description to follow, and to start
the right system with the appropriate noise level. Each subject performed an equal number of tasks for each
system (3 tasks), noise level (6 tasks) and solution type (6 tasks for each of the types 0, 1, or multiple solu-
tions). Also, each subject performed one task for all combinations of system and noise level. Overall, each
combination of system, noise level, and solution type was used in an equal number of dialogues.

6.2.2. Trial results

Table 9 provides some general statistics of the corpus resulting from the user trial. The semantic error rate is
based on substitutions, insertions and deletions errors on semantic items. When tested after the trial on the
transcribed user utterances, the semantic error rate was 4.1% whereas the semantic error rate in the actual trial
was 25%. This implies that 84% of the error rate was due to speech recognition errors and the parser was
otherwise reasonably robust.

Tables 10 and 11 present success rates and average rewards, comparing the two HIS07 dialogue managers
with the two MDPO07 baseline systems. For the success rates, also the standard deviation (std. dev.) is given,
assuming a binomial distribution. The success rate is the percentage of successfully completed dialogues. A
task is considered to be fully completed when the user is able to find the venue he/she is looking for and
has also obtained all of the additional information asked for; if the task has no solution and the system indi-
cates to the user no venue could be found, this also counts as full completion. A task is considered to be par-
tially completed when only the correct venue has been given. The results on partial completion are given in
Table 10, and the results on full completion in Table 11. The reward function is similar to that used in training,
i.e. a reward of 20 points is given for full completion and 1 point is subtracted for the number of turns up until
a successful recommendation (i.e. partial completion).

The results show that the trained HIS07 system significantly out-performs both the MDPO07 systems, whilst
the hand-crafted HISO7 system is roughly similar. It is interesting to compare the full task completion results
with the simulation results shown in Figs. 10 and 11 at the error rate of 25.2%. The rankings suggested by the
simulations are very similar to those achieved in the trial. The success rates only differ in the third and fourth

Table 9

General corpus statistics for the user trial.

Number of dialogues 432
Number of dialogue turns 3972
Number of words 18,239
Words per utterance 4.58
Word Error Rate 32.9%
Semantic Error Rate (SER) on ASR output 25.2%
SER on corrected transcriptions 4.1%
Table 10

Success rates and average reward on partial completion of each task.

System Success (std. dev.) #turns Reward

Partial task completion statistics

DP07-HDC 68.52 (4.83) 4.80 8.91
MDP07-TRA 70.37 (4.75) 4.75 9.32
HIS07-HDC 74.07 (4.55) 7.04 7.78

HIS07-TRA 84.26 (3.78) 4.63 12.22

172 S. Young et al. | Computer Speech and Language 24 (2010) 150174

Table 11
Success rates and performance results on full completion.

System Success (std. dev.) #turns Reward

Full task completion statistics

MDP07-HDC 64.81 (4.96) 5.86 7.10
MDP07-TRA 65.74 (4.93) 6.18 6.97
HIS07-HDC 63.89 (4.99) 8.57 4.20
HIS07-TRA 78.70 (4.25) 6.36 9.38
Table 12

Subjective performance results from the user trial.

System Succ. rate (std. dev.) Score
MDP07-HDC 78 (4.30) 3.52
MDP07-TRA 78 (4.30) 3.42
HIS07-HDC 71 (4.72) 3.05
HISO07-TRA 83 (3.90) 3.41

ranks being inverted and the reward rates differ only in the second and third ranks being inverted. In both
cases, there was no significant difference between the transposed ranks.

The absolute performance was also reasonably correlated. The HISO7-TRA system average reward at 25%
was predicted by the simulator to be 8.77 and in the trial it was 9.38. The MDP07-TRA reward was predicted
to be 7.7 and in the trial it was 6.97. The simulations tended to over-estimate success rates. For example, the
HISO07-TRA system achieved an 89.9% success rate on the simulator whereas in the trial it was 78.9%. How-
ever, this might be a consequence of the difficulty of accurately measuring success in the trial in cases where the
users had to negotiate a suitable venue when their pre-defined constraints were either under- or over-specified.
In any event, it is clear that overall the simulation results did give useful predictions of performance in the real
user trial.

6.2.3. Subjective results

In the user trial, the subjects were also asked for a subjective judgement of the systems. After completing
each task, the subjects were asked whether they had found the information they were looking for (yes/no).
They were also asked to give a score on a scale from 1 to 5 (best) on how natural/intuitive they thought
the dialogue was. Table 12 shows the results for the four systems used. The performance of the HIS systems
is similar to the MDP systems, with a slightly higher success rate for the trained one and a slightly lower score
for the hand-crafted one. However, these subjective results do not reflect the same clear performance advan-
tage of the HIS system compared to the objective results. A possible reason for this is that because users were
attempting artificial tasks, they were less interested in finding the correct information than they were on simply
completing the dialogue.

7. Conclusions

This paper has described a POMDP-based dialogue manager called the Hidden Information State (HIS)
system. The HIS system was built in order to demonstrate that the POMDP framework can be scaled to
real-world problems, and that because it naturally integrates N-best recognition hypotheses and similar
sources of uncertainty such a system can provide increased robustness to noise compared to a conventional
MDP or finite state system.

As described in the paper, the required scaling has been achieved by two principal mechanisms. Firstly, the
state space is partitioned into equivalence classes which are refined on demand as the dialogue progresses. Sec-
ondly, policy implementation and optimisation is performed in a reduced summary state space where a simple
grid-based learning is effective. One interpretation of the HIS architecture is that it allows multiple dialogue

S. Young et al. | Computer Speech and Language 24 (2010) 150174 173

hypotheses to be maintained in parallel and the system response at each turn to be determined from the state
of all the hypotheses. As a consequence, the evidence from alternative user dialogue act hypotheses can be
incorporated and integrated over time to provide robust behaviour in noisy conditions.

The performance of a prototype HIS system has been evaluated by interaction with a simulated user over a
range of noisy levels, and through a live user trial held in noisy conditions. The simulation results show that
the trained HIS system out-performs the MDP system especially at higher noise levels. Furthermore, a similar
performance gain is obtained in the user trial. The simulation results clearly indicated the crucial role of the
user action model in filtering the noisy user inputs and the ability of the system to exploit alternative recog-
nition hypotheses. In addition, there was a reasonable correlation between the user trial results and the sim-
ulation results showing that for development purposes there is much to be gained from the availability of a
user simulator.

The HIS system was built primarily to demonstrate that the POMDP approach is computationally feasible
and has the potential for significant improvements in robustness compared to today’s hand-crafted finite-state
systems. The HIS design is still evolving and there is considerable work still to do. In particular, the current
partition splitting mechanism can result in excessive fragmentation of the state space in long dialogues (>20
turns) and in high noise conditions. In addition, the summary state space mapping and grid-based optimisa-
tion is currently rather crude and there is much scope for refinement. Also, as noted in the introduction, there
are other approaches to scaling POMDP’s for practical implementation (e.g. Williams, 2007; Thomson et al.,
2008b; Bui et al., 2008). Each of these differ in the way that they approximate the state space and the way that
they perform policy optimisation. More work is needed to refine and implement these approaches in real-
world systems before any meaningful comparison can be made. Hence, there is currently insufficient evidence
to determine which approach, if any, is superior.

Finally, it should be acknowledged that the philosophy of this statistical approach to dialogue system
design has been questioned by some industry-focussed practitioners on the grounds that it is inconsistent with
the need to provide guarantees to service providers regarding specific system behaviours (Pack and Pieraccini,
2008). This is certainly a legitimate concern. However, there are ways to constrain system behaviour (see, for
example, Williams, 2008). More importantly, if statistical approaches can deliver significant reductions in
development and maintenance costs, along with significant improvements in robustness and ease of use, then
the industrial perspective will surely change. In the meantime, we claim that the design and experimental
results presented in this paper give strong support to the central contention that the POMDP-based frame-
work is both a tractable and powerful approach to building spoken dialogue systems.

Acknowledgements

The work described in this paper was partly funded by the UK EPSRC under Grant agreement EP/
F013930/1 and by the EU FP7 Programme under Grant agreement 216594 (CLASSIC project: www.clas-
sic-project.org).

References

Bishop, C.M., 2006. Pattern Recognition and Machine Learning. Springer.

Black, A.W., Lenzo, K., 2005. Flite: a small, fast speech synthesis engine. <http://www.speech.cs.cmu.edu/flite/doc>.

Bonet, B., 2002. An e-optimal grid-based algorithm for partially observable Markov decision processes. In: Proceedings of the 19th
International Conference on Machine Learning(ICML 2002), Sydney, Australia.

Brafman, R.I., 1997. A heuristic variable grid solution method for POMDPs. In: AAAI, Cambridge, MA.

Bui, T.H., Poel, M., Nijholt, A., Zwiers, J., 2008. A tractable hybrid DDN-POMDP approach to affective dialogue modeling for
probabilistic frame-based dialogue systems. Natural Language Engineering.

Cohen, P.R., Perrault, C.R., 1979. Elements of a plan-based theory of speech acts. Cognitive Science 3, 177-212.

Evermann, G., Woodland, P.C., 2000. Posterior probability decoding, confidence estimation and system combination. In: Proc. Speech
Transcription Workshop, Baltimore.

Gasi¢, M., Keizer, S., Thomson, B., Mairesse, F., Schatzmann, J., Yu, K., Young, S., 2008. Training and evaluation of the HIS-POMDP
dialogue system in noise. In: Proc. Ninth SIGdial, Columbus, OH.

Henderson, J., Lemon, O., 2008. Mixture model POMDPs for efficient handling of uncertainty in dialogue management. In: Proc. 46th
Annual Meeting of the Association for Computational Linguistics (ACL’08), Columbus, OH.

http://www.classic-project.org
http://www.classic-project.org
http://www.speech.cs.cmu.edu/flite/doc

174 S. Young et al. | Computer Speech and Language 24 (2010) 150174

Kaelbling, L.P., Littman, M.L., Cassandra, A.R., 1998. Planning and acting in partially observable stochastic domains. Artificial
Intelligence 101, 99-134.

Keizer, S., Gasi¢, M., Mairesse, F., Thomson, B., Yu, K., Young, S.J., 2008. Modelling user behaviour in the HIS-POMDP dialogue
manager. In: IEEE SLT Workshop, Goa, India.

Levin, E., Pieraccini, R., Eckert, W., 1998. Using Markov decision processes for learning dialogue strategies. In: Proc. Int. Conf.
Acoustics, Speech and Signal Processing, Seattle, USA.

Levin, E., Pieraccini, R., Eckert, W., 2000. A stochastic model of human-machine interaction for learning dialog strategies. IEEE
Transactions on Speech and Audio Processing 8 (1), 11-23.

Littman, M.L., 1994. The witness algorithm: solving partially observable Markov decision processes. Technical report, Brown University.

Mangu, L., Brill, E., Stolcke, A., 2000. Finding consensus among words: lattice-based word error minimisation. Computer Speech and
Language 14 (4), 373-400.

Paek, T., Pieraccini, R., 2008. Automating spoken dialogue management design using machine learning: an industry perspective. Speech
Communication 50, 716-729.

Pineau, J., Gordon, G., Thrun, S., 2003. Point-based value iteration: an anytime algorithm for POMDPs. In: Proc. Int. Joint Conference
on Al (IJCAI), Acapulco, Mexico, pp. 1025-1032.

Roy, N., Pineau, J., Thrun, S., 2000. Spoken dialogue management using probabilistic reasoning. In: Proceedings of the ACL 2000.

Schatzmann, J., 2008. Statistical User and Error Modelling for Spoken Dialogue Systems. Ph.D. Thesis, University of Cambridge.

Schatzmann, J., Georgila, K., Young, S.J., 2005. Quantitative evaluation of user simulation techniques for spoken dialogue systems. In:
Sixth SIGdial Workshop on DISCOURSE and DIALOGUE, Lisbon.

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H., Young, S., 2007a. Agenda-based user simulation for bootstrapping a POMDP
dialogue system. In: Proc. HLT/NAACL, Rochester, NY.

Schatzmann, J., Thomson, B., Young, S.J. 2007b. Error simulation for training statistical dialogue systems. In: ASRU 07, Kyoto, Japan.

Schegloff, E., Sacks, H., 1973. Opening up closings. Semiotics 7 (4), 289-327.

Sondik, E.J. 1971. The Optimal Control of Partially Observable Markov Decision Processes. Ph.D. Thesis, Stanford University.

Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An Introduction. Adaptive Computation and Machine Learning. MIT Press,
Cambridge, MA.

Thomson, B., Gasi¢, M., Keizer, S., Mairesse, F., Schatzmann, J., Yu, K., Young, S.J., 2008a. User study of the Bayesian update of
dialogue state approach to dialogue management. In: Interspeech 2008, Brisbane, Australia.

Thomson, B., Schatzmann, J., Young, S.J., 2008b. Bayesian update of dialogue state for robust dialogue systems. In: Int. Conf. Acoustics
Speech and Signal Processing ICASSP, Las Vegas.

Thomson, B., Yu, K., Gasi¢, M., Keizer, S., Mairesse, F., Schatzmann, J., Young, S.J., 2008c. Evaluating semantic-level confidence scores
with multiple hypotheses. In: Interspeech 2008, Brisbane, Australia.

Traum, D., 1999. Computational models of grounding in collaborative systems. In: Working Papers of the AAAI Fall Symposium on
Psychological Models of Communication in Collaborative Systems, pp. 124-131.

Ward, W., 1991. Understanding spontaneous speech. In: Proc. Int. Conf. Acoustics, Speech and Signal Processing, Toronto, Canada, pp.
365-368.

Williams, J.D., 2007. Using particle filters to track dialogue state. In: IEEE Workshop on Automatic Speech Recognition &
Understanding, Kyoto, Japan.

Williams, J.D., 2008. The best of both worlds: unifying conventional dialog systems and POMDPs. In: Proc. Int. Conf. on Speech and
Language Processing (ICSLP), Brisbane, Australia.

Williams, J.D., Poupart, P., Young, S.J., 2005. Factored partially observable Markov decision processes for dialogue management. In:
Fourth Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Edinburgh.

Williams, J.D., Young, S.J., 2007a. Partially observable Markov decision processes for spoken dialog systems. Computer Speech and
Language 21 (2), 393-422.

Williams, J.D., Young, S.J., 2007b. Scaling POMDPs for spoken dialog management. IEEE Audio, Speech and Language Processing 15
(7), 2116-2129.

Young, S.J., 2000. Probabilistic methods in spoken dialogue systems. Philosophical Trans Royal Society (Series A) 358 (1769), 1389-1402.

Young, S.J., 2002. Talking to machines (statistically speaking). In: Int. Conf. Spoken Language Processing, Denver, Colorado.

Young, S.J., 2005. ATK: an application toolkit for HTK. <http://mi.eng.cam.ac.uk/research/dialogue/atk_home>.

Young, S.J., 2006. Using POMDPs for dialog management. In: IEEE/ACL Workshop on Spoken Language Technology (SLT 2006),
Aruba.

Young, S.J., 2007. CUED standard dialogue acts. Report, Cambridge University, Engineering Department, 14th October 2007. <http://
mi.eng.cam.ac.uk/research/dialogue/LocalDocs/dastd.pdf>.

Young, S.J., Schatzmann, J., Weilhammer, K., Ye, H., 2007. The hidden information state approach to dialog management. In: ICASSP
2007, Honolulu, Hawaii.

Zhang, B., Cai, Q., Mao, J., Guo, B., 2001. Planning and acting under uncertainty: a new model for spoken dialogue system. In: Proc. 17th
Conf. on Uncertainty in Al, Seattle.

http://mi.eng.cam.ac.uk/research/dialogue/atk_home
http://mi.eng.cam.ac.uk/research/dialogue/LocalDocs/dastd.pdf
http://mi.eng.cam.ac.uk/research/dialogue/LocalDocs/dastd.pdf

	The Hidden Information State Model: a model: A practical framework for POMDP-based spoken dialogue management
	Introduction
	POMDPs for dialogue management
	POMDP Basicsbasics
	The SDS POMDPSDS-POMDP
	The HIS POMDP

	Implementation of the HIS probability models
	Dialogue acts
	User goal state partitioning
	The observation model
	The user action model
	The dialogue history model
	Summary of belief updating in the HIS system

	Policy representation and optimisation
	Summary space and dialogue policies
	Master-Summary Master–summary space mapping
	Switching user goals
	A Hand-crafted hand-crafted policy
	Policy optimisation

	Training the HIS Systemsystem
	Reward function
	User simulation
	Policy optimisation

	Evaluation
	Evaluation via user simulation
	Performance on simulated data
	Effect of the user action model

	Evaluation via a user trial
	System configuration and trial setup
	Trial results
	Subjective results

	Conclusions
	AcknowledgementAcknowledgements
	References

